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Abstract 

In this paper we analyse an extremum controller 
based on a pulse technique. The idea is to superim- 
pose probing pulses to the control signal and use for 
feedback the size of the pulse response in the output. 
The probing control strategy has been used with suc- 
cess for the control of the substrate feeding in E. coli 
cultivations, see (11. The analysis is done here for 
systems of Hammerstein type with a piecewise affine 
nonlinearity. Stability of the closed-loop system can 
be checked by solving suitable linear matrix inequal- 
ities. Some performance analysis that can help the 
user for the control design is also performed. 

1 Introduction 

In extremum control, the task is to  find and track the 
best operating point of a nonlinear process. The op- 
timal setpoint is usually given by a nonlinear static 
input-output map presenting an extremum. There 
are also applications where it is desirable to  drive 
the process to a saturation instead of an extremum. 
The classical approach consists in adding a known 
time-varying signal to the process input and corre- 
lating the output with the perturbation signal to  get 
information about the nonlinearity gradient. The 
controller adjusts continuously the control signal to- 
wards the optimum. 

In (81, the authors presented the stability analysis of 
an extremum seeking scheme for a general nonlinear 
dynamical system. Stability of the seeking scheme 
was proven under restrictive conditions: small adap- 
tation gain and fast plant dynamic. In [7] they de- 
velopped a tighter analysis where the process was 
modelled by a Wiener-Hammerstein system. No sta- 
bility region was provided. 

In [l] and (21 a probing controller based on a pulse 
technique is described. The main difference with 
the classical scheme is the separation in time of 
the correlation/probing phase and the control phase. 
Pulses are periodically introduced at the process in- 
put and a control action is taken a t  the end of every 
pulse. This also allows the regulation of the out- 
put signal by manipulation of a second control vari- 
able between two successive pulses. The control al- 
gorithm has been implemented and tested on real 
plants where good performance could be achieved, 
see [l]. 

The objective of this paper is to provide a rigor- 
ous analysis for stability of the probing controller. 
The paper is organized as  follows. In Section 2, we 
present an example that  was a t  the origin of the 
probing controller. The problem is then formulated 
in a piecewise affine framework in Section 3. Stabil- 
ity and performance analysis is carried out in Sec- 
tion 4, using linear matrix inequalities. We finally 
apply the stability and the performance results on 
the example of Section 2. 

2 Motivating example 

Escherichia coli is a common host organism to pro- 
duce recombinant proteins. I t  can be quickly grown 
to high cell densities and gives high production lev- 
els. A limiting factor is the formation of the by- 
product acetate that  has been reported to  reduce 
cell growth and protein production. Formation of ac- 
etate occurs under anaerobic conditions but also un- 
der fully aerobic conditions when the carbon source- 
glucose- is in excess. Aerobic conditions can be guar- 
anteed by manipulating the agitation speed in order 
to  keep a constant dissolved oxygen concentration in 
the bioreactor. The main difficulty consists in find- 
ing the optimal feed rate. High feed rates result in 
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short cultivation times but may result in overfeed- 
ing. The critical glucose concentration above which 
the respiratory capacity of the cells saturates and ac- 
etate is produced, is unknown and may vary during a 
cultivation. Furthermore, accurate online measure- 
ment of glucose concentration is not available. The 
idea of the probing approach is to detect the satu- 
ration of the respiration by superimposing pulses in 
the feed. The pulses give rise to changes in the glu- 
cose and oxygen uptake rates, that can be seen in 
the dissolved oxygen signal. The probing controller 
uses the size of the pulse response to adjust the feed 
rate. Figure 1 shows the complete scheme. 

- 
input 

nonlinear 
U 

dynamics Y 

linear - 
W 

Oxygen 
dynamics 

- 1  

Probing 
cOntrOlle, 

Figure 1: Block diagram of the closed-loop system. By 
making pulses in the feed rate F, it is possible to deter- 
mine if the glucose concentration G is below or above the 
critical value G,,i, when the oxygen uptake rate q. starts 
to saturate. The agitation speed N regulates 0, between 
the pulses in F. 

The closed-loop system is a multivariable setup with 
2 inputs, the feed rate F, the agitation speed N and 1 
output, the dissolved oxygen concentration 0,. The 
objective is to drive the system to the saturation and 
regulate the output close to a reference value. 

The overall system is rather complex but the analy- 
sis is possible when the input dynamic is neglected. 
The periodic nature of the total controller, with one 
regulation phase followed by a probing phase, sug- 
gests a discrete-time description. We will also re- 
strict the analysis to static nonlinearities that are 
piecewise linear. Global stability can thus be inves- 
tigated by using tools for discrete-time piecewise lin- 
ear systems. 

3 Problem formulation 

We assume that the process is a Hammerstein model: 
a static nonlinearity followed by a dynamical linear 
process, see Figure 2. A state space representation 
of the process can be written as 

k = AX + B l f ( u )  + Bzw x E R" 
(1) y = cx 

The probing controller gets information about the 
nonlinearity from pulses that are periodically super-, 
imposed to the control signal. The size of the pulse 
response, which depends on the local gain of the non- 
linearity, is used to adjust the control signal. 

