
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

A low logic depth complex multiplier using distributed arithmetic

Berkeman, Anders; Öwall, Viktor; Torkelson, Mats

Published in:
IEEE Journal of Solid-State Circuits

DOI:
10.1109/4.839928

2000

Link to publication

Citation for published version (APA):
Berkeman, A., Öwall, V., & Torkelson, M. (2000). A low logic depth complex multiplier using distributed
arithmetic. IEEE Journal of Solid-State Circuits, 35(4), 656-659. https://doi.org/10.1109/4.839928

Total number of authors:
3

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://doi.org/10.1109/4.839928
https://portal.research.lu.se/en/publications/3e93e9a7-0d96-4742-a75d-3143ee511f83
https://doi.org/10.1109/4.839928

656 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 35, NO. 4, APRIL 2000

A Low Logic Depth Complex Multiplier Using Distributed Arithmetic

Anders Berkeman, Viktor Öwall, and Mats Torkelson

Abstract—A combinatorial complex multiplier has been de-
signed for use in a pipelined fast Fourier transform processor. The
performance in terms of throughput of the processor is limited
by the multiplication. Therefore, the multiplier is optimized
to make the input-to-output delay as short as possible. A new
architecture based on distributed arithmetic, Wallace-trees, and
carry-lookahead adders has been developed. The multiplier has
been fabricated using standard cells in a 0.5-m process and
verified for functionality, speed, and power consumption. Running
at 40 MHz, a multiplier with input wordlengths of 16+16 times
10+10 bits consumes 54% less power compared to an distributed
arithmetic array multiplier fabricated under equal conditions.

Index Terms—Complex multiplier, digital CMOS, distributed
arithmetic.

I. INTRODUCTION

COMPLEX multiplication is one of the most time-critical
and area-consuming operations in a digital signal pro-

cessor. Therefore, effort has to be made to decrease the number
of multipliers and to increase their speed. A pipelined fast
Fourier transform (FFT) processor has been designed for use in
an orthogonal frequency-division multiplex (OFDM) system.
In the designed FFT processor the critical path consists of a
complex multiplier in series with a butterfly unit performing
addition and subtraction. A part of the FFT pipeline is shown
in Fig. 1. Since the butterfly processors are much faster than
the complex multiplier, the maximum clock frequency of the
processor strongly depends of the multiplier delay. This paper
presents a novel multiplier architecture based on distributed
arithmetic and Wallace trees. The multiplier is fully parame-
terized, so any configuration of input and output wordlengths
could be elaborated.

II. THE FFT PROCESSOR

In the early versions of the FFT processor, a complex array
multiplier was used [1]. The array multiplier is a highly regular
structure resulting in a minimal wire length, which is important
for high-speed design in submicrometer processes where wiring
delay gives a significant contribution to the overall delay. How-
ever, in a process where cell delay dominates wire delay, the
logic depth of the design is more important than regularity. In
the complex array multiplier the logic depth is , where
is the input wordlength. In the adder tree multiplier, on the other
hand, the depth is [2]. Even for short wordlengths,
this leads to a substantial reduction in delay.

Manuscript received July 6, 1999; revised November 5, 1999.
The authors are with the Department of Applied Electronics, Lund Uni-

versity, Lund SE-221 00 Sweden (e-mail: abn@tde.lth.se; vikt@tde.lth.se;
torkel@tde.lth.se).

Publisher Item Identifier S 0018-9200(00)02865-1.

Fig. 1. Part of the R2DIF FFT processor pipeline. The butterfly processors
are named “BF I” and “BF II”. Shaded boxes are combinatorial blocks without
registers.

A way to decrease the critical path of the FFT processor
would be to pipeline the multiplier into two or more stages.
However, due to the pipelined structure of the FFT processor,
complexity of the controlling hardware would increase [3]. Fur-
thermore, the wordlengths of the datapaths are wide, due to
the application of the processor, and all operators use complex
arithmetic. A multiplier in this application has between 44 and
52 input bits, and a pipeline register inserted somewhere in the
middle of the multiplier would need a wordlength of more than
a hundred bits, due to the internal “carry save” number repre-
sentation. This would increase area, routing, and clock load and
is not a preferable solution. Instead, the multiply operation is
entirely combinatorial.

