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SOME COMPUTATIONAL RESULTS OBTAINED BY PANUSKA'S METHOD OF STOCHASTIC
APPROXIMATIONS FOR IDENTIFICATION OF DISCRETE TIME SYSTEMS. ¥

J. Valis and I. Gustavsson

ABSTRACT

In this paper different variants of Panuska's method of stochastic
approximations for system identification are used to estimate the
discrete transfer function coefficients from simulated second order
system input/output data sequences of finite length. Using Monte Carlo
simulation mean values and variances of the estimates are computed

and compared with those obtained using the method of maximum likeli-

hood. Results confirm the superiority of M.L. estimates in this case.

T This work has been supported by the Swedish Board for Technical
Development under Contract 68-336-f




1. A BRIEF OUTLINE OF PANUSKA'S METHOD

In his papers [Z], [3] V Panugka proposes a very simple method (perhaps
the most simple method which could ever be used) for numerical identifi-
cation of linear dynamic discrete time system of finite order with constant
coefficients from normal operating records. Description of such a system
can always be reduced to Astrdm's canonical form
y(k) +_? a; y{J-1) :.? b, ulk-1) + r(efk) +_§ c; e(k-1)) (1)
i=1 1=0 i=1
where {y(k)} is the sequence of values of output signal
{u(k)} is the sequence of values of input signal
{e(k)} is a sequence of normal independent random variables
with zero mean and variance 1 (N(0,1))

n is the order of the system

Panuska supposes, that finite length records of sequences
{utt), y(t)y; t =1, 2, ..., N}

are given and that the order of the system n is known. Then he uses the

follow1ng formulas for stochastic approximation of estimates of al, bi’
c. and A
i
=1 +(t - 1) mod N (2a)
R n . n . n . R
e(k) =y + ¢ ai(k) y(k=1i) - & bi(k) u(k-1i) - ¢ ci(k) e(k-1) (2b)
i=]1 i=0 i=1
G(t) = a/tyo suitable positive constant (2¢)
a,(t+1) = a (t) - G(t)+ e() « y(k-r) r=1, ..o, n (24)
b_(t+1) = b (£) + G(1)+ €() + ulk-r) r=0,1, oo, n (2e)
e, (t+1) = ¢ (t) + B(D)+ eUd) » elk-r) r=1,2, .o, N (2£)
o N A
22 = %}- z e2(k) (2g)
k=1

#

In [2] Panuska states without complete proof that the sequences %%{TB, b_(t)
and gr(t) converge in the mean square sense to the true values ofbar, br
and c, respectively. He also gives some results of identification of artifi-
cially simulated data. Unfortunately, the pap»r does not contain complete
answers to some important questions concerning variance, speed of convergence,

stability of the computation, etc.




2. DISCUSSION OF THE ALGORITHM AND VARIANTS

Panuska's algorithm may have the following interpretation [Fig. JJ.
S

u (k) SYSTEM TO BE y(k)
IDENTIFIED

k-1 BETAY

e lk-1) DELAY e(k)

P

ADAPTIVE y(k)
PREDICTOR

Fig. 1. Interpretation of Panugka's algorithm.

Let us assume, that the system S may be described by eg. (1). We want to

adjust the coefficients of the adaptive predictor P, which predicts the

value of output ;(k) based on past values of input u(k), wk - 1), ulk - 2),
.., ulk - n), past values of output y{k - 1), y(k - 2), ..., y(k - n), and

past prediction errors g(k - 1), g(k - 2}, <evs e(k - n) in such a way, that

the prediction errors g(k), defined by

n .

- n . A
bi(k) uk - 1) -z ai(k) yk ~ 1) I ci(k) e(k - 1) (3)

y{k) =
1=0 i=l 1=1

1

[l

e() = y(k) - y(Kk) (W)
are pas small as possible'.

Exactly, it means that the EEQCk) should be minimal and the {z(k)} sequence
should be white.

Our ,adjust strategy" will be simply to minimize at each time instant k the
square of instant prediction error e(k) using gradient method {neglecting the
whole past history). It means

n .

R . n .
e(k) = y(k) -y =y(k) + ¢ ai(k) y(k-1i) - ¢ b, ulk-i)-
i=1 i=0 *

nﬁ A
-z ci(k)E(k~i)
izl

(5)




and

o (k) = 2 E( ) ey(k -~ 1) = 1,2,0.0,0 (6a)
3 ar(k)
309 oLt - ulk - ) r = 0,1, (6b)
ab_ (k)

r
3E (k) = -9 ;(k) ::(k - 1) r = 1,2,.0.91'1 (6c)
acr(k)

Putting (5) and (6a, b, ¢) into the general formula for the gradient mini-
mization method, we get (2b - g).

