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Preface

The thesis consists of an introduction and the following six papers:

I. Sampling of State-Space Systems With Several Time Delays, sub-
mitted to the 12th IFAC World Congress.

II. Existence of Pure-Mixed Nash Equilibria for Continuous Partly
Convex Games.

III. Min-Mix Control — A Classical Stochastic Differential Games Ap-
proach.

IV. Feedforward Control is Dual to Deconvolution, accepted for publi-
cation in International Journal of Control. Joint work with M. Ster-
nad.

V. On the Notion of Strong Stabilizability. Published in JEEE Transac-
tions on Automatic Control, Vol. AC-35, No. 8, pp. 927-929, August
1990. Joint work with P. Hagander. With addendum.

VI. Robust Performance Optimization of Open Loop Type Problems Us-
ing Models From Standard Identification, submitted to the 12th
IFAC World Congress.
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Introduction

This chapter gives a brief summary of the contents of the different pa-
pers. The main contributions are presented and they are related to other
work. The goal of the work is to investigate linear systems with time
delays (Paper I), model uncertainty (Papers III and VI) and controller
design with the restriction on using a stable controller (Paper V). Part
of the work is motivated by contacts with colleagues in the signal pro-
cessing field (Paper IV,VI) and in the area of game theory (Paper II1III).
All papers concern Linear Systems.

I. Sampling of State-Space Systems with
Several Time Delays

This paper solves a basic problem in digital control. It is a natural gen-
eralization of results given in courses in digital control. The problem
concerns digital control of systems with several internal time delays. It
is well known that a linear system preceded by a time delay can be sam-
pled and that the sampled system is finite dimensional. Most software
packages for control system design contain routines doing this. Since a
time delay is an infinite dimensional system, it is a surprising coinci-
dence that the sampled system becomes finite dimensional. It has also
been noted before that a system consisting of a time delay between two
linear systems becomes finite dimensional when sampled. ¢
Natural questions arising are: ‘What happens if there are several
time delays that are arbitrarily connected to other finite dimensional
linear systems? When is the sampled system finite dimensional ? How
should the sampled system be computed? The paper describes how to
- .. obtain a zero-order hold sampled version of a state space system con-
- taining several time delays at arbitrary positions. It is not assumed that
the ratios of the time delays are rational numbers. It is also described
when the sampled system is finite dimensional for all sampling peri-
ods. The condition for obtaining a finite dimensional sampled system is
shown to be that there are no loops around time delays.




Introduction

| A short and constructive algorithm for sampling such a system is
presented. The key idea is a handy description of the solution of a class
of difference-differential systems, obtainable by semigroup theory. The
sampled system requires an augmented state vector. The state variables
of the sampled system contain the continuous time state variables at the
sampling instances as a subset. The physical interpretations of states
are therefore retained. All calculations can be performed using standard
software for sampling systems. There are several possibilities for further
work in this area. It would be nice with an improved algorithm guaran-
teeing a minimal order representation. Using the same techniques as in
the paper it should also be possible to find sampled representations of
systems with stochastic noise. The goal is then to find a discrete noise
sequence giving the same first two moments as the continuous noise at
sampling points. It should also be possible to obtain formulas for sam-
pling a continuous time quadratic loss function.

II. Existence of Pure-Mixed Nash Equilibria for
Continuous Partly Convex Games

This paper describes a simple, but useful, result concerning the struc-
ture of saddle equilibria in differential games. The result says that if
the loss function is convex in some of the players variables, these play-
ers can use pure strategies. The rest of the players must generally use
mixed strategies. This simple result is useful for understanding the sad-
dle point properties of H,-control for different y-levels and the min-mix
controllers in Paper III . The proof is straightforward, using basic func-
tional analysis. I find it pedagogical to see that existence theorems for all
three kinds of equilibria: pure, mixed, and pure-mixed equilibria really
follows from the same basic theorem, Kakutani’s fixed point theorem.

III. Min-Mix Control Using Classical Stochastic
Game Theory

In this paper we will present a completion of squares method for a mixed
Hy and H,, problem that will be called “the min-mix problem”. Both the
continuous time and discrete time case are treated. A conjectured gen-
eralization of a dynainic programming separation principle by Bernhard
is used to obtain the controller. For the infinite time horizon case the
formulas reduce to those in [Doyle et al., 1992], however there obtained
for a problem without stochastic disturbances. That paper also uses dif-
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ferent methods to obtain the results. The full finite time horizon, time
varying problem is treated and new formulas are given. We also obtain
new, explicit, formulas for the value of the game. New discrete time for-
mulas also follows from an analogous treatment, which illustrates the
close connection. Relationships to earlier results on game theory are
also presented. This gives insight into the importance of the informa-
tion structure. A simple, but rich, example illustrates the theory and the
equations obtained. When working on this part, we also found several
problems worthy of further investigation.

IV. Feedforward Control is Dual to Deconvolution

The duality between two special problem classes has been discussed in
a previous paper [Sternad-Ahlén, 1988]. In this paper it was pointed
out that there are close correspondences between feedforward based
on disturbance measurement and deconvolution. By using loop trans-
formations on scalar systems they showed how one problem could be
transformed into the other. No dual relationships were, however, ob-
tained. This paper demonstrates that the problems are dual if and only
if a generalized problem formulation, with frequency-shaped weighting
in the criteria, are used. From one of the problems, the dual problem
can then be obtained immediately form the block diagram, by revers-
ing the directions of arrows, interchanging summation points and node
points and transposing all transfer function matrices. This result applies
to continuous and discrete time problems, as well as for minimization
of J = ||G||, for any transfer function norms such that ||GT|| = ||G|I.
A derivation of a new polynomial solution to the frequency-weighted
discrete-time multivariable linear quadratic Gaussian feedforward con-
trol problem illustrates how the duality can be used.

V. On the Notion of Strong Stabilizability

The goal of this paper is to understand a result in multivariable control
which says that it is almost always possible to stabilize a MIMO control
system with a stable controller. This has been described as a “proof”
of the superiority of MIMO control compared to decentralized control.
The contribution of the paper is to reveal, in several ways, the practical
weakness of the present concept of strong stabilization. An example also
illustrates that unstable controllers can be desperately required for good
closed-loop performance, although they are not required for stability.

11




Introduction

Insight is derived from an explicit solution of an H.,-control problem
with a side condition on controller stability. We show that examples
exist that give arbitrarily bad performance with stable controllers, but
acceptable performance with an unstable controller.

VI. Robust Performance Optimization of Open Loop
Type Problems Using Models From
Standard Identification

A natural approach to robust performance design is to use the infor-
mation about model quality obtained from standard identification. The
idea is to take the likelihood of different parameter variations into ac-
count. The controller design is then made by taking the most proba-
ble parameter variations into account, instead of very rare worst cases
based on hard bounds on uncertainty. This has been done in an inter-
esting paper which investigates some scalar robust estimation and ro-
bust feedforward control problems, [Sternad and Ahlén, 1992]. Optimal
controllers are there obtained using polynomial calculations. Paper VI
extends these results to a more general class of problems, and develops
a short and instructive algorithm for the solution. Some restrictions on
where the uncertain parameters enter are made. If these restrictions are
not met, other identification methods and/or other measures of closed
loop performance have to be used. Examples of different open loop type
problems that satisfy the assumptions are given.

12




PAPER 1

Sampling of State Space Systems
with Several Time Delays

Bo Bernhardsson

Abstract: The article discusses zero-order hold sampling of a state
space system containing several time delays at arbitrary positions. It is
described when the sampled system is finite dimensional for all sampling
periods. The condition for obtaining a finite dimensional sampled system
is shown to be that there is no signal loop around any of the time delays.
A short and constructive state space algorithm is presented for sampling
such systems. No assumption is made on commensurability of the time
delays. The critical idea is a useful description of the solution for a
class of difference-differential systems. The sampled system requires
an augmented state vector. The states of the sampled system contain
the continuous time states at the sampling instances as a subset. The
physical interpretation of states is therefore retained. All calculations
can be performed using standard programs for sampling systems.

13




Paper I Sampling of State Space Systems with Several Time Delays

1. Introduction

Many industrial processes contain several time delays. This is, for in-
stance, common in chemical engineering processes, where time delays
results from piping between units. Problems with several time delays
also occur frequently in manufacturing processes, due to transportation
delay and in signal processing applications, due to calculation delay
or information delay. The time behavior of such systems can often be
adequately described by linear, continuous time, differential-difference
equations (DDEs). Such equations has been the subject of much research
and there exists a rich literature on different aspects on DDE:s going
far back [Choksy, 1960], [Bellman and Cooke, 1963], [Marshall, 1979].

The control of systems containing time-delays is generally difficult
both in theory and in practice. Often time delays put severe restrictions
on achievable feedback performance. It is therefore important to have
good methods for analysis and design of such systems. One possibility is
to sample the system and use digital control. As we will see, it can then
happen that the sampled system becomes finite dimensional. Further
analysis is then much simplified. This also opens up the way for many
standard design techniques such as pole placement, linear quadratic
control or H,,-methods.

Control issues for differential-difference equations have received
considerable attention in recent years. Stability questions have been
studied in a number of papers, see e. g. [Kamen, 1982], [Mori, 1985], [Ka-
men et al., 1985], [Lee and Radovic, 1988] and [Mori and Kokame, 1989].
Criteria for controllability, observability and stabilizability that paral-
lels the delay-free case have been obtained, see e.g. [Salamon, 1984],
[Emre, 1984] and [Fiagbedzi and Pearson, 1986]. Stochastic control of
systems with time delays is studied in [Lindquist, 1969], [Lindquist,
1972], [Milman and Schumitzky, 1991]. Robustness of time delay sys-
tems is studied in, e.g., [Barmish and Shi, 1989]. A variety of methods
to define and compute optimal control laws have also been suggested,
[Lindquist, 1969], [Krasovskii, 1963], [Ross, 1971], and [Kwon and Lee,
1988]. Special identification methods which estimate unknown time de-
lays also exist, [Pearson and Wuu, 1984], [Gawthrop and Nihtils, 1985].
Simulation of DDE:s are treated in [Hairer et al., 1987].

As soon as computers were being used to implement control systems
in the 1950s it was found how to describe the discrete time equivalent
of a continuous-time, linear, finite-dimensional system connected to a
computer via A-D and D-A converters. Using a zero order hold function
= the input will be piecewise constant and the relationship between the in-

put sequence {u(kh)} and the output sequence { y(kh)} can be described

14




1 Introduction

u(t)—| ZoH " es* = G(s)

Figure 1. Hold circuit, time delay and linear system.

u(t)—>| ZoH ™G, (s)[™ €% =G, ()

Figure 2. The case with a single inner time delay.

with a discrete time system. This was called “sampling the system”. It
is hard to determine the first reference, [Ragazzini and Franklin, 1958],
[Mason, 1956], [Jury, 1958], [Ragazzini and Zadeh, 1952]. The method
is by now classical and formulas appear in every book in computer-
controlled systems, see e. g. [Astrﬁm and Wittenmark, 1990]. Algorithms
are included in most packages for controller design.

A continuous time linear system with a time delay is an infinite
dimensional system. To model the delay one must store a function of time
over a time interval equal the length of the time delay. It was therefore
a surprise when it was found that the sampled version of the system
in Figure 1 is finite-dimensional. Formulas for the sampled system are
easily obtained, see e.g. [Franklin and Powell, 1980] or [Astrém and
Wittenmark, 1990]. It is straightforward using these results to sample
a multivariable linear system with time delays in control variables only.
The solution consists of storing state variables and delayed input signals
in a finite number of sampling points and showing that this information
suffices to update the system equations. Notice that state variables often
have physical interpretations. To keep the engineering intuition from the
continuous time model, it is preferable to obtain a sampled system from
which the state variables at the sampling points can be obtained.

Sampling of systems with internal time delays has received much
less attention in the literature and few results have been obtained. The
problem has only been solved for simple systems. The setup in Figure 1
was slightly generalized in [Araki et al, 1984], [Wittenmark, 1985],
[Fujinaka and Araki, 1987]. As a result the system in Figure 2 can
also be sampled. Here the time delay is situated between two linear
systems. The sampled system is finite dimensional in this case also.
Notice that the problem of sampling the system in Figure 2 can not
be trivially solved by changing the order of G1(s) and the time delay
and reducing the problem to the system in Figure 1. The pulse transfer
function between input and output will of course be the same, but the
transformation changes the states of Gy from x; (k%) to x;(kh — 7) and

15




Paper I Sampling of State Space Systems with Several Time Delays

one will hence not obtain a state space representation with the values of
all state variables at the sampling points. This delay can be a problem
if, for instance, the state variables should be use for state feedback. See
[Wittenmark, 1985] for further motivation and discussion.
The problem with several time delays at arbitrary positions in a
multivariable linear system arises naturally. When is the sampled sys-
tem finite dimensional? This problem has not previously been solved.
One reason might be that the answer, as we will see, is that the sam-
pled system is not always finite dimensional. This was discussed, e.g.,
in [Koepcke, 1965]. Sampling of general time delay systems can there-
fore be very hard and the success will depend on where the time delays
are situated. In this paper we will describe what systems become finite
dimensional when sampled and we will present a short and constructive
algorithm for sampling such systems.
Since the problem with several inner time delays has not been
solved before, it has been circumvented in different ways in computer
controlled systems. A standard method is to approximate delays with
finite dimensional systems. Different methods exist. A popular method
is to use Padé-approximations and other Taylor-series expansions. This
were also common when analogue techniques were used for implement-
ing time delays. The conclusion is normally that a very high order ap-
proximation has to be used if the time-delays are long and an accurate
approximation is required. Notice, e.g., that an Nth order system can
give at most Nz radians phase lag, whereas a time delay gives arbi-
trarily large phase lag. The approximation can therefore only be used
‘in a limited frequency range. A high order approximation will of course
both increase computation time in simulations and make analysis more
difficult. If the system contains several time delays, this will often not
be a satisfactory method.
Another method commonly used is to neglect the time delays. This
is not recommended as a general method. As mentioned above delays
can severely restrict achievable performance of the system, and it is
hence important to model these correctly. The success of all approximate
methods will of course depend on the situation. The problem is generally
harder the longer the time delays are. A comparison of some approxima-
tion methods used on an industrial example is made in [Hammarstrom
and Gros, 1980].
= Some results about differential-difference equations require a com-
mensurability conc}_itign between all time delays, see e.g. [Morse, 1976],
[Kamen, 1982]. This means that all time delays should be an integer
< multiple of the same real number r. One idea is then to sample the

system with the sampling rate r. All time delays are then integer mul-
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2 Problem Formulation

tiples of the sampling rate, which could allow for simplifications. If, for
instance, the time delays have lengths A/7, h/11 and h/12, where h
is the sampling period, one must sample the system at the rate 4/924.
Having done this, one can then calculate the sampled system at the rate
h assuming u constant over 924 time units. This method will often lead
to very high dimensional systems.

From both a theoretical and practical viewpoint it is preferable with
an exact representation of the sampled system. This is the aim of the
current paper. In Section 2 we define notation and introduce two exam-
ples to illustrate ideas. In Section 3 we show how a finite dimensional
sampled system can be obtained for systems having no feedback loop
around any time delay. We also show that this is not possible for all
systems. In Section 4 we present necessary conditions for a system to
be finite dimensionally samplable for all values of time delays. Section 5
discusses how to reduce the order of the obtained realization. Conclu-
sions and open questions are presented in Section 6.

For a deeper understanding of differential-difference systems it is
often useful to use ring theory, 2-D theory, and the theory of semi-groups,
[Sontag, 1976], [Morse, 1976], [Sebek, 1987], [Goldstein, 1985] [Hale,
1971]. We have, however, tried to avoid such theory to make the article
as elementary and self contained as possible. The appendlx, Section 7,
contains a brief review of some results needed. :

2. Problem Formulation

Consider the problem in Figure 3. The system consists of a general lin-
ear system with two types of inputs and two types of outputs. There is
also an upper feedback loop consisting of time delays 71,...,7,. This is
a useful representation which covers many linear control problems, see
e.g. [Pernebo, 1981] and [Boyd and Barratt, 1991]. Here w represents
generalized external signals, such as disturbances and reference signals
which can not be affected by the controller, u represents controlled sig-
nals, z are outputs that should be controlled and y are measured outputs
that can be used by the controller.

We will in this article only be interested in the relationship between
- .. uandy. Thereason we want to present the problem in the framework of
= Figure 3is that the method presented in this paper can, with small addi-
tions, be extended to.cover also sampling of systems including stochastic
signals w(t) and sampling of quadratic loss functions described in terms

of z(¢), see Section 6. We will in this paper not use w and z.
All time delays have been collected in the upper loop. This is done

17




Paper I Sampling of State Space Systems with Several Time Delays

A

21 0
0 Zn
()]
<_.__._.
G ett———— )
-~ ZoH

Y -

- 1/

Figure 3. General linear problem with several time delays. All time delays
are collected in the diagonal matrix Z.

by collecting all signals going into a time delay in the vector r, and all
signals going out from delays in the vector v. The matrix Z will then be

diagonal.

21 .. 0
Z = :
o0 ... z,

Here time delay number i is denoted z; which will be intefpreted either
as a complex number, z; = e~ or in operator form, with z; operating
on functions of time via

v(t) = z;f(¢) = f(t - 1)

In Figure 3, G denotes a linear, time invariant, causal, continuous
time system that will be described in state-space form

5c=Ax+B[v]
u

[5) =e=+n (i)

We will assume that zero-order hold circuits are used. This means that
control signals are held constant between sampling points:

e

“d(t) = u(kh)  t e[kh,kh +h)

i

Here A is the sampling period. Uniform sampling is assumed. Rewriting
Figure 3 into “state space” form we assume that the continuous time

18




2 Problem Formulation

open loop system is given in the following form, which is standard in
the differential-difference literature, [Bellman and Cooke, 1963]:

x(t) = ont)+ZAxt—T)+Bou ZBut—TL)

i=1 i=p+1

= Aox(t) ZA z;x(t) + Bou(t) + Z Biziu( (1)

i=p+1

= A(2)x(t) + B(2)u(?)

where z = (23,...,2,) and
b r
Az) = Ao+ ) Az B(z) = Bo+ »  Bz;
i=1 i=p+1
ExamPLE 1

The system in Figure 2 with one inner time delay will be used in the
following as a test example. Written in the form (1), it becomes:

d X1 _ A1 0 X1 0 0 Z2X1 Bl
7ln) - (0 a) (B) (a0 G2)+ (0)e @
Here x; is a state vector corresponding to system i, zx; = x;(¢ — 7) and

Aip = B1Cy. From the results of [Wittenmark, 1985] we know that the
sampled system can be written

x1(kh + h) = ®1(h)x1(kh) + T1(h)u(kh)
xa(kh + ) = 721 (kh — k) + a(h)x2(kh) (3)
+Tyu(kh — k) + Ty(h — 7)u(kh)

t
O,(t) = et Ty(t) = / AB ds; i=1,2
0

t
@Zl(t) = / eAzsAzleAl(t_s)dS
0

t
Th(2) = / ¢4 Ag T4 (¢ — 5) ds
0
Q31 = Poy(h)P1(h - 7)

}

I'; = CI>21(h)F1(h - T) + q)zl(h - r)l“l(r) + (Dz(h — T)F’z(’[')
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v—e{G, O 2 G2(8)4<?‘ 2, G3 ()—

Figure 4. A simple problem with several time delays. The system con-
sists of three mixing tanks described by first order systems and have two
transportation delays.

ExAMPLE 2

As a slightly more challenging example we use the setup of Figure 4.
This system describes a chemical processes with two transport delays
and three mixing tanks, described by first order systems. The system
can be written as:

d X1 ( ai 0 0 X1 0 0 0 X1
E X9 = 0 as 0 X2 + a21 0 0 21| X2 (4)
X3 \ 0 0 as X3 agf 00 X3

(0 0 O X1 b1
+ 0 0 Ojzolxa | +10 |u
La31 agz O X3 0

3. Sampling Systems with Several Time Delays

It is easy to see that not all systems containing time delays become finite
dimensional when sampled.

EXAMPLE 3

Consider the system in Figure 5, with transfer function 1/(1—e~%%). (This
is not a system of the form (1).) This system gives an infinite dimensional
sampled system unless 7 is a rational multiple of the sampling rate A.
In fact the system has poles, see appendix A, at the zeros of 1 —e~%7, i.e.

at '
_ 2kri

T
After sampling, the poles are transformed to

Sk E=04+1,...

Sp > eSh = Q2hmihlT - p 041,

= ‘
and if A /7 is irrational there are infinitely many discrete time poles (the
spectrum is in fact given by the entire unit circle). The sampled system
- can therefore not be finite dimensional.

20
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u(t)—= ZoH ——(? =

e‘ST

Figure 5. This system becomes finite dimensional when sampled if 7 is a
rational multiple of the sampling period A. If 7 and A are incommensurable
the sampled system is infinite dimensional.

On the other hand if 2/7 is rational it is easy to see that the sampled
system is finite dimensional. In fact, if 7 = mh/n we can oversample
the system at rate A/n and use that u is constant over m samples. It
therefore suffices to consider the case when 7 is an integer multiple,
mh, of the sampling interval. We then, however, have

x(kh) = x(kh — mh) + u(kh)

which clearly is finite dimensional. O

To formalize we introduce the following definition: ‘

DEFINITION 1
We say that a differential-difference system of the form (1) is a finite
dimensionably samplable (FDS) system, if it’s zero order hold sampled
version can be represented with a finite dimensional discrete time sys-
tem.

O

DEFINITION 2
A function x(¢) belongs to the set AL if it is real-analytic and of exponen-
tial type «. This means that the Taylor-series expansion of x converges:

x(s +t) i (k)
k=0

and that there exists constants C, o such that |x(¢)| < Ce®ltl, vz,

;“l

O

CTltis easy to see that the following operator is well defined on A for
all ¢

© Lk
6(t.2) = Y 2 (AR) (5)
k=0
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“which is defined by the sum

[o.¢]

tk
B(t,2)x(s) = Y, 75 V()
=0

where vy(s) = x(s) and
Uk(S) = onk_l(s) + Alvk_l(s - Tl) +--- 4+ Apvk_l(s - Tp)

Using the restriction on exponential growth of x one easily proves that
there exists a real number D such that for fixed s ||vx(s)|| < D* for all &.
The sum will therefore converge (absolutely) for all ¢, s.

The following lemma is a description of the solution to (1). It can be
seen as a result about the semigroup ¢(¢, z) generated by the infinitesi-
mal generator A(z) (see appendix for more details):

LEMMA 1
Assume that x, u € A_ satisfy (1) for all £. We then also have

x(s+t) = ¢(¢,2)x(s) + /td)(t —r,2)B(2)u(s+ r)dr Vs,t  (6)
0

Proof: From x(s) = A(z)x(s) + B(z)u(s) we obtain by successive differ-
entiation that

k-1
x®)(s) = A*(z)x(s) + Y A* 17 (2) B(z)ul)(s)
This gives /=0
x(s+1t) = i -t-i- x®)(s) =
k=0
0 tk \ oo k-1 ¢ 1
=) 7 AMR)x(s) + ) D AR (2) B(z)ul)(s) =
k=0 k=1j=0
© I+j+1
= 0(t:2)x(5) + 3 Y gy A @ BEUO()

'y

— b(t,2)x(s) + /O 6(t - r,2)B(2)us + r) dr

Notice that all sums converge according to the discussion above. O
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3 Sampling Systems with Several Time Delays

Remark. Notice that in the delay-free case Lemma 1 reduces to the
classical ‘Variations of Constants Lemma’.

We noticed in Example 1 that not all systems are FDS. The following
condition will be the key to categorizing FDS-systems.

DEFINITION 3

A system of the form (1) is said to be feedback free (FBF), if and only
if, for all sets of indices {i1,...i,} for which some of the positive indices
are equal (i, = iy > 0), we have

I1A; =0 (7)
J

For instance, we must have A;A¢A; = 0 and A2 = 0 but there is no
restriction on e.g. A1A2A54,, since the index 0 is not positive. O

The FBF-condition can be checked in a finite number of operations
for a given system using the definition directly. This follows from Cayley-
Hamilton’s theorem. The condition is, however, more easily checked in a
block diagram of the system. This becomes easy if the system equations
are written in a form where the matrices A; all are of rank one. This
means that time delays of equal length, situated at different positions
in a block diagram, are treated as separate. We will assume this in
what follows. Condition FBF can be seen to be satisfied if there are no
feedback loops in the system around any of the delays.

