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Abstract

1 Physical balance principles
\Mhen not considering electrical or electromagnetic effects there are only five
balance principles to be considered in physics, namely: the balance of mass,
balance of momentum, balance of angular momentum, balance of energy (i.e.
the first axiom of thermodynamics) and the entropy inequality (i.e. the sec-
ond axiom of thermodynamics). In every physical model these principles
must be considered. Of course, approximations to the general balance prin-
ciples can be adopted but only if these approximations can be justified by
experiments together with physical stringent modelling.

1.1 Introduction to the balance principles
In continuum mechanics there are only five postulated balance equations
where one of them being an inequaiity.. These equations are independent of
the actual materiai studied.

Balance of. rnass can be expressed as

þ+pdiv(*) :0 (1)

where þ fkglms lsl is the rate of change of the densitg where the dot denotes
a time derivative following the motion (material time deri,uat'iue) defined by
the ueloci,tE x [m/s].

Balance of linear momentum ís



px:div (T)+pb (2)

where >i [m/s2] is the acceleration recorded by an observer following the
motion of the actual body of interest (material time derivative). The stress
(tensor)is denoted T [N/m2] and b [kgm2/s], or [N/m3] is the so-called bodgr

force d,ensi,ty úte to gravity.
The result from the angular momentum that will be used here is that the

stress tensor is symmetric, i.e.

T:TT (3)

The balance of energy ís

pè : tr (TD) - div (q) + p" (4)

where è lJlkgls] is the rate of change of the internal energA where the dot
denotes a time derivative following the actual motion of the body (material
time derivative). The symmetric part of the ueloc,itg grad'ient is denoted D
[1/s]. And tine heat flur uector is denoted qIJlrn2lslK], or lW/rørr'zlKl. The
external heat source is denotedr IJlkgls], or [W/kg] (radiation)

The second ariom of thermod,ynam,i,cs can be expressed as

?ph - grad (0) .q,le - pè +tr (TD) > 0 (5)

where d [K] is tlne temperature (necessarily positive) and h lJ /USIN/s], or

lWlkglK] is the rate of change of the entropy.
In the following sections it will be shown how the above balance principles

can be obtained.

L.2 Global balance principles
The fact that mass cannot be 'destroyed', i.e. the mass cannot change, is
within the continuum concept expressed as

D
*m(n):O (6)

where rn(W), e.g. [kg], denotes the mass of a particle denoted ffi. The time
derivative DlDt [1/s] follows the motion of the particle F.



The global rate of change of momentum Df Dt(plml) [kgm/s2], or [N]
is due to a force resultant vector frnp", [N] acting on the body or particle W.

t)

ÉP fml : ¿';"r"¿ (ffi) (z)

The rate of change of the angular momentum DlDt(¿,tml) [kgm2/s2], or

[Nm, or J] is due the angular force resultant vector Mi"wt (n) [Nm] con-
tributing to momentum taken for example at the origo of an introduced
coordinate system,

fi2"(n) : M:*wt (sft)

The rate of change of the total energy D lDt (E (m)) [Nm/s], or [J/s, or W
is due to an input of power (energy) pinput (m) t\Ml to the body ft.

t)
ã, fW : pa,w"t (w) (9)

The total energy is divided into a kinetic energy part E¡"(ffi) and a internal
energ-y part E¿(W), i.e.

E (m) : Er (ft) + ø, (n) (10)

where the energy term E¡ ($ù) steams from a global acceleration force (i.e.
energy) of the body ft, and the internal energ"y is due to internal thermal-
mot'ion within the body $ù. From (9) and (10) one obtain

fitr(m) + fiu4n) : Pn-*, (ft) (1 1)

Furthermore, the power input pinnut (m) is divided into a mechanical input
part Pfff¿ (m) ana a part associated with input as heat denoted Qn *, (W).

(8)

(12)pinnut (m) : Pm'(n) + en-*t (n)

From (12) it is concluded that (11) takes the form

fiur(ft) + fit4m) : p#::,(m) + en**, (fr,)

The net power ¡/ (m) [w] to the body W is defined as the sum of the me-
chanical input ry#'(ft) and the rate of change of the kinetic energy of the
body ffi, i.e.

¡,/(m) :P##'(n) + #urro,

(13)

(14)



For a body having no acceleration and which do not deform from its original
shape both Pffff¿ (n) ana DlDt(E* (m)) is zero, i.e. l/(n) is zero for rigid
body motion.

The rate of change of the internal energ"y, i.e. D I Dt (8" (n)), can now be
expressed as

where (13) and (14) is used.
At last, the general experimental observation is that the rate of change

of the entropy DlDt(ft(m)) lllsll<] is always greater (irreversible process)
or equal (reversible process) to the input of the entropy Sinnut (m) [f/s/Nl
(entropy influx) to the body ffi.

(16)

The nature of the inequality steams from the so-called thermal or mechanical
di,s s'ipation energ'y productions.

