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V.

Preface

This thesis is actually about two different subjects. The major part is about,
as the title say, relay feedback of simple systems. Then there is one chapter in
the end about identification of the dissolved oxygen concentration dynamics
in a biological reactor. However, there is a relay feedback also involved in
that context used in an unconventional way. The waste water research has
been published at different conferences: Holmberg-Olsson (1985), Holmberg
(1986), Holmberg et al (1988) and Holmberg (1990). From my very start at
the Department the intention was to do research about control of waste water
treatment plants. The above papers documents this. This research also led
to a technical licentiate degree, Holmberg (1987). The intention was then to
fill up with results in the same area to a PhD thesis. However, by accident I
got the idea about the relay with phase adaptive hysteresis. A lot of people
showed their interest, especially Prof. Karl Johan Astrém who had formu-
lated the problem some weeks before. I was asked to document the invention.
However, in order to understand how a relay with variable hysteresis works
I started to investigate usual relays with fix hysteresis. Suddenly, I found
myself deep into another area of research—relay feedback systems. As time
passed, the analysis of relay feedback systems took larger and larger part of
the thesis. The waste water research now takes a smaller part. But since
waste water was the topic of my last thesis, I don’t have bad feeling about
the new outline of the thesis.

Acknowledgements

First of all, I would like to thank my supervisor Professor Karl Johan Astrém
who encouraged me to fulfill my work about relay feedback systems. His en-
thusiasm and support was invaluable. I also would like to thank all my
colleagues at the Department. I am particular grateful to Professor Gustaf
Olsson who got me interested in the control of waste water treatment plants.
He has continuously being a source of encouragement even after he left the De-
partment. I am indebted to Professor Bjorn Wittenmark, Dr. Tore Hagglund
and Dr. Mats Lilja who had many valuable comments on the manuscript.
Dr. Per Hagander had a great influence on the presentation of Chapter 4.
For this I am most greatful. Leif Andersson has written the TEXmacros -
which were used in the type-setting of the thesis. The experiments at Malmo
Sewage Works would not have been possible without the support by Bengt
Andersson and Claes Hansson. The research about waste water was partly
supported by the National Swedish Board of Technical Development (STU
contract 86 — 3552 and 88 — 2110).




Introduction

It don’t mean a thing
if it ain’t got that swing
—Duke Ellington ... .

When a dynamical system is at equilibrium, measurements of its input
and output can reveal only the static gain. To get information about its
dynamical properties it is essential to excite the system with a nonstatic
input. In this thesis, the excitation is introduced automatically by a relay
feedback resulting in an oscillation.

Relay feedback is a classical configuration with many applications. The
classical work by Tsypkin (1984) was motivated by relays that were used as
power amplifiers. Examples given in Graham-McRuer (1961) are relay servos
and modeling of Coulumb friction. Relay feedback has also been involved in
different automatic control strategies, see Astrém-Wittenmark (1989). The
self-oscillating adaptive system (SOAS) uses a relay feedback to keep the
gain high in the feedback loop. The response of the closed-loop system will
be relatively insensitive to the variations in process dynamics because of
the high loop gain. The idea originated in work at Honeywell on adaptive
flight control in the late 1950s. The SOAS has also been applied in process
control but has not found widespread use. The auto-tuner, on the other -
hand, has been more successful in process control applications where relay
feedback is used to tune PID controllers, see Astrom-Higglund (1984a and
b). The method is a modification of the Ziegler-Nichols closed-loop method,
see Ziegler-Nichols (1942). The modification is the introduction of the relay
feedback. All adaptive schemes require a priori information about the process
dynamics. It is particularly important to know the time scales, which are
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Chapter 1 Introduction

critical for determining suitable sampling intervals and filtering. The relay
method is ideally suited as a pre-tuner for a more sophisticated adaptive
controller. Thus, in parallel with the development of adaptive controllers
and the auto-tuner there has been a renewed interest in the behaviour of
relay feedback systems. In all the above applications the behaviour of the
relay feedback is typically investigated by use of describing function analysis.
Since this is an approximate method it is interesting to make a more careful
analysis.