Remark. The condition above is given for the open loop system (1).
without regulator. There can, of course, be feedback control present
around the sampled system.

LEMMA 2
If (7) is satisfied there exist continuous functions Fy(¢), Fi(t),..., F1 ,(¢),
where p is the number of internal time delays, such that

¢(t,2) = Fo(t) + Fi(t)z1 + -+ + Fp(t)zp +
+ Fi2(t)z1zg + -+ + Fp_1p(t)2p-12p
+ Fl193(8)z12223 + -+ + Fp_gp_1,(8)2p-22p-12p
. : ] oo \

+Fy p(t)z122-... 2, Vt, z (8)
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Proof: Treat zy,...,2, as algebraic variables. The infinite sum

00 tk
¢(t,Z) = Z —kT (Ao + A1Z1 + -+ Apzp)k
k=0

then converges absolutely for all ¢+ and z. When we expand the terms
in the sum, all terms where some z; is multiplied by itself become zero.
This is exactly (7). This leaves us with the terms stated in the theorem.
The manipulations involved in collecting terms in this way are allowed

because of absolute convergence. O
Remark. Notice that for complex numbers z,...,2, we have
#(t,z) = €' (9)

This is juSt a formal identity. When 2, ..., 2, are interpreted as operators
it must be handled with care. Compare with the formulation of Taylor’s
formula as d /

dt

which is valid only under special conditions on f. The operator ¢(t,z)
is a priori defined only on the class Al above. Using expression (8) we,
however, now see that the definition can be extended to all piecewise
continuous v and differentiable x satisfying (1). Lemma 1 will remain
valid since the right hand side of (6) still is well defined. We also notice
that the right hand side of (6) will only depend on a finite number of
old values of x. The results above could also have been obtained using
semigroup theory, working with other classes of functions than N\, see
the appendix.

e*Pf(t) = f(¢+h) D

Remark. The easiest way to find the F:s given a certain system sat-
i1sfying condition FBF is to treat the z;:s as complex numbers and to
identify the left and right hand sides in

pt(AotAizi+.Apz,) _ Fg(t) + Fl(t)zl + -+ Fp(t)zp +

+ F1a(t)z122 + -+ + Fp_15(t)2p-12p

+ ...

+F (2122 ... 2y . (10)

e v
A

for some different choices of z:s. This gives a number of linear equa-
tions to determine the F:s. Since {1,21;22;...;2p;2122;...;2122 ... - 2p)
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3 Sampling Systems with Several Time Delays

“are linearly independent functions it is possible to construct a nonsin-
gular linear system of equations in this way. By a good choice of the
z:s we can in fact write down explicit formulas. If we successively put
(21,...,2p) equal to all possible vectors consisting of zeros and ones we
get a triangular system of equations from which the F':s can be deter-
mined recursively. This gives:

LEMMA 3
The functions in Lemma 2 are given by

F()(t) = ert
Fi() = e+ 40" — Fo(2)

Fp(t) = o)t _ Fo(8) (11)
Fia(t) = eWotAirda)t _ o) — Fy(8) — Fao(t)

F1.p(t) = e@ordr-do — Fo(t) — Fi(t) - = Fa.p(?)
O

Notice that all calculations can be performed usiﬁg standard nu-
merical software.

ExXAMPLE 1, revisited
Let us use Lemma 2 on the system with the inner time delay in Figure 2.

Since 0 o o
I
Ao+ A1z = [ 0 az] " [021 O]Z
we get, identifying terms using z = 0 and z = 1, that

¢(t,2) = eAOt + (e(A0+A1)t _ ert)Z _ [ ealt 0 ]

a(t)z e%!

with a(t) = a21(e™ + e*")/(a1 + az). This can of course also easily be
verified directly. |

ol
i

EXAMPLE 2, revisited
Using (8) on the chemical engineering example in Figure 5 gives

= ¢(t,z) = g(Aotza1ditzed)t _ Fo(t) + Fl(t)zl + Fz(t)Zz + Flz(t)zlzz (12)
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Putting z = (1,0), (0,1) and (1,1) and identifying left and right hand
sides of (12) we get

(a1 0 O (0 0 O
F()(t) = 0 (94} 0 N Fl(t) = 521 00
0 as (031 0 O

. 0

(0 0 O (0 0 O
Fz(t) = 0 0O 0]; Flz(t) =10 0 O

(031 032 O Ly 0 0
where o; = exp(ait), I = 1,2,3, aij = aij(ai -—aj)/(ai —aj) and Y =
032a21(0€1(az—a3)—052(a1~03)+053(al—02))/((01—02)(01—as)(a2—as))
O

The following theorem gives a constructive solution to the sampling
problem for FBF systems:

THEOREM 1

If condition FBF is satisfied, the system (1) is FDS. One finite dimen-
sional sampled representation is given by

X, (kh + h) = ©.X,(kh) + [ U(kh)

Here X, is an extended state space vector of the form

( x(t) Y
x(t—’rl)
Xe(t) — x(t—’l'z)
\x(t—Tl—:---—’l’p)A

The matrix ®, is constructed using (8) and (11):

Fo(h) Fi(h) Fip(h)
® F()(h—'l'l) F1(h—1'1) Fl,,.p(h—’l'l)
Folh—t1—=1p) Fi(h=t1i—-—17p) --- Frph =71 —1)

The matrix U, contains the d + 1, where (d — 1)k < Y 7; < dh, last
values of the control signals:

w(kh - h) !
Ue = .
w(kh - dh)
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3 Sampling Systems with Several Time Delays

The matrix I', is determined by using that u(¢) is constant between
samples in the following relation

( f0h¢(h —r,2)B(2)u(kh + r)dr w

foh——z'l ¢(h_11—r,.Z)B(Z)u(kh+r) dr _ reUe

\ foh_fl_...—fp ¢(h _ Tl — . _.Tp _— r’Z)B(Z)u(kh + 7') dr /

Proof: The theorem follows directly by using Lemmas 1 and 2 with
s=khandt=h,t=h-71,...,t =h—-71—---—17p, since we can use
these lemmas to update the full state vector X .(kh + h) from the value
of X.(kh) and the d + 1 last values of u(kh). O

EXAMPLE 2, continued
We have that

x(kh)
x(kh+t) = (Folt) Fi(t) Falt) Fu(®))| 5271
2(kh — 71 — T2)
+ To(t)u(kh) + T1(t)u(kh - ) (13)

where the F':s are given above. If we assume for simplicity in notation
that 71 + 79 < h we get for ¢t < h:

Fo(t)=/OtFo(t——s)Bds+/t Fi(t - s)Bds +

min{7,t)

t t
+/ Fz(t—s)Bds+/ Fia(t —s)Bds

min(7g,t) min(71+72,t)

min(71,t) min(7g,t)
I1(¢) = / Fl(t—s)Bds+/ Fy(t —s)Bds +
0 0

min(71+7g,t)
+ / Flz(t—S)BdS
0

With ay = —1,a2 = —2,a3 = -3 and Q91 = Qg1 = QAgz = b1 = 1,771 =
1/5,79 = 1/4,h = 1 we obtain for ¢ > 71 + 79:

1- et
To(t) = 0.5 — 1.2214 e~ + 0.7459 ¢~2¢
0.8333 — 2.0369 " + 1.2298 2 + 0.0136 ¢3¢
\
0
I1(t) = 0.2214 et — 0.2459 =2
0.5369 7% — 0.7298 ¢~% + 0.1531 ¢~
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1, X1
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Figure 6. Simulation verifying the equations for the sampled version of
Example 2.

Equation (13) can now be used for t = h,h —71,h — 73 and h — 71 — 73
to update the full X,-vector. We will not present the full discrete time
system since @, is a 12 by 12-matrix. We will discuss how the order can
be reduced in Section 5.

Figure 6 shows a simulation of the continuous time system in Ex-
ample 3 and of the sampled data representation that results from The-
orem 1. The system is started from zero initial condition at ¢ = 0. The
input is 1 until # = 3 and then —1. The plots confirm the calculations.

4. What Systems Have a Finite Dimensional
Sampled Counterpart?

Theorem 1 shows that condition FBF is sufficient for a system of the
form (1) to be FDS. We also have the following result of necessity:

THEOREM 2

Assume the system is given by (1). Then if the open loop system contains
a feedback loop around any of the delays, the system can not be FDS
forall sampling rates A and delays 7;. '

Proof: Assume that the transmission from the output of delay z; to
the input of the same delay is ny(s, 2)/da(s,z) # 0. We then have poles
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5 Obtaining a Minimal Realization
at 1 —zyng/dy = 0, so
da(s,22,...,2p) —21n2(8,292,...,2p) = 0 (14)

Notice that for special values of time delays we might have, e.g., z; =
z923, but since the condition is required to be satisfied for all 7;, z;
are independent variables. Since ng # 0 and dy # 0, (14) is a quasi-
polynomial of the form in Lemma 3 in the appendix which is not free of
z1. The continuous time system will therefore have infinitely many poles.
Since poles are mapped as s; — e**"* when sampled, see appendix, we
conclude that the discrete system can not be finite dimensional. Notice
that the mapping s; — e®” is not injective for a fixed A, but since the
condition is required to be satisfied for all A we obtain a contradiction.

O

Remark. Example 1 shows that a system with feedback loop around
a time delay can be FDS for some special values of h. It is also easy
to construct an example with a feedback loop that is FDS for special
values of the length of the time delays. Theorems 1 and 2 are therefore
the best possible.

With Theorems 1 and 2 we have both necessary and sufficient condi-
tions for a system to be FDS for all values of time delays 7; and sampling
periods A. Other systems will require an infinite dimensional state vec-
tor to be represented exactly.

5. Obtaining a Minimal Realization

Theorem 1 gives a realization that provides the values of all states for
more time instances than the sampling points. If only the states are
needed at the sampling points, which is a natural situation for digital
controller design, the order of the representation can be further reduced.
Consider, for instance, Example 1. The formulas in (5) give a third order
representation if 0 < 7 < h, but Theorem 1 gives a fifth order system.
The input-output behavior is, however, the same. The system obtained
from Theorem 1 is therefore not minimal. The same comments are true
for Example 2.

Of course standard realization techniques, such as Kalman decom-
position or balanted realization can now be used to obtain a minimal
realization. However, it would be nicer to have a direct way to reduce
the order of the sampled representation in Theorem 1. Looking closer
at Example 1, we see that we calculated zx; although this delayed state
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was not needed in the other equations. One idea is therefore to figure
out exactly what states in the extended state vector X, that are needed
to update the other states. This can be found using the block diagram.
A part of the X,.-vector, say z42321x2 is needed only if a signal start-
ing in system 2 can go through time delays number 1, 3 and then 4.
This idea will normally reduce the order of the sampled representation
considerably for dense systems. It is, however, not enough to guarantee
minimality.

EXAMPLE 2, continued

In Example 2, only the state variables xi, x2, x3, 21x1, 22%1, 22X and
z122x1 are needed. This gives a representation with seven states (+ one
delayed control signal). More careful analysis, however, shows that the
minimal order is four (if 0 < 71 + 72 < h).

6. Conclusions and Open Questions

We have discussed how to obtain, when possible, a finite' dimensional
system when sampling a general state-space system containing several
time delays. This result generalizes the results of [Araki et al., 1984, Wit-
tenmark, 1985, Fujinaka and Araki, 1987]. We have shown that a nec-
essary and sufficient condition for obtaining a finite dimensional system
is that the system has no feedback loop around any time delay. The al-
gorithm has been used on two examples. The formulas for the sampled
representation have been verified by simulation.

A representation of a system with several time delays as a finite di-
mensional sampled system makes state space analysis and design easier.
It is, however, important to understand that the inherent restrictions on
achievable control performance due to time delays are still present. Also
notice that the behavior between sampling points is not described by the
discrete time system. g

It would be nice with an improved algorithm that guarantees a min-
imal order sampled representation of the input-output behavior. The
minimal order is an open question. The results in this article could pos-
sibly also be generalized to higher order hold circuits, as used in, e.g.,
[Kabamba, 1987] and to multirate sampling. This could be a goal for
further research.

_Using, e.g., Matlab or Maple, it is straightforward to implement the
,algorlthm presentecf in the paper. The calculations parallelg the stan-
dard case, so existing software can be used.

Using Lemma 1 and Lemma 2 it should also be possible to general-
ize the results of this paper to sampling of stochastic, continuous time
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7 Appendix

systems, i.e. when the signal w in Figure 3 is white noise. The contin-
uous noise is then represented with sampled noise with the same first
two moments. To do this, one must calculate integrals of the form

h
/ ¢(h —t,2)RpT (h —t,2) dt
0

where R is a covariance matrix and ¢(¢,z) is given by (8). Sampling of
quadratic loss functions

[(2) e(s) e

also give rise to similar integrals. Lemma 2 is here the key.

7. Appendix

We will here describe some results from the f}{eory of differential dif-
ference equations that are needed in the article. Proofs of the following
results can be found in [Bellman and Cooke, 1963], unless stated other-
wise. .

Consider the following system of differential-difference equations
(DDEs).

p
x(t) - Y Aix(t—1;) = f(2) (15)
i=0
where we assume that 7; are constant and

O'———T()S’L'lS’Z'zS"'STp

Remark. Differential-difference equations were studied in the 18th
century in connection with geometrical problems, for an early reference
see [Lacroix, 1819]. Since we assume all 7; > 0, the equations above are
of the so called retarded type. In older literature such equations were
also designated ‘hystero-differential’ equations.

Existence Theorem

In principle existence theorems for retarded type DDEs is an easy mat-
ter? Suppose that x(f) is known for a period of time equal to the longest
delay time. Then all delayed states are known functions of time and the
equation becomes an ordinary differential equation and can be treated
by known existence theories. We have the following result:
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THEOREM 3—Existence Theorem
Consider the system (15) with initial conditions given by

x(t) = g(2), 0<t<7y,

Suppose that f is of class C° on [0, 00) and that g is continuous on [0, 7).
Then there exists one and only one function x(¢) which is continuous for
t > 0, satisfies the initial conditions, and (15) for ¢ > 7,. Moreover,
x(t) is of class C! on (7,,00). This function will be called the solution.
The existence theorem can be generalized to piecewise continuous func-
tions f. This is needed when a zero order hold-circuit is used for control
signals. _ O

Spectrum

DEFINITION 4
The characteristic equation connected with (15) is given by

p(s,21,...,2p) 1= det (sI - EAL'Z,') =0 z;=e% (16)

A function p which is a polynomial in (s,e™",...,e %%7) is called an
exponential-polynomial or quasi-polynomial. . | O

Suppose that g is of class C! and let x(¢) be the unique solution to
(3) and (15) with f(¢) = 0. Let

p(s) = det (SI - zp:Aie““‘)

i=1

Tp p Tp—Ti
r(s) = g(0) + / gtyde-Y e / Aig(t)e~ dt
0 Tl 0
Then for ¢ large we have

() = lim 3" equ (0
C

where e%!q;(¢t) denotes the residues of e®*p~!(s)r(s) at a zero s of
det(p(s)). The limit is uniform in any finite interval ¢y < ¢ < ¢; if ¢ is
large. The function q(¢) is a vector polynomial of degree less than the
multiplicity of s;. Here C; denotes an increasing sequence of regions in
the complex plane as defined in [Bellman and Cooke, 1963]. The order
of selecting partial sums is important as to obtain convergence.
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Zeros of Quasipolynomial

A system of the form (15) can have infinitely many poles. The following
result is useful:

LEMMA 4
Let N
p(s) = po(s) + »_e™"py(s) (17)
i=1
where p;(s),i = 0,...,N, N > 1, are nonzero polynomials and 7; # O,

then p(s) has infinitely many zeros.

Proof: Suppose p has a finite number of zeros with multiplicities
ro,ri,...,ry. It then follows from Hadamard’s Factorization theorem,
see e.g. [Boas, 1954], that

M
p(s) = ™™ [T (1 - s/sp)™
k=1

where h(s) is a first order polynomial. It is easy to see that this is in
contradiction with (17). O

The Sampled Spectrum—Basic Semigroup Theory

We need a description of what happens with the singularities of x =
Agx(t) + Y ; Aix(t — 7;) when the system is sampled. In what sense is it
true that, the possibly infinitely many, poles are mapped as s —> es* ?
This is best discussed using the framework of semigroup theory. For a
good introduction to the area see [Goldstein, 1985].

Let X be a real or complex Banach space. In our application it will
be the space of all continuous functions C([—7p,0]), where 7, is the
longest internal time delay. Let 4 be a linear operator from a domain of
definition D(A) dense in X to X. A goal of semigroup theory is to give
meaning to equations like

x = Ax, xeX

and analyze them using notations like e*2. Notice that x might be infinite
dimensional. We will use this framework to study (1).
A family T = {T'(¢) : 0 < ¢ < oo} of linear operators from X to X is
called a (Cy) semigroup if

L[ T@) < 00 Vt,
z. 2 T(t+s)f = T(t)T(s)f VfeXandallts>0 ~
S 8. TO)=1

4. t— T'(¢)f is continuous for ¢ > 0 for each f € X.
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The infinitesimal generator 4 is then defined by the equation

Af = Lim LA -1

t—0 + £

where f is in D(A) iff this limit exists. Convergence is defined in the
topology of X. Formally the semigroup property suggests that 7'(¢) =
"e'" where 4 = (d/dt)T (t)|=o.

The spectrum o of a closed operator 4 is defined as the set of com-

plex values s such that the operator (sI —4)! is not bijective and
bounded.

THEOREM 4—The Spectral Mapping Theorem
Let A4 generate a (Cyp) semigroup 7" on X. Then

exp [to,(A)] c op[T(t)] c exp[to,(A)]v {0} (18)
for ¢ > 0, where o, denotes point spectrum.
Proof: See Theorem 9.5 [Goldstein, 1985]. O

To apply this we have to show how to interpret (1) as a strongly
continuous semigroup of linear bounded operators. Define X = C[-7,, 0]
and the group action

{x(s +1) s €[-7p, —1]

[T'(¢)x] (s) = x(0) + fos+t Y Ax(r—1;)dr s e[-t0]

It is easy to see that 7T'(¢) is closed and satisfies all properties stated
above when the sup-norm topology is used on C. The generator is given

by Y
Ae) = {ft(flxix(—n) s 2o (19)

and the domain of definition is given by

D(A) = {x e CY([-71,,0]) : %(0) = ZAix(——'ti)}

e g
A ¢

4
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THEOREM 5
The spectrum o(A4) of the infinitesimal generator A is a pure point
spectrum given by

s €0p(A) < det (sI - ZA,-e“S“) =0

Proof: This follows from Lemma 20.1 in [Hale, 1971]. O

From the discussion above and since x(kh + k) = T (h)x(kh) we can
conclude that the discrete time spectrum contains the values e*** where
sy are the continuous time poles and 4 is the sampling period. This is
needed in the article in Section 4.
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PAPER 11

Existence of Pure-Mixed
Nash Equilibria for
Continuous Partly Convex Games

Bo Bernhardsson

Abstract: An N-person nonzero-sum game is considered for which the
cost functionals are convex for some, but not all, players. It is shown
that a Nash-equilibrium exists with pure strategies for the convex play-
ers and mixed strategies for other players. Such equilibria will be called
‘pure-mixed’. The theorem is useful for understanding the saddle-point
properties of the H-controllers. An example from linear quadratic dif-
ferential games occurring in H-control theory, see [Bagar and Bern-
hard, 1991], is sketched. A simple proof of the classical theorem of exis-
tence of mixed equilibria to continuous games also follows.
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| 1. Introduction

The existence of different types of saddle equilibria is at the heart of
game theory. Let J;(u1,...,uy) be real-valued continuous functionals to
be minimized by the noncooperative players i = 1,..., N respectively.
We remind the reader of the definition of Nash-equilibria.

DEFINITION 1
(©1,...,un) is a Nash equilibrium to the set of cost functionals o, ..., N
iff Vi

Ji(ur,...,ui...,uy) < Ji(ug,...,vi,...,uy) Yv;

This means that a single player can not improve upon his cost func-
tional if the other players strategies are kept fixed. The following exis-
tence result is classical:

THEOREM 1

Assume that J; is convex in u; € Q;, where Q; are compact, convex
sets. Then the associated N-person nonzero-sum game admits a Nash
equilibrium in pure strategies.

Proof: The theorem follows directly from Kakutani’s fixed point theo-
rem, which is a slight generalization of Brouwer’s fixed point theorem.
For details, see [Kakutani, 1941] and [Stoer and Witzgall, 1970]. O

Remark 1. If all J;:s are strictly convex the equilibrium is unique.

Remark 2. Continuity can be relaxed to semi-continuity, see [Basar
and Olsder, 1982] and the references therein.

Remark 3. For a two player zero-sum game J, = —J;, hence J; is
convex in u; and concave in u,.

Remark 4. A short combinatorical proof of Brouwer’s theorem can be
found in, e.g., [Stoer and Witzgall, 1970].

If we do not have convexity in «J; and the spaces Q;, we can not in
general hope for pure strategy equilibria. However in the enlarged class
of mixed strategies an equilibrium exists. In the following E denotes the
expectation operator and du;, dv; are positive Borel measures with unit
mass (i.e., probability measures).

\
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DEFINITION 2
(dui,...,duy) is a Nash-equilibrium in mixed strategies iff Vi

E{Ji(dul, v dig, .. .,d/lN)} < E{Ji(dul, ...,dvi,...,duN)} Vdv;

This means that each player chooses a probability distribution for his
argument and that no better distribution exists if the other players dis-
tributions are kept fixed.

THEOREM 2

An N-person nonzero-sum game, in which the action spaces Q; are com-
pact and the cost functionals J; are continuous, admits a Nash equilib-
rium in mixed strategies.

Proof: A proof of this theorem can be found in e.g. [Owen, 1974]. The
underlying idea is there to approximate the J;:s with discrete version
matrix games. The compactness of the action spaces is shown to en-
sure that the limit of the sequences of solutions obtained for the ap-
proximating finite matrix games exists. Other proofs also exist, see
e.g. [Glicksberg, 1952]. See also the proof of Theorem 3 below. O

It is natural to ask what happens if the convexity assumption is
kept for some, but not all, players. This situation arises frequently in
control theory, see e.g. the example below. The answer is given by the
following presumably new theorem:

THEOREM 3
Assume for i = 1,...,N that J;(u1,...,uy) are continuous in the com-
pact sets Qi,...,Qpy. Assume also for i = 1,..., M that each J; is convex

in u; (keeping other arguments fixed), and that Q; are convex sets. The
associated N-person nonzero-sum game then admits a pure-mixed so-
lution. By this we mean that players 1,..., M use pure strategies and
players M + 1,..., N mixed strategies.

Proof: Let

Pi={d,ui|/d,ui=1&d,ui_>_0} i=M+1,...,.N
Q;

be the set of all prohability measures on Q;. Consider

}

ji(ul,...,uM,duM+1,...,d,ttN) = E{Ji(ul,...,uN)}
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where expectation is performed over variables (#p741,...,un). This is a

function from Qq,...,Qum, Py+1,..., Py to R. We note that J; is convex
in it’s ith argument (linear fori = M +1,..., N). We introduce the weak*
topology on P;. It is then easy to see that <J; is jointly continuous in all
arguments. In fact it suffices to check that if du — dv and u —» v in
respective topologies, then

/ J(u, %) dju(x) - / J (v, %) dv(x)

However, this follows from

f J(u, %) duu(x) - / J (0, %) dv (x) =
/(J(u,x) —J(v,x)) du(x) + /J(v,x) du(x) — /J(v, x)dv(x) >0+0

The first limit follows from uniform continuity, the second from the def-
inition of convergence in the weak*-topology.

The sets P; are clearly convex. They are also compact. This follows
from Riesz’s representation theorem and the fact that the unit ball in
the dual space to a Banach space is compact in the weak*-topology. The
elementary facts from functional analysis used above can be found in,

g., [Rudin, 1987]. The theorem now follows from Theorem 1 above. O

Remark. Putting M = 0 we see that Theorem 2 follows from Theo-
rem 3.

Remark. For a two persons zero-sum game the theorem states that
convexity in u alone is enough to guarantee the existence of a pure-
mixed saddle equilibrium. This means that

min max EJ (4, w) = maxmin EJ (u, w)
U dv(w) dv(w) Uu

2. An Example from H,-Control Theory

Differential game theory has been used lately to give new insight into
the area of H-control, see e. g. [Bagar and Bernhard, 1991]. The prob-
lem is to find the ‘cofitrol law that minimizes the worst case effect of an
Ly-bounded disturbance. The control laws were previously found using
more complicated methods from operator theory. It was later realised
that if the controller and disturbance were viewed as opposing players
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in a (zero-sum) game theory context, the control laws already existed
in the game theory literature. In fact [Medanic, 1967], [Mageirou, 1976]
gives the control laws for H,-control in the case of full state information.
This was published several years before the H,-problem was formulated
in the control literature, see [Zames and Francis, 1983].

