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Abstract

Extremal control of Wiener type processes is considered.
These models consists of a linear part followed by a static
nonlinearity. We will consider nonlinearities having one
extremum point. The purpose is to keep the output of
the process as close as possible to the extremum point.
The main problem in the control of this kind of processes
is the non-uniqueness of the inverse of the nonlinearity.
This causes problems, e.g., in the estimation of the states
of the process and the identification in the adaptive case.
An one-step-ahead controller combined with a probabilistic
estimator is proposed and analyzed.

1. Introduction

There are many application where it is of interest to position
the process output at an optimum or extremum point. A
typical situation is combustion engines where the emission
and the efficiency depend on the inputs to the motor such
as fuel and air/fuel ratio. Other examples are control of
grinding processes, water turbines, and wind mills where
it is of interest to operate the system as close as possible to
the extremum point. :

This problem has been studied over a long period of time
and there are solutions to some of the problems occurring in
extremum control. See, for instance, Draper and Li (1951),
Jacobs and Langdon (1970), Keviczsky and Haber (1974),
Keviczsky et al. (1979), Sternby (1980a), Stemby (1980b),
Dumont and Astrm (1988), Wellstead and Scotson (1990),
Scotson and Wellstead (1990), Wittenmark (1993), Alli-
son (1994), Wittenmark and Urquhart (1995), Navarro and
Zarrop (1996), Krsti¢ and Wang (1997), and Krsti¢ and
Wang (2000). In many of the earlier references the static
optimization problem has mainly been discussed.

The problem of extremum control can be approached in sev-
eral ways. Among the first approaches was the introduction
of perturbation signals, A perturbation signal is then used
to get information about the local gradient of the nonlin-
earity. See Sternby (1980b) and Krsti¢ and Wang (2000).
The perturbation signal method is usually only used to find
a constant value of the input and/or to be able to foilow a
varying operating point. The process will then behave as an
open loop system around the extremum point. The pertur-
bation signal method has the advantage that it requires very
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Figure 1: a. Hammerstein model, b. Wiener model

little information about the process. On the other hand the
convergence of the system and the steady state performance
are not very good, especially in presence of noise.

A second approach is to use more advanced optimization
methods. If the nonlinearity is a known function the optimal
constant input might be computed directly. The drawback
is that the static nonlinearity and the open loop gain of
the process have to be known. Further, the performance
at the extremum point is still as if it were an open loop
system. This implies that if the open loop dynamics of the
process is slow then the convergence and the recovery after
a disturbance will be slow.

There are different classifications of nonlinear systems. Two
different classes of systems are shown in Figure 1. The first
class of models is called Hammerstein models where the
nonlinearity is at the input of a linear dynamic subsystem.
In Wittenmark (1993) and Wittenmark and Urquhart (1995)
different dynamic controllers for the Hammerstein model
together with adaptive schemes are investigated. The Ham-
merstein models have the advantage that the models are lin-
ear in the parameters, which makes it easy to estimate the
parameters of the model.

In the second class of models, Wiener models, the system
bas alinear part followed by a nonlinearity. In this paper we
will discuss extremum control of Wiener models. To start
with we will assume that the processes are known and the
parameter estimation problem will only be briefly discussed
at the end of the paper.

An one-step-ahead controller based on the separation prin-



ciple together with a probabilistic estimator of the linear
output is discussed and analyzed in this paper. The paper
is organized in the following way. The problem is formu-
lated in Section 2 and different controllers are discussed in
Section 3. Some of the controllers require that the output
or the states of the linear part of the process are known and
different ways to make estimators are discussed in Section
4. An example is used in Section 5 to illustrate the behav-
ior of the different control schemes. Section 6 contains a
discussion of estimating the unknown parameters of Wiener
models. Finally, some conclusions are given in Section 7.

2. Problem formulation
We assume that the process is a Wiener model where the
linear part is described by the known discrete-time system
z(k) +a,z2(k— 1)+ az(k—2) ++ -+ anz{k—n)
=bgulk—d)+---+b,_, uk—n—1)
+e(k)+cre(k— 1)+ +cre(k—n)

(D

where u(k) is the input signal, z(k} the output of the linear
part, and e(k} is Gaussian distributed white noise with zero
mean and standard deviation ¢. The model can also be
written in polynomial form

Alg)z(k) = Blg)ulk) +C(g)e(k)

where g is the forward shift operator and degA = degC=n
and degB = n — d. Further, A and C are monic, i.e. the
coefficient of the largest power of ¢ is equal to one. The
parameter d is the time delay in the system. The nonlinearity
is described as a gquadratic function of the form

(k) = h(z(k)) = 1+ 12(K) + Boz(k)?