1.3 Summery of the global (balance) postulates
The global balance relations are

}r*(n) : o

(1e)

fiu4ft) : ¡/ (m) + Qn'*'(w-)

fiu(m) > s¿'*'(m)

(15)

(17)

for the mass conservation. The momentum balance is in global form
l)_
frP fW: Ri'F"t (sft) (1s)

The angular momentum described in global form is
D-
;tL" (n) : rú:"wt (n)

and the global energy balance is

fit-(n) + fit4n) : p##,(m) + en^o,, (w)

and the relation for the rate of change of entropy is

t)
;t1t (m) > s¿"*'(m)

which is the second axiom of thermodynamics expressed in global
body ffi.

(20)

(21)

form of a



L.4 Towards a balance description in terms of densities
The mass - (n) of a body W can be regarded as a mass d,ensity p lkglrrr3l.
The relation between the two can be obtained by integrate over a small
representative volume u in which the density can be properly defined, i.e.

"z 
(n) : 

looau
(22)

The global momentum P (n) [Ns], or [kgm/s] of the body ft can be regarded
as an integral of the momentum vectors, í.e. px fkglsln¡r2l acting within the
body as

P (m) : 
looi,a,

where x is the velocity [-/r].
T}ae angular momentum Lo ($ù) [Nms], or [kgm2/s] of the body ft can be

regarded as an integral of the angular momentum vectors, i.e, xxpx [kgm2/s]
within the body as

¿, (m) : 
loxx drd,u

The k'inet'ic energA E* (n) [J], or [Nm, or kgm2/s2]of the body $ù is

ø* (m) : fo+o.roou (2b)

and the i,nternal energy E, (n) [J], or [Nm, orkgm2/s2] of the body û? is

,Ð, (n) : 
loorau

(26)

where e [J/kg] denotes the internal energg densi,ty.
The entropy within the body $t can be expressed by the volume integral

?/ (sù) : looro,

(23)

(24)

(27)

where 4 is the entropg densi,ty lJ lhglN].
The rate of change of the mass can be written in terms of the rate of

change of the mass density by differentiate both sides of (22) with respect to
time, as

]r*(m) : # l*oo"

5

(28)



The rate of change of the linea¡ momentum in the body ffi is obtained from
(23)'as 

D- D r
*"fml :frJoexn (2e)

This equation is the Euler's first law of motion.
The rate of change of the angula^r momentum in the body W is

ftr,(ffi) : # I"xxp*d,u
(30)

which is the Euler's second law of motion, where (2a) is differentiated. In
words the Euler's laws of motion are: @ rhe futal force acting on a body
is equall to the rate of change of the l,inear momentum of the body, (ü) The
total torque acti,ng on a bodg is equal to the rate of change of the moment of
momentum of the body.

The rate of change of the kinetic energy is obtained from (2b), as

ftu-(ft) : # l"|où2au
where ù2 : i:'*.. And the rate of change of the internal energ'y can be
obtained from (26) as

(31)

(32)

(33)

At last the rate of change of the entropy can be written in term of a volume
integral as

ftt,(ft): # I**0,

fiu(m) : #l*oro,
where (27) is used.

It should be carefully noted that atl the volume integrals Çod, above is
following the motion of the body ft, and this means, further, that the time
derir¡ative D lDt should be interpreted as a material time derivative. That
is a derivative which is referred to an observer following the motion of the
body in question.

1.5 Reynolds transport theorem, material tirne deriv-
ative of volume integrals

In the above sections volume integrals where discussed. These integrals was
described as a property following the motion of the body. This type of de-
scription of volume integrals is not very useful.. Instead one ofben want to



use fixed integrals in space. The Reynolds transport theorem is a mathemat-
ical relation which transforms the volume integrals following the motion to
a description where the volume integrals are fixed in space.

For a general physical property l, which may be a scalar or a vector, is
transformed from a state where the volume integral follows the motion, de-
noted with the material time derivative D f Dt in front of the volume integral,
to a state where the volume integrals are fixed in space, as

# l"tpdu: * I_tpd, * fuoro(i<.ds)
(34)

where 0/0t is a spatial derivative of the fixed volume integral lolpd,u \t
should also be rurderstood that the surface integral fan lp (*. ds) is fixed
in space. The velocity is denoted j< and the norrnalized vector (directed
outwards from the boundary surface in the point considered) is denoted ds.

First, it is noted that by setting I : 1 one obtain

#r*(m) : # I"pd,u 
: 

& I"pd,u 
* t'u*li,. 

a"

which is a transformation from a material description of the volume integral
to a spatial description in terms of a fixed volume integral and a fixed surface
integral in space. The right hand-side of (35) represents the rate of change
of the mass density from a fixed observers point of view (i.e. the spatial
description).

By setting I : *, one obtain

#r ro, : # looi,a, 
: 

& I_pxd, t fuooo(x. 
ds) (86)

this means that the right hand-side of this equation represents the spatial
description (i.e. the fixed description in space) of the rate of change of
momentum.