To be more concrete let the process be given in state-space form by

Xpi1 = Oxp +Tiwp +Toug, k=0,...,.K
Z2p = Clxk + D12uk (1)
Yr = Caxp + Da1wy,
Xo given

Here u € R™ is the control signal, w € R™2 the disturbance and z €
RPr the signal the controller aims to minimize. The control signal u
is restricted to be a function of the measurement signal y € RP2, The
H . -control problem is to find a controller, u = Ky, that solves

2 2
min max z : : 2
in e el =27 @)

Here the Lp-norm is used, i.e. ||2[|> = Y5, |2x|2. No explicit formula
for the optimal controller is known for the general case. However the
suboptimal control problem has been solved consisting of determining if
(Wlth Xg = O)

[l

ml%n”ml?x 2% = Imnmax“ T < y? (3)
where y is some given real number. For y below the lower limit ,,
no solution to (3) exists. The limit is normally found by iteration on
y. Explicit formulas for the optimal y has only been found for special
classes of problems.
In most control literature (3) is replaced by the seemingly equiva-
lent problem
minmax {|lz||* - y*||w||*) (4)

This new cost functional is convex in u and (if y is sufficiently large)

concave in w. Standard dynamical game theory can then be employed
- .. to find a pure strategy saddle point. The difference between problems
(3) and (14) can now be understood in the light of Theorem 3.

: Pure Feedback Equlhbrlum ‘

The following are recursive formulas for a pure feedback saddle point
(u*,w*) to (4) when ¥ > y,. They are a slight generalization of the
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results in [Bagar and Bernhard, 1991] (where @2 = 0 and Qa2 = I)
for the full information case (y; = x:). Note that the Riccati equation
(9) progresses in backward time. Note also that the standard Linear
Quadratic Regulator is obtained by letting ¥ — oo.

wy= —Li(k)xe (5)
up= —La(k)xy (6)
Li(k)= =y 2T T ([2Qz T3 —y°I1IT + Py '@ (7)
Lo(k)= Qz Q% + QzTL (T2Q3:TE — y*IiIT + P) '@ (8)
Py= Qu - Q12Q7 Q% + ®T(2QT] —y°I\TT + Pil) '@ (9)
®= 0 -T2Q5 Q% (10)
Pg,1=0 (11)

where we have used the notation

o N Qu Qu
(D1T2>(Cl Dlz)_'<Q{2 sz)

and assumed Dy left invertible so that @} exists. The value of the
game 18 x; T Pox,.

Remark. Corresponding equations for the case of output feedback and
infinite time horizon K, are given in [Basar and Bernhard, 1991].

Pure-Mixed Feedback Equilibrium

Existence of a saddle point equilibrium to (3) is however not guaranteed
by existence for (4). Actually the control problem (3) can not be expected
to have a pure saddle point solution, because the problem is not concave
in w. In fact it can be shown that (3) need not have any pure-strategy
saddle point. One can however obtain formulas for a pure-mixed saddle
point to (3). This means that

mmmaxEHsz = maxmin E||z||? (12)
R

Therefore the controller does not have to use a mixed strategy which,
;per”haps is a pract1ca1 advantage. \

= The pure-mixed saddle point can be described as follows. Let y, be
the optimal y defined in (2) and let n be an eigenvector corresponding
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‘to a maximal eigenvalue of I'T NT'; where

N
N =P +72) o7 05, @3 LT (k) Ly (k) ®;9;_; ... @}
k=1

and where _
@}, = (I + (T2Q@3 T3 — ¥ °T1T])Pri1)®

Let &y = 1717, where the positive sign is chosen with probability 1/2, and
put &z.1 = @38, and &1 = I'1&o. Then

w;, = cLy(k)Ep, kE=0,....,N (13)

and uj; given by (6), is a pure-mixed saddle equilibrium to (2). Here
c is chosen so that ||w*|| = 1. This result is a slight generalization of
Prop. 3.1 in [Bagsar and Bernhard, 1991]. The proof follows the same
lines. We refer the reader to [Bagar and Bernhard, 1991] for details.
Note that wj, are highly correlated for different % The randomness in wj
is however enough to put w* in pure-mixed saddle equilibrium with u*.

Remark. For a control theorist it is interesting to know if pure-mixed
saddle points exist for other problems of the form (3) that use other
norms than the Lo-norm. If u can be shown to be bounded, this follows
from Theorem 3.
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Min-Mix Control -
A Classical Stochastic Differential
Games Approach

Bo Bernhardsson

Abstract: In this paper it is attempted to formulate and solve a cen-
tral problem in control, which captures the idea that disturbances may
be both deterministic and stochastic. The deterministic behavior models
worst case situations and stochastic disturbances model average prop-
erties. The name min-mix is coined for the problem because the oper-
ations of minimizing, maximizing and taking expected values appear
in the problem. The problem is very rich. It has connections both to
recent results in H,-control and also to classical results in stochastic
control and differential games. The analysis makes it possible to unify
several results and to gain insight. A method for solving the problem is
presented which is based on a recent dynamic programming separation
principle due to Bernhard, which is a generalization of Isaacs’ equation.

The solution is obtained by completion of squares and is given by
three coupled Riccati equations. These equations generalize the equa-
tions obtained, however for a slightly different problem, in [Doyle et al.,
1992]. The time-varying, finite time horizon version of the problem is
treated here, both in continuous and discrete time. This will probably
be the key for solving the open issues still present in the infinite time
horizon case. We also obtain explicit formulas for the value of the game.
We show by an example that this information is useful for obtaining the
correct controller in the infinite time horizon case.
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1. Introduction

A number of recent papers have addressed different so called mixed
Hj/H, control problems!. The setup in these papers differ, but they all
concern mixing Hy and H,, norms and/or using different models of dis-
turbance signals. See e. g. [Doyle et al, 1989] for details and references.

Mixing different norms, in particular H, and H,, norms, can be mo-
tivated in several ways. When designing control systems it is necessary
to understand what limits achievable performance. It is then a good idea
to trade off different performance measures. A typical question is “Can
a controller simultaneously achieve performance and robustness?”. Dif-
ferent norms are good for measuring different things. This motivates
the use of mixed norms.

Another motivation comes from modeling of disturbance signals. In
H-control the system is

x = Ax + Bld + Bzu (1)
y =Cx+ De - / (2)

Here d and e denote process and measurement disturbances, u control
signals and y measurements. The H,, control problem optimizes system
performance against worst disturbances d and e in the class of bounded
Ls-signals d, e. This means that it solves the following constrained op-
timization problems

minmax ||z,  when ||d|Z + |le|i3 < 1
K de

where 2z describes some signals to be minimized. The constraint means
that process disturbances and measurement noise can not both be large.
It is unnatural to couple process disturbance and measurement noise in
this way. It often turns out that the worst case signals in H-control
contain only one frequency. This is however not a natural assumption
for measurement noise. It is better to assume that some signals are
stochastic.

It has also been found that optimal H. -controllers tend to have
undesirable properties, e.g. infinite sensitivity to unmodeled nonzero
initial values. Some of the problems arise because the solution is ex-
pressed in equations that are poorly conditioned other are due to poor
software, yet other are due to the problem formulation. The equations
are obtained under the assumption that there are no stochastic pro-
cess disturbances or measurements errors. There is folklore among the

1 See Section 11 for notations
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H,community that says: ‘slightly suboptimal controllers are better when

analyzed with respect to all the additional considerations that arise in
practice’. Lately the situation has however improved due to increased
understanding of the quite complicated optimal case, see e.g. [Glover
et al, 1991], [Safonov and Limebeer, 1988]. See also [Hagander and
Bernhardsson, 1992] for an illustration of what can happen in a simple
second order case.

Another motivation comes from the fact that suboptimal H, control-
lers are not unique. Even the optimal H,-controller can be non-unique.
Different choices of which controller to use have been suggested. The
most common choice is the central controller, which is obtained by put-
ting @ = 0 in the formula for all suboptimal controllers, see [Doyle et al.,
1989]. This choice has several motivations. It minimizes a certain en-
tropy norm, see [Mustafa, 1989] and it is equivalent to the risk-sensitive
controller, see [Whittle, 1990a, Whittle, 1990b]. So called superoptimal
controllers, which minimize also the second largest singular value etc,
have been suggested, see e.g. [Tsai et al., 1988]. Equalizing controllers,
i.e. controllers giving a constant magnitude of the performance measure
at all frequencies, are used in the polynomial version of H-control,
[Kwakernaak, 1985]. In the sense of the Ha-norm these are the worst of
all H-controllers The most natural way to reduce the lack of unique-
ness is to introduce stochastic disturbances. :

It is now well understood that there are several close correspon-
dences between H; (LQG) and H-control, see e.g. [Doyle et al., 1989],
[Whittle, 1990a]. The Hj-results can often be recovered by letting y — oo
in the H.-results. The motivation for the present author has been to
increase the understanding of how to unify the Hy and H-theories.
The problem formulation is so natural that it is also motivated from a
pure system theory point of view.

In this paper we will present a completion of squares method for
the min-mix problem. Both continuous time and discrete time problems
will be treated. A conjectured generalization of a dynamic programming
separation principle by Bernhard is used to obtain the controller. For
the infinite time horizon case the formulas obtained are the same as
in [Doyle et al, 1992], however there obtained for a problem without
stochastic disturbances. That paper also uses different methods to ob-
tain the results. The full finite time horizon, time varying problem is
treated and new formulas are given. We also obtain new, explicit, for-
mulas for the value of the game. New discrete time formulas follows
from an analogous treatment which illustrates the close connection.

Relationships to earlier results on game theory are presented. This
gives insight into the importance of the information structure. A simple,
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but rich, example illustrates the theory and the equations obtained.

The paper is organized as follows. Sections 2 and 3 present the
problem and relate it to other setups that also go under the name of
mixed Hy/H,problems. Some connections between different problems
are mentioned. In Section 4 we relate the problem to previous results
in the last 25 years of game theory and discuss the importance of in-
formation structure. Section 5 gives a very short introduction to some
basic results in game theory needed in the following. Different separa-
tion theorems and dynamic programming techniques are discussed in
Section 6. An example illustrates that a better certainty equivalence
principle than the present H,,-separation principle in [Bagar and Bern-
hard, 1991] is needed. A weakness in the formulation of their principle is
in fact pointed out. We summarize a recent dynamic programming sepa-
ration principle by Bernhard, that will be an important tool for obtaining
the solution. Two generalizations of his dynamic programming principle
are conjectured. The proof of these conjectures are open problems at the
moment. In Sections 7 and 8 we obtain a completion of squares solution
of the min-mix problem for continuous and discrete time respectively.
These are the main results. We also give an illustrative example. Sec-
tion 9 presents suggestions for future work and Section 10 gives conclu-
sions. Section 11 gives details in the notation.

2. Mixed H:/H,, Problems

Several different problems go under the name of mixed Hy/H, control-
ler design. It is important to separate between them even though they
are all more or less related.

H,—Constrained H.-Optimization

The following problem is formulated in e.g. [Rotea and Khargonekar,
1990], see Figure 1. Find a controller K, which gives internal stability
and solves the optimization problem

rr}%nHGzO,wOHz under the restriction |[|G,, u,llee < ¥ (3)

Here system performance is expressed by the Hy-norm. Notice that per-
formance is only evaluated for the nominal system. The H,, norm can
be used to guarantee robust stability under unstructured uncertainty.
‘The uncertainty can be introduced in many different ways, elg. in addi-
tive, multiplicative, feedback or normalized coprime form, as explained
in e.g. [McFarlane and Glover, 1990].
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Zp™ n Yo
h— @
————

—>K

Figure 1. A general linear system with two types of disturbances, w and
wi. The figure captures some mixed Hs/H,.-control problems.

Remark 1. It has, rightly or wrongly, become generally accepted that
the H,-norm is good for formulating robustness problems. This is be-
cause the norm is submultiplicative, i.e. ||AB|| < ||A||||B||- This property
is needed to use the small-gain theorem, see e.g. [Francis, 1987]. It is
important to understand that minimizing an H,-norm will not auto-
matically give a robust closed loop. It of course depends on what you
take the norm of. Actually it is much more important what you take
the norm of, than which norm you use. Although obvious, several mis-
conceptions on this point can be found in the literature. One can also
discuss how relevant the H,-constrained Hj-minimization problem is
in practice. Notice that the Hj-performance is only evaluated for the
nominal system. The problem does therefore not measure robust perfor-
mance, only nominal performance and robust stability. A simple thought
experiment is illuminating: Assume that a known disturbance w enters
a system with additive stable uncertainty A, e.g. a system of the form
y = Giw + (G2 + A)u and that we want to construct a robust perfor-
mance controller u = Kyw + Kpy. It is possible to construct examples
were the optimal nominal Hy controller uses pure feedforward from the
disturbance and no feedback. This will then also be the H,,-constrained
Hs-optimal controller, if the H,, norm measures stability against the
additive uncertainty A. The H,-norm will in this case be zero and there
is no risk that the system becomes unstable for any stable perturba-
tion A. The performance of such a controller can however be sensitive
to nonzero A, and 1n practice it would often be preferable with some
,\feedback \

The problem (3) is quite hard. Few results are known even if many
good researchers have worked with it during recent years. Notice that
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‘the optimal Hjy-controller often solves (3). All that is needed is that this
controller also satisfies the H,, bound. The interesting situation is when
the two criteria are competing. It is then easy to see that there must
be equality in the H-bound. The reason for this is that we then have
a convex functional to be minimized over a convex subset of controllers
where the optimal unconstrained controller is outside the set. A sim-
ple convexity argument then says that the minimum is achieved on the
boundary. This case is studied in a number of recent papers, see [Rotea
and Khargonekar, 1991] for results on the state feedback case. In [Khar-
gonekar and Rotea, 1991] it is shown that the full measurement case
can be written as a convex optimization problem. No numerical results
are presented. In [Ridgely et al, 1992] seven necessary, coupled, non-
linear, matrix equations are presented for the optimal controller using
Lagrange techniques. The problem of sufficiency is still open. Numeri-
cal results are presented in [Ridgely and Valavani, 1992]. The optimal
controller order is not necessarily bounded by the system order n, as is
shown in [Wells and Ridgely, 1992]. For related work see also [Belcastor
et al., 1991],[Peters and Stoorvogel, 1992], [Kraffer, 1992].

An interesting result on simultaneous Hy and H,,-minimization is
given in [Foias and Frazho, 1992]. There, a commutant lifting approach
is used to show, in the scalar case, that it is possible for any o0 >1to
find stable q(s) such that simultaneously

ods

IF +dllo < 8dosand I +alle < =

Some important contributions on slightly different mixed H, and
H,, problems will now be reviewed.

Auxiliary Cost Minimization

In a number of recent papers the Hz-norm is replaced by an upper bound
on the Hs-norm, the so called auxiliary cost:

Jaux(G, 7) = Trace [QSC'T(J] (4)

Here Q; is the solution of a certain Riccati equation and C is the obser-
22 vation matrix for the closed loop system, see [Bernstein and Haddad,
1989, Haddad et al, 1991] for further details. The idea is that minimiz-
ing‘the auxiliary cost instead of the Hy-norm, under an H..-gonstraint,
< gives a solvable problem with similar performance. It seems unlikely
that the optimal controller for the auxiliary cost minimization problem
and the H-constrained Ha-problem are the same, although the titles
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Figure 2. A general formulation of many robust performance problems.

of the early papers suggested so. Counterexamples can be given. It is
known that if wo and w; enter in the same way and zy = z1, the central
and entropy minimizing H-controller is optimal also for the auxiliary
Hy/H . -problem, see [Mustafa, 1989]. A duality with the work of [Zhou
et al., 1990] described below was indicated in [Yeh et al, 1992].

Other Mixed Problems

Several robust performance results can be illustrated by Figures 1 and 2.
The following problems are also called mixed Hg/H-problems:

J; = min max E||z|?
K |Allo<1 wo

Jy = min max E ||z||?
K luill<1 wo

Js3 = minmax E ||z]|2 - y?|lwi]|? (min-mix)
K wi wo

J1 = mi 2 .2 2
+ = min max max ||z[|* - y"|lwa||

See Section 11 for details about notation. Both finite time and infinite

time horizons problems can be formulated. If the time horizon is infinite

the minimization should be performed over all controllers K giving a

stable closed loop system. In this paper we will deal with problem J3.
In H-theory it is common practice to replace

max ||z|| by max I2]]

) [PAES! wi£0 ||wi]|
Notice that this does not make sense in the mixed case where there is
also stochastic noise wy, because w; = 0 does not imply that z = 0. The

problems J3 and J,4 are closely related. We have the following result:
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LEMMA 1
The following relation holds between the problems above:

Jo < J3 + }’2
Suppose that z = Gowg + Giw; where wy = Az and that ||Gi|le < ¥ < 1,
then
J3
<
Jy < 1— ;2

Proof: The first inequality follows directly from the formulation. The
second inequality is proved in [Zhou et al., 1992]. We present the idea
here also. Notice that for any w; € P, we have by the definition

213 - 7* [lwallp < I3
" Now w; = Az, hence
23 < 72 lwllp + s = 7 lAzllp + I
Therefore, for any A € R H, with ||A|| < 1 we have

J3
1-—92

2
2|7 <

Both bounds are conservative. O

The information structure is important in the problems above. Dif-
ferent information structures give different optimal controllers and dif-
ferent existence conditions. There has been a lot of confusion on this
issue over the years. It is non-trivial to find a clean notation for the
exact problem formulation. This will be discussed more in section 4.

3. The Min-Mix Control Problem

The J3-problem concerns controller design for a system with mixed
deterministic and stochastic signals. To separate it from other mixed
H,/H problems, it will in what follows be called “The Min-Mix prob-
lem”. Notice that if w; = 0, the problem reduces to the standard Hp-
problem, and if wy = O it reduces to the H-problem. It is assumed the
system is given bgr )

B

x = Ax+ Bow() + Blwl + Bzu
2 = Clx + D12u
y = sz + Dzow() + Dzlwl
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‘where wy is formal white noise. Stochastic differential equations will be
interpreted and analyzed using Ito-calculus, see e. g. [Astriim, 1970]. We
will also treat the discrete time case obtained by the obvious change to
difference equations.

Notice that with a Digwo term there is a white noise component
in 2 which gives infinite loss (unless there is also a direct term in the
controller cancelling this). We can also assume that Dyu = 0 since
this can be achieved by a loop transformation. It is also assumed that
Diiw; = 01in what follows. Compare with [Safonov and Limebeer, 1988].
It will also be assumed that certain matrices are of full rank. These
conditions correspond to stabilizability and detectability, [Doyle et al.,
1989]. This will not be further elaborated. The problem of determining
the weakest possible conditions for solution of the min-mix problem is
still open.

The problem

Js = minmax E {|lz]|* - y*lwi|* } (5)
K w1 Wo .

in words means that the controller should be found, which minimizes
the worst influence of a causal disturbance w; that knows the controller
strategy. The motivation for modeling a disturbance in this way is often
to cover a “worst-case” situation. Different information structures on u
and w; are possible. As described further below we will assume that w;
is a causal function of wy, x and u. We also assume that u is a causal
function of y. This is called the semicomplete information case. In the
discrete time case u (k) is a function of y(2—1) and older values. The case
with a direct term in the controller gives more complicated formulas and
is still an open problem.

4. Historical Remarks

The min-mix control problem has a long history in the game theory lit-
erature. Stochastic differential game theory has been an active research
area for over 25 years. It is therefore not surprising that several authors
have worked on special versions of this problem before. Most papers have
dealt with finite horizon problems, with the focus being on information
structures (e. g. open loop control, full state feedback, measurement de-
lays, noisy measurernents) and existence and characterizatiop of saddle
points.

Existence of saddle point strategies, is not so important for con-
troller design. From a controller point of view it is only the upper value
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Table 1. A collection of early game theory references treating versions
of the min-mix problem with different informations structures. The present
paper is concerned with the first row, i. e. w; has perfect (causal) information

u Perfect Noisy No
wq Measurement Measurement Measurement
Perfect [Behn+Ho 1968]
Measurement | LowySon+Ho 1969] [Rhodes+Luenberger 1969a] [Bryson+Ho 1969]

Noi [Willman 1969]
oLy [Behn1968] [Rhodes+Luenberger 1969b] | [Rhodes+Luenberger 1969a]

Measurement [Bley+Stear 1969]
I\N/I:asure ment | [Bryson+Ho 1969] | [Rhodes+Luenberger 1969a] [Bryson+Ho 1969]

of the game that is of interest. The saddle point theory is however useful
both for the understanding and for obtaining the solution. The informa-
tion structure is always a central issue. |

Different Information Structures

For the min-mix control problem there is an ambiguity as to what infor-
mation structure u and w; have. The reference [Ho, 1970] gives a nice
review of the situation in the field of finite horizon stochastic games in
the late sixties. This paper includes discussion of different assumptions
on the information available to © and w;. Different information struc-
tures lead to different existence conditions for saddle point equilibria.
Different solution techniques are also required. The most difficult case
is the one where both players have different, noisy information. It is
then hard even to find a good problem formulation, see [Witsenhausen,
1968]. We will now briefly review some of the references. The list is far
from complete.

Behn-Ho

The work [Behn and Ho, 1968],[Behn, 1968] solves a pursuit and evasion
game with two players with energy restrictions. In the notation of that
paper the game is defined by the dynamical system

. y = Gpu(t) - Gev(t), y(to) = ¥o (6)

. %

and the criterion ‘

2
J = GlyenlP + 5 [ @I, - o)

tr
2
2 dt
to
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The problem structure is special. The pursuer is assumed to have perfect
knowledge of the state while the evader makes noisy measurements of
the form

z = y(t) + w(t)

where w(¢) is a Gaussian white noise with zero mean and covari-
ance Q(¢). Controller formulas are obtained using a Lagrange multi-
plier method, varying controller parameters around a nominal optimal
controller. The following necessary conditions are obtained:

I'y = T1(GoR;'GE — G.R;'GI)Iy, Ti(tf) = a®I
Ty = T9GpR;'GIT, + T2(GpR;'GI K™ + PHT Q' H),
+ (T1GpR,'Gp, + HTQ'HP)Ty + T1G.R;'G.T'1, Ta(tf) =0
u’(t) = =R, (t)G, (OT1(t)y(¢) — B, G, ()T2(£)(5() = 3(2))
v’(t) = ~RZ(H)Ge ()T1()3(t) :
¥(®) = (GpCp = G.Co)3(t) + PHT Q7N (z - HH(2)), H(to) = Ho

To obtain these equations, it is assumed that the controller is of a certain
structure, using feedback from a state estimate. No proof is actually
given that better controllers of other structures can not be found.

Rhodes-Luenberger

[Rhodes and Luenberger, 1969a] solves a similar finite horizon problem
as Behn-Ho using different techniques. The problem is slightly more
general since (6) is replaced by

&= F(t)x + G1(O)u(t) + Go(t)v(t), x(to) = %o (7)

The solution is given by three coupled equations and three matrices N,

M and P, similar to the equations above. The case where one player has

open loop information and the other noisy measurements is also treated.

In both [Behn and Ho, 1968] and [Rhodes and Luenberger, 1969a]

the problem is treated formally. Several technicalities are overseen, as

+~  noted in later papers. Nothing is for example said about what happens
when the Riccati equations fail to have solutions.

I v o

‘Witsenhausen

If both players have different noisy measurements available then the
problem is much harder. Many problems arise. It is no longer true that
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[Basar and Olsder, 1982] and [Basar and Bernhard, 1991] for more de-
tails.

Let J(u, w) be a real valued function defined on the spaces U and W.
The problem of minimizing o/ for ¥ and maximizing J for w is called a
static zero-sum game. The pair (ug, wy) is called a pure saddle point if
the following two inequalities hold for all u € U and w € W.

J(ww) < J(u,w') < J(u,w") (20)
We always have
J, 1= maxmind(u,w) < minmaxdJ(u,w) =: J* (21)
w u w u

Here J, is called the lower value and J* the upper value of the game. If
the spaces U and W are infinite, min and max may have to be replaced
by inf and sup. The lower and upper values coincide if the problem has
a pure saddle point. It is also easy to see that different pure saddle
equilibria all give the same value of the game. The following theorem,
which is a direct consequence of Kakutani’s fixed point theorem, guar-
antees the existence of pure saddle points for so called convex-concave
problems

THEOREM 2

Let J be continuous and convex in u on the convex compact set U and
concave in w on the convex compact set W then J has a pure saddle
point (ug, wy). If the problem is strictly convex-concave the saddle point
is unique.