with % # 0. Other types of nonlinearities can also be
assumed. However, we assume, at least close the optimum
point, that the nonlinearity can be described by a quadratic
function. For simplicity we assume that the extremum point
is a minimum, i.e. %, > 0. The minimum of y(k) is obtained
for
_h

2%
Independent of the value of z(k) the output can never be
below the value y,, where the minimum of y(k) is

},2

A

4%

(2)

z(k) =z5=

Yo=Y%"

The control signal, (k) is allowed to be a function of the
process output y(k) and previous inputs and outputs. In the
derivation of some of the controllers we will also assume
that the control signal may be a function of the outputs of the
linear system or its state, i.e. of z{j), j < k. The estimation
of the states is discussed in Section 4. The purpose of the
control is to keep the output y(k) as close as possible to the
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Figure 2: The purpose of the control of the Wiener model is to
minimize the indicated area.

optimum point y,. The loss function is formally expressed
as

minE(y(k} -y,

min (v(k} = o)
i.e. we want to minimize the area indicated in Figure 2.

3. Control strategies
Three different control strategies will now be discussed.

3.1 Static controller

Assume that there is no noise acting on the system and that
the input te (2) is constant then z{k}) = z; if

u _ Al _ nA(L)
0T B1)® T T 23,B(1)

(3)

The controller (3) can be regarded as a one step minimiza-
tion of the quadratic nonlinearity opposed to the use of the
gradient method when using a perturbaticn signal. Using (3)
on the system (2) gives after a transient
_A(Blg) | Cla) oy
4= Bma@ o ag W =0

The second equality follows since z, is constant. This
implies that the mean value of z is equal to z, but the
variation around z; is determined by the open loop noise
dynamics C/A. The output y will thus deviate from the
desired value y,. The variable z is a Gaussian process but
the output y is 2 non-central y? distribution. If the open loop
system has slow dynamics then the convergence of z will be
slow at the startup or after the noise process has driven z
away from its desired value.

p+

Using (3) gives
¥{(K) = 1+ 7 (20 + (k) + Bz +v(k)
= Yo+ (% +2nz2)v(*) + Bv(k)?
This implies that

E(y(k) - ¥o) = %07

where o7 is the variance of the process v(k), which is the
same as the open loop variance of the process, ie. the
controller gives the correct mean value, but the stochastic
part of the system is not influenced.



3.2 Prediction using the true linear output

Assume that z{k) is measurable. One way to obtain a good
control of the system is to minimize the variance of z around
the value z,. With z available this is essentially the problem
of predicting z(k 4 ) where d is the time delay of the
system, see Astrém and Wittenmark (1997). To make the
prediction we introduce the identity

7°C(q) = A(9)F (9)+ G(q)

where F is monic and degF =d anddegG=n—1 andd is
the prediction horizon. Then

2(k+d) = F(g)e(k) + =— (B(q)F (q)u(k) + G(q)z(k})

1
C(q)
(4)

The controller that minimizes the variance of z(k) around z;
is given by

G(q)
B(g)Fiq

The controller (5} will keep z as close as possible to z; and
will also make y(k) close to its optimal value y,. In the case
whend = 1 then F = 1 and G = C — A and the controller {5)
becomes

()
B)F (1)

uk) = — )Z(k) + ()

ufk) = A———(‘?L'("q)C(Q)z(k) + g—g%zo
_ A(g) - C{q) ne()
T Hp 7 B0
Using (5) gives

2(k) = zp+ F(g)e(k—d + 1)
=z telk) + fre(k— 1) +---+ f,;_ e(k—d +1)

which gives the output

(k) =Y+ Nz + B+ 1 Flglete—d+ 1)
+2p2,F(q)e(k—d + 1}
+ n(Flgle(k—d+ 1))

Further
E(y(k) —yp) = B(1+ /i +---+ fi1)0”

Since F(q) is the first d — 1 coefficients of the series
expansion of C(q)/A(q) it follows that the average loss per
step is lower when (5) is used than when (3) is used,

3.3 Prediction using the estimated linear output

The controller (5) is an idealized controller since the out-
put {or the state) of the linear part cannot be measured. An
obvious medification is to assume that the separation prin-
ciple holds and replace z(k) with the estimated value 2(k),
i.e. to use a certainty equivalence controller. The estimation
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of z(k) is assumed to be based on measurements of y(k)
and previous values of the measured outputs and inputs. The
control law based on the estimated linear output is

6a) ... €
“B@FH O T B Fm

There are obvious difficulties in the estimation of z, es-
pecially since the nonlinear part of the system has a non-
unique inverse. See Section 4.

u(k) = (6)

3.4 An example

A simple example is used to illustrate the problem formu-
lation and the different contrellers. Assume that the process
is described by

z(k) +az(k— 1) = bul{k — 1) +e{k)
The output nonlinearity is given by
¥k} = Yo+ ha(k) + na(k)?
The controller (5) is

27233(‘:) —h

uk) = 2pb

This controller gives the expected loss per step equal to

vV

pred = 72 0-2 n

The constant controller (3) is

= n+a
0T apb

Assuming that the linear part is stable, i.e. {a| < 1, then the
expected loss per step using this controller is

v - 72_0_2
const — 3

(8
which is larger than (7).