The rate of change of the spatial description of the angular momentum is
obtained by setting I : x x ri, i.e. (34) results in that (30) can be expressed
a^s

D D [ .. a
f,2"(ffi) 

: h J"xx 
p*d,u : ä l*xx pird,u * fu*xx 

p* (>t . ds) (32)

Bysettingl:+*,
D D r. ^ ã
#tr(n) : # l"|or2au 

: # l*|où2au * fr*|ot:2 
(*. a) (38)

(35)



the spatial description of the rate of change of the kinetic energy is obtained
for the body ft.

Equation (34) with I = e, yields the spatial description of the internal
energy, i.e.

pei<. d,s (3e)

And the rate of change of the entropy in terms of spatially fixed volume and
surface integrals is obtained by setting I : 4, i.e.

fin,(ft) : # l-p€d,u 
: * I.oed, + 

fuo

ftu(ffi) : # I"p\d,u 
: * I"prtd,u 

+ fuonr,. 
a, (40)

(41)

Yet, only the internal acting forces and energies has been discussed. In the
next section the external acting forces and energies will be specified.

1.6 Input of energy arrd momentum to a body
A material or a specified body within a material of any kind can of coarse
be subjected to forces and energies from its surrounding e.g. erternal forces
and energies can act on the boundary surface of the body W of interest. The
surrounding is here referred to as the neighboring material points located
near the body ft, i.e.e the surrounding is expresses as a surface integral and
this defined surface is the boundary to the surrounding bodies.

The effect of the input of forces or energies to the system is solely deter-
mined by the stress T, the heat flux q and the radiation r and also due to
the body forces b.

Indeed, it was seen from the Reynolds transport theorem that the surface
integrals appea,red also when dealing with internal physical properties. But
these surface integrals did not appeax due to external acting forces or energies
on the body, but rather due to the fact that the global internal physical
properties, such as mass a¡rd total energ'y, was initiaþ defined as forces and
energies following the motion of the body.

The external input of 'force' in equation (18) (or input of momentum
Rnp'"' (n)) at the external surface boundary to tire'bodyft and within the
body, is

Ên*' (m) : /*ra"+ loobau



where is should be noted that Tds is the so-called traction t : Tds, i.e.
the force acting on the surface per square length or simply the stress vector.
The relation t : Tds is the so-called Cauchy's funilamental theorem for the
stress, see any text book in mechanics. The body force pb is also interpreted
as an external input of momentum, but this momentum 'force' acts within
the whole volume.

The external input of angular momentum IúI;"ø"t (ft) in equation (1g) is
the moment of momentum i.e.

M:-*' (W) : fro*x Tdsf 
loxxobd,u

(42)

The power input P##'(n) in equation (20) is due to mechanical forces such
a^s

P##' (ft) : /ort*.a,
And the heat input qinrtú (m) in equation (20) is due to influx of heat q
through the surface boundary and due to work done by the body forces pj( . b
within the body and also due to local energy supply r within the material
due to, for example, radiation.

qinrut (W) : fr*r.ds* Iooo.bd,u-r l*rou (44)

The input of entropy Sinput (n) in equation (21) is d.efined to be caused only
by heat fluxes entering the body and due to local energy supply r within the
body and these properties are also divided by the temperature 0, i,e.

ginvut (m) : - fr*qlo 
.ds* 

loorloau

(43)

(45)

L.7 Balance principles described with fixed volurne and
surface integrals in space

By using the mass balance described in terms of mass densities, i.e. equation
(22) together with the Reynolds transport theorem (85) the mass balance
equation described with fixed volume and surface integrals in space is ob-
tained as

pic.ds (46)&l-p(x,t)*:- fuo



The (linear) momentum for fixed volume and surface integrals becomes

* Lpird, 
: - fr.pi( 

(x . ds) + f ora"+ loebao Ø7)

where (18), (23), (29), (36) and (41) are used.
The angular momentum is obtained in the same manner

õ r .. r
# J"xxfird,u 

: - fuoxxpx 
(x. ds) * fr*x x Tds* loxxobd,u (48)

where (19), (24), (30), (37) and (42) are used and where the volume and
surface integrals a¡e fixed in space.

The energy balance with fixed volume and surface integrals becomes

Ar
& Äo (e + lr'z) au : - f,_o (e + jr,) x as

*.4. (t'o + o) .a" (4e)

* I*ro'bd,u r lorou
where (20), (25), (26), (31), (32), (88), (89), (43) and (44) are used.

And the second axiom of thermodynamics e>çressed with fixed volume
and surface integrals is

Afllr
# Lpqdu 

: - fr-pr¡ir. 
d,s - fr-qll 

. d^r loor/ea, (50)

where (27), (27), (33), (40) and (ab) are used.

1-.8 Divergence theorern, fixed surface integrals to fixed
volume integrals

A physical phenomenon described with a traction on a fixed boundary surface
ôW or a flux through a fixed boundary surface ôE can be converted to a
volume integral with the hetp of the divergence theorem. Loosely speaking,
the divergence theorern states that it is immaterial if a physical 'change' is
recorded within the material or if the same 'change' is recorded as a 'flux' of
the same physical property in or out throw the boundary surface of a body
ffi having a boundary surface denoted ôft.