The controller law can be written as: 

(2) 
~ k + ~ = ~ k + K b ( ( k +  1 ) T ) - y ( k T + T c ) - Y r I  
u ( t )  = ub + U p ( t )  t E [kT,  kT + TI 

where U is the control signal and up( t )  is the 
T-periodic perturbation signal defined by: 

u,(t) = 0 

u,(t) = U: 

t E [kT,  kT + T,) 
t E [kT + T,,(k + 1)T) (3) 

A reference value y r  is used for the desired pulse 
response. It is useful when the nonlinearity does 
not present an extremum but a saturation. Since 
the controller is time-periodic, one can regard the 
feedback system as  a sampled data system where 
the sampling time is the period T of the perturbation 
signal. 

During the control phase with length T,, the process 
input U is kept constant while the second input w 
regulates the output y: 

( i  =Ax + B i f ( ~ a )  + B ~ w  
xc = A,x, + B,y 
y = cx t E [kT,  kT + T,) (4) 

w = C,x, + D,y 

where xc E Rm is the controller state of the second 
loop. After integration between kT and kT + T,, we 
get 

where Adl and Bdl are given in the appendix. 

During the probing phase with length Tp = T - T,, 
the control signal w is kept constant: 

k = A x  + Bif (uk  + U:) 
(6) 

+'Bzw(kT + T,) 
x, = 0 

t E [kT+T, ,  k T + T )  
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After integration between kT + T, and kT + T ,  we 
get 

where Ad2 and Bd2 are given in the appendix. 

Equations (Z), (5) and (7) lead to the closed-loop 
system: 

where 

Assumption: the static nonlinearity f is a piecewise 
affine function defined on p + 1 intervals. 

The functions f ( . )  and f ( .  +U;) in (8) then induce 
a partition of the state space into 2 p  + 1 polyhedral 
cells The regions Xi can be defined by the 
matrices E; and ej such that: 

X; = [ X  E R"+"'+', E;X + ei k 0) 
where the inequality 
wise. 

The closed-loop system has a piecewise affine struc- 
ture and can be represented by: 

should he taken component- 

Xk+: = AiXk + a i ,  fOrXk E xi, i € I 

We assume that  the closed-loop system has  a unique 
equilibrium, that is shifted such that it coincides 
with the origin. 

4 Stabili ty and performance analysis  

Stability analysis of the closed-loop system can be 
done using piecewise quadratic Lyapunov functions 
as in [5]  or (61 in continuous time and [3] or [4] in 
discrete time. Since the probing controller (2) con- 
tains one integrator, the convergence of the closed- 
loop system may not be globally exponential. Local 
analysis can still be carried out using LMIs, but we 
choose to  change the integrator to a pole a t  z = 0.99 
and perform global analysis. 

4.1 Stabili ty 
The Lyapunov function candidate is piecewise 
quadratic: 

V(X) = X'PiX for x E xi, i E I 

where P; is a symmetric matrix and X denotes the 
state vector augmented by 1: 

x = [:I 
Stability can be tested by checking that the following 
linear matrix inequalities are feasible 

Pi - giGi > 0,  i E I  

A T P j A i  - P; + h,jGi + ktjGu < 0, i, j E I 
gi > 0 ,  hij > 0 ,  k ,  > 0, i, j E I  

where 

The so-called %procedure 191 has been used to  re- 
duce the conservativness of the LMIs: 

the matrix G; is used to restrict the domain of 
validity for LMIs to  the cell Xi. It  takes the 
form 

the relaxation term G,; describes when a 
switch from the cell X ;  t o  the cell X; is pos- 
sible in one step: 

X,T(h;G; + k;jGij)Xk > 0 
when xk E Xi and E X, 

We use a matrix Gij of the following form: 

'' - .5EjA; ej +E;A; 
G . .  - [ 0 

4.2 Performance 
We will now present a way to estimate the closed- 
loop performance. A natural performance objective 
could be to minimize the quadratic cost J ( X o )  de- 
fined by 

m 

J(xo) = C X k T Q i x k ,  i E 1 
k=O 

An upper bound on J ( X 0 )  can be derived by solving 
suitable linear matrix inequalities. We have indeed 
the following result: 
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Theorem 1 Assume existence of symmetric matrices 
P; and positiue scalars g; k;; > 0 such that 

P; -sic; > 0, i E I  

ATP;A; - P; + k ,G; ;  + Qi < 0 , i, j E I 
then 

J ( X 0 )  < X o T P ; , X o ,  xo E xi, 

The proof is similar to  that in the continuous case, 
see [5]. 

A better upper bound can be obtained by finding PLO 
that  minimizes V(X0). 

P:, = arg infXo P,,X, 
p9 

Note that although the optimization is done for a 
specific intial state XO, the matrix P,o gives a bound 
on the cost for all initial states in the partition. A 
lower bound can be derived similarly by replacing Q, 
in the analysis by -Qt. 