Proof: A direct application of Kakutani’s fixed point theorem and stan-
dard functional analysis, see e.g. [Basar and Olsder, 1982]. O

If the conditions on J are relaxed we may have to settle for so called
mixed saddle points. A mixed strategy means that a player chooses
a probability distribution, i.e. a positive Borel measure du with unit
mass, for his choice and plays accordingly. The expected value of the
game is then evaluated as

. T - / I (u, w) du(w) dv (w) (22)

We have the following existence theorem:

£ THEOREM 3
If J is continuous on the compact sets U and W then the problem has
a mixed strategy solution. 0
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Moreover, when these conditions hold, one such controller is

Aml+BzF | —L
F |0

K(s):= (19)

(|

Warning: In the published papers [Doyle et al., 1989] and [Zhou et al.,
1990] these equations contained algebraic mistakes. These mistakes are
corrected in the unpublished manuscript [Doyle et al., 1992]. In earlier
papers both necessity and sufficiency were also claimed. In [Doyle et al.,
1992] there are more conditions for necessity. As we will see later there
is problem even with sufficiency.

Nikoukhah-Delebecque

Lagrange multiplier techniques are used in [Nikoukhah and Delebecque,
1991, Nikoukhah and Delebecque, 1992] to obtain necessary equations.
These conditions are slightly different from the ones presented in [Doyle
et al., 1992]. The difference seems to be due to the fact that optimum
can be obtained at the boundary of all possible controller parameters,
see [Doyle et al., 1992]. This possibility is overlooked in [Nikoukhah and
Delebecque, 1992]. There are no references to the work of Zhou et.al. or
to early work in game theory literature. The paper contains numerical
results on a randomized first order example.

Bernhard

Two recent papers, [Bernhard and Colomb, 1988, Bernhard, 1992] con-
tain a useful dynamic programming separation principle, which is pro-
ved rigorously. The separation theorem is further described in Section 7.

Other papers that deal with related problems include [Limebeer et al.,
1991a, Limebeer et al., 1991b], [Leondes and Mons, 1979], [Sun and
Ho, 1976], [Ho, 1974], [Willman, 1969],[Schomig and Ly, 1992], [Bagchi
and Basar, 1981], [Basar, 1981, Bagar, 1985], [Bagar, 1989], [Uchida and
Fujita, 1992]. These papers also contain further references.

5. Game Theoretical Background

i S ‘

To fully understand the problem it is helpful to have a background in
game theory. Here we will summarize the most important facts and de-

scribe them in a simple setting. We refer the reader to [Isaacs, 1965],
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optimal control rules are linear in observables. This was shown in classi-
cal examples of [Witsenhausen, 1968]. The new feature is that the zero-
sum nature of the game is lost and that players’ actions can achieve not
only control but also communication, and non-linearities are needed for
the optimal conveyance of information.

Structure of the Riccati Equation

During the sixties and seventies a number of papers further analyzed
the structure of the Riccati equations with indefinite matrices. This was
found to have applications to game theory, see [Medanic, 1967, Willems,
1971, Willems, 1974, Mageirou, 1976, Pachter and Bullock, 1977]

Kumar-van Schuppen

The paper [Kumar and Schuppen, 1980] treats a case where both play-
ers have incomplete measurements. It is assumed that one player knows
both players observations. This reduces the complexity of the problem.
The solution is given in the form of seven coupled Riccati equations.
Three with initial conditions, four with final conditions. It is not ana-
lyzed what happens when the equations fail to have a solution.

Zhou, Doyle, Glover, Bodenheimer

A number of interesting recent contributions [Doyle et al., 1989, Zhou
et al., 1990, Zhou et al, 1992, Doyle et al., 1992] treat the problem
J4. The problem is formulated without introducing stochastics. Instead
induced norms are used, as is explained in Section 11. The papers are
closely related to the min-mix problem /3, where wg is assumed to be
white noise. For special cases, the solution obtained can be found in
older game theory literature, see [Behn and Ho, 1968], [Rhodes and
Luenberger, 1969a], [Kumar and Schuppen, 1980]. The paper [Doyle
et al., 1992] does however not contain any references to such papers. To
describe the results we assume ,

1);1"2[(11 D12] = [0 I]

for ease of notation. The formulas (without this normalization) are given
in [Zhou et al., 1990]. The system is given by

A| By, B, By
C, 0 0 Do
Co| Dy Dy O

T TG

: (8)

The following assumptions are made in [Zhou et al., 1990]
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(A, By) is stabilizable and (Cy, A) is detectable.
D15 has full column rank.

® Dzng;) >0

o |[A-Jol By has full column rank for all € R.
C, D |

o |[A-Jol By has full row rank for all € R.
C, Doy

The };roblem is formulated as

Problem (G) Given the plant G, a constant y, exogenous sig-
nals wy, with Sy, ,,, = I and w; € P depending causally on wy.
Find a proper controller K such that

min sup {|lz[[5 - ¥*|lw1l3 } 9)

wy P

where the minimization is constrained to those K providing
internal stability. \

THEOREM 1—dJ,, infinite time horizon [Doyle et al., 1992]
Given y > 0 and a plant G, there exists a controller K (s) which solves
Problem (G) if the following conditions hold:

e There exists a real definite matrix such that

AX +XAT +CTCy+X(y2B1BT - ByBI)X =0 (10)
X >0and A; := A+ (y2B1BT — BoB)X isstable (11)

7~~~

o There exist L, Y and P which satisfy

Y(LDyyD, + BoD, + PCT + (
+y2PXB1DJ)) + y2PY (B + LD2;)DY, = 0 (
YA + ALY + YRY + FTF = 0 (14
Y > 0 and A + RY is stable (
(Ami + RY)P + P(Am + RY)T + (Bg + LDao)(Bo + LD3o)T = 0 (

where

R*= 97%(By + LDs1)(B1 + LDay)” ‘
= A=A+ J/—zBlele + L(Cz + ')/-zDle’{X) (17)
F = —-BIX (18)
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6 Separation Theorems

where V (¢, x(tr)) = q(x(¢f)). This equation gives a sufficient condition
for optimal control. The result is is however useful only for the full in-
formation case. It gives pure state feedback equilibria u* = u(x) and
w* = w(x). Isaacs’ equation should be combined with some kind of sepa-
ration principle. For linear quadratic games one can normally conclude
both sufficiency and necessity by careful study of the Riccati equations
resulting from Isaacs’ equation. The theory of conjugate points is often
useful.

6. Separation Theorems

Several different separation theorems exist for Hy; and Hycontrol, see
e.g. [Doyle et al., 1989] and [Bagar and Bernhard, 1991]. There is also
an elegant risksensitive certainty equivalence principle, see [Whittle,
1990b]. The theory requires great care in problem formulation especially
regarding the information structure. It is easy to make mistakes as
illustrated in the example to follow.

Basar and Bernhard

We cite the following certainty equivalence principle (Theorem 6.1) from
[Bagar and Bernhard, 1991] using their notation. Consider the system

Xps1 = [r(2p, Up, WE) (26)
yi = hp(xpwe) (27)
which may be nonlinear. Let the criterion by
K
J(u,w) = M(xg.1) + Z gr(xk, up, wr) + N(x1) (28)
k=1
For a given pair #°~! = (U1, Ws,... Ur_1) and ¥° = (¥, ¥y, ..., ¥,) intro-

duce the constraint set

Q@ Ly)={w |yr =¥k =1,...,7}

This is the set of all w which are consistent with past observations. Let
i the value of the full state-feedback game from time %k be denoted by
: Vk(xk) and let the corresponding state feedback controller be uj(xg). It
is assumed that u k(xk) is unique. Introduce the auxiliary performance
index \

7-1

G W  Lw') = Vi (x) + Z gr(xp, up, wr) + N(x1)
k=1

65




Paper III Min-Mix Control

on ¥ and the information. J = J* can always be obtained by a mixed
w = (w1, ws2). The situation is illustrated in Figure 4. O

Remark 3. In the general H,-case (24) the situation is similar. We
have J, = xT(0)X(0)x(0), where X (0) is given by a certain Riccati equa-

tion, but
g+ = 2 (0)X(0)x(0) ify >y’
B 00 ify < y*

Here y* depends on information structure. The more information u has
the lower y* will be. The value of the game for ¥ > y*, xT (0)X(0)x(0),
does however not depend on information structure. This is a somewhat
singular situation. Typically there are many controllers that give con-
cavity in w. All these give the same value of the game. This e.g. shows
up in the following way in Hcontrol: If the state estimator is

X =A% +y2B;BTX% + Bou — L(y — Co% — y 2Dy BTX%)  (25)

then L can be chosen in many different ways. Even L = 0, corresponding
to open loop control, gives a suboptimal H.-controller for the measure-
ment feedback case, if only the value of y is sufficiently large. The value
must be larger than the y corresponding to open loop control. These ex-
amples show that it is difficult to find "the correct” separation principle
for H-control, since the controller is non-unique. It is further elabo-
rated in Section 6.

Isaacs’ Equation

The following generalization of the classical Hamilton Jacobi Bellmann
equation in control is called Isaacs’ equation after one of the founders of
dynamical game theory, see [Isaacs, 1965]. See also [Zachrisson, 1964].
It is used to find a recursion for the future loss V(¢ x) of the game.
Consider a system described by

x = f(t, x,u,w)

Let the loss function be
tr
J = q(x(t7)) +/ gt xuw)dt ;  x(0) = x
0

Isaacs’ equation is given by

0 = minmax ?X+ﬂf+ =m i f
SnAX oy T oy /T8 mmaxmn| Gt 5o 1t E
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W u

— -1
W2—> q 1 q VA

Figure 3. A simple example to illustrate that the pure-pure saddle strat-
egy turns to a pure-mixed saddle equilibria when ¥ is decreased.

YA
J.=J" =0
Yo =V2 T
J.=J =0
vy=1+
J,=0; J" =00
Yrr = 0 .

Figure 4. Different information structures give different y* for the prob-
lem (24) in Example 2. The lower and upper values of the game are shown
for different levels of ¥ for the measurement, feedback case i.e. u = u(y)

For y > 1 we find that J, = J* = 0 and that (u*, w*) = (0,0) is the pure
saddle point. For ¥ < 1 concavity in w is lost. The lower value of the
game is still J, = 0, but the upper value is unbounded. For any u, it
is possible to choose w such that J becomes arbitrarily large. Using a
mixed w, for instance w = +A with A large, gives J = J* = co. O

It is easy to see that for (24) we always have J = J*, which means
that the pure-mixed solution attains the upper value of the game. This
is a consequence of convexity in u.

ExXAMPLE 5—Information Structure

Consider the dynamic game in Figure 3, where w; and w, are dis-
turbances, u is the control signal and y is a measurement. Assume the
loss function is given by

J 1= {u(2) + wi(1) + wa(0)}* - ¥*{wi(1) + w3(0))

We consider three different information structures. In the full informa-
fcioﬂicase both wi"anid wge are known by u. In the measurement case u
knows y = wgz. In the open loop case he has no information about w; or
ws. It is easy to see that the lower values in all three cases are J, = 0,
independently of y. The upper value is J* = 0 or J* = oo depending
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In several instances one has convexity in one player, e.g. the con-
troller, but no concavity in the other player, e.g. the disturbance. We
then have the following intuitive and useful result proved in [Bern-
hardsson, 1992]:

THEOREM 4

Let J : U xW — R be continuous on the compact sets U, W. Further
assume that J is convex in u (keeping w fixed), and that U is a convex
set. The associated two player zero-sum game then admits a pure-mixed
solution, which means that u uses a pure strategy and w a mixed strat-

egy. O

Remark 2. The compactness assumption is often violated in practice.
One can however often restrict the game to a compact set by careful
study of the loss function.

The H,, Problem

In H,-control the induced 2-norm problem -

||z]l2
min max -—— 23
K  w#0 ||w||2 <Y (23)

for all Ly-disturbances w, is rewritten as

min max|[z]|3 — ¥*[|wl]l3 < 0 (24)

Assume that z depends linearly on u and w. Then both problems are
convex in u. The problem (23) is not concave in w, and can hence not
be expected to have a pure-saddle point. Problem (24) is concave in w if
the value of y is sufficiently large, i.e. y > ¥*, it will then have a pure

saddle point. If ¥ < ¢* the value of the game can be made arbitrarily

large with pure-mixed strategies.

DEFINITION 1
The number y* is the infimum over all ¥ such that the upper value of
the game (24) is bounded.

The problem in (24) is illustrated by the following simple example.

ExAMPLE 4—Concavity
Consider the (statlc) game. Let u and w be real numbers and let J (u, w)
be given by '

2 2
J=zz—y2w2=(u+w)2—y2w2=—-(y2—1)<w—-yu >+ Y w2
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and consider the auxiliary problem

T(7-1 —7-1 7—1 (+7-1 T-1
: max G 7]
Q (u » Y ) wT_IEQ,_l(T_Z,yt_I) ( , W )

Let i® be a solution of the auxiliary problem @°, and x* be the trajectory
generated by #°~! and @?. Notice that in @° the first part @w?-! fulfills
Q" while @, is arbitrary. The controller is now

Uy = 1 (x;) = ﬁf(ﬁf_lsyf_l) (29)

In this way the full information strategy u* defines a strictly causal
measurement feedback controller. Intuitively one can argue as follows:
Consider the situation at time 7. Knowing y, up to & = 7 — 1, one
should look for the worst possible disturbance w compatible with the
available information and “play” as if the current state were actually
the most unfavorable. The future loss should then be evaluated using
the assumption that u may use full state-feedback! This i is formulated
it the following theorem

THEOREM 5—[Basar and Bernhard, 1991]-Theorem 6.1
If, for every y and every 7 € [1,k], the auxiliary problem Q7 (ii(y), y)
has a unique maximum in w, generating a state trajectory 1%, then (29)
defines a inf sup controller for inf, sup, J(u,w) and the min — max cost
is
minmufjtx J = nrkax(Vl(xl) + N(x1)) = V1i(&]) + N(3})
u 1

a

It is claimed in Remark 6.1 [Bagar and Bernhard, 1991] and [Bernhard,
1991] that this H.,-separation principle is valid also for the nonlinear
nonquadratic case since the same proof applies. This is not true. For-
mally the flaw in the proof as presented in [Bagar and Bernhard, 1991]
is that the cited representation theorem (Theorem 2.5) is also wrong or
wrongly formulated. Just consider the case with J =0 independently of
u and w.

EXAMPLE 6
Consider the following nonquadratic game. Here x(k) denotes the value
of the state x at time k.

e W o

x(2) = w w20 '
2(8) =x(2)+u
J = x2(3) -
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6 Separation Theorems

Where w and u are short for w(1) and u(2) respectively. This non-
quadratic game satisfies the conditions of the theorem above. The initial
condition x(1) is uninteresting and there is no term N(x;). There are
no measurements so the problem is actually open loop for u. For this
problem the unique full-information law is u = u}(x(2)) = —x(2). Fur-
thermore we have V,(x(2)) = 0. The auxiliary problem @2 becomes

w = argmax{Va(x(2)) + g1 (%1, u1, w1)} = (0~ w(1)4) =0

The state trajectory generated by this unique @ is %(2) = 0. According
to Theorem 6.1 of [Bagar and Bernhard, 1991] (notice that the remarks
after the theorem emphasize that it holds in the nonlinear nonquadratic
situation) we should therefore have the open loop law:

u=fa = uy(3(2) = ~&(2) = 0

This controller however gives sup, J = maxy,sow? — w* = 1/4. Which
is clearly different from zero so this is actually not the the correct value
of the game. Notice that w knows that u is playing open loop. To find
the correct min-sup controller we solve

min sup ((w + u)? — w*)
Y w>0

“by hand”. The solution, see Figure 5, is given by u = —1/(3v/3) and the
- value of the game is J = 1/27. The mixed disturbance

= 0 with prob. 2/3
~ 1 1/+/3 with prob. 1/3

is in pure-mixed saddle equilibria with u* = —1/(3v/3). We then have
minsupEJ = supmin EJ = 1/27. f

Remark 4. Notice that the value of the game was J = 0 if u had full
state information. Not only existence of an upper value, but also the
actual value of this game therefore depends on the information player u
has. This is a significant difference between the linear quadratic and the
non-linear nonquadratic cases. It is hence vital that correct assumptions
are made on the future game (e.g. open loop versus closed loop etc).
-This is a similax-issue to the early discussion for LQG-problems in the
“ nonlinear, nonquadratic case, see [Lindquist, 1973]. '

Remark 5. The theorem is true for linear quadratic problems. This
should however be proven in another way.
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6 Separation Theorems

A better formulation is possible as we will see. The key will be that the
worst disturbance w should also include a term (x — X), i.e. the error
in u:s estimate. This will then capture the difference in information
structures between © and w and the possibility for w to mess things up.

Bernhard’s Dynamic Programming Separation Principle

A rigorous separation principle for a special class of stochastic difference
games was given in [Bernhard and Colomb, 1988]. The theorem gives
sufficient conditions. An extension in [Bernhard, 1992] gives both neces-
sary and sufficient conditions. The problems studied in those papers are
discrete time, nonlinear, stochastic, two player problems, defined on dis-
crete (=finite) spaces. One player has noise corrupted measurements,
the other perfect causal state information. The theorem can be used to
construct mixed saddle point strategies using dynamic programming.
We will now try to describe the main ideas.

The following is a brief summary of the results in [Bernhard, 1992],
We use the notation of that paper and refer to it for further details. Let
the system be given by o

Xee1 = fr(as, us, U, we) (30)
Yt = by, we-1) —_— (31)

The initial value x; is known to both player u and v. The sequence
(¥1,...%:) is denoted y!. The player u; knows y~1, and player v; has
full causal information at time ¢, i.e., xf, y* and also u’~!. The white
stochastic disturbance w; is described by the probability distribution
Wi(w;) known to both players. Both players and stochastic disturbance
are defined on finite spaces. The criterion is given by

T-1
G=E Z Ly (%, g, v¢) + K(x7) (32)

=1

The game is stopped at time T'. Let v; be a probability distribution
over X! x V?~1 describing player v:s conditional probability on (x?, v*~1).
Assume u’ given as well as a behavioral strategy y* of player v. The
definition of behavioral strategies is given in [Bernhard, 1992]. Using
(30) and (31) we can propagate v; into a probability V,,; over X1 x V'
in the following way. Let @ = (a’,a;,1) e X**! and b € V!

i

Ver(@d) = vi(@ By [l w Lo ) (33)
Y 8(ars1 — fi(an e be, we)) We(wy) (34)

Wy
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Figure 5. The cost function J(u,w) in Example 3 for v = 0 (full),
u = —1/3+/3 (dashed) and u = —0.4 (dotted). The pure-mixed saddle point is
givenby u = —1/3+/3 and the mixed disturbance w = 0 (w.p. 2/3),w = 1/v/3
(w.p. 1/3), the value of the game is 1/27 , C

Remark 6. The continuous time case, Theorem 5.1 in [Bagar and Bern-
hard, 1991], is treated more carefully. In an appendix containing Dan-
skin’s theorem, more restrictions like uniqueness, rules out counterex-
amples analogous to the example given above. Therefore the continuous
time separation theorem as formulated in [Bagar and Bernhard, 1991]
is correct, also for the nonquadratic case.

The discrete time H-control problem is in principle therefore not
solved in [Bagar and Bernhard, 1991]. One can, however prove by other
means, e. g. using Bernhard’s newer separation principle, see below, that
the corresponding theorem is correct in the linear quadratic case, at least
for the suboptimal case (y > »*).

The conclusion we want to draw from the previous discussion is that
there is a need for a separation/certainty equivalence principle that is
more easy to work with. The fact that there is a minor omission in
previous work is of much less importance. What is more important is to
realize that it will be hard to generalize this type of certainty equivalence
principle to the min-mix case involving stochastic disturbances, since the
value of the game will then depend on the information structure. The
optimization over all possible past disturbances w is hard to generalize.
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where 6(x) = 1 if x = 0 and O otherwise. When measurement y;,
becomes available, the a posteriori probability v;,; on (x**1,v?) can be
computed. This defines a filter

Viyl = Ft (Ut, ut’ Yt+1s '//t) (35)

and a function
ve = Ny (w1, 5%, pth) (36)

By summation over the component subspaces we project v; on X* alone.
Let p* be that law on x*. Further project on component X; yielding a law

pt = Ry (1 ', ') (37)
Bernhard’s theorem now states the following:

THEOREM 6
Let a stochastic dynamic game be given by (30)-(32) and let (¢*, y*) be a

saddle point in behavioral strategies. Let p; = R;(u'"1, y%, w*). The game
admits a saddle point in behavioral strategies of the form ¢;[u?~1, '] =
olpil, vilxt, w1, vt_l] = W¢[x:, p;]. There exists-a filter

Pti1 = gt(Pt, Ut Yi+1s Wt) (38)

and a sequence of functions V;(x;,p;) such that for all (x;,p;) that are
reached with a nonzero probability while playing optimally we have

Vt(xt’pt) = IvnE%X Z Z [Vt+l(ft(xt3 u,v, w’)sgt(pta u’yt+1s&t))
‘ weW; uel,;

+ L (%, u,v)] pe(u) We(w)
=3 > Y [Vier + Ll e(w) Wi(w) () (39)

veViweW, uel;

and |
th(xtspt)pt(x) = 2215} 2 Z Z [vt+1(ft(xt’ U, 0, W, ), 8t(P1, Us Y141, 4t))
Xt ! X weW,veV;

+ Ly (21, u, )] @ (0) We(w)po(x:) =
=3 SN Y [Vear + L @ (0) Wew)p ()b () (40)

uelU; x weW,veV,

Here p; denotes @[p:], G; for Yi[xs, p.], and yz.1 for hysa(fi, w), and

e

)‘v’xT,‘v’p, Vr(xr,p) = K(xr) '

Conversely, if a sequence of functions ¢;, {;, and V; satisfy these equa-
tions, they provide a saddle point of the game. O
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Remark 7. Notice that the theorem gives both necessary and sufficient
conditions.

The theorem can be interpreted as follows: The state of the system
is described by (x:,p;:). The function V;(x:, p;) describes the expected
future loss. Two optimization problems must be solved, one for the max-
imizer v, another for the minimizer u. In the maximization, it can be
assumed that u = u*. The filter p will then not necessarily describe u:s
conditional distribution of x, but this is not needed in the proof. One
should not attempt now to interpret p as a conditional distribution.
Instead it should be regarded as a cleverly introduced function. In the
minimization, it can be assumed that v = v*. The function p then equals
the conditional distribution of x given past observations. Furthermore
R; is the filter giving this distribution.

The theorem basically answers the question “How should the state
estimate x be interpreted and under what assumptions should the con-
ditional expectations be performed?” The most severe restrictions is the
assumption on finite spaces. This restriction will guarantee that min-
ima and maxima exist. It is natural to conjecture that a similar theorem
as Theorem 6 is true for more general spaces in the linear dynamics,
quadratic loss function case. Let the system be given by

gx = Ax + Bowo + Biw1 + Bau o (41)
x(%o) = %o (42)
y = sz + D20w0 + D21w1 (43)
L= x"CTCix + uTu — y2wTw, (44)
Ki, = x(tr)" Qrx(ty) (45)

where wq is Gaussian white noise and let p = {x, P} describe the mean
value and covariance matrix of the Gaussian probability distribution
obtained from the filter g described in (38) and let ¥ = x — X. In the fol-
lowing x is shorthand for the full probability distribution of x, described
via x and P.

CONJECTURE 1

For the discrete time, linear quadratic stochastic differential game there
is a pure saddle point (uz*(y),w3}) if and only if there exists a function
Vi(x,X) such that

Vi(x;, %) = max i‘{VHl(Axt + Bowg + Biw1 + Bout*, %4, 1) + Ly(%;, u*, wy))

Wi wo

71




Paper IIT Min-Mix Control

where X%;,1 is calculated using y* and u = u*\, and such that

xE Vi (x4, %) =

= min E E{Vt+1 (Axt + B()w() + Blw’{ + Bzu, 5Ct+1) + Lt(xt, u, w"i)}

u X Wo

Here E,, is calculated using x; = x; — X; and the probability distribution
given by p;(x;). The distribution of x;,; is recursively calculated using
the assumption w; = w} and using measurements up to y;. When calcu-
lating the extrema, there should be equality for w; = w} and u = u*. O

We also present the corresponding conjecture for continuous time
problems:

CONJECTURE 2
In continuous time the above theorem is replaced with

max E (-(—iﬂ (x,%) + Ly(x, u, w1»)) =0 (46)
Wi wo dt u=u* ’
min E E <ﬂ,—t (x,%) + Ly(x, u, w1)> =0 (47)
u xow \ dt ;

—_ *
wl—wl )

The extrema above should be achieved for w; = w3 and v = u*. The
arguments to the functions and the interpretations are analogous to the
previous conjecture.