A brief introduction to classical describing function analysis is given in
Chapter 2. In this context, the Tsypkin’s necessary conditions for limit cycle
oscillations are also given for comparison and interpretation. In Chapter 3
the relay hysteresis is allowed to vary adaptively. Describing function anal-
ysis is used here to show that the relay with adaptive hysteresis acts as a
nonlinearity with a specific phase shift. One application can be a pre-tuner
where the Nyquist curve is scanned in phase rather than in frequency as is
the case in usual frequency analysis experiments. In the following chapters
the describing function analysis is not used. In Chapter 4, relay feedback of
first order systems with time delay is investigated. The first order system
is allowed to be unstable. It also has a direct term and can therefore be
thought of as being an approximation of a second order systém with one fast
and one slow mode. Necessary and sufficient conditions for convergence to
and existence of limit cycles are given. Because of the direct term and the
time delay, the system can have different types of limit cycles. These are
investigated and classified. Some results for second order systems without a
time delay are given in Chapter 5. Then in Chapter 6, feedback of an unsta-
ble second order system with time delay is investigated. It is demonstrated
that such systems may have very complex behaviour with multi switch limit
cycles and chaos. (One period of a 12-switch limit cycle is shown on the
front page). It was shown by Cook (1985) that such systems can exhibit
chaotic motions also without a time delay if a positive feedback is used. The
limit cycle solutions were also shown to be unstable. The difference here
when a time delay is introduced is that chaos can arise also with negative
feedback. Another difference is that some limit cycle solutions appear to be
stable. A nonconventional application of relay feedback is given in Chapter
7. The problem is to identify the dissolved oxygen concentration dynamics
in a biological reactor. A relay feedback is used to excite the system to give
identifiability. The relay amplitude is automatically adjusted to give a cer-
tain oscillation amplitude of the dissolved oxygen concentration. This gives
a compromise between control and estimation. The idea is investigated by
simulations and shown to work in a full scale experiment at Malmé Sewage
Works in the south of Sweden. Chapter 8 contains some final conclusions.

10




Introduction to -~
relay feedback systems

The interest for the relay feedback system as shown in Figure 2.1 has increased
during the last years. One reason is the appearance of the so called Autotuner
introduced by Astrém-Higglund (1984a). The autotuning idea is to use the
information revealed by self-ezcitation during relay feedback to tune a PID
controller. PID controllers are the most common used controllers in the
process industry. They are very often poorly tuned. It is therefore easy
to understand how appealing the autotuning idea is to a process engineer.
However, the collection of information during the relay feedback experiment
is based on describing function analysis — an approximate method. The
information gathered can therefore be more or less accurate and sometimes
inaccurate depending on the validity of the describing function analysis. This
chapter will give a basic introduction to describing function analysis of relay
feedback systems, its use and misuse.

11




Chapter 2 Introduction to relay feedback systems

relay
4

-1

Figure 2.1 A relay feedback system.

2.1 Describing function analysis

The use of describing function analysis to investigate the relay feedback sys-
tem in Figure 2.1 has been treated by many authors, see e.g. Atherton (1975),
Tsypkin (1984). A brief introduction will be given here.

When analyzing a nonlinear system like that in Figure 2.1 the principle
of superposition is not applicable. It is therefore important to specify the
relay input. Since the purpose is to investigate conditions. for self oscillation
a sinusoidal relay input is chosen, such as

z(t) = Asin(wt)

The relay output, 2(t) in Figure 2.1, can be partitioned into two parts, one
sinusoidal signal which amplitude and phase is depending on the relay input
amplitude, plus one error signal, i.e.

z(t) = A - K(A)sin(wt + &(4)) + e(?)

We want to determine K(A), an equivalent gain dependent on the relay input,
amplitude 4, and ®(A), an equivalent phase shift also dependent on A. The
appropriate choice should be done such that e(t) is made small in some sense.
We choose the least squares sense, i.e. minimize

T
I= / e*(t)dt  where T =2r/w
0

12



2.1 Describing function analysis

It then follows from the construction of a Fourier series expansion of the T-
periodic z(t) that K(A) and ®(A) can be expressed in the Fourier coefficients
associated with the first harmonics, i.e.

K(A)=¢;/A=4/a2 +b}/A
®(A) = ®; = arctan(a; /b1)

where the Fourier series of z(t) is defined as

zr(t) = — + Z(an cos(nwt) + by, sin(nwt)) =

n=1

ay - .

=5 + Z cn sin(nwt + ©,)
n=1
where

2

— / 2(t) cos(nwt)dt n=0,1,...

. .

T (t) sin(nwt)dt n=1,2,...