Remark 1:

The computation of e (k) using formula (2b) may essily become unstable if the

polynomial
- n _:a
Czh =+ 2e ) (7
t . 1
i=1
has zerces outside of the unit circle. Panuska av01ds this dlfflculty

by puttlng certain bounds on values of estimates a, (x), b (k), c, (k) and

errors e(k). That means (€ is suitable positive Constant) for a; coeff1c1ents
+q
a(t+1)=la(t+1) if [at+ D <q (8)
- g if otherwise

where a (t +1) = a(t) - 6(t) - £(t) y(t - v) and similar for b_(t), c_(t)
and s(t)

Another way to assure the stability of the computatlon of e(k) is to change
the values of cr(t) so that polynomial C (z~ ) remains stable. Then we have
to check the stability of the polynomial (7) after each iteration step. This
is relatively easy to do in first and second order system cases but for

n > 2 we must use a suitable numerical method for stability check because

of the large number of iteration steps.




Remark 2:

To obtain better estimates, Panuska uses several runs through the input-
output records so that the values of estimates after the first pass are
used as the starting values for the second pass and so forth. This is a
very good idea, but in our opinion still better accuracy can be achieved

when using

G(t) = 2 (%a)
T

or

3 - o

(1) = i B> 1 (9b)

instead of (2c¢) as a gain factor.
3. EXPERIMENTAL INVESTIGATION OF PANUgKA'S METHOD

The papers [2], [3] contain results obtained by means of described method

on identification of a 2nd order system
y(k) - 1.5y(k-1) + 0.7y(k-2) = u(k-1) + 0.5u(k-2) + e(lk) +
+ e(k=1)+ 0.2e(k=2)

where {u(k)} and {e(k)} are generated as independent pseudorandom sequen-
ces N(0,1). The results obtained from 500 input/output data pairs are very
promising, but unfortunately the variance of these estimates cannot be

found from only very few realisations.

To obtain better insight into properties of this method, we first wrote
simple programs for simulation of a linear discrete-time system driven
by pseudorandem normal signal and its identification from input/output
records. We tried both proposed ways to assure the stability of computa-
tion of ;(k):

~ a

1) Original Panuska's with values of estimates of coefficients 5, b, ¢
bounded to 5.0 and errors e(k) bounded to 10.0. This algorithm was
called ORIGPAN.

2)  Checking the stability of Ct(z_l) polynomial at each iteration step
- at unstable iterations we did not change the estimates. This algo-
rithm was called STABPAN.

In both algorithms different gain sequences G(t) were used. In each
example we computed mean values and variance of estimates by Monte Carlo
method (from 20 different samples). Starting values for estimates and

initial conditions were zero.




Numerical results are scheduled in Tab. 1. Surprising are large variances
and bad estimates of c-coefficients (particularly 02) in all cases when
compared with result obtained by Astrém's method of maximum likelihood
(which can be considered as the most powerful method for identification
at present time [1] , 4] ).

Not surprising is the (relative) superiority of ORIGPAN when compared with
STABPAN because even if the C-polynomial is stable the values of ¢ may be-

come very large and cause completely wrong changes of estimates.

For further comparison we chose the variant, which gave the most reason-
able results (ORIGPAN, o = 5, 5 passes denoted by f in Tab. 1) and tried
it on two different samples of our 2nd order standard data. In this case
the input signal was pseudorandom normal (0,1), length of sequences

N = 1000 data pairs. Results, summarized in Tab. 2, seem not to be bad in
comparison with M.L.E., but unfortunately the estimates obtained after
5th pass through the data cannot be considered as final because they
show distinct trend to change further when we increase the number of

passes as it is shown in Tab. 3,

The reason for this is quite obvious:
According to (2d - 2f) the changes of estimates of coefficients
shall continue while

%-dkw;(k—r)%@(rzl, 2, ..., m)

by other words the changes shall continue until the sequence
{e(k)} becomes such that the first n-values of its autocovariance

function

are zero. In the case of input/output data of infinite length the
sequences of estimates {;(k)b{g(k)}, {é(k)} would therefore converge
to their true values. Apparently this may not be the case if we per-
form iterations by repeated passes through the same data of finite
length N because this is equivalent to the case when the original
sequence of (generated) errors {e(k)} is periodical with period N

and the values of its autocovariance function

N
wee:("r) :-IJ\-I; L oelt) elt - 1)
=1

may not be zero.




Actually, in our example of 2nd order standard data this sequence was
not ,very white" as it is shown in Tab. 4 and Fig. 2, where the esti-
mates and covariances of the resgpective residuals are scheduled for

different numbers of passes.