The value oo is considered as possible for a game in the discussion
above. The theorems do a priori only give mixed strategies for © and w;.
The result in [Bernhardsson, 1992] indicates however that the control
signal u can in fact use a pure strategy. Moreover the player w; can
also use a pure strategy if the problem is concave in w;. The upper
value of the game is otherwise unbounded. We have not yet been able
prove Conjectures 1 and 2 rigorously. It means that at this point the
necessity and sufficiency of the three coupled Riccati equations obtained
in sections 7 and 8 are really only conjectures.

7. Continuous Time Min-Mix Controllers

In this section we ’oBtain formulas for the finite time, time varying case
of the min-mix problem /3 by completion of squares.
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An LQ Lemma

To develop the controllers for the min-mix case we use the following
lemma which is “semi-classical” LQ control, see e.g. [Willems, 1971]:

LEMMA 2
Let the system be given by

x = Ax + B()w() + Blwl
x(to) = xo

The signal w, with full causal information of x that maximizes

J = E{/tf [xTQx - Yzwfwl] dt + xT(tf)Qfx(tf)}
Wo to

is given by
w) = y 2BT X« o (48)

where
- X =ATX +XA+Q+y2XB:BTX, X@)=Q; (49)

If the Riccati equation (49) fails to exist for all ¢, or said in other words,
has a conjugate point, then the value can be made arbitrarily large
by w1, i.e. maxdJ = oo.

Proof: A proof can be found in the [Willems, 1971]. We will indicate
how to use dynamic programming to motivate the equations. We show
that

V(t,x) = max E {/tf xTQx — 2wl w, dz'} = xT ()X (t)x(¢) + £(2) (50)

Wi wo

where X (¢) is given by Riccati equation (49) and f(¢) will be determined
later. We use dynamic programming:

dV
E (W 2 Q- 72‘“{“’1) -

= EqxT(-ATX -XA-Q - y—ZXBlB{X)x} +Tr (BIXBy) + f(t) +
© - Wo o
o t

+ E 2xTX(Ax + Bowg + Biwy) + xTQx — 7/2w'fw1 =
Wo

= —y*(w; -y 2BfXx)T(w; -y 2BTXx) < 0
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The term Tr(BIXBy) comes form Ito’s differentiation rule. See Sec-
tion 11. We have also used

t
£(2) = / "Tv BTX B, d
t

Notice that equality is obtained if and only if w; = wj. Once the com-
pletion of squares is done, the rest of the theorem follows by application
of standard results using the theory of conjugate points. O

The Min-Mix Case

To treat the full min-mix case we first motivate the form of V for this
problem as a specialization of (50). Let the system be given by

x = Ax + Bzu + B()w() + Blwl
x(to) = Xgo (51)
¥y = Cox + Daowgo + Daywr

and the criterion by

tr S
J =E (xTCiFClx +uly - yzw’fwl) dt + x(t¢)TQrx(tr) (52)

Wo to
Introduce the following signal

d . . y y .

— % = Ak + Bou + 7 B,B{Xi - L (y — Cok — y—2D213{Xx) (53)
where L will be chosen later. The motivation for this signal will also be
clear later. Introduce also ¥ = x — x. Then

d

— & = Ak + Bow, + By (wl — 7 2BTX (x - &)) +

(54)
+ L (0256 + Dgowo + Doy (w1 —y 2BY X (x - 56)))

We hence obtain with the definition u* := ~BI X% = —~BI X (x - %)

- dt\x%) | —y2BBTX A+LCy+y2B;yBTX ) %

By B, By N
+ {BOd]w0+ [Bld]w1+ [ O](u—-u)
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where

Bog := By + LDg (56)
Bld = Bl + LD21 (57)

When u = u* this can be considered as a problem of the form in Lemma 2

i = ZE+B_0w0+B_1w1
x(0) = xo

T
where © = [xT xT ] and

r ( A- B;BIX B;BIX ]
- \-y2B;yBTX A+ LC;+y2B3BTX
- ( By )
Ba =
0 \ BOd y
_ 4 Bl N
1 —_
\ Bld y
g- (CTC,+XByBIX —XB2B§X]
| —XByBIX XBy;BIX

Here @ follows from u = u* = —BTX(x — X) inserted into (48). If we
guess that the corresponding X will be block diagonal, say

(5 9)

it follows from Lemma 2 that
T
- X X 0 X
vesn= (1) (o v) (3]
tr B Yl (x o B
™ (5y) (o v) (5y)
/t (an) (0 v) (an) 2 ©®

The Riccati equation (49) for the elements of the symmetric X yields

" X =XA+ATX + C,CT ~XByB,X + y?XB.BTX ' (59)
0 = y2XB1B];Y + XB3BIX — XBy;BIX + y 2XB;B13Y (60)
~Y = YA, + ATY + XB;BYX — y2Y By4BL,Y (61)
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‘where
A,:= A+ LCy + 7y 2B14(BTX + BL)Y)

Notice that (59) is the standard control Riccati equation from H,,control.
Equation (60) is obviously satisfied and (61) is a new equation. We also
recognize the stationary equations obtained by setting derivatives to
zero as two of the equations obtained in [Doyle et al, 1992] for the
problem J4. We also obtain

wi = y*BiX (%] = r2(BIXx + BL,Y3) (62)

Now when we have found a guess on V and w] it is easy to complete
the full min-mix case.

CONJECTURE 3
Optimal min-mix controllers satisfy

x = A% + Bou + y2B1BTX% — L(y — Ca% — y D21 BTX%) (63)
u* = -BI X% (64)
wi = y~?(BiXx + B;Y&) - (69)

where X = x — x, and where

X = XA+ ATX + ¢TC, - X(BsBY - y2B,BT)X (66)

X(tr) = Qr (67)
~Y = YA, + ATY + XBy,BYX — y2YB4BL,Y (68)
Y(¢)=0 (69)
P = AP + PAT + ByyBY, (70)
P(to) = 0 N GSY

: T
(Bo + LDgy) D%, = —P [Cz + 77 2D21(BTX + (By + LD21)TY)] (72)

A, = A+ LCy+y2By(BYX + BL)Y) (73)

Proof: Let

o ¥
T

. tr !
V(t,x%) = xTXx+ ¥V + / Tr (B?,‘XBO + Bg‘dYBOd) dr  (74)
t
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We now follow Conjecture 2 and define

F .= 5} {%‘ti +xTCTCx + uTu - 72w'fw1} (75)
0

where formally

dv _ [V 9V _ oV .
wo | Ot 0x " 0%

-——x+—x] + Ito

From (63)-(65) together with (52) it follows that

% = A% + Big(w1 — w?) + Boqwo (76)
so we have
O = &TXx+ & ¥k~ Tr (BYX By + ByY Boo) (77)
%‘xi x = 2xTX(Ax + Bau + Bowg + B;w1) / (78)
%‘;— X = 28TY (A& + Big(w1 — w?}) + Bogwo) S (79)
Ito = Tr(BYXBy + BL,Y Byg) (80)

Collecting terms and completing squares gives
F=x"{X+XA+ATX +CTC)x + %7 {Y; + YA, + ATY} %

+2xT X Bou + 2xT X Biwq + 25cTYBld(w1 —-wji) + ulu - y2w'fw1

= (u+ BF¥Xx)T(u + BIXx) - (BIX%)TBYX% -y 2aTa + y2b7Tb

+2aTw; + 20T (w1 — w}) - Y*wlw,
=(uw-u+c)l(u-u +c)—cle -y (wy —w))T (w1 —w?)

+7?wiTw} — y2a%a + y 2070 — 20T w3

= |lu —u’ +c|2—cTc—}/2|w1—w‘{|2 (81)

where a := BT Xx, b := BY,Y%, and ¢ := Bl X%. Until this point we have
only introduced some new notation and completed squares. Equation
(81)is revealing and’is the key for understanding saddle point properties
and obtaining min-mix controllers.

Now notice that if © = u* the maximum of F over w; is zero and
is achieved if and only if w; = wj. This proves half of the theorem.
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What then needs to be shown is that by a special choice of L we can
use Bernhard’s certainty equivalence. The trick is that we can choose L
such that (v —u*) becomes orthogonal to c¢. This is achieved by (70)-(73),
which can be seen using standard Kalman filter results in the following
way. With w; = w] we have

X = A% + Bogwo (82)

so the matrix Riccati equation in (70) gives P(¢t) = E[X? | w1 = w3}, ¥'].
According to Bernhard’s separation theorem (x;, P) should describe the
conditional distribution of x; given w; = w3} and given past observations.
We have for w; = wj that

X = (A + y‘zBlB{X)x + Bau + Bowg + }’_2313,{Y§I (83)
y = Cox + Dogwg + ¥y 2D21 (BT Xx + BT, Y %) (84)

It is a standard LQG-result, see e.g. , [Astrom, 1970], that if L and P
satisfy

' T
~ LDyDj) = BoDy + P [Cy + 7y *Dn(BIX + (By + LDy)TY)| (85)
then .
X =(A+y2BBTX)x + Bau — L(y — C2% — y 2D1BTXX)  (86)

gives E[x? | w; = w3, »'] = %, so that ¥ L &, i.e. E[XXT | w1 = w3, y'] =
0, and thus
(u-u*)Llec

To see this it is valuable to form
y = y— CaXx —y2Dg1BY XX = Doowg + (C2 + y 2D (BTX + BT,Y))%

The theorem now follows by application of the generalization of Bern-
hard’s dynamic programming principle (Conjecture 2). O

Remark 8. If derivatives are put to zero, these equations by [Doyle
et al., 1992] for the infinite time horizon case for problem J; follows.

Remark 9. Formula (72) can be used to calculate L if P and Y are
known. The equation is linear in L and can be rewritten using Kroe-
necker products to a linear equation that is singular if and only if

‘I ®I +(DDL) Dy DY, @ y2PY Vo (87)

is singular. If P > 0 and Y > 0 it is easy to see that this matrix is
nonsingular. L is therefore uniquely given if P and Y are known.
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The Closed Loop

By using u = u* and w1 = w} we get the following equations for the
resulting system

AHE
det \x) =

where A, = A + (y2B1BY — B3BI)X and A, is given by (73). This
describes the transfer from stochastic noise wqy to x and X. We hence
understand the conditions that A, and A, should be stable matrices in
the infinite time horizon case.

It is rewarding for the understanding to study how the calculations
reduce to (partly) known results in the Hy; and H,, cases:

~

[Ac BzB§X+y"2B'{dY] [x] 4 [ By
X

0 A, Boy ] wo  (88)

Summary of H,-Controllers—Continuous Time

The standard H.-controller formulas exist in several different forms.
Two different forms are obtained using x or x as states in the controller,
see [Rhee and Speyer, 1991]. Introduce ’

0 = XooA + ATX oo + CTC1 — X oo (Bng‘ _ y-zBlB{) X (89)
0 = AYo + YooA” + B1BY — Yoo (CFCs - y2CT C1) Yeo (90)

X >0 (91)
YY1 -X, 20 (92)
Z = (I —y2YuXo)? (93)

More conditions also have to be satisfied. These are stability of A, and
A, described above, which is now seen as very natural, see (88).

For simplicity in the description below we assume Dle'f = 0 and
D21 DI, = I. The first form of the controller is given by

% = A% + Bou + 7 2YoCTC1% + Yoo CT (y — Ca%) (94)
u* = —BYX Z. % (95)

An equivalent form is given by

X = AX + Bou + y2B1BTX % — L(y — C3X%) (96)
- u* = —Bj Xk ‘ (97)
L=-2ZYuC3 = —(I =7y 2Y0Xoo) 1Y CF (98)

The forms are connected through x = Zx, but only if u = u*.

79




Paper III Min-Mix Control

Wy W

Figure 6. The system in Example 4

Hy; and H, as Special Cases

The connection between Y and Y, in Hcontrol is the following
Y = Y+ X (99)
Using (72) with Dg; BT = 0, D2y DI, = I we obtain
— LDyyD%, = BoD, + P(CT + y2YL) (100)

setting Dyy = 0 and assuming P nonsingular we obtain the H formulas
above. .

We now also have an equation for the worst wj;. Notice that the
equation obtained above for w} reduces to

w} =y 2BTXx + y 2By Y% . (101)

and hence contains a term proportional to x — x. This term is invisible if
both players play optimally, but is the key for understanding how w can
take advantage of player u:s lack of information, i.e. when x # x and
for obtaining the controller formulas by simple completion of squares!

To obtain the LQG formulas we put B; = 0 and Dy; = 0. We then
get A, = A+ LC; and (72) becomes

— LDy DY, = ByDZ, + PCT (102)

which we recognize from the Kalman filter.

ExAMPLE 7

The feedback problem in Figure 6 gives a lot of insight into the behavior
of min-mix controllers. It will also illuminate some flaws in the infinite
time horizon theorem in [Doyle et al., 1992]. The problem is given by

X=—-x+wi+u (103)
%(0) = 0 (104)
2 = [z] ' (105)
y =X+ OCwy (106)
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7 Continuous Time Min-Mix Controllers

that is

(107)

oL
Qoo;
O OO
OOl

Notice first that if ¥y > 7,, where ¥, = 1 corresponds to open-loop,
then the best min-mix controller is obviously K(s) = 0 and the worst
disturbance is w; = 0. The value of the game is then zero, since this
controller does not introduce any measurement noise into the process. If
Yoo < ¥ < Yo, Where Yo = 1/4/2 is the full-information ¥, there is a trade
off between counteracting w; and introducing measurement noise wy
into the process.

The solution to the min-mix equations is now obtained “by hand”.
We first study the infinite time-horizon problem. For this process Equa-
tions (63)-(73) reduce to

0=-2X+1-X%1-y2) (108)

0 = 24,Y + X2 — y2Y?2 (109)

0 = 24P + L?c? - (110)
Lo? = -P | o (111)
A, =-1+L+y 23X +7) (112)
Ao =-1+(y2-1DX (113)

From (110) and (111) we get two solutions:
(L,P) = (0,0) or (L,P) = (24,,-2A./c?) (114)

The solution with L = 0 can be used if y > 7, = 1. For y \, 1 we get for
L = 0 that

X —>1/2
A, - -1
Y /1/2
A, =-1/2+Y /0
L=20
T v P=0 !

The other solution, with L = 2A,, is valid for all ¥ > %, = 1/v/2. For
Y\ Yoo We get
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X-1

A, /0

Y > (V7-1)/6

A, > —(2+V7)/3

L = 24,
P—>2(2+\/’7)02/3

Notice that L is independent of o, which is surprising. The controller is
given by

X = Ak — L(y - %)
u=-Xx

with A, = —=1-X(1-7y"2). The value of the game can now be calculated
using the new formula

tr
Vit,x,%) = x"Xx+xTY% + / Tro?L?Y d7 . (115)
t

Notice that the value is strictly positive when L # 0 and Y > 0.

The situation is therefore the following: For 7, < ¥ < ¥ there is
only one solution satisfying the equations and stability conditions. For
large ¥ there are however two solutions to the equations and stability
conditions given in [Doyle et al,, 1992] and in this paper. Only the choice
with L = 0 gives the optimal min-mix controller. The formulation of
the theorem in [Zhou et al., 1990, Doyle et al., 1992] is therefore not
satisfactory. That the equations are satisfied and all stability conditions
are met are not enough to guarantee that the optimal min-mix controller
is found. One could make the mistake of using the controller with L =
2A, also for the case with large y, which would not be optimal.

The formulas therefore have to be complemented with more infor-
mation, like our expression for the value of the game. We strongly believe
that intuition from the finite-time horizon results is necessary to fully
understand the infinite horizon case, and that further study of the finite
time horizon case wjll be rewarding for finding these conditions. This
is an open issue for future research. The present paper contributes by
= presenting the solution (modulo Conjecture 2) to the finite horizon case.

O
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We now obtain analytical expressions for y~2 = 7/4. This value
satisfies 7, < ¥ < ¥w and the solution L = 0, P = 0 will hence not
give a stable system. This shows up in that the equation for Y gets a
conjugated point. We will use the stationary value X (¢) = 2/3 in what
follows. The dynamic equations are given by

A= -1-(1-y2)X
A, =1+ L +2Y
L =-P/c?
P = 2A,P + L2062
Y = X%+ (2+2P/0? - 2y2X)Y — y2Y?

The solution for P(t) = 0 and L(¢) = 0 was obtained using Maple. It is

given by
Yi(t) =9 (ﬁtan((t_ (;1)\/:;) - %) /8

Notice that Y; explodes if the time interval is sufficiently long.
For this y value the stationary values when L = 2A, are given by

X =2/3
pP- (2 + \/8_5) c2/9
Y = (-2 +285)/63 = 0.2609

We have not been able to obtain explicit solutions for the dynamic P
and Y Riccati equations There are several open questions concerning
the dynamical equations, which should be rewarding to investigate.

8. Discrete Time Min-Mix Controllers

The calculations in discrete time are analogous to continuous time. The
algebra is however more complicated. The calculations have hopefully
been reduced to a minimum in what follows. Let the, possibly time-
varying, system be given by

e Ly >
"

‘gx = Ax + Bowo + Byws + Byu ' (116)
%(0) = xo (117)
y = Cox + Dogwgy + Dayw+q (1]_8)
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‘where q is the forward shift operator,i.e. gx = x(k+1). Let the criterion
be to find saddle equilibria for

E { ij x" (k)CY Cra(k) + u” (R)u(k) — y*wi (R)wa(k) + xT(tf)Qfx(tf)}
k=0

Wo

where the disturbance consists of w = (w1(0),...,w1(¢r-1)) and the con-
troller is u = (u(0), u(1),...,u(¢r-1)). The controller is assumed to be of
the form u(%) = f(y*1). In what follows the time index is assumed to
be k unless explicitly stated otherwise.

We first mention the following LQ-lemma, which is the counterpart
of Lemma 2:

LEMMA 3
Specialize the system to

gx = Ax + Bowg + Biw1 (119)
x(0) = xo - / (120)
and the criterion to
tf—-l 7 . ’
J = LIJ] Z(xTQx —Y2wTwi) + 2T (¢7)Qrx(tr) (121)
k=0

If S; > O for all &, where

Sy = yI - B¥X,.,1B; (122)
X, =Q+ATV,A=Q+ATX, 1A - ATX,,B,S;'BTX, 1A

=Q+ATX, A-FIS,F, (123)

Xi, = Qf (124)

Vi=(X1-y2B,BT)! (125)

SpFy = B{ X A (126)

then the worst case w; is given by
wi(k) = y2BIViAx(k) = S;' BT Xy, Ax(k) = Fyx (127)

- If 83 is singular, there are many solutions F. The value of the game is

tr
Ve = 27 (k)Xpx(k) + > Tr BIX;Bq (128)
Jj=k+1
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If S, fails to be positive semidefinite for some %, then J can be made
arbitrarily large by wj.

Proof: The lemma is a special case of the results in e.g. [Bagar and
Bernhard, 1991]. It can be proved by the following calculation

rVk E{(Ax + Bowo + Blwl)TXk+1(Ax + Bowo + Blwl) + xTQx
Wo

t
—J/zw’fw1+ Zf BngBo}

J=k+2
tr
= Y BiX;Bo+ (Ax+ Biw1) Xy, 1(Ax + Biwi) + 27 Qx — 2wl w,
Jj=k+1
Zi
= xTXpx+ Y BiX;Bo— (w1- Fx)TSy (w1 — Frx)
J=k+1

from which the theorem follows immediately. Notice how the continuous
time problem with conjugated point theory is much simplified in discrete
time. O

We now motivate the form of V for the full min-mix case in the
same way as in continuous time. Introduce the signals

u* = F256 (129)
qic = Ax + Bzuk + BlF15C - L(y - 0256 - D21F15C) (130)
F=ax-% (131)

where L is determined later and

o 7BiYva, V= (Xih-y2BiBY + B;BI)! (182
F,) = ~BT ) = (Xp,1— Y “B1Bi + B:B;)™ (132)

The form of % will be motivated later. Consider it for the moment as a
suitably chosen signal. We then have

qic = (A + LCz).’TC + BodwO + Bldwl - BldFl(x - 5&) (133)
where Byg := Bo + LDgy and Byy := B + L‘Dzl. The system can thus be

written as

- [x] _ [A“‘”+"”B2F2 ~ByF; ] [x] N [ Bo]
q X B —BldFl A + LCz + BldFl X B()d Wo
B B ,
+[de]“’1+[02](”_”) (134)
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Inspired by Lemma 3 and the continuous time case we define

tr
Vp = 2TXx + Z7YET + Y Tr (B{XBO + BodYBg‘d) (135)
k+1

To find the new Riccati equations we use Lemma 3 on the extended
system. Let

7:(["(‘)’ g]"l_y—z[;ld] (BlT de])—l (136)

Z_ [A+BzF2 —Bze ]
B "'BldFl A+ LCz + BldFl

A straightforward calculation shows that

Va7 (4 A0) (0 1)+ (L) va(r 1) = ("4 )

and
(137)

(138)
Therefore the right hand side of the extended Riccati’ equatibn (123)
becomes
~ 2Too_ (@ 0) . ( Ff
Q+A'VA-= [0 0] + (—Fg‘] (2 -F2)
[ _BldFl A+ LCz + BldFl ] va (139)

Using (138) again we obtain the following three equations

X =Q+FTF,+ FIBIVA+ ATVA = Q + ATvA © (140)

0=-FIF,-FIBIvVA (141)
1y —B,F; Yo —ByF;

¢ Y= [A+L02 + BigFy +F2TF2] v [A+LC’2 + BigFy ] (142)

The first Riccati equation is the standard full-information Hequation,
the;;second equation is obviously satisfied and the third equation reduces
after simplification using (138) to \

A A

T
qY = [A+LCz] [A+L02] AvA (143)
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Inspired by Lemma 3 we also define

wi =772 (B de]VZ[jfc] - Fix+ (N—F)i  (144)

with N
e 2 T T\
N:=y? (B Bld]V[A+LC2] (145)
We now obtain
qx = AeXx + Bogwo + Big(w1 — wi) (146)
where
A, = A+ LCqy+ BigN (147)

Notice the resemblance to continuos time. All that is needed now is to
determine L using Bernhard’s separation theorem. With w; = w} the
covariance matrix E[%2] is given by

qP = A,PAT + ByyBE, (148)
and the system equations become

x(k + 1) = [A + BlFl(k)]x(k) + Bowo(k) + Bzu(k)
+B1[N(k) - F1(k)]x(k)
y(k) = [Cz + D21F1(k)]x(k) + Dzowo(k) + D21[N(k) — Fl(k)].’i(k)

We have

Cov [qx - (A+ BlF1)5€ — Bzu ] _
y - (Cg + D21F1)5C
cov [ (A+BlN)5c+BOw0 ] . [ Va Vb]
(Cz + Dle).’TC + D20w0 o VbT Vc
where
Vo = (A+ BiN)P(A + BiN)T + BoBY (149)
Vs = (A+ BiN)P(Cs + D21 N)T + ByDI, (150)
- Vc = (ﬁCz + Dle)P(Cz + Dle)T + DZODS;) (151)

: ‘/»57 e

/Standard estimation theory now says that if L satisfies
Lk)YV.+Vy=0 (152)
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that is
~L {[(12 + Dg; NIP[C3 + D1 N]T + DzODg;)} =

= [A + B1N(k)|P(k)[C2 + Dy N (k)T + BoDE, (153)

giving
—~ LDgyDJ, = A.P(C2 + Da1N)T + ByDZ, (154)

and if
x(k + 1) — (A + B1F1)x(k) — Bou(k) = —L(k)[y(k) — C2 — Do  F1(k)x(k)]
(155)

then

(b +1) L9 (156)

where 9}, denotes all past information. This is the classical orthogonality
principle. It is now possible to finish the calculations in the discrete time
case with a completion of squares similar to the one in continuous time.
We will not present these details here. It parallels the continuous time
case, but with more algebraic problems. The details will be given in a
future paper.