The FFT processor is implemented using the R2DIF FFT-al-
gorithm [3]. In this algorithm, every second multiplication can
be exchanged to a multiply by , which for an 8192-point FFT
leaves only six complex multipliers. This is to be compared to
12 using a straightforward radix-2 implementation. The multi-
plication by is realized without a multiply by real-imagi-
nary swap and negation of the imaginary part. This is the reason
for the two different butterfly processors, “BF I” and “BF II,”
in Fig. 1. By using this algorithm, the number of instantiated
multipliers is minimized compared to an ordinary radix-2 FFT
without any loss in throughput.

III. M ULTIPLIER ALGORITHM

A complex multiplier calculates two inner products

(1)

In the case of the FFT processor, are the
twiddle factors stored in a ROM. The wordlength of and

is denoted . According to (1), four real multiplications
and two additions are required. With the exception of logic mini-
mization, there are two methods to decrease multiplication logic
depth if it is assumed that multiplication is performed by sum-
mation of partial products. The first is to reduce the number of
partial products and the second is to use a faster adder strategy

0018–9200/00$10.00 © 2000 IEEE

Authorized licensed use limited to: Lunds Universitetsbibliotek. Downloaded on March 25,2010 at 19:19:41 EDT from IEEE Xplore. Restrictions apply.

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 35, NO. 4, APRIL 2000 657

TABLE I
RELATION BETWEEN THE BITS a ; a

AND THE PARTIAL PRODUCTS

to sum all the partial products together [2]. Both methods have
been combined in the presented architecture. Distributed arith-
metic [4]–[6] was chosen as a means to reduce the number of
partial products. A Wallace tree adder was selected for adding
the partial products together, since it has a low logic depth re-
sulting in fast addition.

By using distributed arithmetic, the complex multiplication is
treated as two independent inner productsand . Each of
the two inner products will be calculated using one distributed
arithmetic multiplier, as compared to a direct realization of (1),
which requires four real multipliers. In the equations that follow,
a bit variable is treated as an integer variable holding the arith-
metic value of 0 or 1. In this way, bits can be used together with
arithmetic variables and operators. If is an -bit fractional
number in two's complement, the value ofis calculated ac-
cording to

(2)

By using the identity

(3)

and the rule for negating a two's complement number,
, (2) can be written as

(4)

Introduce , and for , note
that all . Using this notation, can be written
as

(5)

The relationship between and is shown in Table I. Using
this encoding, the complex product can be expressed as

(6)

and

(7)

where . The expressions and
are for examined in Table I, where the

Fig. 2. Partial product bits by significance forZ or z . Input wordlength is
N and coefficient wordlength isM . Each dot represents one partial product bit.

twiddle factors have been transformed from and to
and according to

(8)

This transformation does not cause any problems in the imple-
mentation, since the twiddle factors are precalculated in the
and format before realization. From Table I, it is clear that

can be used to select or . Treating
as integers holding the values 0 or 1 andas a bitwise inclu-
sive-OR operator, (6) and (7) can be written as

(9)

and

(10)

When evaluating the sums, the powers and should be
replaced with and for the case , since these bits
have negative weight in two's-complement representation. The
partial inner products

(11)

and

(12)

are suitable for hardware mapping. They are realized as multi-
plexers selecting or , depending on the value of. The
bits and conditionally negate the outputs of the multi-
plexers by inverting and adding a ‘1’ in the least significant posi-
tion. Fig. 2 shows all the partial product bits that has to be added
to generate or . The wordlength for the twiddle factor
is bits, and for the data it is bits, in this case 10 and 16
bits, respectively. The top 16 lines in the figure are the partial
products generated inside the sum of (9) or (10), and the third
line from the bottom is the ones that form the corresponding
two's-complement of these products. The last two lines are the

or times 2 term.

Authorized licensed use limited to: Lunds Universitetsbibliotek. Downloaded on March 25,2010 at 19:19:41 EDT from IEEE Xplore. Restrictions apply.

658 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 35, NO. 4, APRIL 2000

Fig. 3. The multiplier forZ orZ ; the complete complex multiplier consists
of two of these. Partial inner product generator at the top, adder tree in the
middle, and fast carry-lookahead adder at the bottom.

As an alternative to distributed arithmetic, modified Booth
encoding was considered [7], [8]. However, as the number of
partial products are about the same for both methods, modified
Booth encoding requires more logic gates to implement. This
is due to the fact that in the modified Booth algorithm, three
variables have to be decoded to select the proper partial product.
In a complex multiplier based on distributed arithmetic, a simple
two-inputXOR-gate implements the selection.