The algorithm ORIGPAN tries to make the values ofz*;;(l) andr%;;(?)

as small as possible (even if the original ones are not) without taking
other values of r;; into account while the autocovariance function of
residuals of M.L. estimates has almost the same shape as the covariance

of original noise.

To illustrate this we designed two more examples with different noise
sequences and plotted the results in Fig. 3, 4 resp. Tab. 5. The ,more

white" sequence S, gave better estimate than the S, with relatively

1
large values of »_ (1) and r_ (2).
£EE [958

4, CONCLUSIONS

It follows from the previous investigation that Panuska's method of stochas-
tic approximations can be considered as interesting with the following advan-
tages:
1. simplicity - at present time no more simple method is known
2. easy programmable - a computer subroutine contains a few statements
only

3. suitable for real-time identification (see Appendix)
Unfortunately, the disadvantages are rather serious:

1. suitable gain sequence must be found experimentally

2. large numbers of passes through the data are needed to obtain
more accurate results

3. the variances of estimates are greater than those obtained by
Astrém's M.L.E.

4. There is no measure of accuracy of estimates available.
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Tab. 3

Original Panugka with bounds

N = 1000

BE = 10.00 BC = 5.00

2nd order standard data sample q

ALFA = 5.00
PASS NO. 1
COEF 1.0431+000 | 6.4419-001 | -1.2961+000 | 5.9090-001 -5,8337-001 |7.5014-002
PASS NO. 2
COEF 1.0670+000 | 5.5026-001 | -1.3950+000 | 6.4703-001 ~-8.0823-001 |1.5418-001
PASS NO. 3
COEF 1.0691+000 | 5,1778-001 | -1.4285+000 | 6.6109-001 -8.8998-001 {1.8526-001
PASS NO. 4
COEF 1.0671+000 | 5.0u428-001 | -1.4468+000 | 6.7027-001 -9.2766-001 |2.0888-001
PASS NO. 5
COEF 1.0639+000 | 4,9775-001 | -1.4586+000 | 6.7771-001 -9.4832-001 12.2567-001
TRUE: b1 = 1.000 b2 = 0.500 a; = -1.500 a, = 0.700 Cq = -1.000 C, = 0.200
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Appendix A.

Programs, Subroutines and Functions used for Computation

Al. RANSS Subroutine
A 2, BOUND Real function
A 3. ORIGPAN Preliminary versions used in early
A Y, STABPAN trials (for results in Tab. 1)
A S, ORIGPAN 2
A 6, RTPAN with subroutine
RETORPA Real time version of ORIGPAN

A7, GACF Subroutine

Al




A 1. RANSS (KK, RR)

used for generation of noise, resp. input signal sequences.

A2




A3

““\\_,
RANSS = 1 of 2
29 Jan 65
Title Random Floating Point Numbexs in Normal
Distribution (?ANSS}
CO-0P Class/Index Code G5 WISC RANSS
CO~OP Organ. Coda ‘ WISC (adapted from
' CODA RNDEV)
Program Language i CODAP-1/COMPASS
Computer e - 16043600
Programmer RNDEV by Wm Silverman, adapted by
. Richard G. Wolfe for the University of
—~ » N Wisconsin Computing Centexr -
Contributing Organe UniVCLsLLy of Wisconsin Computing Center
S {Formerly Numerical Analysis Laboratory)
~ Date ) ‘ 'February 1963 B TN
N UWCC ID Code . @ = L C00L0-00/80010-00 i
1,07 ' PURPOSE
To generate raﬁ&om £loat cing Qaig?'nawbér‘ dist ibuted according
to the Normal {Causé) dls bualcn with a an ct 0 and a .
-wvariance of 1. The rvange of the ”QuQL&tEﬁ aistflbution is N
' between plus and minus 3. R ‘
2.0 . USAGE ' .
R T
~An odd integer between O and io ass;gned bj the User Pfior
. to the fiLst cali to RANSS' uﬁﬂ chis numbex éetermines ‘the
- ‘ N sequence oz devxates uhat w1&; be generateu.‘ This o&d Anﬁeger'
= is chdnged by the subrout¢ne ﬁa pfepare ror the nex ‘call and
_ peep. T Sy
geﬂeLaLlon. A (
CRree o Vi e
- 2.1 Calling Sequence. K o B
2.1.1 FORTRAN-63 Calling Sequence: CALL RANSS (KK,RR) _
o S .
A Arpuments Or Parameters
. . [
KK is the odd integer assigned as above. e
BB wilil be the geﬂena;ea deviat k
2.4 Space Reguired.
¢ 1604 3600
27, locations - &1, Locations

8 . 8




o~

RANSS = 2 of 2 .