In summary the discrete time min-max problem boils down to the
following equations:

CONJECTURE 4

q5c = Ax + BQUk + BlF15C - L(y - 0250 - D21F15C) (157)

u* = FoX (158)
w* = Fix + (N — F1)¥ (159)
g X =Q+ATVA ~ (160)
-1 _ A ] T A ] AT
Y = [A+L(12 V[A+L02 ATVA - (161)
qP = A.PAT + ByBl, (162)
—~LDgyD3y = A.P(Cs + Dy N)T + ByDZ, (163)
7 Ae = A + LCQ + BldN (164)
'The deﬁmtmns of F1, F5,V and V are given above. ‘ O

As a side result we also obtain the following for H_control:
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Relations to Discrete Time H -Controllers

Different formulas for discrete time H,-controllers exist. The connec-
tions between some different forms are discussed in [Walker, 1990]. The
following results concern the delayed case, e.g. when u(%) is a function
of y(k — 1) which means that there is a delay of one sample in the calcu-
lation of control signal. The case with a direct term in the controller is
algebraically more complicated, see [Limebeer et al, 1989], [Gu et al.,
1989], [Basar and Bernhard, 1991] or [Stoorvogel, 1992]. We will not
discuss this case here. Assume for ease of notation in the following two
theorems that B1DZ, = 0 and Doy DI =1

THEOREM 7

If y > y* then a pure saddle point is represented by
u*(k) = —BYV,AZ,x(k) (165)
wi(k) = y2B1WrAZx(k) (166)

x(k +1) = Ax(k) + Bou(k) + AW, (y2CT C1x(R) +

C (y(k) = Cak(k))) (167)
x(0) = Zoxo (168)
X,=A"V,A+BBf; X, =@ (169)
Yi = AWRAT + CTCy; Yo=Q;t (170)
Zy = (I - y2Y3Xp) ™! (171)
Vi = Xji1 + B2B; —y?B1B])™ (172)
W, = (Y;'+CiCy—y2CTCy)? (173)
The concavity conditions are, according to [Bagsar and Bernhard, 1991]

in the finite time horizon case that
Xp1— v °BiBi >0
Y;'+clc,-y2cfc, >0
YY1 -X, >0
For the infinite time horizon case there are other conditions as well.

Proof: See e.g. [Bagar and Bernhard, 1991] or [Whittle, 1990b]. Many
other references also exist. O

An Alternative Form

Thé min-mix formulas suggest another, but equivalent form of the sub-
optimal discrete time H,controllers. The alternative form uses a differ-
ent state in the controller, x. This form is so natural that it is probably
not new, although we have not been able to find any references:
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‘question of when the equations are necessary and sufficient is still not
satisfactorily solved. It is also not clear what are the weakest possible
existence conditions for obtaining an optimal controller. The singular
cases require special techniques. The techniques in [Stoorvogel, 1990,
Stoorvogel, 1992] can probably be applied. This is however non trivial.

It would be interesting to investigate what happens as ¥ \\, Yopt
the optimal case. How does the controller obtained in this way compare
with the equalizing controller or the controller minimizing the Hz-norm
with an H,, constraint? Example 4 should be useful when doing this.
Another simple result in this direction would be:

CONJECTURE 5
The optimal y-values are the same for J3 and H.

Proof: Take any y > y% and a controller achieving this H-bound.
The quadratic term in w; is then negative definite and the system is
internally stable. The extra wy-terms can not give infinite extra loss. J3
is hence bounded. O

~

It should be possible to see this from the equations diréctly. Another
open problem is to determine when the min-mix controller is unique. The
intuition is here that if there is process noise “on all state variables” the
controller should be unique. It is also important to investigate further
connections between the different mixed Hy/H,, results.

The relation with the work of Whittle, see [Whittle, 1990b] is also
open right now. Is there a way to connect the results to the risk-sensitive
approach? The beautiful symmetric formulation of two-point boundary
problems using the path formalism of Whittle should be aimed for. It
should also be possible to show what kind of operator factorizations the
Riccati equations really are doing, [Hagander, 1973].

If the motivation for mixing norms is to obtain robust performance -
controllers, one should probably tie the robust controller design closer
to how the knowledge of the system is obtained. One such approach for
optimizing system performance for uncertain systems is given in [Bern-
hardsson, 1992], where covariance information on uncertainty is used
to find the expected Hq-performance. If the uncertain parameters enter
in a feedforward fashion, explicit formulas for the controller optimizing
the expected Hz-performance can be obtained.

By
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THEOREM 8
If ¥ > y* then the following represents a pure saddle point

x(k + 1) = Ax(k) + Biw}(k) + Bau(k) + Z, . 1AWC] (y — Caokyp) (174)
x(0) = (175)
u*(k) = —32 V3 AX (k) (176)
wi(k) = y 2BTV,Ax(k) (177)

where V, W and Z are given by the same equations as above.

Proof: The proof is obtained from Theorem 7 by straightforward alge-
braic manipulations. O

The states are related in the following way. If u = u* then x = Zx.
An advantage with the second form of the controller is that X has the
interpretation of a state estimate for u using w = w*. It is also easier
to see the second form of the controller as a special case of the min-mix
case.

Relation to Discrete Time LQG

At least for the case Dy; = 0 the complicated L- equatlon ( 163) simplifies
considerably. Some matrix algebra gives

Ac=A+LCy+ByuN=[I+WX+Y)JA+[I + WY]LC,

where
W = B4[Bf (X + Y)B; — y?I] BT

so that

— LDgyDgo—[I + WY]LCPCY = [I + W(X +Y)]APC, + ByD%, (178)
This equation is now linear in L, and it’s solvability can be discussed as
in the continuous time case. If also B; = 0, i.e. in the LQG case, then

W = 0, and we recognize the well known formula for the Kalman filter
gain L. The P-equation with A, = A + LCy gives the covariance.

9. Some Ideas for Future Work

. }
The paper presents several problems worthy of further investigation.

The first goal should be to prove the two separation theorems given in
the text. This should not be difficult for the linear quadratic case. The
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10. Conclusions

The paper presents a short completion of squares argument for the solu-
tion of the min-mix controller problem both in continuous and discrete
time. A conjectured generalization of a dynamic programming separa-
tion principle by Bernhard was used to obtain the controller. The full
finite time horizon, time varying problem was treated and new formu-
las were given. We also obtained new, explicit, formulas for the value
of the game. Relationships to earlier results on game theory were pre-
sented. An example was also presented that illustrated the theory and
the equations obtained.

11. Notation

If G(s) is a stable, continuous time transfer function, then

|Gl = supT(Giw)) -
where 7 is the largest singular value and
G2 = 2 / Tr G (i) G (iw)dw
27 ) o

In discrete time iw is replaced by ¥ and the integration is over the
unit circle. We also need Ito’s differentiation rule. Let
dx = f(x,t)dt + o(x,t)dw

where w(t) is a Wiener process. Then if y = y(x,¢) we have

1
dy = <yt +yT 4 Q-Tr(yxxc)'O'T)) dt + yTodw

In special if
dx = Axdt + Bdw

then

d (xT(t)X(t)x(t)) - (xTXx +xT(XA + ATX)x + Tr (BXBT)) dt
s Y7 +dwTBTXx + xTXBdw \

Notice the term Tr(BX BT), it is denoted "Ito" in the calculations in the
paper. See [Astrém, 1970] for further details.
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11 Notation

‘Bounded Power Signals (BP)

The paper [Zhou et al, 1990, Zhou et al, 1992] avoids introducing
stochastic noise. They instead use the spaces (BP) and (BS) and induced
norms. The definitions used in these papers are as follows:

The autocorrelation matrix for a given signal is defined as

R,u(7):= lim % /T u(t + 7)ul(t)dr (179)
~T

T—oo

if the limits exists for all 7. Further assume the Fourier transform of
the signal’s autocorrelation matrix function exists (but may contain im-

pulses). This Fourier transform is called the spectral density of u, de-
noted S, (jw)

Su(jo) 1= /_oo Ruu(t)e %% dr (180)

A signal u(t) is called a power signal if u(t) satisfies the following con-
ditions:

(BP1) u(t) € Ly
(BP2) R,,(7) exists for all 7

(BP3) S,.(jw) exists (it need not be bounded and may include im-
pulses) : C

A power signal is said to have bounded power if it is a power signal and
the following (semi-)norm is bounded

1T ” .
ol = Jim oo [ [ulPd = T [Ruu(0)] = [ Tr[Sw(e) do/2n
(181)

Bounded Spectrum Signals

We call a signal u(¢) a spectral signal if the following conditions are
satisfied:

(BS1) u(t) € Ly

(BS2) R,,(7) exists for all 7

(BS3) S.u(jw) exists

A signal is said to have bounded spectrum if these conditions are satis-
fied and the seminorm defined by

is bounded. Both H; and H,, can be seen as induced norms using these
two seminorms.
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Some other notation

The following notation is also used in the paper

B()d = B() + LD20

Bld = By + LDs;

A, = A + (y 2B, BT — B,BI)X
Ao = A+ LCz

The notation A := B means that A is defined as expression B.
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PAPER IV

Feedforward Control is Dual
to Deconvolution

Bo Bernhardsson and Mikael Sternad!?

Abstract: A duality is demonstrated between optimal feedforward
control and optimal deconvolution, or input estimation. These two prob-
lems are normally discussed separately in the literature, bt have close
similarities. Duality between them can be demonstrated if and only if
one uses general problem formulations, with frequency-shaped weight-
ing in the criteria. From one of the problems, the dual problem can
then be obtained immediately form the block diagram, by reversing the
directions of arrows, interchanging summation points and node points
and transposing all transfer function matrices. This result applies for
continuous and discrete time problems, as well as for minimization of
J = ||G||, for any transfer function norms for which ||GT|| = IG||. A
derivation of a polynomial solution to the frequency-weighted discrete-
time MIMO LQG feedforward control problem illustrates the use of the
duality.
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1. Introduction

Duality relations have a long history as fruitful tools in control and
estimation theory. All control engineers are well aware of the dualities
between LQ state feedback and Kalman state estimation, see [Kalman,
1960] or, e.g., [Kwakernaak and Sivan, 1972]. Similar duality results
are of use in the study of H,-control and state estimation, see [Doyle
et al., 1989] and [Shaked, 1990]. For a linear time-invariant system in
state space form, the dual system is obtained by reversing the role of
inputs and outputs and by transposing all matrices.

For a problem in block diagram form, there is however no need to
compute a state space realization to obtain the dual problem. In Sec-
tions 2 and 3, we will present an elegant way of obtaining the dual of
a linear time-invariant control problem directly, from its block diagram.
Although we have not found Theorem 1 in Section 2 stated explicitly in
the literature, we doubt that it is novel. However, we include it because
it is important for the following discussion. Also the elegant algorithm
in Section 3 is believed to be a part of the folklore of control theorists,
but is hard to find in the literature. The result is, however, very useful
e.g when doing polynomial calculations and has certainly not greatly
penetrated the literature. |

This method is used in Sections 4-6 to clarify the question of what
kind of estimation problems are dual to feedforward control problems.
This question has been discussed, e.g., in [Sternad and Ahlén, 1988],
where close correspondences were pointed out between disturbance mea-
surement feedforward control and deconvolution, also called input esti-
mation. In fact, by using loop transformations on scalar problems, it
was shown how one problem could be transformed into the other. No
dual relationship could, however, be obtained. As will be clarified below,
it is possible to demonstrate a dual relationship, if the formulation of
both problems are made more general than the ones discussed in [Ster-
nad and Ahlén, 1988]. The general formulations include dynamic cost
weighting in the criteria.

Our interest has been mainly in LQG (or Hj)-solutions based on
polynomial equations, a method pioneered by [Kucera, 1979]. However,
the duality holds for any criterion J = min||G|| based on a norm of a
rational matrix G, for which ||GT|| = ||G||. It does, e.g., hold also for
an H,, norm but not in the MIMO case for the L; norm [Dahleh and
Pearson, 1987], defined by

n
|G|z, = miaXZ llgij |2

j=1
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2 Duality

Jy = min|GL| Ja = min|G2,|

T T

y G G, [ ju vy G12 G22 u

—>K1 —————————»Kz

Figure 1. Dual problems. The left hand figure represents the standard
problem G'. The dual problem G? is given to the right.

where g;;(¢) is the impulse-response of element (i,j) of G(s).

By clarifying the duality relation between the two types of problems,
we achieve two goals. Firstly, the many correspondences between them
are explained, and the understanding of both problems is enhanced, see
Sections 6 and 8. Intuition from the feedforward problem can be used
in the formulation and solution of input estimation problems and vice
versa. Secondly, the construction of algorithms for computer-aided de-
sign is simplified. Only one algorithm, which solves both kinds of prob-
lems, needs to be implemented. We illustrate this in Section 7 by deriv-
ing a polynomial solution to the discrete time LQG feedforward control
problem from the corresponding input estimator design equations.

2. Duality

We begin our discussion by establishing a duality relation between the
two problems described by the block diagrams in Figure 1. The left-hand
diagram in Figure 1 represents the “standard problem.” It was intro-
duced around 1980 as a standard way of representing a large collection
of control and signal estimation problems. See e.g. [Pernebo, 1981], or
[Doyle et al., 1989]. Polynomial optimization of LQG-controllers for the
standard problem is described in [Grimble, 1991] and [Hunt et al., 1991].

In Figure 1, y represents the measured variables, z are signals to be
controlled, w are exogenous signals and u are the control inputs. Many
control and filtering-problems are formulated as design of K, to min-
imize the influence of w on z. All G;;’s are here linear time-invariant
transfer functions, in continuous or discrete time. (Time-arguments of
signals, and arguments of transfer functions, are suppressed in the fol-
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lowing.) Duality between the two block diagrams in Figure 1 can now
be stated as follows.

THEOREM 1—Problem Duality
For all norms satisfying ||GT|| = ||G||, the two problems

. . 2
Ji = n}lénllGiwll, Jp = nz]élzn”sz“

in Figure 1 are dual, in the sense that the two optima are equal J; =
Js, and the optimal controllers are related by KI' = K. A necessary
condition for the problems to be dual is that the minimal values of the
norms are invariant under transposition.

Proof: The closed loop from w to z in the first problem is given by
G, = Gi1 + Gio(I — K1Go2) ' K1Gay
Transposing gives

(Gzw)" = Giy + G KT (I - GRK{) Gy, =
= Gf; + Gy (I - K111G312)_1K1TG£2 :

which is exactly the closed loop from w to z in the second case if Ky =
KT. The sufficiency of the assumption ||GT|| = ||G|| follows from

G2l = 1(G2) 1| = 1G, I

If ||GL I # I(GL,)T || at the minimum, then J; and J, will differ. Thus,
it is necessary that ||GL, || = ||(GL,)7 || at the minimum. O

Remark 1. The dual system can be obtained by transpbsing the follow-
ing matrix, where the state space representation of the transfer func-
tions Gy; is [A, B;,C;, D], i,j = 1,2:

A B; By
. Ci Du Dy
C2 Dy Dy

e 5 y@-

‘Remark 2. Depending on the specific type of problem set-up ‘and norm,
restrictions may have to be imposed on the properness and stability of
some or all of the blocks G;;.
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Remark 3. Fundamentally, duality is a relation between two systems:
the role of their inputs and outputs are interchanged, and the time is
reversed. For a time varying, continuous time system, the transforma-
tion can be seen as obtaining the adjoint system, followed by a time
reversal. With finite final time ¢/, the transformation of the state-space
description is

A(t) B(t)) swen (—AT(t) —CT(t)Y romms (AT(t;—1) CT(t;—t)
(¢ p6) = (Grey 2rey) ™ (oot oraeo) @

The last transformation follows because the solution to v = —f(¢; —
t,v(t)) is the time reverse of the solution to x = f(¢ x(¢)), see e.g.
[Kwakernaak and Sivan, 1972], lemma 4.1. (The dual system is identical
to the so called modified adjoint system, see [Kailath, 1980]). With time-
invariant systems, the transformation (1) reduces to a transposition.
Duality between systems can be used for obtaining correspondences,
or dualities, between optimization problems. The original example is LQ
state feedback and Kalman filtering [Kalman, 1960]. If the solution is
time-invariant, we no longer have to think of the dual problem as defined
in reversed time. Theorem 1 states that duality essentially involves only
transposition for a large class of problems with time-invariant solutions.

3. Block Diagram Version of Duality

For time invariant systems given in block diagram form, the dual to
an optimization problem, in the sense of Theorem 1 can, if it exists,
be obtained directly from the block diagram. The idea is old, but has
to the authors knowledge not been published for the general setup of
Theorem 1. The correctness of the following algorithm is easily proved
and is left as a nice exercise.

Algorithm: The following block diagram transformations give the dual
block diagram:

e Exchange w:s and z:s
e Exchange u:s and y:s
e Reverse directions of arrows (2)

R

e Interchange summation points and node points ‘
e Transpose the transfer function blocks

An example is given in Figure 2 and Figure 4 below.

105




Paper IV Feedforward Control is Dual to Deconvolution

Z,
G4
w—| G d | K —UL—>G y G _ }t»z
1 FF 3 5 1
system
I G2

Figure 2. Feedforward control problems.

4, Feedforward Control

The design of feedforward links from measurable disturbances and from
command signals is an important complement to a feedback design. We
will here, in particular, consider the design of LQG (or Hs)-controllers.

The feedforward problem to be considered is shown in Figure 2. The
system output is described by

Yy = G3u—G2d

where G3 represents the system, including a possible fixed feedback
controller. Here, d is a measurable signal, which is modeled as filtered
white noise

d=G1w

The problem is to calculate the optimal causal, stable and linear feed-
forward regulator ‘
u=K FF d

that minimizes a mean square of the sum of filtered outputs and filtered
control signals:

min E(tr z127 +tr z921)
) 21= Gsy
e T 2= Gau \

All transfer functions are assumed known, stable, proper (in continuous
time) or causal (in discrete time). In discrete-time problems, both G and
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5 Estimation of the Input to a Dynamic System

u >G§ ()Y

system

W

Figure 3. Signal estimation. The filter Kz is sought which estimates (a
filtered version of) the input .

(3 may include delays. In a disturbance measurement feedforward prob-
lem, d represents measurable disturbances. They are eliminated in fre-
quency regions of interest (defined by Gs), if 21 = G5(G3Krr — G2)G1w
is small. In command feedforward problems, d represents command sig-
nals, and Giw are stochastic models describing their second order prop-
erties. Servo filters Krr are then to be designed, based on a response
model G3. Good model following is achieved, in frequency regions of in-
terest, if z; is small. (In a multivariable setting, d can of course include
both measurable disturbances and command signals.)

For a discussion of scalar discrete-time LQG feedforward design,
see e.g. [Sternad and Séderstrom, 1988] or [Hunt, 1989]. Multivariable
problems are discussed in [Hunt and Sebek, 1989] and [Sternad and
Ahlén, 1992], using the polynomial equations approach. A solution to
MIMO discrete time problems is discussed in Section 7.

5. Estimation of the Input to a Dynamic System

Many filtering, prediction and smoothing problems are special cases of
a set-up presented in Figure 3. The signal u is the input to a linear
system G7 . A possibly filtered version of it, u; = Gf u, is to be estimated,
based on noisy measurements y of the system output. With white w; and
wa, G5T wi and fowg represent stochastic models of signal and noise.
The transfer function G is a frequency shaping weighting filter.

- “7When G contains dynamic elements, the problem is an input esti-

mation or deconvolution problem. Otherwise, we have an output or state
estimation problem. A dynamic element GI may represent an analog or
digital communication channel. The filter K is then a linear recursive
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equalizer. It’s task is to reconstruct the transmitted signal u. In pro-
cess control and supervision, G4 can represent a transducer, with slow
dynamics. The task of the filter Ky is then to estimate, and possibly
predict, the input u to the transducer.

The filter GI in the lower (fictitious) signal path can be of use in
several ways. In discrete time, it may include an advance or delay Iq~™,
i.e. ug(¢t) = u(t — m). Depending on m, u(¢ — m | ¢) is then a prediction
(m < 0), filtering (m = 0) or a fixed lag smoothing (m > 0) estimate. The
block GI may also contain filters, to emphasize the estimation accuracy
in certain frequency regions. Filters in either G} or GI can be used
for affecting the relative accuracy, in different frequency regions, in the
estimation of u. For a discussion of advantages and disadvantages of
these two methods, see [Ahlén and Sternad, 1989]. Thus, the measured
output is described by

y = GTu + Gl ws; u=Gfw;

All systems are assumed to be known and stable and the white noise
signals w; are stationary, zero mean and mutually uncorrelated. We con-
sider the problem of finding the best causal, stable and linear estimator
of a filtered version GY u of the input

ur=Kgy

which minimizes a frequency weighted version of the mean square esti-
mation error

min E(tr 227); 2z = GT (4y - Gfu)

Such an estimator is a Wiener or stationary Kalman filter. All blocks,
except G7, are assumed proper in continuous time and causal in discrete
time.

A solution to the discrete-time version of the MIMO H, estimation
problem introduced above will be discussed in Section 7.

6. Duality Between Feedforward Control and Input
Estimation

Using the setup in Figure 1, the feedforward problem in Figure 2 is
represented within the standard problem by the rational matrix

[ -G5G2G1 ] [ Gs5G3 ]
0 G4
G 0
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6 Duality Between Feedforward Control and Input Estimation

"iz
T
G4

G

T
2

Figure 4. Result of block diagram transformations on the feedforward
problem in Fig 2. The result equals the mirror image of the block diagram
of the estimation problem in Fig 3.

with 21,22 as controlled outputs, d as measured output, w as exogenous
input and u as control input. Transposing this matrix gives the dual
problem

(-6Teiet 0) &f
(¢fef 6f) o

This is exactly the estimation problem of Figure 3, with z as output to
be minimized, y as measured output, wi, ws as exogenous inputs,
as “control input”, and Kz = K},. Alternatively, we may use the block
diagram transformations in Section 3 on Figure 2 directly, which gives
Figure 4.

Thus, the model G;of the signal d corresponds to the weighting func-
tion of the estimation problem. The systems G3 correspond to each other.
The control weighting G4 corresponds to the measurement noise, while
the output weighting G5 corresponds to the signal model of the esti-
mation problem. As in other dual problems, minimum variance control
(G4 = 0) corresponds to estimation with noise-free measurements. In
continuous time, both are singular problems. Some of the consequences
of these correspondences will be discussed in Section 8.
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7. An Illustration: Polynomial Solutions to
Discrete-Time Input Estimation and
Feedforward Control Problems

Input Estimation/Deconvolution

In a discrete-time estimation problem described by Figure 3, let the
noise-corrupted measurement vector y(¢), of dimension p, and the input
u(t), of dimension s, be given by

y(¢) = A7 Bu(t) + N ' Mw,(t)

u(t) = D 'Cwy(t) 3)

Here, (A,B,N,M, D, C) are polynomial matrices in the backward shift
operator ¢~!, of dimension p|p, p|s, p|p, p|r, s|s and s|k, respectively.
The noise signals {w1(¢)} and {w2(t)} are assumed white and stationary,
with zero means and covariance matrices normalized to unit matrices.
An optimal linear estimator

ur(t) = Kp(g)y(t) (4)
of a filtered version of the input, of dimension / |
ur(t) = T71Su(t — m) (5)
is sought, such that the frequency weighted quadratic criterion
J =tr E{z(t)2"(t)}; 2(t) = UV (@5(2) - us(2)) (6)

1s minimized. In (5) and (6), 7, S, U,V are polynomial matrices of di-
mensions I|I, l|s, |l and [|l.
Comparing with Figures 3 or 4, we have

G{ =U'V
G = T7-18q™
GY = A"'B
GFf = NM
Gf = D'C

‘We make the following two assumptions:

7 \
Assumption 1. The polynomial matrices A(q~1), N(¢g71), D(q~1), T'(¢7Y),
U(g™), and V(g~!) all have stable determinants and non-singular lead-
ing coefficient matrices. (Thus, they have stable and causal inverses.)
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Assumption 2. The spectral density matrix ®,(e?) of the measurement
y(t) is nonsingular for all ®.