10



Consider a'n arbitrary vector l, this vector is acting on a boundary surface
ôft, i.e. frn l'ds the effect of the same physical phenomenon can be recorded
within the material and becomes /ediv(l) du. For this case the divergence
theorem can be written as

lr*r. ds : / o* (t)d,u; I =+ is a vector (51)

where, again, ds is an out-wa.rd drawn normalized vector (normal) to the
point at the boundary surface considered. The divergence operator is denoted
div.

By identifying the arbitrary vector I as the mass density flux (or the me
mentum flux) I = p* the divergence theorem (51), gives the transformation
of a fixed surface integral to a fixed volume integral as

fuoro. 
ds : / ai" þ;r) d,u (52)

By setting ¡ : |r2x in (51) one obtain

t'u*+r'o(x 
. ds) : 

.A 
*,, (+*x¡ a, (5s)

By identifying the arbitrary vector as I : ep>i, the result is

fuoroo. 
ds : / o* (ep*) du

and setting I = 4p*, gives

{^^qp¡r'ds : / ai" þtpi.) d,u
JôN JM

(55)

The heat flux entering (or leaving) through the boundary surface ôft is tra¡rs-
formed to a volume integral by using I = q in (51) to obtain

t'uor'or: / ai,, (q) do

Bysettingl:q,10

fuot l e'a": / air, (ql o) d'u

is obtained, and by I = T*, one get

"/* 
r*'ar : / ai,, (Tx) d'r.r

(54)

(58)

(56)

(57)

11



If the arbitra.ry property I is a second order tensor the divergence theorem
can be written as

/o far : f air, (l) du; I + is a second order tensor (b9)

and by using this equation with I : T, one obtain

/o ra" : f air, (T) du

In the same way surface integrals which is subjected to terms including
cross-products can be transformed to volume integrals, e.g. with f : x x T
the divergence theorem (59) gives

6 x x Tds: / airr(x x T)duJan Jn

(60)

(61)

(63)

Another case of transformations is when quadratic terms of the velocity is
included. For this case the divergence theorem can be written

lr*, (*.ds) : / air, (l ø x) du; f + is a vector including the velocity

(62)
where I is a vector including the velocity *, and where I is the dyad product
or equally the tensor product. With f = p*, (62) gives

fr*oo(* 
' ds) : / ai*, (px ø x) dr.,

and with l: x x xp

fro"x xp (>t . ds) : ,t o* (p (* * x) I x)du

is obtained.

(64)

L.9 Balance principles described only with volurne in-
tegrals, and the local forms

It is an advantage to consider only fixed volume integral when establishing
the physical balance principles and the second axiom of thermodynamics.
The divergence theorem discussed earlier wa,s used to transform surface in-
tegrals to volume integrals. All surface integrals a,re notv replaced by its



corresponding volume integrals to obtain balance equations described only
with volume integrals. It should be noted that aII equations are now de-
scribed with the spatial time derivatives 0f 0t, i.e, a change of a physical
property as observed by a fixed observer having no motion.

The balance of mass can be brought to the form by using (46) and (52)
to yield.

*, Lpd, */ o* (px) du : o (65)

(66)

F\uthermore, it is realized that this equation holds for arbitrary volumes u,
this results in that (65) can be written as

X.div (p>t) : e

this form is referred to as the local form of the balance of mass.
The linear momentum equation (47) is reformulated by transforming the

surface integrals to volume integrals by using the divergence theorem, i.e.
(63) and (60) gives

* Äp*d, 
:- / ai" (p* ø ir) d,u +,4 o* (T) do+ l*obau (62)

The local form of the linear momentum is therefore

ry: -div (pi. ø J<) r div (T) +pb (68)

The angular momentum is obtained by the sarne procedure, i.e. the an-
gular momentum equation (48) together with the divergence theorem, i.e.
equations (64) and (61), gives

* l"xx pidu : - / o* (p (* x *) ø >k) dr.r

+/ ai"(x x T) d,u+ 
loxxpbd,u

and its corresponding local form is

ô (x ¡ *p) : -div (p (* " )t) s rï) * div (x x T) *xxpb (21)at

(6e)

(70)

13



The energy balance equation (49) is in terms of volume integrals written as

Afr
& Lo (e + +ù') d" : - / *" (ep*) 

^ - I*div (å¿,*) do (72)

+ / ai" (T>t) du + / ai" (q) d,

+ loo;r'bd,u* l*øra,
where the divergence theorem was used, i.e. the equations (54), (53), (5S)
and (56). The local form of the balance of energy, therefore, is

+div (T>t) + div (q) (73)

*p*.b I pr

For entropy, i.e. the inequality (50), one obtain

* l"pndu 
> - ,t o* Øpr,) ^ - I*div (qll) d,+ 

lopr lgd,u (74)

by using (55) and (57), and its local form therefore is

ryì -div (,tpir)- div (q,li/)*prl| (75)

1.L0 Sumrnery of the local 6balance' postulates described
with spatial time derivatives

The local forms of the balance principles described with the spatial time
derivatives 0l0t is summarized below.