4. The state estimation problem

The controller (6) requires an estimate of the output of
the linear part of the process based on the output from
the nonlinearity. This constitutes a nonlinear estimation
problem. There are different ways of approaching this
problem. One approach is to use the extended Kalman filter.
Another way is to try to utilize the structure of the process
and approach the estimation of z{k} in some other ways.

The first obvious choice for the estimation would be the
extended Kalman filter or some higher order nonlinear filter.
All these filters are based on series expansions around some
nominal point, which in this case should be the extremum
point. The extended Kalman filter will then have zero gain
at the interesting point and some other approach is required
to obtain a good estimator.



4.1 Probabilistic estimator of the linear output

A new estimator will now be derived by fully utilizing the
structure of the process. Since there is not any measurement
noise in y{k) in (1) and the nonlinearity is quadratic we
can solve for the value of z{k) using y(k). The two possible
solutions for the output of the linear system is

120 = g7 (1% R +48000 1)

Using (4) we introduce the following one-step-ahead pre-
dictor for the output of the linear system

B00) 1y Sl

Clq) Clq)

Notice that this is a valid predictor for arbitrary 4. We
now assume that we have an estimate of the probabilities
pi(k—1} and p,(k — 1) that the linear output at time k — 1
are z;(k — 1) and z,(k — 1), respectively. An algorithm to
obtain the estimate at time k is the following

klk—1) = =L yk—1)+ (9

1. Use y{k—1) to compute the two possible values of z
at time k— 1 giving z,(k— 1) and z,(k— 1).

. Predict one step ahead using (9) with 2(k—1) =
2,(k—1). (For previous values of £(k— 1) the previous
estimates are used.) This results in £, (k& — 1) and
Z,(k[k— 1), respectively. The prediction error has the
normal distributed frequency function f,(z)

. The probabilities for being in the two states can now
be updated using the following equations

Py (k) = Guomp (k= 1) fu(z) (k) — 2, (kK — 1))
+ Pk — 1) fulzy (k) — 2y (k|k— 1))]
P2 (k) = Cnorm[py (k= 1) fu(z, (k) — 2, (kK ~ 1))
+ po{k— 1) fu(zy (k) — 2, (k[k— 1))]
(10)

where 0fory, 1S a normalization factor making the sum
of p, (k) and p,(k) equal to one.

. The estimate Z(k) is chosen as the z;(k) which has the
largest probability p;(k).

The probability based estimator uses the previous measure-
ment of y to compute two possible values of z. These two
outputs of the linear system are then predicted into the fu-
ture using a slightly modified predictor. The two predicted
values represent two possible outcomes for z at time k and
these are compared with the two possibilities that are ob-
tained from the present measurement. The probabilities for
the two outcomes are calculated and the one of the possi-
ble present values of z;(k) that has the highest probability
is chosen as the estimate of z at time k. The estimator has
the advantage that it cannot be vnstable. It is only selecting
one of two possible values. There is, however, a possibility
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Figure 3: The left diagrams show the input u and the right
diagrams the output y together with the minimum value
¥, when using different controllers: a. (3); b. (6); and c.
(5).

that the estimator may sometimes choose the wrong value.
An estimator of the form (10) was discussed in Jacobs and
Langdon (1970) and Sternby (1980a).

It is straightforward to show that p, (k) = p,{k) = 0.5 inde-
pendent of p,(k— 1) and p,(k— 1} when the constant con-
troller (3) is used. This implies that the constant controller
doesn’t give any information about which of the values z,(k)
to choose. Another possibility to determine the estimate is
to use the mean value, i.e.

HKk) = p,(K)z) (k) + Py (k)2 (K) (an

A controlier based on this estimate will move the control
signal towards np, which implies that there will be less ex-
citation of the process compared when the largest proba-
bility is used for the decision. Compare the discussion in
Section 5.

5. An example

The example in Secticn 3.4 will be used to illustrate the
properties of the different controllers. The following nu-
merical values will be used in the simulations: ¢ = —0.99,
b=0.1,62=0.1, 1= 12,7, = —4,and }, = 0.5. The sys-
tem is simulated using the the constant controller (3), one-
step-ahead prediction controller using the true linear output
(5), and the one-step-ahead prediction centroller using the
estimated linear output (6) when the estimation is carried
out using the probabilistic estimator in Section 4.1.