Define the following coprime factorizations

BD'=D"'B (7)
DAN-!' = N-1A (8)
VT'8D™' = T18 (9)

Stability of det T' and det D and coprimeness of T-1S implies that det T
will be stable. Causality of T~ and D~! implies that 7'~! will be causal.
Let P, denote the conjugate transpose PT(q) of a polynomial matrix
P(q™'). Define the following left polynomial spectral factorization,

BB. = NBCC,B,N, + AMM,A, (10)

Under assumption 2, (10) will always have a solution 8(g-!'), of dimen-
sion p|p, with stable determinant and nonsingular leading coefficient
matrix, see e.g. [Anderson and Moore, 1979], [Kucera, 1979], [Kucera,
1980], [Jezek and Kudera, 1985].  The following result now holds:

THEOREM 2—The Wiener Estimator

Let the system and input model be described by (3), see Figure 3. In-
troduce the coprime factorizations (7)—(9) and the spectral factorization
(10). Under assumptions 1 and 2, a stable and causal Hs-optimal esti-
mator (4), minimizing (6), is then given by

r(t) = VIT'QeB*NDA y(¢) (11)

where Qg(g~1), together with L. (q), both of dimension |p, are given by
the unique solution to the bilateral Diophantine equation

¢ ™SCC,.B.N, = QgB. + qTUL, (12)

2 Two conditions on the polynomial matmces appeanng in (10) do, together, guar-
~.antee that A2 holds, (1): The matrix [N BC AM ] should have full (normal) row

© 7 rank p and (2): The greatest common left divisor of NBC and AM should have
nonzero determinant on |z| = 1. While (1) is a condition for existence of spectral
factors, (2) provides a spectral factor 3(z~!) such that det S(z"1) # 0 on |z| = 1.
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Proof: In [Ahlén and Sternad, 1991], this result is derived for the case
U =V =1I. Only small modifications, leading to the equations (9), (11),
and (12) above, while (7), (8), (10) remain unchanged, are required to
extend that result to filtered criteria z(¢) = U~V (4r(¢) — us(¢)). Note

that since T-! and B! are stable and causal, (11) will be stable and
causal. O

For a more detailed discussion of Wiener filter design using polyno-
mial equations, see [Ahlén and Sternad, 1991].

Feedforward Control

Let us, in the same way, express a discrete time feedforward structure,
described by Figure 2, by right matrix fraction descriptions:

Disturbance/reference dynamics: G1 = G.H 1
Disturbance transfer/desired response model: G2 = ¢ D F!
System: Gs = BiA;* (13)
Input weighting function: G4 = W, N1
Output weighting function: G5 = V. U1

Assume A;, N., U, F., H, and G, to have stable determinants and
nonsingular leading coefficient matrices. Introduce the coprime factor-
izations

U;'B. = B, U;* (14)
N;'A.U, = A N;1 (15)
U:lD.F;'G, = GoF31 (16)

Stability of det U, and det F, and coprimeness of 525‘2‘1 implies that

det Fy will be stable. Causality of U;! and F;! implies that F;* will be
causal. Define the following criterion-related right polynomial spectral
factorization

BeBe = NevBouVe.V.BcNe + Ac. W, W A, (17)

Assume that the right-hand side of (17) is nonsingular on the unit circle.
Thén, (17) will have a solution 3. with stable and causal inverse.

Now, the polynomial solution to the LQG feedforward design prob-
lem can be stated as follows.
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7 An Illustration: Polynomial solutions

THEOREM 3—The LQG Feedforward Regulator

Let the system and weighting functions in Figure 3 be given by the
right MFD’s (13). Introduce the coprime factorizations (14)—(16) and
the spectral factorization (17), nonsingular on lz] 1. Then, a stable
and causal Hy-optimal feedforward regulator, minimizing

tr £ {(Gs(8)(Gsy(t)T + (Gau(£)) (Gau(t))" }
is _ _
u(t) = A.UN B QrrF31G;1d(2) (18)
where Qrr(q~!), together with L;,(q) are given by the unique solution
to the bilateral Diophantine equation

q_mNc*Bc*Vc*Vcé2 = ﬁc*QFF + CIL1*HCF2 (19)

Proof: The solution to this problem will be derived by duality with
(8)—(6). Use of the duality relations give (with P~7 denoting transpose
and inverse of P) .

G =H;"G! — UV
G =F;TDIq™ s T8¢
GY =ATBT - A'B
GFf =N;TW! « N'M
GY = UCTVCT «— D7C

By making the substitutions above, and transposing the equations (7)—
(12), design equations are obtained for the LQG feedforward regulator.
Substitution into (7)—(9) gives

BTU;T = D'B
DATN;T = N 'A
GIF.TDITU;T = T-'8

By transposing these factorizations and defining Z? ET [70 2 bT,
A, = 2AT N, 2 NT, G, & 28T F, & 2 TT, we obtain (14)—(16).
7 Use of the substltutlons and of (14), (15) in the spectral fagtorization
(10) gives

BB. = NIBIVIVIBLN + ATWI WAL,
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By transposing and defining S, = BT, we obtain the criterion-related

right spectral factorization (17).
The feedforward filter (18) is obtained by substitution into (11) and
transposition:

u(t) = (G;TF;TQeB NITUT AT)Td ()

By defining Qpp = QZ, (18) is obtained. The filter will, of course, be

stable and causal, since F;! and -1 are stable and causal. Substitution
into the Diophantine equation (12) gives

¢ "GIVIVEIBLINS = Qepl, + qF; HY L. (20)

By transposing this equation and using Qrr = Q% and L, 2 LT, we
obtain the Diophantine equation (19). O

The minimal criterion value will, of course, be equal in the two dual
problems.

The feedforward design equations (14)—(19) constitute an extension
of earlier known results. In [Sternad and Ahlén, 1992], only the special
case of polynomial penalties in the criterion, N, = I and U, = I, were
considered. (The two coprime factorizations (14), (15) are then super-
fluous, with B, = B.;, A, = A..) [Hunt and Sebek, 1989] consider a
different combined feedback and feedforward problem, without dynamic
cost weighting.

Remark. The extension to dynamic cost weighting clearly shows how
the weights influence the controller. This can help the user in the choice
of weights. It should however be noted that another possibility is to
include the weights in an extended system description, see e.g. [Hunt,
1989].

Remark. In both the estimation and the feedforward control problems,
one can derive a second Diophantine equation. For unstable systems, it
would sometimes have to be used in combination with (12) and (19) to
determine the filter uniquely. This is never necessary for systems with
poles on or inside the stability limit. Since strictly unstable systems are
of little relevance in the open-loop design problems considered here, we

haye not introduced.this second equation, which would just complicate
‘the solution. However, the duality relations do of course hold for that

equation as well.
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8 Concluding Discussion

8. Concluding Discussion

It has been demonstrated that feedforward control problems are dual to
a special type of estimation problems: deconvolution or input estimation
problems, where the input to a dynamic system G;;" is sought. (Output
or state estimation problems, without transducer dynamics G, would
correspond to rather trivial feedforward control problems, with no dy-
namics between control input u and the output y.)

In [Sternad and Ahlén, 1988], several close correspondences were
noted between scalar Wiener-input estimation and LQG feedforward
control problems. These correspondences could not be interpreted as du-
ality relations. The reason for this can now be seen in the too restrictive
problem formulations used in [Sternad and Ahlén, 1988]: G4 = I and
Gs = I in the control problem and GI = I and G{ = I in the input
estimation problem. With duality established between the more general
problems discussed in this paper, the correspondences between (MIMO)
LQG feedforward controllers and Wiener input estimators can now be
placed into their correct perspective. Some design guidelines also follow:

e When the system Gj3 is of low-pass-type, both feedforward con-
trollers and Wiener input estimators tend to be high-pass. In the
control problem, an input penalty G4, penalizing high-frequency
components of the input, will reduce the high frequency gain of the
controller Kzr. The introduction of measurement noise GZ' wo with
significant high-frequency content has the same effect on the esti-
mator Kg. For scalar problems, a resonance peak in G4 introduces
a notch in both Krr and Kg. Note the presence of N in (11) and of

Nc in (18). They equal N and N, respectively in scalar problems.

e Use of a positive smoothing lag m in the estimation problem (with

g ™I in GT) corresponds to a delay in the disturbance path (g~™I

in Gg) of a regulator problem. A larger smoothing lag/delay will
improve the filtering/control performance.

e A negative m (prediction) would correspond to a noncausal block Gb,
containing ¢~™I, in the control problem of Figure 2. This is equiva-
lent to forcing a delay ™I, i.e. a computational delay, into the con-
troller. (If Go = ¢ ™IG}, the block ¢g~™I can be moved up to G; in
Figure 2, while its inverse, ¢™I, is included in the controller.) With
everything else being equal, the achievable performance would dete-

_/rlorate as the predlctlon horizon/computation delay —m increases.

o There are two ways of reducing the static feedforward control error:
either one of G; or the output penalty G5 should have high gain at
low frequencies. Likewise, there are two ways to obtain an estimator
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with small error at low frequencies: either one of the frequency
weighting GT or the input model GY should have high gain at low
frequencies.

The polynomial solutions to the two dual discrete-time problems,
discussed in Section 7, involve a spectral factorization, a Diophan-
tine equation and up to three coprime factorizations. (The same is
true for the solutions to the corresponding continuous-time prob-
lems.) The transpositions used in going from one problem to the
other explains why a left spectral factorization (10), where 8 ap-
pears to the left, is involved in the filtering solution, while a right
spectral factorization (17) appears in the control solution. Also, note
that while it is natural to start from a left MFD model (3) in the
estimation problem, the dual control problem is expressed in right
MFD form (13). See also [Kucera, 1991], where use is made of du-
ality relations to investigate several other types of LQ problems,
using the polynomial equations approach.

We have compared properties of the LQ (or Hg) solutions to the dual
control and signal processing problems above. Very similar remarks ap-
ply to all criteria for which the duality holds, i.e. all norms for which
IGT|| = ||G||- In particular, this applies to H..-optimal solutions.
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On the Notion of Strong Stabilizability

Per Hagander and Bo Bernhardsson

Abstract: A system is called strongly stabilizable (SS) if it can be
stabilized using a stable controller. Systems that are non-SS are a real
world problem. However the concept is not strong enough to guarantee
that SS-systems can be controlled well by stable controllers. Especially
for multivariable and sampled systems, strange controllérs might be
required. The weakness of the SS-concept is illustrated by several ex-
amples, and it is shown how unstable controllers might be required for
good closed-loop performance, even if they are not required for stability.
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1. InTRODUCTION

The structure of controllers that stabilize a linear system is a topic that
recently has received renewed interest. Observer state feedback can
be used to design a controller of the same order as the system, but the
designs might very well lead to unstable controllers.

The implementation of an unstable controller should be done with
care and a well-designed safety net. One way is to use a stable observer
fed with actual input in addition to the measured output. In case of
actuator saturation, no windup occurs if the observer sees the saturated
input signal. Similarly, the observer should provide a test against sensor
failure.

Stable controllers are easier to work with, although integrators are
standard elements in most process control designs. As demonstrated in
[6], nonlinearities like friction might drastically deteriorate the behavior
when an unstable regulator is used to achieve a high-performance servo.

If the plant is unstable, you need a safety net and a special logic
for startup, even in case of stable controllers. Of course, an unstable
controller might add a little to their complexity. Note further that an
unstable system with a saturated actuator can be made stable only in a
limited region of the state space.

1I. CRITERION FOR STRONG STABILIZABILITY

For single-input single-output systems, it has long been known, e.g.,
[51, that certain plants P(s) require unstable controllers C(s) for sta-
bilization. An odd number of unstable poles p; of P(s) between two
unstable zeros z; and z;, i.e.,

0<z <pi <22 L0 (1)

makes a P(s) require an unstable C(s). Note that z, = oo means
that P(s) is strictly proper. An equivalent criterion is that for P(s) =
n(s)/d(s), there exist two real zeros z; > 0 and z, > 0 such that

signd(z,) # signd(z»). )

A simple root-locus argument shows that the root locus stays on the
unstable real axis unless the controller C(s) adds one unstable real pole
between the two zeros.

It is more difficult to prove that all other systems are actually strongly
stabilizable (SS), i.e., can be stabilized using a stable controller. The
proofs, e.g., [8] or [7], use interpolation theory, and they do not give an
explicit lower bound on the order of such a stable stabilizing controller.

III. PuysicaL ExampLES

There is a significant class of real world systems that requires unstable
controllers. Two simple examples are given to provide some physical
insight.

Example 1: Regard a mixed culture of growing cells. The total number
of cells is measured, and cells are harvested by removing cells in pairs,
one slow growing cell attached to each fast growing cell:

Xy =ax, — U

X2 :bX2—Ll

Yy =Xy +Xa2.
The transfer function for ¢-=1 and b = 3 would be
212 —8)
PB)= —-——
)= G =3

and any stabilizing harvest policy would have to be an unstable dynamical
system. 0

Example 2: Horizontal acceleration u of the pivot point is used to
stabilize an inverted pendulum based on measurement of the angular
velocity x,. The linearized model would be

. Xi =X2

-~ s

£ Xy =w'X +u
y=kx;

giving the transfer function P(s) = ks/(s — w)(s + w). An unstable
controller is required also in this case. d

A Class of Non-SS Systems: Both of these examples belong to a
quite general class of systems that are not strongly stabilizable. Consider
scalar transfer functions that can be written as

n

A
Gl =Y 3)

i=1

with real distinct poles a; and real positive residues 4;. Such systems
have a single real zero between each adjacent pair of real poles, and they
are not strongly stabilizable if they have any unstable finite zero.

IV. Tue Murtineur MurTioutpur CAsE

Almost any muitivariable system would be strongly stabilizable. For
a system P(s) not to be strongly stabilizable, it has to have unstable
blocking zeros z, and z, and an odd number of poles p; that fulfill (1).
A blocking zero z zeros all the elements of the transfer-function matrix,
i.e., Pij(z) =0for all i and j.

One could argue that this shows the strength of interacting controllers
for multivariable plants. An opposite viewpoint would be that it shows
a weakness in the SS concept for multivariable systems. The intuition
available from the SISO case has to be used with great care. One might
assume, that for, e.g., a two-by-two system P with no interaction what-
soever, it would be sufficient to look at the individual links. This is not
true unless it is also required that the controller C is restricted to be
diagonal.

Surprisingly enough, it is thus, for instance, possible to find a sta-
ble controller to stabilize the cell cultures in Example 1 by utilizing an
arbitrary, totally unrelated part of the plant, like a loop for the tempera-
ture control of the foom. A stable interacting controller can be designed
by utilizing the temperature loop to form an unstable net compensator
for the first loop, still stabilizing the overall system. Of course, such
a controller would require exactly the same precautions as an unstable
compensator. One might argue that whether the temperature dynamics
is part of the plant or part of the compensator should be irrelevant, but
it is not. . k

Example 3: Extend Example 2 with k =2 and @ =1 to

1 1

s=1 T sy1 ©
y = Pu, P(s) =
0 1
s+1

A simple proportional controller

-2
u=v+Cy, C(s):( >(1 1)
2
would give a stable closed-loop system
y={ —PC)"'Py

with all three poles in s = —1. The resulting controller around Py,
would, however, be unstable:

Uy =v; +(Cny1 +CrPxn(l ‘szpéz)_l(021Y1 +v2))

s+1

:wzs—l

Y1y +uv — 1%

-1
but the overall system would certainly be internally stable. A block dia-
gram of the system is given in Fig. 1. O

V. SAMPLED SYSTEMS

A corresponding parity property of the interlacing of real poles and
zeros is required for strong stabilization of discrete-time systems [7]. The
basic properties of zeros obtained when sampling were given in [1]. In
[3], it was shown that a sampled system obtained from an SS continuous-
time system would be SS for fast enough dampling. It was also shown
that the sampled system could be SS for continuous-time systems that
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2s
(s+1)(s-1)

Fig. 1.

Stabilizing controller for Example 3.

are non-SS, and most remarkably, that this could occur for infinitely fast
sampling in special cases.

On the other hand, for scalar transfer functions as in (3), zero-order
hold sampling maintains the pole-zero interlacing:

o = e”"T

(o; — 1) /ay,

n A’ :
H =Y 2P ,
i=1 i =

a#0 (4

T, a; = 0

and positive residues are maintained for any sampling period T both
for stable and unstable poles ;. This simple result seems to have been
found and elaborated by [4]. So here is a common class of systems for
which the property of not being strongly stabilizable is preserved for any
sampling period.

In the multivariable case, it would be extremely rare that an unstable
blocking zero would be maintained after sampling.

Example 4: Regard, for instance,

s—1

s+1(s—-2) 0

P(s) =

s—1
(s +1.0001)(s — 2)
with P(1) = 0. The corresponding sampled system would have no finite
blocking zero for any sampling interval, and it would thus be strongly
stabilizable. 0

0

VI. ConcLuDING REMARKS

Systems that are non-SS are a real-world problem. Systems in the class
described by (3) with some z; > 0 are actually non-SS, even if slightly
perturbed. However, the concept is not strong enough to guarantee that

929

SS systems can be controlled well by stable controllers.

Strong stabilizability is in the multivariable case a concept to be used
with greatest care, and if you insist on stable controllers, you may engage
a whole plant in the control of a single isolated loop. You may tend to
absorb dynamic excursions after a disturbance in innocent parts of the
plant instead of in your controller of the loop.

The single-input single-output system

B (s — 1% +e
PO) = DG+ D6 =D

is strongly stabilizable unless ¢ < 0, and the stable controllers possible
for small € > 0 are drastically different from unstable controllers required
for e < 0. The robustness of the loop would be quite bad for such a stable
controller. It was also noted in [8] that the stable controllers required for
many SS systems were quite sensitive to the controller parameters.

Similarly, when the system (5) with ¢ = O is sampled, it becomes
SS for any sampling interval 7. The optimal H ~-norm from an output
disturbance to the output would, however, increase dramatically if you
insist on stable controllers. Using the method in [2] and Macsyma, it
can be shown that the optimal loss increases from V' =9 to V' =3 exp
(mvV2(1/T + 1) — 4/3) — oo for small T. This quantifies how bad the
performance of the best stable controller would be, compared to what is
achievable using an unstable controiler.

5
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Paper V. On the Notion of Strong Stabilizability

1. Addendum - Calculations Exposed

In the article “On the Notion of Strong Stabilizability” some comments
at the end of the article deserve a more thorough explanation. The idea
is to quantify the increase in H,,-norm of the sensitivity function, that
is the transfer function from output disturbance w to output z, see Fig-
ure 1, required when insisting on using a stable controller K (s). We will
see that the sampled system can be controlled quite well with unstable
controllers, but if one requires the controller to be stable the system will
for small & have arbitrarily large H.-loss. This is another example of
the practical weakness of the SS-concept.
The sampled version of the system

(s—1)%

G6) = eI DGT 26 -2
s
B 1—exp(—h) 1 —exp(—2h) 1 — exp (2h)
H(z) = -4/37 “exp(=h) /8 z—exp (-2h) 1/24 7 — exp (2h)

with pole-zero digram as shown in Figure 2. For any sampling period
h > 0 the two zeros are off the positive real axis. The system is therefore
strongly stabilizable, i.e. can be stabilized with a stable controller. We
will now study the two problems

J1 = min||T
1 mI%n“ 2wlloo

and
Jo = mi T
= i [Tl
W
K G — Z
s i —‘1 =it
- ‘

Figure 1. Block diagram for sensitivity minimization. The influence of
disturbance w should be minimized on output z.
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Optimal Non-Stable H,-Controller

The sensitivity minimization problem mentioned above is of one-block
type and an explicit solution can hence be obtained using Nevanlinna-
Pick interpolation. The result in continuous time is that proper con-
trollers close to

(s +1)(s+2)

(s —1/2)

give a stable closed loop with transfer function close to

K(s) = —10/9

(s —2)(s—1/2)
(s +2)(s+1/2)

Tzw = -9

The minimal loss is hence 9. For the sampled system it is easy to see
that the minimal loss for small # is

J1 =9+ 18h + O(h?)

There is hence no dramatic problem controlling the system for small
sampling periods if one is allowed to use unstable controllers. We will
not give any details of these calculations. The amplitude margin of a
resulting controller is 1.1 and the phase margin is only 5 degrees. The
design will also be a little noise sensitive. Such restrictions on achievable
performance are however inevitable. One can not expect better for an
unstable and non-minimum phase process.

Optimal stable H-controller

To calculate the optimal H-performance with a stable controller we
briefly review the results of [Boyd, 1987]. Notice when reading [Boyd,
1987] that the stability domain is defined to be the exterior of the unit
circle. We will use D = {|z| < 1} as the stability domain in what follows.

If there are no zeros outside D, including infinity, the optimal sen-
sitivity is J1 = Jg = 1, and it can approximately be achieved using
high gain feedback. Let otherwise z1, ..., z;, denote the zeros outside D,
including infinity if the system is strictly proper. Assume for simplicity
that the zeros are simple. Introduce the Blaschke product of unstable
poles, i.e.

_ A —pi Dpi
B4 = 1] Ap; — 1 |pi

s e 1<i<n

The following theorem is proved in [Boyd, 1987]:
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Re

Figure 2. Pole-zero diagram of the sampled system H(z) for A varying
from 0.1 to 1. Notice that the system is SS for all sampling periods A > 0.

where in both cases the controller K (s) should be proper and give a sta-
ble closed loop system. The difference Jg — J; indicates the extra cost
associated with insisting on a stable controller. Notice that the sensitiv-
ity is evaluated for the discrete time systems. Another possibility is to
view the continuous time system and discrete time controller as a hy-
brid system and calculate the continuous time sensitivity function. This
however leads to a much more difficult problem, and the difference is
probably very small for small sampling periods 4.

There are a number of recent papers discussing both Hy and H, op-
timization with side condition on stable controllers. In [Boyd, 1987] the
scalar weighted sensitivity H,-problem is solved using classical complex
theory arguments, i.e. Nevanlinna-Pick interpolation and complex log-
arithms of H-units, see also [Ganesh and Pearson, 1986]. In [Ganesh
and Pearson, 1989] the optimal Hj,-problem with stable controllers is
rewritten using the @-parametrization to a general, nonconvex optimiza-
tion problem. No analytical solution is to the author’s knowledge known
for any Hy-problem. Upper bounds on the controller degree required for
SS-are given in, e.gr, [Dorato et al., 1989].
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1 Addendum

THEOREM 1
The optimal H-norm is given by Jy = exp(—J) where ¢ is the smallest
solution of the eigenvalue problem

det(T*R + RT —26R) =0 (1)
where
T = diag [gl +27jny ... gr+2mjng ]

with g; = —log B;'(z;) (the principle branch of logarithms) and n; are
positive integers satisfying n; = —n; whenever z; = z; and R is the
positive definite Hermitian matrix given by

1

_s-1_-1
lzzJ

Rij =

The numbers n; should be chosen in such a way that the smallest so-
lution 6 is maximized. The search over n;:s can be reduced to a finite
set. |

O

The Example

For the system H(z) above the zeros are for small sampling periods
given by

z1(h) = 1+h+ (1-iV2) h2/2 + O (h?)
za(h) = 1+h+ (1+iv2) k22 + O(K)
Z3(h) = 00

and using Maple we have

2h+1/2+4§h S r1/2 -2 kg

R = h+1/2-1wf Ao Ls1/2+8p 1

It is easy to check that n; = ng = 0 gives the optimal solution. We then
have, up to O (hz)u-terms, that

—In(8) — mi + 2v/2/3hi 0 0
T = [ 0 ~In(3) +7#i —2v2/3hi O ]
0 0 —2h
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Figure 3. Optimal H,-norm of the sensitivity, J2, as a function of sam-
pling period, when requiring a stable controller. Notice the logarithmic scale.
Compare this plot with the value J; = 9 + 184 + O(h?) achievable with un-
stable controllers, this value is below the lower value of the figure. There is
a large extra cost associated with using stable controllers for this problem.

There are three solutions to the eigenvalue equation (1), one with § > 0,
one with § = O(h), and the interesting one:

§ = —V2n/h+ V27 +4/3-1n(8) + O(h)

Therefore the H,,-loss is for small sampling periods approximately given
by

Ja2(h) = exp(—6) = 3exp(V2n(h1 +1) - 4/3) > 00 as h— 0

This function is plotted in Figure 3.