The global postulate of balance of mass (17) takes the local form

# *div (px) : s (76)

where, again, p is the mass density, and ri is the velocity. The divergence
operator is denoted div.

The global postulate of balance of linear momentum (18) takes the local
form

ry: -div (prt ø x) + div (T) +pb (77)

T4



where, again, T is the stress tensor and b is the body force.
The global postulate of balance of angular momentum (19) takes the local

form
â (x ì< xp) : -div (p (* >< x) s x) * div (x x T) *xxpbat

The balance of energy is the local postulate

a (p (, + i'¡')) : -div (epx) - div (årrr9 (7e)

+div (Tx) + div (q)

Ip* .b + p,

which was obtained from the global postulate of balance of energy (l"g).
Again, e is the internal energ'y, q is the heat fl.ux vector and r is an exbernal
heat sourcê, ê.g. radiation.

And at last, the second axiom of thermodynamics is the local postulate

ry ) -div (npir)- div @/Ð+prl\ (80)dt \"
where q is the entropy density. This form was obtained from the global
postulate for entropy, i.e. the inequality (21).

It turns out that yet another version of the balance principles can be
obtained, namely a local version similar to the above equations but in terms
of material time derivatives. The material time derivative is most often used
due to the balance principles taking a more compact and simple form using
this type of description.

1.11- Different forms of balance of mass
If ft is a fixed spatial volume and ôW is the boundary area of the volume ft,
the axiom of bala,nce is 

õp . ,!

*+aivçP*) 
:o (81)

compare the derivation in previous sections.
The formula for transformi1g spatial time derivatives, i.e. llf 0t, to

material time derivatives, i.e. i, for an arbitrary, scalar, vector or tensor
property l, is

fâr(x, ú) : 
æ 

(*,ú) * [gradl (*, ú)]x (x, ú) (82)

(78)

at

15



The balance of mass (8L), described with a spatial time derivative of the
mass density, can therefore be written

þ-eraàp.*+div(px¡ :¡

Bysettingl=p,

where

div(p*) : pdiv(x) * gradp . *

Therefore, (84) and (85) combines to yield

PfPdiv(x) :0

þ: H* gradp'x

l,:gradx; L:D+W

D:å(l+l') ; and w:+("-"')

(83)

(84)

(85)

(86)

by combining (81) and (83). Noting that, by partial derivation the term
div(pi<) can be written with the identity

Yet, another useful form expressing balance of mass can be obtained by
considering the identities

div*:tr ($ad*) : trl, :trD (S7)

where D is the symmetric part of the velocity gradient, i.e.

(88)

(se)

The term W is the skew-symmetric part of the velocþ gradient L.
The expressions (86) and (S7) gives

p: -ptrD

L.1,2 Material time derivative description of the Bal-
ance of momentum

The local form of balance of linear momentum is

a (p*) : -div (p* ø *)+div T * pb

(e0)

at
(e1)

16



compaxe previolls sections, i.e. equation (77). If the rule of differentiating a
product the term on the left-ha,nd side of (91) can be rewritten as

ry -- ** * ,X : *X* px - p [$ad i(]x (e2)

where

r (x, t) -- #(x, ú) * [gradt (*, ¿)]x (x, ú)

is used with I : j<, i.e. 
.. A*ji:ä+[gradx]x

px r í< 
lX 

.div (p)i)] : div r * pb

Flom the balance of mass (76), it is concluded that

X.div (px) : e

pü : divT * pb

o# *P [grad*]x : divT + pb

(e3)

(e4)

The term div (pj<8*) in (91) can, further, be rewritten with the identþ

div (pi< I x) : *div (px) + p [grad x]*

If (92) and (95) are used, the local version of the linear momentum for the
ø:th constituent, i.e. equation (g1) becomes

(e5)

(e6)

(e7)

That is, the terms in brackets in (96) cancels due to (92), i.e. the linear
momentum in local form ca¡r be written as

or equally

(e8)

(ee)

which is the corresponding version of the balance of momentum using the
spatial time derivative of the velocity x. This opression was obtained by
using equation (94).

t7



1-.1-3 Balance of angular momenturn gives that the stress
tensor is symmetric

The angular momentum is usually used only to show that the stress tensor
must be symmetric. This derivation will be performed in this section.

From the previous sections it was shown that the balance of angular
momentum could be brought to the form

â(x x *p)
æ : -div (p (* x x) S x) * div (x x T) *xxpb (100)

This equation will now be simplified further.. Consider the identity

*r"x*p) : (xx*) X*rW (101)

(x x *) H * ox x )i: -p [grad (x x x)]x

where

i (x, t) : #(x, ú) * [sradt (*, ú)] * (x, ú) (102)

is used with I : x x >t, i.e.