29 Jan 65 '
2,12  Tining. ' ' X
1604 . 3600
approximately «  approximately : coe N
1400 microseconds 380 microseconds -
3.0 -~ METHOD
The number XX is mult&plied by 5% and reduced modulo 2437 The

-process is repea;ed 16 times
aumbex obnalnea afier each

. many of t

and the resulis summed. The

multl
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A 2. BOUND ( X, B)

This real function is used to limit the value of estimates of

coefficients and residuals to certain value B.
The value of this function is equal to

X when |x| ¢ B
|

B « sign X when }xi > B
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AT s

HEal FUNCTION gQUNDIX»802

IFCagsF{X) Loug ) GO TU L

TFOX) 2,13
SOUNUEA 5 RETURN
SUUMNUE =3 5 o TURN
gUuNU=E v ~ef

EiNU

1(4)/02"09
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A 3. ORIGPAN - used in early trials for results in Tab. 1

Requires: Subroutine RANSS
Real function BOUND

AT




A8

18/707-¢8

Ial
(40,

'
FE o B

o)

o)

EACLL

Gry,ACL0),B (10,0010,

4:
0
—

FORMAT(F4, L)

103

2LALFA

MATCxALE A

11

PRINT

<2

= 5 5 6

b
i

JiE

~
N

)

I
|92

ALy Ry O -EB (I =UCI) =EC (T *E(J)

\
Al

(IyatiwebE¢dy: R

b O < 91 e ke
[QN od &N ™ i N
o



FTNS . 4B

28

30

1000
4%

39
34

40
41

1001

42

44
43

1002
104
107
109
110

«Q3«U(J),BC)

EB(1)=BOUND(EB(I)
YeGwY (J),»BC)

EA(I)=BOUND(EA(]
CONTINUE
PRINT 104,KK
PRINT 4000, ¢(EB(L1),1=1,NEY, (EACI),1=1,NE), (EC(I
FORMAT (*COEF*9E12,4)

CONTINUE

DO 39 I=1,NE

I1=1+NE § [2=1+2*NE

BAC(IREA,1)=EB(])

BAC(IREA, J1)=EA(])

BAC(IREA,12)y=EC(I])

CONTINUE

ND=3wNE

po 41 I=1;ND

SUM:Dc

DO 40 J=1120 \
SUM=SUM+BAC(J, 1)

EBAC(1)=5UM/20.,

PRINT 1001!(EBAC(I):I=1:ND)
FORMAT(/*EXP=%9E12,4) -

DO 42 I=1,ND

PO 42 J=1,20

BAC(J,1)=BAC(J,]1)~=EBAC(])

DO 43 1=4,ND

SUM:U.

DO 44 J=1,290

SUM=SUM « BAC(J, 1)*BAC(J,1)
VBAC(I)=SUM/20.

PRINT 1002, (VBAC(I),I=1,ND)

FORMAT (*VAR=z*9E12,4)

FORMAT (*xPASS NO,*13)

FORMAT (*Bzx(E12,9))

FORMAT(*A=*x(E12,5))

FORMAT(»Cax(E12,5))

CALL EXIT

END

18/07-68

), 1=1,NE))
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A 1D

A 4, STABPAN ~ used in early trials for results in Tab. 1.

Requires: Subroutine RANSS




A1l

AN
AR

1y
inla

i STA

T AL

3G

J

<

<

~~
[}
-

1

-~

.

s

o)




A 12

o

y

57000

2

C

O
fone)
o

N




A 13

A 5., ORIGPAN 2
Complete program used for computation of Tab. 2 and Tab. 3.
Requires Subroutine GACFl)
Real function BOUND

l)Remark: The use of subroutine GACF for computation of

covariance of residuals after each pass through
the data is not vital and may be omitted by skipping

the respective statements at the end of program,

i.e.
CALL GACF(...
PRINT 888,(...

888 FORMAT(...
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A 6. RTPAN with RETIORPA

Complete example of use and results (Tab. 5, sample Sl’ Fig. u).

RTPAN is the program used for computation of results shown in
Tab. 5, Fig. 3 and Fig. 4.

Requires

Remark:

RETIORPA

1)

2)

Subroutine RETIORPA

Real function BOUND All included

Subroutine GSIMDATA 1’ in the listing

Subroutine GACF of the program
2)

Subroutine CLEAN
Subroutine RANSS

Subroutine GSIMDATA simulates run of a given linear

stechastic system for given input sequence

Subroutine CLEAN is used to set all elements of a

desired vector array to zero.

is universal subroutine which performs one iteration
of Panuska's algorithm on latest data pair and there-
fore can be used for real time identification. It also

computes the covariance of residuals.
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