According to the rule of thumb in [Astrbm and Wittenmark, 1990],
a reasonable sampling period for this process is £ € [0.1,0.3] Notice the
very large extra cost associated with requiring a stable controller even
for reasonable sampling periods. For A~ = 0.5 we e.g. have J, ~ 106,
Using a standard approximation argument we can also conclude that
rational stable controllers exist giving an H,-norm arbitrarily close to
the optimum. The order of such controllers is often quite la}rge. If we
were to put a restriction also on controller order, say twice the plant
order, then it is probable that no stable stabilizing controller exists for
reasonable sampling periods.
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PAPER VI

Robust Performance Optimization
of Open Loop Type Problems
Using Models From
Standard Identification

Bo Bernhardsson

Abstract: This paper discusses the problem of finding the controller
that optimizes the expected Hy-norm for an uncertain system. The ap-
proach is connected to the so called stochastic embedding approach. A
closed form solution is given using a minimum of calculations for a class
of problems including interesting signal processing applications such as
feedforward design, channel equalization, noise cancellation and signal
filtering. The method uses covariance information on model uncertainty
and can therefore be used together with standard identification meth-
ods. By using the probability distribution of model error we avoid the
conservativeness related to designing for worst cases. We then obtain
robust designs with soft bounds. The paper gives a unification of many
similar results. It is shown how the optimal controller can be found by
rewriting the problem as a standard Hz-problem for an extended sys-
tem. The solution can hence be obtained using standard methods and
software. The paper uses restrictions on where uncertain parameters
enter into the system. Such restrictions are inevitable if hard bounds
on parameters are to be avoided. The method has direct applications in
adaptive signal processing and adaptive feedforward control.

s W =
T
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Paper VI Robust Performance Optimization

1. Introduction and Motivation

No design method can tackle all the issues that have to be studied when
making a real world design. Typically a synthesis method will focus on
one or two issues and leave others to the designer’s common sense as
often hidden conditions.

The goal of robust controller design is to achieve robust perfor-
mance, that is good performance in face of plant uncertainty. This is
a much harder problem than the robust stability problem which has
been studied intensively during the last decade. One difference is that
it requires good engineering intuition to define what is meant by good
performance, while robust stability is closer to pure mathematics. In-
teresting historical remarks on the dominating focus on stability issues
are given in [Boyd and Barratt, 1991]. Most control systems can be ren-
dered useless for much smaller system variations than are needed for
rendering the system unstable. This is of course well realized by peo-
ple working in the robust stability area and it is a major goal of recent
research to find results for robust performance. -

The formulation of uncertainty models is a fundamental issue. The
most common assumption is hard bounds on the uncertainty, and design
for worst cases. Since standard identification methods do not give hard
bounds, new identification methods are being developed, €. g. [Norton,
1987b],[Norton, 1987a], [Kosut, 1988] or [Wahlberg and Ljung, 1991].
It is hard to develop such methods that are not too conservative, that
is, give too large upper bounds on the model uncertainty. Too conserva-
tive estimates will lead to conservative regulator designs resulting in
unnecessarily low performance. A natural approach is instead to try to
use information obtained from standard identification and to take the
likelihood of different parameter variations into account in the controller
design. The controller is then chosen taking the probability of parameter
variations into account, instead of designing for very rare worst cases.
This has been suggested several times before. An interesting recent ar-
ticle solves the case of scalar robust filtering and feedforward design,
see [Sternad and Ahlén, 1993].

The present paper will describe results for a certain general class of
problems, where we put restrictions on how uncertain elements enter,
see Assumptions 1 and 2 below. We then present a short and instruc-
tive algorithm for obtaining the optimal controller. If the assumptions
on how the uncertam parameters enter are not met, we strongly be-
lieve that new identification methods giving hard bounds on parameters
and/or new definitions of closed loop performance have to be used. The
current paper should be seen as describing a class of problems where

130




2 Design Methods For Robust Performance

standard identification methods suffice for designing robust performance
controllers.

2. Design Methods For Robust Performance

Several approaches have been suggested before for obtaining robust per-
formance controllers, see e.g. [Maciejowski, 1989]

QFT

One early design method for obtaining robust performance is the Quan-
titative Feedback Theory (QFT), developed by Horowitz and others. The
idea is to present the uncertain model in a Nichols chart where ampli-
tude and phase uncertainty can be separated. The method also puts em-
phasis on the closed loop specifications to be met. The engineer is then
left more or less on his own to find the controller parameters. A positive
effect is that the designer’s understanding of the process is increased by
this activity. The calculation of uncertainty templates helps the designer
in understanding achievable performance. The method is best suited for
single input single output (SISO) and is also rather involved when the
number of unstable open loop poles varies. It can then be hard to under-
stand which part of a template that should go where. For details on the
QFT-method see, e.g., [Horowitz and Sidi, 1972] or [Maciejowski, 1989].

The LQG/LTR Method

The Linear Quadratic Gaussian Loop Transfer Recovery (LQG/LTR)
method is a procedure that aims at recovering the amplitude and phase
margins of the state feedback controller (LQ). The recovery is made at
the expense of a somewhat increased LQG loss. The margins of the LQ
controller can not be obtained in general and should not be aimed for.
The robustness can however normally be improved using LTR. We refer
to the discussions in [Stein and Athans, 1987], [Maciejowski, 1989] or
[Bourles and Irving, 1991] for further information and discussion.

The u Method

2 Another idea is to write an H-performance problem for an uncertain
system as a p-design with an extended A matrix, see Figure 1. The
drawback is that*there will be structure in the A-matrix, so ‘that a full
U-problem has to be solved. Today there is no good software for the
synthesis problem. Some preliminary algorithms are given in the so
called robust toolbox available in Matlab. It is unclear if there will ever
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Figure 1. The small gain theorem can be used to write a robust perfor-
mance problem as a robust stability problem using the u-framework. Notice
that the extended A matrix will be structured. -

be good software for the problem or if people are going to turn to other
problem formulations before that happens. For details on the u-design
see [Maciejowski, 1989], or [Doyle et al., 1982]. The method often leads
to high order controllers and model reduction is then applied.

Mixed H,;/H, Control

Since robustness under nonparametric uncertainty can be formulated
with H,,-norms, using the small gain theorem, a natural idea is to try
to minimize some performance measure under an H-norm restriction.
The case with mixed Hs and H,, norms has been studied in a number
of recent papers, see e.g. [Khargonekar and Rotea, 1991], [Rotea and
Khargonekar, 1991] and [Ridgely, 1991]. No analytical solutions for both
necessity and sufficiency has so far been found. It is known how to write
the problem as a convex optimization problem, which might help in
obtaining numerical solutions. This is a recent popular area and more
evaluation is needed to judge the merits of the method. Notice that
this approach only evaluates performance for the nominal design. The
problem does not formulate robust performance. Connected work has
also been done by [Doyle et al,, 1989, Zhou et al., 1990, Zhou et al,

1992, Doyle et al., 1992] \
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2 Design Methods For Robust Performance

The (Convex) Optimization Approach

Many optimization problems can be formulated where some type of ro-
bustness condition is included. Numerical solutions can then often be
found, see e. g. [Polak, 1973] and [Polak et al., 1984]. This is made more
easy if the problem can be written as a convex optimization problem,
[Boyd and Barratt, 1991] since there is then no problem with local min-
ima in the optimization procedure. One drawback is that numerical so-
lutions give too little insight into the problem and how changing the
specifications changes the solution. Much numerical work is needed to
get such insight. The merits of the method is that many different aspects
on controller design can be merged. One can sometimes at least draw
useful conclusions on limits of achievable performance. The methods
often lead to high order controllers and model reduction is then applied.

Adaptivity

Adaptive control is a good method to design controllers for very uncer-
tain processes. The method leads to nonlinear controllers and a lot of
research effort is still being put in to understand their behavior. One
trend in adaptive control today is to combine adaptivity with results
from robust control theory. One can then use a robust but low perfor-
mance controller when parameters are uncertain and increase perfor-
mance when the uncertainty in parameters has been reduced by identi-
fication. To combine results in robust control with adaptivity it is crucial
that the information needed for controller design matches the informa-
tion obtained from identification. This is not the case using todays stan-
dard methods. Several recent articles have discussed different ways for
marrying identification and robust controller design, see e.g. [Goodwin
et al., 1990, Goodwin et al., 1989, Goodwin and Salgado, 1989, Krause
et al., 1992, Iglesias, 1990, Zhang et al., 1991] just to mention a few.

The Shifted Stability Domain Method

Results from the area of robust stability can sometimes be generalized
to so called Q-stability. This means that closed loop poles should lie in
a certain set Q. In this way some special aspects of performance can be
guaranteed, e.g. sufficiently good damping. Notice that the closed loop
zeros are considered unimportant using such an approach. The method
has restricted value in robust control.

P ¥ P
T
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Figure 2. The uncertainty model used in this paper.

3. Problem Formulation

Uncertainty Models

A useful way to capture many robust performance problems is given
in Figure 2. Weighting functions, signal models etc. are all included in
the extended system matrix G and all uncertain elements have been
collected in an upper loop in a matrix A. This matrix can be structured
in several different ways. The uncertainty can, e.g., be parametric and/or
nonparametric. It is common to assume that A is block diagonal with

A = diag(AR,AC,Aqu) (1)

For a description of the different blocks see [Doyle et al, 1982]. More
general structures also exist.
As a typical example consider a state space system with

X =(A+As)x+ (B+Ap)u (2)
y=(C+A¢)x+ (D +Ap)u

This can easily be written in the form of Figure 2.

A natural question is how general Figure 2 is. If A is represented by
a matrix with elements J;; one easily sees that the closed loop transfer
function is rational in the elements 6;;. One can, e.g., not write the sys-
tem with transfer function (s +e?)/ (s + 9) as Figure 2. It is conjectured
that a state space system can be written as in Figure 2 with A being
a matrix of 1ndependent parameters, if and only if, all elements in the
system matrices aré rational in the uncertain elements in A. Another
conjecture is that a transfer function n(s, 8)/d(s, ) depending on a vec-
tor of independent parameters 6 can be realised as in Figure 2 if and
only if n/d is rational in s and 6.
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3 Problem Formulation

Covariance Information

For an introduction to the area of identification we refer to, e.g., [Ljung,
1987]. What can be said easily is that standard identification often gives
covariance information on parameters. This can be represented by a
matrix .

P = E(867) (3)
where E denotes mathematical expectation given observations of the
system and where @ denotes the parameter error.

Bias Error and Variance Error

If the system is under-modeled, there is no parameter 6 that gives a
perfect model match. Let 6* denote the best parameter fit in the given
model class. Under reasonable assumptions we have as the number of

data, NV, tends to infinity that

by — 0* (4)

The error is then normally split into two parts
Gr - G(6w) = Gr - G(6") + G(6") — G(bn)

Bias Error Variance Error’

where G7 denotes "the true" system. Many results in robust controller
design using models from identification have been criticized for not tak-
ing the effect of undermodeling into account. We however quote [Ljung
et al., 1991] for a recent opinion:

It has often been said, also by the authors of this paper, that
traditional identification has neglected the systematic error: the
bias contribution. In light of priors and “accepted models” /... /,
it is natural to get this impression. Nevertheless the statement
1S not quite true.

and later they continue with:

In other words, we could say that for an unfalsified model, the
bias error has not been found to be significantly larger than
the random error. The traditional variance bound /... / is thus
relevant also to describe the total mean square error for an un-
falsified model — we might just like to reflect the presence of the
- - bias term when tetermining the width of the confidence interval
in terms of number of standard deviations.

See [Ljung et al, 1991] for a further discussion, also on some philosoph-
ical aspects of the problem.
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Hard or Soft Bounds

It is often argued that robust controller design needs hard bounds on
parameters. Several suggestions have been made on how to reject the
traditional disturbance description and develop “hard bounds” for the
models deviation from “the real” system. These methods are known as
set membership, ellipsoidal or unknown but bounded noise methods. See
- [Gutman, 1988, Kosut et al, 1990, Younce and Rohrs, 1990, Wahlberg

and Ljung, 1991] for how to use these ideas to deal with undermodeling.
We again quote [Ljung et al.,, 1991]:

The current state of affairs in this area is somewhat confused

See [Ljung et al, 1991] for further information. Also notice the well
known fact that hard bound estimates are extremely sensitive to out-
liers, i.e. underestimating the disturbance bounds.

The paper [Bertsekas and Rhodes, 1971] presents a result, which
can be used to obtain hard bounds from the standard P-matrix if Lo-
bounds are known for measurement errors and time-variability of the
parameters. Unfortunately such bounds are seldom valid.

4. Optimal Controller Design

The goal is now to optimize expected controller performance measured
from external signals w to outputs z, see Figure 2. We use the Hy-norm
to measure performance:

DEFINITION 1
For a stable system with transfer function G, the He-norm is defined as

00 3
Gz <= <2i / tr G(jw) G(jo) dco) (5)
T -0
]
This norm has several useful interpretations both in frequency do-
main, as in (5), or in time domain using Parseval’s theorem. It can also
be interpreted, like in standard LQG, as the stationary variance of the

output in the case of white noise system input. There is also the follow-
ing less known worst case interpretation

© 7 v v ||Glls = max sup|z(?)] (6)
lwle=1"¢ |

where z = Gw.
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4 Optimal Controller Design

The optimal robust performance controller is defined as the linear
time invariant controller K (s) that stabilizes the loop under all uncer-
tainties A of a certain structure and minimizes the expected Hz-norm:

mI%HIEHTzw(K)Hz (7)

where E denote mathematical expectation and 7',,,(K) denotes the clo-
sed loop system from w to z. Notice that with this interpretation the
expectation is calculated using a fixed a priori covariance information on
parameters. Another possibility is to update the a posteriori information
of parameters when more data is made available.

Problems like (7) have been proposed previously and are generally
quite hard. This is because the expectation is normally difficult to eval-
uate and results in a function that depends in a complicated way on
the controller. Notice that (7) is related to the stochastic embedding
method used by [Goodwin and Salgado, 1989]. Different criteria that
also take the likelihood of modeling errors into account have been used
by, e.g., [Chung and Belanger, 1976], [Grimble, 1984]. See also [Nahi and
Knobbe, 1976], [Kassam and Poor, 1985] and [Stengel and Ray, 1991].
A recent article uses the problem formulation above for a robust input
estimation of scalar systems using polynomial calculations, see [Sternad
and Ahlén, 1993]. This paper and the concept of stochastic embedding
have been an important source of inspiration for the present study. The
results of [Sternad and Ahlén, 1993] can be obtained as a special case
of Theorem 1 below. Our results also covers the MIMO case with little
extra work. We also refer the reader to that paper for a more extensive
overview of related work.

Assume that the system is given by :

r = G()()v + G01w + Gozu
AR Glov + G11w + Glzu

y = Gzov + Gzlw + ngu (8)
u = Ky
v =Ar

where A is a real matrix of random variables. We assume that E(A) = 0
and that we are given covariance information on the elements of A. We
leave the issue of parametrization of A to later.

.- "7 Although Figuré 2 represents a quite general way of representing
robust stability and robust performance problems we will now see that
one actually can solve problem (7) in closed form for a class of interesting
problems:

137




Paper VI Robust Performance Optimization

Assumption 1
Goo =0

Assumption 2
Goz =0 or G20 =0

See Section 6 for a discussion on relaxation of Assumption 1. Examples
of problems satisfying Assumptions 1 and 2 are, e.g., feedforward prob-
lems, deconvolution or channel equalization problems, robust filtering
and noise cancellation.

It is easy to see that if Assumptions 1 and 2 are satisfied, the sta-
bility of the “closed loop” system will not depend on the actual value
of A. If we do not want to assume hard bounds on parameters this is
crucial. If there is feedback around an uncertain element for which there
is no hard bound, there is a risk for the system to become unstable for
large parameter errors. A positive probability for an unstable system
will dominate in the calculation of expected Hz-norm and render the
problem formulation useless.

THEOREM 1
Assume that Goy = 0 and Gye = 0. Introduce the spectral factorization

P(s)P*(s) = E (AGu(s)Guu(s)8) (9)

Here A is the matrix of uncertain parameters in Figure 2 and Gy; is
given in (9). The optimal controller solving (7) is then given by the
solution of the following standard Hs-problem.

min|| (GuP Gu ) + GuK(I - GnK)™ (GuP Gu ) ”z (10)

Proof: Closing the lower loop, using u = Ky gives

r = [GQQ + GozK(I - GzzK)_lazo]v + [G()l + GozK(I _ Gzsz_lel]w
2 = [G10 + GlzK(I - GzzK)—leo]v + [Gll + G12K(I — G22K)_1G21]w

If we now were to close the upper loop, we would in general get linear
fractional transformations of linear fractional transformations and the
2 closed loop would be a complicated function of the controller. However,
assuming Goo = 0 and Gz = 0 we can use v = Ar = AGop1w to reduce
‘the problem of minifnizing (7), to

{

Tzw(K) = G11 + G12K(I - G22K)_1G21 + (11)
+ [Glo + G12K(I - G22K)_1G20]AG01
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Notice that the information needed to perform the expectation in (7) is
exactly the covariance between different elements in A. Performing the
expectations in (7) and noting that the terms linear in A disappear due
to E(A) = 0 we get, by forming T,,7T7,, that

1T 50ll2 = H (GuP Gu ) +GuK( - GouR)™ (GP Ga ) Hz

This is a standard LQG-problem, and it can be solved by any favorite
method. U

Remark 1. For P = 0 the design of course reduces to the nominal case.
The larger P is, the more influence will come from the uncertainty loop.
The number of columns in P is given by min(na,n,), where n, is the
size of A and n, is the number of external signals w.

Remark 2. We are implicitly assuming that the LQG-problem above
is nonsingular and solvable. This includes assumptions on stabilizabil-
ity and detectability etc. Problems not satisfying these assumptions are
often badly formulated.

The corresponding result when Gy = 0 instead of Goé = 0 follows
by the following dual theorem:

THEOREM 2 .
Assume that Goo = 0 and Ggo = 0. Introduce the spectral factorization

P*(s)P(s) = E (A"G1o(s)G1o(5)A) (12)

The optimal controller solving (7) is then given by the solution of the
following standard Hs-problem.

: PGo ] [P Goo ] _ -1 2
min [ oo )+ (o) KU~ Guk) G| (13)
Proof: Similar to above, see Theorem 3 for another possibility. O

We also mention the following duality result which is helpful for
establishing correspondences between different problems:

THEOREM 3
For all norms satisfying ||GT|| = ||G|| the two problems
— 4 1 _ . 2
Ji’—ﬁf%llng “Tzw”’ Jg = l’l}{lzllA_E2 ”Tzw” (]_4)

i

s

W 1A \

where the probability distribution of As equals the probability distribu-
tion of AT, see Figure 3, are dual, in the sense that the two optima are
equal J; = J3, and the optimal controllers are related by KI = Ko, O
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Figure 3. Duality between robust performance problems.

Proof: TFollows directly by calculating the closed loop for the two prob-
lems and taking transposes. ) O

An Example. The following result on how to compute (9) is a slight gen-
eralization of results in [Sternad and Ahlén, 1993]. The result is useful
for several popular parametrizations of models, like finite impulse re-
sponse, Laguerre or Kautz functions or other orthogonal basis functions.

Assume _ _
= Y 6ipi(s) = ¢(s)0 (15)
0<i<n
and that E(96*) =: P, then
E(A1(s)A1(s)") = pPo" = ZPLJ Qi(s (16)

so the averaged term A; = AGy; in (9) is in this case readily obtainable.
This result is given in [Sternad and Ahlén, 1993] for the discrete time
case with ¢;(q) = g1

5. An Example

The following example is made very simple to illustrate ideas, it can
‘be solved by many other methods. We know that successful feedforward
control crucially depends on a good model of the system. To exemplify
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5 An Example

_"Gi‘_’CE}*’(32‘”’Z

Figure 4. Block diagram for the feedforward example.

this we consider the feedforward problem in Figure 4, where

s2+0s+1 1

G1 = (s + 1)2 G2 = 37

(17)

Notice that there is a substantial risk that G; is nonminimum phase.
The system is described by the following state space equations:

5c1=—2x1—x2+u
.'5Cz=x1
5C3=(90+é—2)x1—x3+v+w+u

Z = X3
y=w
r=2X1

We assume that 6, = 0.1, E(8) = 0, and E(6%) = o2. Written in the
form (9) the system is ‘

0 0 &y

= 1 1 2+0ps+1

G = s+1 s+l 8(:+018);r
0 1 0

Notice that Go9 = G99 = 0, we can therefore use Theorem 2. Since
Gig-= 1/(s + 1), the spectral factorization (12) will in fact be scalar and
& 1

o

P(S) = O'Glo(s) = et 1
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follows immediately. With more than one uncertain element a method for
doing multivariable spectral factorization should be used, see [Anderson
and Moore, 1990].

Using Theorem 2 the problem can be solved as Hs minimization,
with respect to stable K(s), of the transfer function

re0= (5] + (e ) K0 = (4 Vhihw) 609

Introducing P*P = a*a + c*c and multiplying from the left with an inner
matrix we see that the optimal controller is given by the equation

c*b
)

where (-), denotes the stable part. The resulting controller is given by

u=K(s)w = _ISB((Z))w
where
S(s) = — 2100 (51 1y

2 +4/(6% + o2)

R(s) = s® + /(62 +02)s + 1

The amplitude of K (iw) for o = 0,0.2,0.4 is plotted in Figure 5. Notice
that o = 0 corresponds to certainty equivalence and that when the un-
certainty in @ is increased the robust controller decreases the maximum
amplitude. This seems intuitively correct.

As a concluding remark we mention that feedforward control could
be combined with adaptivity if the models are very bad. An idea is of
course to combine the robust performance results described here and
in [Sternad and Ahlén, 1993] with adaptivity. Several suggestions for
improving the certainty equivalence principle used in adaptive control
has been made, e.g. the cautious controllers minimizing the variance of
the one-step ahead control error, see [Wittenmark, 1975]. Notice that
for:many systems there is a trade off between good 1dent1ﬁcat10n and
good control. This is however not so for the problems studled in this
paper. This trade off is studied further in the area of dual control, see
e.g. [Sternby, 1977].
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Figure 5. Solution for the Feedforward Example, 0 = 0 (solid), o = 0.2
(dashed) and o = 0.4 (dotted).
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6. Conclusions and Open Problems

A natural performance robustness problem has been formulated. The
formulation uses information obtainable from standard identification in
the form of covariances of parameters. In this way we avoid finding hard
bounds on parameters and by using expected values we avoid the conser-
vativeness related to designing for worst cases. We have shown how the
problem can be solved for a class of problems that includes interesting
applications in signal processing such as feedforward design, channel
equalization, noise cancellation, optimal differentiation[Carlsson et al.,
1991] and robust filtering. The optimal “controller” can then be found
using standard LQG-software with a modest increase in computational -
complexity, one extra Riccati equation or matrix spectral factorization. It
is also easy to see how uncertainty in the elements influence the result-
ing controller, see e.g. (9) and (10). We have assumed that the resulting
Hjy-control problem is nonsingular and solvable. This is the case for most
applications.

The setup used in the present paper relates to the setup made be
Doyle and others in the u-synthesis analysis. The theorems presented
solve the problem in a very simple way and only standard numerical
software is needed here.
© " The assumption Ggo = 0 can be slightly relaxed, e.g. to nilpotency
of GgoA. This means that there is no signal loop around an uncertain
parameter in the open loop system but the signals may pass A several
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‘times. Higher order moments of the probability distribution of elements

of A are needed to calculate the expected value of the Hs-norm. The
higher order moments can be calculated from covariance information
if parameters are assumed Gaussian. The problem can then be solved
analogously to above.

The problem has been described in continuous time. The correspond-
ing results can be obtained for discrete time systems. The only change
needed is a to change the definition of the H; norm to integration over
the unit circle.

The proposed method has interesting applications in adaptive con-
trol and adaptive signal processing of open loop type problems. We now
have a situation where identification results match the “controller” de-
sign. Applications of this are left for future research. It is also an impor-
tant project to compare all existing techniques for robust performance
design. See [Sternad and Ahlén, 1993] for some further interpretations
of the result and for simulations and comparison with other methods.

The case with feedback around uncertain parameters are much
harder. Feedback however often automatically decreases the sensitivity
to model errors. There are at least two possibilities to formulate sensible
robust performance problems. One is to change the identification meth-
ods to obtain hard bounds on parameters. This has been tried by several
authors. Another interesting possibility is to use other definitions of ro-
bust performance. It is easy to formulate reasonable problems, harder
to solve them. One possibility could, e.g., be to maximize the proba-
bility that performance ||T'|| is sufficiently good, i.e. ||T'|| < y. Another
idea is to optimize some criteria that can accept a rare risk for insta-
bility without becoming infinite, e. g. find the controller that maximizes
E{exp —(||T||)} . Explicit solution can not be expected, but numerical re-
sults can perhaps lead to useful insight. One should also keep in mind
what is the intended use of the design and how knowledge and under-
standing of the system can be improved. A healthy attitude is to keep a
holistic view but to solve concrete problems.

oy
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