IV. I MPLEMENTATION

The proposed multiplier consists of two distributed arithmetic
blocks, one calculating and the other . The two blocks are
similar, and the difference is basically the minus in (1). Each
block is divided into three parts: partial inner product generator,
adder tree, and carry lookahead adder; see Fig. 3.

When designing the adder tree, a generic tree generator was
used. This generator produces a tree withinputs of wordlength

, that is, a rectangle of by input bits. This rectangle has to
be large enough to cover all the partial product bits of Fig. 2,
i.e., and . For certain sizes of and

, the two last lines in Fig. 2 can be joined with two of the
first lines, minimizing to 1. Unfortunately, almost 50% of
the inputs to the adder tree are unused or used for sign extension
only, and extra logic will be generated. Therefore, the area for
the tree multiplier is approximately 75% larger than for the array
multiplier. The number of gates for the array multiplier is 3000,
while the tree multiplier uses 6200 gates, of which 4400 belong
to the two adder trees. Theoretically, the area for a dedicated
tree generator should be only slightly larger than for the array
multiplier.

When data flows through the pipeline of the FFT processor,
the wordlength has to increase to keep accuracy in the calcula-
tions. For the current application, the input wordlength is 12
12 bits (real imaginary) and the output wordlength is 16
16 bits. The twiddle factors are kept constant at 1010 bits

Fig. 4. Chip microphotograph of the proposed multiplier. The pad frame is 3.2
� 2.9 mm and equal for both designs. Core size is 3.59 mm.

at all stages of the pipeline. Different wordlengths in the data-
path means that a set of multipliers of different wordlengths has
to be instantiated if the longest wordlength is not to be used
for all multipliers with a corresponding increase in area. Also,
as FFT processors will be built for different applications, the
wordlength is subject to change. Therefore, the multiplier is
fully parameterized and a multiplier of specific wordlength can
be elaborated when needed.

For the FFT application, the output wordlength should equal
the input wordlength, i.e., some of the least significant bits of
the result are cut away. A simple rounding scheme is applied to
lower the distortion when the output is truncated. A rounding
bit is added to the right of the rightmost bit to be kept after
truncation, causing a carry to propagate when the most signif-
icant position of the bits cut away is a one. A feature of the
adder tree is that this bit can be inserted together with the par-
tial inner products at the top of the tree; see Fig. 2. In the array
multiplier, an additional row of half-adders had to be included
to handle rounding. As rounding includes addition of a one with
the product, arithmetic overflow at the output is possible. There-
fore, a saturation unit is placed at the output of the carry-looka-
head adder. This unit checks the most significant bits of the re-
sult and saturates the output if an overflow has occurred.

Both the proposed multiplier and a multiplier based on a reg-
ular adder array have been fabricated under equal conditions
for comparison. Chip microphotograph for the tree multiplier is
shown in Fig. 4. The multipliers were fabricated using a three-
metal-layer, 0.5-m cell library that does not contain any ded-
icated half or full adder cells. Such cells could be beneficial in
a multiplier architecture due to the large amount of additions
in the algorithm. Instead, adders are realized using basic gates
such as two-inputXOR-gates.

Simulations show that 55% of the total delay in the critical
path is due to the adder tree. The partial inner product generator
contributes with 20% and the carry-lookahead adder 25% of the
total delay. Simulation results have been presented in [9]. Most
of the delay is spent in the adder tree, and by using dedicated
adder cells, this delay can be decreased. However, the target cell

Authorized licensed use limited to: Lunds Universitetsbibliotek. Downloaded on March 25,2010 at 19:19:41 EDT from IEEE Xplore. Restrictions apply.

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 35, NO. 4, APRIL 2000 659

Fig. 5. Power versus frequency for the tree and the array multipliers.

Fig. 6. Frequency versus supply voltage for the tree and array multipliers.

library does not contain any such cells and such improvements
have not been implemented, which is the case for both designs.