.T. - 

5 Illustrative example 

We will now apply the results from last Section to 
the example from Section 2. The input dynamics is 
neglected and it is possible to  use normalized val- 
ues for all process gains. The oxygen dynamics is 
modelled by a first order system: 

x = -x  + f ( u )  + w 

where f is defined by 

f ( u )  = min(u,u,,it) with uCrtt = 1 

In [l], tuning rules for the probing controller are 
given. The pulse duration and the pulse height are 
chosen such that the pulse response can be clearly 
seen in the output signal. We choose Tp = 1 and 
U; = 1 to get suitable variations in the dissolved oxy- 
gen signal. The desired pulse response y r  is taken 
to be y r  = 0.1. Between two pulses, the output x is 
controlled by means of the agitation speed w .  The 
length T, of the control phase depends on how fast 
x can be regulated by w .  Using a PI controller with 
T; = 1.5 and K = 3, we take T, w 3Tp = 3. We 
choose a nominal gain K = 1 for the probing con- 
troller. 

The closed-loop system state is composed of the dis- 
solved oxygen concentration x ,  the internal state x, 
from the agitation speed controller and t.he probing 
controller state U: 

The functions f ( . )  and f ( .  +U;) induce a partition of 
the state space into 3 regions: 

X ~ = { X E R 3 , u < ~ , , ; t - u ~ } = { X E R 3 , ~ < 0 )  

Xz = {X E R3,ucrit - U; < U < ucr i t }  

= {x E ~ 3 , o  < 1)  
Xs = {X E R3,u > u,,it} = { X  E R3,u > l }  

The dynamics in each region is given by 

-0.0225 
0.0610 
0.0131 
-0.0225 
0.0610 
0.0131 
-0.0225 
0.0610 
0.0131 

-0.0768 
0.2082 
0.0451 

-0.0768 
0.2082 
0.0451 

-0.0768 
0.2082 
0.0451 

0.03841 0.3959 ai  = [::;3;] 
0.9574 
-0.59371 0.3959 a2 = , [.6;1;] 

0.3253 

0.9800 

It can easily be shown that the system has a unique 
equilibrium point that is located in the middle re- 
gion. 

0.1114 

0.8188 
x, = [4 ~ = [..‘.o] E xz 

A simulation of the closed-loop system has been car- 
ried out and the results are shown in Figure 3. The 
feed rate starting at -2 is gradually increased by 
the controller. At time t w 15, the glucose concen- 
tration reaches the critical point and the pulse re- 
sponse becomes smaller. As a consequence, the feed 
rate is increased carefully until the size of the pulse 
response equals the setpoint y?. The stationary feed 
rate corresponds to a glucose concentration that is 
just below ucrif = 1. 

The stability test from Section 4 consists of 33 LMIs 
with 44 decisoin variables. Feasibility of the LMI 
system, and as a consequence stability, could be es- 
tablished using the LMI Control Toolbox for Matlab. 
Convergence to the equilibrium is guaranteed for all 
initial states. 

As it is shown in Figure 4, the choice of the probing 
controller gain K influences a lot the closed-loop per- 
formance. Large K values give fast convergence but 
may lead to  instability. In our example, instability 
occurs for K > 3. 

In order to help the user for the design, an es- 
timate of the quadratic cost J(X0) may be use- 
ful. Since the main criterion is the convergence 
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Figure 3 Simulationof the closed-loop system using the 
probing controller. m e  feed rate U is gradually increased 
until the response in dissolved oxygen equals the setpoint 
y, = 0.1. At stationarity, the feed rate is just below the 
saturation and the dissolved oxygen signal is regulated 
around 0. The dashed lines represent the cell borders. 

Figure 5: Transient energy J ( X O )  for dierent controller 
gains K. The dashed lines represent the bounds obtained 
by solving LMls while the solid line was obtained from 
simulations. The initial state is Xo =[O 0 -1.51 

6 Conclusion 

A probing control strategy has been analysed for 
linear systems with an input nonlinearity that is 
piecewise affine. Techniques for piecewise affine sys- 
tems have been used to  derive stability tests of the 
closed-loop system. Global stability can be tested by 
checking the feasibility of a suitable LMI system. A 
method that helps the user for the design has also 
been presented. 
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overshoots or instability. 

A Appendix speed to the saturation, we choose to penalize 
only the  third state. The matrices Qi should also 
takes into consideration that the performance de- 
teriorates much when U is above the saturation: 

From equation (4), we get 

r . I  r i  
= A ~ I  + B c i f ( 4  

w i t h Q =  0 0 0 
where A,1 and B,1 are given by 

z D C c  B2cc] BC1 = [:] 
[ :] Q 1 = 2 Q  

Q z = Q  
Q 3 = 4 Q  

Bounds on J ( X o )  have been computed for different A,1= [" +& A, 
controller gains K. The result is shown in Figure 5. 
The plot suggests a K value of about 2. Larger K The matrices A d 1  and Bdl are then 
values do not improve much the performance and TC 
may give poor robustness properties. Ad1 = Bdl = 1 &l(Te-o)daB,l 
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One can compute Ad2 and B d z  similarly and get 
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