Figure 3 shows the input # and the output y when using
the three controllers. It is clearly seen that output y deviates
much more from the optimum y, when the constant con-
troller is used compared 1o the other two controllers. This is



also seen in Figure 4 showing the accumulated loss function

k
V(K = ;(y(k) — %)

when the different controllers are used. The loss when using
(5) corresponds well with the theoretical loss per step (7),
while the loss when using the constant controller is less
in the simulation than what is predicted by (8). Longer
simulations are required to obtain a better agreement with
the theoretical loss per step since the process in this case has
a very low frequency behavior. (The pole of the open loop
system is close to the unit circle.) The vse of the estimated
linear output gives a loss that is 2.3 times larger, while the
constant controller gives a loss that is 28 times larger than
the loss when using feedback from the true linear cutput.
Simulations also verify that using the mean value estimator
(11) gives a much worse performance than when using the
most probable value given by (11). The accumulated loss is
then 12.5 times the loss when using the feedback from the
true linear output. The properties of the estimator is seen
in Figuare 5. The curves show the estimated and true linear
output when the controller (6) is used. There is a quite good
estimation of the true linear output but the estimator picks
the wrong solution in about 35% of the cases, This is due
to the noise and that the process is operating close to the
optimum where it is difficalt for the estimator to distinguish
between the influences of the noise and of the contro} signal.

The special case a = -1, b=1, J, =% =0, and

¥ = 1 is discussed in Jacobs and Langdon (1970) and
Sternby (1980a). The optimal controller is numerically de-
rived in Jacobs and Langdon (1970) by using dynamic pro-
gramming. The average loss per step is shown to be 2.2672.
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Figure 4: The accumulated loss function when using the three
controllers (3) (dash-dotted), (5) (dashed), and (6)
{full).
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Figure 5: The true (black) and estimated state z (grey) when using
the controller (6). Curve b. show an enlarged part of
curve a.

A suboptimal controller controller based on an approximate
least squares estimation of the linear output and a two-step
loss function is proposed in Stemby (1980a) and gives an
average loss 2.6467 per step. The proposed probabilistic es-
timator and the certainty equivalence controller suggested
in this paper gives a loss of 2.4207 per step, which is 10%
larger than the optimal loss, but better than earlier proposed
suboptimal controllers. The improvement is probably due to
the perturbation introduced by choosing the most probable
value of z,(k).

6. Unknown process parameters

In the analysis and simulations so far we have assumed that
the process and its parameters are fully knowna. In practical
applications this is not the case. In many situations the
parameters of the process will change depending on the
environment in which the process is working. This is the
case, for instance, for combustion engines.

One way to circumvent the lack of knowledge about the
process is to use a method that does not depend on the
process patameters. The use of a perturbation signal only
relies on the assumption that the nonlinearity is a concave
or convex function. The input signal is changed based on
the estimate of the gradient. The dynamics of the process
and the noise, however, have a heavy influence on the
estimation of the gradient. The phase lag introduced by the
process dynamics can be compensated for as suggested in
Sternby (1980b), Krsti¢ and Wang (1997), and Krsti¢ and
Wang (2000).

An alternative way is to estimate the parameters of the pro-
cess on-line or off-line. The estimation of the parameters
of the Wiener models is discussed, for instance, in Wi-
gren (1993), Boutayeb and Darouach (1995), Zhu (1999),



and Hagenblad and Ljung (2000). Several of the estimation
methods are essentially based on the idea of the extended
Kalman filter, which is not suitable for extremum seeking
control. Boutayeb and Darouach (1995) and Zhu (1999}
consider the more difficult case with a non-unique inverse
of the nonlinearity that is discussed in this report.

7. Summary

Extremum control of Wiener model processes has been dis-
cussed. For known processes there are several possibilities
to obtain good control of the process. A crucial part of the
controller is the estimation of the output of the linear part of
the process. Several types of estimators have been discussed
and most of the estimators have the drawback that they have
a singular point at the optimum point of the process and this
is where we want to keep the process. The method proposed
to avoid this problem is to use a probabilistic based esti-
mator that selects between two possible values of the out-
put based on previous measurements and input signals. The
combination of this estimator and a prediction controller has
the advantage that especially close to the optimum it is in-
sensitive to the accuracy of the estimates.

The controllers discussed have been based on the assump-
tion that the separation principle is valid, which implies that
the true linear output can be replaced by its estimate. The
behavior when using the comnstant controller also indicates
that perturbation signals should be introduced to improve
the performance of the closed loop system. This implies that
the controller should have a dual property, which ensures
that that the centrol action is a compromise between mak-
ing good control and obtaining good estimates of the linear
output. Dual control is discussed in, for instance, Astrém
and Wittenmark (1995) and Filatov and Unbehauen (2000).
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