®,, = arctan(a, /bn) 4

DEFINITION 2.1—The describing function

The describing function Yx(A4) of the nonlinear relay system in Figure 2.1 is

defined as

Yan(A) < c1e®1 /A = (by +ia1)/A

where a1, b1, (¢1 and @) are the coefficients in the Fourier series expansion
of z(t) when the input is z(t) = Asin(wt) O

The describing function can be interpreted as an amplitude dependent
transfer function from a sinusoidal input to the first harmonic of the periodic

output. It specifies the change in amplitude and phase of the first harmonic of -

the output with respect to the sinusoidal input. The equivalent amplification,
K(A), and phase, ®(A), are represented as a complex function, Yn(4) =
K(A)ei*(A),

13




Chapter 2 Introduction to relay feedback systems

output Z

—€ € input X

-d

Figure 2.2 Characteristics for a relay with hysteresis.

AT X
/\ ] .
d — ]
e +
]
00 T\ [T+, 2n
—d
-A T

Figure 2.3 Relay input, =, and output, z.

DEFINITION 2.2—Relay characteristics

The characteristics of a relay with hysteresis ¢ and gain d is defined in Figure
2.2. O

The sinusoidal relay input «(t) = Asin(wt) = Asin(®) gives the relay
output, z, shown in Figure 2.3. According to the figure the relay output
becomes

14




2.1 Describing function analysis

—-d 0<®d< P
2(®) = d <P <7+ P
—d T+P) <P <2

where & = arcsin(e/A). Then the Fourier coefficients are

1 2w 1 %o

a; = ——/ 2(®) cos(®)d® = — (—d) cos(®)dP+
™ Jo ™ Jo
1 [rt%o 1 [ 4d |

+ = / dcos(®)d® + ——/ (—d) cos(®)d® = —— sin(Py)
T J&o ™ Jrt+d, ™
27T d L &

b = l/ 2(®)sin(®)de =... = 4d cos(®y)

T Jo T

]S

Thus the describing function for a relay with hysteresis is

4d . . 4d _;
Yn(4) = a(cos(fﬁo) —1sin(®y)) = ¢ o (A >¢)

Negative hysteresis There is a problem with the definition of a relay
having a negative hysteresis. The problem arises when the relay input doesn’t .
pass outside the hysteresis before it changes direction. In such a case we
may never pass the hysteresis. Thus, the behaviour of a relay with negative
hysteresis is highly dependent on the relay input behaviour. This doesn’t
need to be a severe problem for our purposes, though. As long as we check
that the relay is working as we expect. The behaviour is illustrated in Figure
2.4 where the relay switches at time t = ¢; and £ = 5.

15




Chapter 2 Introduction to relay feedback systems

u u
d
€ - ° t4 to t
-d
e
)
il

to

1

Figure 2.4 There are problems with the definition of negative hysteresis. The
relay input must have been outside the hysteresis before a switch can occur. In
this example the relay switches at t = ¢; and at { =1,.

T

Nyquist criterion analogy

Consider the feedback system in Figure 2.5 with the constant gain K of the |
P-regulator.

U K Gy(s) -y

-1

Figure 2.5 Block diagram for a simple feedback system.

The closed loop system transfer function is

Y _KG G
U 1+KGy, 1/K+Gy

16




2.1 Describing function analysis

s-plane

Figure 2.6 Contour IT' used in the formulation of the Nyquist criterion.
and the characteristic equation is
Go(s) + 1/K = 0

Assume that Go(s) has no poles in the area encircled by I' in the Figure
2.6, i.e. in the right half plane. It follows from Nyquist’s theorem that the
characteristic equation has all roots in the left half plane (outside T') if the
map of ' in the Gg-plane does not encircle the point —1/K,

The relay feedback system: Describing function analysis assumes there is
a limit cycle in the feedback system. Also, Go(s) is assumed to be low pass
such that all harmonics of high frequencies can be neglected. The relay input
can then be approximated by z(t) = Asin(wt). Under these assumptions
the relay acts as a variable gain, Yn(A), depending only on the relay input
sinusoidal amplitude. An approximate equivalent feedback system is shown
in Figure 2.7.

x(t)=Asin( ©t)

0 LY (A) Gy(s) - Y

-1

Figure 2.7 Approximate relay feedback system near the limit cycle. The relay
acts as a variable gain.

The approximate characteristic equation is
Go(s)+1/Yn(4A) =0

17




Chapter 2 Introduction to relay feedback systems

- \\\/GO(S),SGF
. \
N\ \
1 - /\A;v: /

— A3 A1 A=0

Figure 2.8 Ilustration of how describing function analysis expects 3 limit cycle
solutions. By Nyquist criterion analogy the solutions A = A; and A = A3 are
stable while A = A; is unstable.