V. RESULTS

Both the array multiplier [1] and tree multiplier were fabri-
cated on the same wafer in a 3.3-V, 0.5-m, three-metal-layer
CMOS process using standard cells. This process is neither a
dedicated low-power nor high-speed process, but the enhanced
performance is due to the architectural solution and should be
applicable to more advanced processes as well. To keep the
number of IO pads to a reasonable amount, the input was chosen
to 16 real plus 16 imaginary times 10 real plus 10 imaginary bits.
The most significant 16 real plus 16 imaginary product bits were
output.

Power consumption and maximum operating frequency were
measured over a supply voltage ranging from 1.3 to 3.3 V in
steps of 100 mV. None of the circuits worked below 1.3 V.
Power consumption was measured as the power dissipated in
the core when the chip ran at maximum operational frequency
for a given voltage. The measured results are plotted in Figs. 5

and 6. Fig. 5 shows power consumption versus operating fre-
quency, and Fig. 6 shows maximum operating frequency versus
supply voltage.

Maximum speed for the array multiplier was 41 MHz at 3.3 V,
while the tree multiplier exceeded the 60-MHz limit of the test
instrument when driven with 2.8 V. Due to the tradeoff between
power and speed [10], the proposed multiplier is either faster
than the array multiplier or, at equal speed, it is less power con-
suming.

VI. CONCLUSION

A Wallace-tree-based complex multiplier using distributed
arithmetic has been designed, fabricated, and varified for func-
tionality, speed, and power consumption. The multiplier is com-
pared to a complex multiplier based on a regular array adder fab-
ricated under equal conditions. The multipliers were fabricated
in a three-metal-layer, 0.5-m process on the same wafer using
a standard cell library. This library does not contain any full or
half adder cells that could be beneficial in a multiplier architec-
ture, but all adders are built with basic gates.

At a frequency of 40 MHz, the proposed tree multiplier con-
sumes 66 mW, which is 54% less than the array multiplier. Oper-
ating at the same voltage, the tree multiplier is 54% faster than
the array multiplier. Maximum speed for the proposed multi-
plier is beyond 60 MHz at 3.3 V. Enhanced performance comes
from a novel architecture and is transferable to more advanced
processes. Performance could be further improved by using a
dedicated adder tree. Since the multiplier dominates the critical
path, the delay contribution from the adder or subtracter can be
ignored, and throughput of the FFT processor is expected to in-
crease by approximately 80%. The multiplier is fully parameter-
ized so any configuration of input and output wordlengths can
be elaborated and synthesized.

REFERENCES

[1] S. He and M. Torkelson, “A complex array multiplier using distributed
arithmetic,” inProc. IEEE Custom Integrated Circuits Conf., 1996, pp.
71–74.

[2] C. S. Wallace, “A suggestion for a fast multiplier,”IEEE Trans. Electron.
Comp., vol. EC-13, pp. 114–117, Feb. 1964.

[3] S. He and M. Torkelson, “A new approach to pipeline FFT processor,”
in Proc. IEEE Int. Parallel Processing Symp., 1996, pp. 766–770.

[4] A. Croisier, D. J. Esteban, M. E. Levilion, and V. Riso, “Digital Filter
for PCM Encoded Signals,”, Dec. 4, 1973.

[5] S. G. Smith and P. B. Denyer, “Efficient bit-serial complex multiplica-
tion and sum-of products computation using distributed arithmetic,” in
Proc. IEEE Int. Conf. Acoustics Speech and Signal Processing, 1986,
pp. 271–276.

[6] K. K. Parhi, VLSI Digital Signal Processing Systems: Design and Im-
plementation. New York: Wiley, 1999.

[7] A. D. Booth, “A signed binary multiplication technique,”Q. J. Mech.
Appl. Math., vol. 4, pp. 236–240, 1951.

[8] L. P. Rubinfield, “A proof of the modified Booth algorithm for multipli-
cation,” IEEE Trans. Comput., vol. C-24, pp. 1014–1015, Oct. 1975.

[9] A. Berkeman, V. Öwall, and M. Torkelson, “A low logic depth complex
multiplier,” in Proc. 24th IEEE Eur. Solid-State Circuits Conf., 1998, pp.
204–207.

[10] A. P. Chandrakasan and R. W. Brodersen, “Minimizing power consump-
tion in digital CMOS circuits,”Proc. IEEE, vol. 83, pp. 498–523, Apr.
1995.

Authorized licensed use limited to: Lunds Universitetsbibliotek. Downloaded on March 25,2010 at 19:19:41 EDT from IEEE Xplore. Restrictions apply.