¡ â(x x i<)x X x: =Ë * [grad (x x x)]* (108)

Equations (100) and (101) combines to yield

(x x *) X.p ffi : p [grad (x x x)]x (104)

-div (p (x x x) I *)
*div (x x T) fxxpb

The first term on the right hand side of (100) is rewritten with the identity

div (p(x x *) 8*): (x x x) div(px) *p[grad (x x >t)]x (10b)

Combining (104) and (105) to yield

ãn(xx*) At+pxxx : p[grad(xxx)]x- (xxx) div(px) (106)

-p [grad (x x x)]x
*div(x x T) fxxpb

18



i.e.

ãn
(x x x) -Ar* pxx x- - (x x x) div(px)*div(x x T)*xxpb (107)

This equation is further rearranged to yield

(x x x) (X.div (p*)) + p ffi: div (x x T) + xxpb (10s)

The balance of mass is

ôo

ff+aiv(pj.) 
:o (10e)

And due to this the balance of angular momentum reduces to

p x lT: div (x x T) + xx b (110)

This equation will be analyzed further to show that the stress tensor T is
symmetric.

Consider the identity

p *fr: px x x (111)

and also the identity

div (x x T) : xxdiv (T) (112)

1- (Tsz - Tzs) ir + (?rs - Ter) lz * (Tn - Ttz)is

Combining (111) and (112) with (110) to yield

pxxü : xxdiv(T) (113)

t (Tsz - Tzs) ir * (?rs - Tet) iz * (Tn - Tîz) is * xxpb

Rearrangement of this equation gives

xx (pü-div (r) - p¡) : (Tt -Tzs)\ (114)

+ ("re - 
"sr) 

iz * (Tn - T¡y-)is

Due to the linear balance of momentum, i.e.

pü-div(T) -pb:0 (115)
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Equation (114) simplifies to

0 : (Tsz - Tzù it + (frr - 
"sr) 

iz * (Tn - ?rz)is (116)

Using the rectangula.r base vectors i1 : lr 0 0 ]t, i, : lO t O ]t,ir:Io o ,]toneobrain

l o l I Tsz-Tzrf

f Bl: li;:_i:)
from equation (116). That is, the stress tensor

is symmetric. This fact can be illustrated by writing Tsz : Tzs, Ta': ?sr
alrd 721: Ttz or equally

T: TT (11e)

L.L4 summery of the balance of momentu'' equations:
Cauchyts laws of motion

Cauchy's laws of motion is simply the linear momentum equation (gs) to-
gether with the fact that the stress tensor is symmetric which was shown by
using the postulate of angular momentum (110), compare previous sections.
That is

pï:divT*pb; and T:Tr

1.1-5 Balance of energy
The balance of energy can be written as

a (p (' + Èt')) : -div (epx) - div (irro)
+div (T*) + div (q)

*pjc'b + pr
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compare previous sections. Again, e is the internal energ.y, q is the heat flux
vector and r is an external heat source, e.g. radiation.

The term on the left hand side of (121) can be rewritten as

(t22)

The two flrst terms on the right hand side of (121) can be rewritten, in the
same manner, as

*þ1' * å',)) : (, * ir)X * o*þ + i,t )

-aiv (n þ + j,t')*) : - ('+ |*'?)aiv ipx¡

-grad (e + |"') . ox

r (x, t) : #(x, ú) * [gradl (*, ¿)l x (x, ú)

Using

(123)

(124)

(125)

(127)

(128)

withI: (r+ +ù'),gives.

pG@: p*þ +i*')* pgrad (e+ |*'?) .x

Combining (123) and (I25) gives further

aiv(nþ+|,t'),t) : (e + i,f)div (px) + o(e + +ùr) (126)

-r*þ + |,r')
Consider, also, the mass balance equation, i.e.

X *div (p*) : s

this equation is multiplied with (e + +ù') to yield

(, + |"'z) X * þ + i,#)div (pi) : s

Combining (126) and (128), yields

aiv (n (, + |,i,,))i) : -*frG * îr,)) + pÇ +fl (ue)
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replace the two first terms on the right hand side in
equation (121) with the expression given by (12g) to
energ'y in the following form:

the energy balance
yield the balance of

o(e + +ù,): aiv (rrx - q) + pr -t p)< .b

and the term div (ttO) in (180) is rewritten with the identity

aiv (rrx) : *.div (T) + T.srad (*)

(130)

(131)

(132)

Noting that the velocity gradient is defined as

I :grad (*) (183)

This means that the last term in (132) atternatively can be written

T'grad (*) : T.L:trTrl
i.e. the identity (132) takes the form

aiv (rr:t) : x.div (T) + rrTrl

(134)

(135)

Insertion of (131) and (135) into (130), yields

pè + px.ii : *.div (T) + rrTrl-div (q) I pr * p)t.b (156)

A pure rearrangement gives, further

pè * *.. (px-div (T) - pb) : trTrl,-div (q) + pr (137)

And it is recalled that the linear momentum is the expression

px-div (T) - pb :0
Equation (137) and (138) gives an alternative form of the energy equation,
i.e,

pe : trTrl,-div (q) + pr
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Note also that the symmetric part of the velocity gradient is defined by

D :å (r, + lt) (140)

and also that the stress tensor is symmetric, due to the result given from
the balance of angular momentum, i.e. T : Tr. This gives that the trace of
the s¡rmmetric part of the velocity gradient D and the trace of the velocity
gradient L is identical, i.e. trl, :trD. Therefore, the energy balance equation
(121) takes the, more simple alternative form

pe : trTD-div (q) + ø (141)

This equation can also be written with a spatial time derivative of the internal
energ'y e by replacing e with è:\elõt+grade.ri.