In analogy with the Nyquist criterion the system can be expected to be stable
if the map of T in the G-plane does not encircle —1/Yn(A). However, since
there is a limit cycle by assumption the system is at the stability imit and
Go(s) = —1/Yn(A), s € T'. The Nyquist criterion is here used to investigate
the stability of a limit cycle. If there is an encirclement when the amiplitude
A is reduced the instability of the system will increase the amplitude again
toward the limit cycle solution. In Figure 2.8 describing function analysis ex-
pects 3 limit cycle solutions at the 3 intersections where Go(s) = —1/Yn(4),
s € I'. By Nyquist criterion analogy the solutions, A = A; and 4 = 43 are
stable while A = A, is unstable.

For a relay with hysteresis the curve —1/Yx(A) is a straight line with

a constant imaginary part. Since ®; = arcsine/A = arccos /1 — (e/4)? we
get
1 ﬂ'A idg
_—_ — ——— ¢
Yn(A) 4d

= —4%(\/142 —€? +1¢)

Notice that if d > 0 the line —1/Yx(A) is in the left half plane while it is
in the right half plane if d < 0. Thus with proper choices of relay gain, d,
and hysteresis, €, the line —1/Yx(A) can be positioned in either of the four
quadrants, as shown in Figure 2.9.

A
= —Z—d(cos ¢ + isin Pg)

18




2.2 Use and misuse of describing function analysis

1 >0 im " &0 1
WA ) > Yn(A)
Re Re
Im im
Re Re
'YN1 A S >
s cg

Figure 2.9 Position of the line —1/Yy(A) depending of the sign choices of the
relay gain, d, and hysteresis, «. ’ /

2.2 Use and misuse of describing function analysis

The describing function is an approximation introduced to- simplify analysis
of nonlinear feedback system. It is therefore important to be aware of the
limitations of this approximation. The approximate method assumes the
system output to be sinusoidal. Distortion, D, is a common measure of how
well a function is approximated by a sinusoid. A formal definition will be
given later. According to Atherton (1975), D can be used to justify the use
of describing function analysis, DF, by the following rule of thumb:

DF results for values of D much greater than 0.1 are probably unreliable
whilst for values of D less than 0.1 they should be adequate for engineer-
ing purposes with errors probably no greater than 10 per cent.

We are interesting in two DF results: Estimation of the transfer function
at the limit cycle frequency, Go(iw), and prediction of the limit cycle period, ~
T. Examples will show that D is not always a reliable measure of the DF
accuracy, i.e. it may happen that the accuracy is bad when D < 10% and vice
versa, opposed to Atherton’s rule of thumb. It is interesting to notice that
the chosen examples are low pass systems. They might therefore be expected
to be well suited for describing function analysis. However, the question is
if they are low pass enough. The distortion, D, defined in the following,

19
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Chapter 2 Introduction to relay feedback systems

is a crude measure. It is wise to remember that. The rule of thumb is a
suggestion, not a justification of describing function analysis.

Describing function estimates

The DF estimate Gy (iw) is calculated from measurements of the limit cycle
amplitude A and period T, as

~ . 1
Go(iw) = “Yn(d) ; w=2r/T

The DF predicted limit cycle period T is calculated from the presumed known
system, i.e. by solving the equation

Im{Go(id)} = Im{——y%;} A G

In the following, DF estimates of Go(s) and limit cycle period T will be
given together with the distortion. The purpose is to show the importance of

checking the validity of DF before conclusions about G¢(s) and T' are drawn.
Also, to get some feeling for the accuracy of the results.™ *

’

In order to investigate the influence from higher harmonics we express
the signals in Fourier series. During the limit cycle, which is assumed to be
symmetric, the relay output is the square wave

S : 4d
u(t) = kZ:%azk_H sin[(2k + )wt] ; ax = —

and the system output is

y(t) = bakya sin[(2k + Dwt + para]
k=0

{ by = ag|Go(ikw)]
pr = arg[Go(ikw)]

DEFINITION 2.3—Distortion
If the first harmonic of y is denoted, 7;, the distortion, D, is defined as

p VERBO-5OPE o
Vil st ¢

i.e. the r.m.s. (root mean square) value of the higher harmonics divided by
the r.m.s. of the first harmonic. O

20
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2.2 Use and misuse of describing function analysis

The first order system Go(s) = 1/(1 + s) has distortion D(w) > 10% for
all w. Thus, following Atherton’s rule of thumb, the DF method should be
unappropriate. Notice that distortion remains the same for fixed w if a time
delay is introduced in the system. But DF results such as the predicted limit
cycle period, T, and the estimated transfer function, Go(s), depend on time
delays. It is therefore interesting to see how the accuracy of the DF results
change with the time delay.