1-.16 Second axiom of thermodynamics
The second axiom of thermodynamics can be written as

ftrrl) -div (n*r)- div @l,,) + pr/o (t42)

compaxe previous sections.
The first term on the right hand-side of Qa\ can be rewritten by the

identity
div (paic) : 4div (px) + px.$ad (a) (143)

and the term on the left hand side of (142) can be differentiated as

4,, 0p 0rl

*lon):nã+oæ (r44)

That is, the second axiom of thermodynamics (L42) can be written

op ôn.
,Ì 

A, + p 
At > -4div (ri) - p>i.grad (ù - div (q/á) * prl? (145)

where (143) and (1  ) is used. A pure reaxrangement of this equation yields

, (Xr div ("1) * o!.-p>i.grad (,/) - div (q/á) -t prlr (146)
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And it is noted that the term in the brackets is zero due to the balance of
mass, i.e.

X.div (x) : s

This mears thai (1a6) is reduced to

(t47)

Using

with l:4 gives.

,H a-px.srad (a) - div (qli/) + prlo

i (x, t) : H(x, ú) r [gradt (*, ¿)] x (x, ú)

(148)

(14e)

(150)
. ort

Tt : 
At + *.gad (a)

Therefore, equation (14S) can also be written

pi¡ > -div @le) + prle (151)

which is an alternative form of the second axiom of thermodynamics, compa,re
equation (I42). Again it is noted that the material time derivative ca¡r be
replaced by the spatial time derivative by using the transformation 4 :
0q/õt+gradq .x.

\.LT Definitions of different thermodynamic proper-
ties

As will be shown later, it can be advantageous to use alternative thermody-
namic properties than the internal energy e and the entropy density 4.

The Helmholtz's free energA tþ is defined by the internal energy e, the
entropy density 4 and by the temperature d, as

tþ:e-q0 (152)

The chemical potential tensor K is defined by the Helmholtz's free energy tþ,

the stress tensor T and by the mass density p, as

K-þI-T'lp (153)

It should be carefully noted that the chemical potential tensor K only re.
duces to the chemical potential p, used in classical thermochemistry, when



assuming that the stress tensor T can sustain hydrostatic pressures only (or
thermodynamical pressures), i.e.

T: -pli K :FI (special case!)

and then the classical chemical potential þL caî be expressed as

(154)

tt:1þ + plp (special cæe!) (155)

L.18 Alternative versions of the Second axiorn of ther-
modynamics

A special useful form of the second axiom of thermodynamics can be ob-
tained by combining the energ'y equation, i.e. (141), and the second axiom
of thermodynamics, written in the form illustrated in (1b1), by elimination
of the external heat source r, which is present in both equations of interest.

The energy equation to be used is

pè: tr (tt") -div (q) + pr

and the second axiom of thermodl'namics is written as

pq + div (q,le) - prl0 > 0

This equation is rewritten as

1

,@on * ddiv @le) - pr) > o

Noting also that di" (q) can be expressed with the identity

div (q) : div @e/0): gdiv @lÐ f grad (e) .q/e

By insertion of this identity into (158) one obtain

1

o 
(0n * div (q) - grad (d) . q,le - pr) > o

The term pr is according to the balance of energy, i.e. equation
to

pr : pè - tr (rrf,) +ai" 1q¡
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(160)

(158), equal
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By elimination of pr by use of (160) and (161), the following inequality is
obtained

Tpir - grad (g)' qlï - pè -ttr(rtr,) > o (162)

which is the second axiom of thermodynamics expressed in terms of the rate
of change of the internal energy e and the entropy density 4.

Naturally, one can also express the second axiom of thermodynamics with
other thermodynamic properties, for example, the Helmholtz's free energy ty',

defined as

Differentiation gives

That is, the rate of change of the entropy 4, is

.èr¡01þñ-_"-o o o
(165)

By replacing 4 in the inequality (162) the following equation is achieved

-p,¡i) - p1þ - grad (d) .qlï +tr (rrr,) > o

which is the in terms second axiom of thermodynamics expressed in terms of
the rate of change of the temperature d and the Heknholtz's free energy ry'.

Yet another form can be obtained if the definition of the chemical poten-
tial tensor K, see equation (153), is used. In order to illustrate this form
of the second axiom of thermodynamics consider, first, the balance of mass
written as

tþ:e-n0

,þ:¿-rtg-qi)

Þ * Pdiv*: o

Noting, also, that divx can be written as

divx :tr (grad*) : trl,

(163)

(164)

where it should be recalled that the velocity gradient L is defined as L :gradx.
Hence the postulated mass balance (167) can also be written

¡1: -ptrL

(166)

(167)

(168)

(16e)
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Consider, further, the partial differential of.fu, i.e.

Ñ,: s,þ -f þtþ: pþ - aþtrL (120)

where, also, the mass balance (16g) is used. The above expression can be
written 

p1þ -ã *øþï,rL (121)

The expression for p,þ ¡" (171) is inserted into the entropy inequality (166)
to yield

-pqi)-ñ -ørrl - grad (d) .q,10 +tr (rrr,) > o

The chemical potential tensor K is defined as

R-þI-T'lp

ar:pþl-pK
By replacing Tr in (I72) with the above expression one obtain

.i-

- pr70- pú - ptþ trl, - grad (d) . q,lO + tr ((ptþr.- pK) t) > 0

noting also that
pþtrL:tr ((s/I) L)

That is, the expression (175) simplifies to

-pr¡e-Ñ -s'ud @) . q,le - tu (pKL) > 0

which is the second axiom of thermodynamics including the thermodynamic
property of K. It should be observed that the stress tensor T is not described
explicitly when using this version of the entropy inequality, but rather de.
scribed with chemical potential tensor K.

1-.1-9 Summery of the Second axiom of therrnodynarn-
ics, expressed \r/ith different thermodynamic prop-
erties

The four equivalent forms of the second axiom of thermodynamics discussed
in the previous section was:

(t72)

(173)

(r74)

(175)

(176)

(177)
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prl * div (q,le) - pr l0 2 0 (178)

It turned out that this also could be expressed in terms of both the rate of
change of internal energy rate e and 4, as

opn - grad (g) .qlo - pè l_tr (t'l) > o

In terms of the rate of change of the Helmholtz's free energy tþ and entropy
4, the second axiom of thermodynamics takes the form

-pnT - s,þ - srad (0) .qlT +tr (rrr,) > o

The second axiom of thermodynamics including the chemical potential tensor
I{, is

-pnþ-fu -srad, @) .qle - tr (pKL) > 0

(17e)

(180)

(181)

L.zO Alternative versions of the balance of energy, us-
ing different thermodynamic properties

Some times it is advantageous to write also the energy equation in terms of
different thermodynamical properties depending on which physical problem
studied.

The energy equation already discussed in detail is

pë : tr (t'") -div (q) + pr

Consider, again, the Helmholtz's free energy r/ defined by

tþ:e-n0

,þ:t-h'0-rti)

(182)

(183)

(184)

(1s5)

Differentiation gives

That is, the rate of change of the internal energy is

¿:rþ+ñ.0+ni)

By insertion of this expression into the balance of energy (182) an alternative
version expressing balance of energy is obtained as

s,þ + pù,0 * pqþ : tr (rrr,) -div (q) + ø
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furthermore energy balance ca,n be expressed with the chemical potential
tersor K defined by

K :úI - T' lp (187)

i.e.

ar:gr¡I-pK (18S)

Again, the relation . j_
ptþ:ptþ *gþtrL (189)

is obtained, see previous section. insertion of ptþ into (186) gives yet a¡rother
form oçressing balance of energy, i.e.

l-
pú +øþtrl + pitî * pn? : tr ((sþI-pK)t) -div (q) + pr (190)

Noting also, see previous section, that

pþttL:tr ((s/I)t) (1e1)

which means that (190) is simplified to

Ñ,+pne + pqþ: -tr (pKt)-div (q) + pr (192)

L.2L Summery of the alternative versions of the bal-
ance of energy

The three equivalent forms of the balance of energy (i.e. the first axiom of
thermodynamics) discussed in the previous section was:

pè : tr (tt") -div (q) + pr (1e3)

and
p,þ + n0 + n0: t. (ltl,) -ai" (q) + p" (1e4)

and, at last

Ñ +pne + pqþ: -tr (pKt) -div (q) + pr (195)

More, equivalent, forms ca¡r be formulated , for example, by introducing the
definition of the thermodynamic property entalpy.
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L,22 Sumrnery
In this chapter the following five balance principles was derived

þ+pdiv(*) :o
px :div (T)+pb; T : Tr
pè : tr (TD) - div (q) + ø

?pq - grad (á) 'qlï - pè +tr (TD) > 0

(1e6)

(1e7)

(1es)

(1ee)

It is important to not that there is more introduced physical properties
than introduced bala^nce law's. This means that when a material is studied,
supplementary socalled material functions, or equally constitutive equations
must be specified. These functions is associated with a certain material ofben
referred to a class of a material. Of course, a material function describing for
example a stress-strain relation (which is a constitutive assumption) for plas-
tic materials and for concrete will be different. It is, however, very important
to note that the balance princþles for energies and forces discussed in this
chapter is completely independent of the characteristics of the material itself.
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