ExXAMPLE 2.1—First order system with time delay

DF results for the system family Go(s) = e™7°/(s + 1) for different 7 values
will be given. First we choose the hysteresis ¢ = 0. For a given 7 we can then
calculate the DF estimates G (iw) and T'. Their respective relative errors are
shown in Figure 2.10 together with D, all as a function of the time delay .

0.4

0.35
0.3

0.25
0.2 ‘

0.15

o1} ‘ 4

) relT

0 \ I ' L L s " s 1
0 2 4 6 8 10 12 14 16 18 20

tau
Figure 2.10 The distortion, D (solid curve), and the relative errors I%G;OGN

(dashed curve) and ?—;,—1—1 (dotted curve) as a function of the time delay T for the
1

system family Go(s) = me_" and relay parameters d = 1 and € = 0.

The example shows that even though D is too large (> 10%) DF results
are occasionally surprisingly accurate. The relative period error is smaller -
than 5%. The largest errors occur when the relative transfer function error
is 13%, at about 7 = 2.5. It is evidently possible to get quite accurate DF
estimates even if D > 10%. However, this fact doesn’t justify a noncritic use
of the DF method when D > 10%. The distortion is a rather crude measure
that simply doesn’t tell the whole story about the DF results accuracy. It is
even so, for an opposite situation when D < 10%, the DF results errors can
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Chapter 2 Introduction to relay feedback systems

be substantial, opposed to Atherton’s rule of thumb. This will be shown in a
later example. But first we will show DF estimates Gy for three cases. One
corresponding to 7 = 0.3; another with 7 = 2.5, which according to Figure
2.10 will give quite accurate @o(iw) when ¢ = 0; and yet another with » = 4.

First order systems with a time delay will be thoroughly investigated in
Chapter 4. Now we will just show the use of the DF method and its accuracy
for the systems, Go(s) = e""%/(s + 1), 7 = 0.3,2.5,4. It can be shown, (see
chapter 4), that for these examples there can be limit cycles for hysteresis

values € such that

1—e 7
_— 1 2.1
1+e_7_<:3< (2.1)

when d = 1 and 7 is the time delay. The corresponding limit cycle period T
will be

e)e )+ 27

T:2ln(2_(i~

The corresponding true Go(i27/T) can therefore be calculated for compar-
ison. The resulting amplitude will be 4 = ee™™ + Go(0)d(1 — e™"). The
DF estimated transfer function can therefore be calculated directly from
Go(i2r/T) = —1/Yn(A). The DF estimated Go(iw) and the true Go(iw)

are shown in Figure 2.11 for the time delay 7 = 0.3.

0.2

r
: \
H 2 T8
0}— L}
: Ry

-0.2

0.4t $ \
: X,
i X,
; ¢ L
06 \ gz
08}

-0.5 0 0.5 1

Im

Re
Figure 2.11 Consider the system Go(s) = ¢~ %3¢ /(s + 1). Eleven equidistant
values of ¢ in the interval given by (2.1) are chosen to generate the DF esti-

mate 60 (iw). The resulting points are marked with ’o’ on the solid curve. The
corresponding true G (iw) are marked with 'x’ on the dashed curve.
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Figure 2.12 Consider the system Go(s) = e~%:3¢ /(s + 1). Eleven equidistant
values of £ in the interval given by (2.1) are chosen to generate the DF esti-

mate 60 (iw). The resulting points are marked with ’o’ on the solid curve. The
corresponding true Go{iw) are marked with ’x’ on the dashed curve.

s

The DF estimated Gy (iw) and the true Go(iw) are shown in Figure 2.12
for the time delay 7 = 2.5. Note the good accuracy for € near 0. That is in
agreement with Figure 2.10. The DF estimated @g(iw) and the true Gy (iw)
are shown in Figure 2.13 for the time delay 7 = 4. It is"interesting to see
that in this case the amplitude margin is overestimated. If a controller were
constructed by use of the DF estimated Nyquist curve the resulting closed
loop system might be unstable due to this critical model error. O

EXAMPLE 2.2—Third order system

Consider the system Go(s) = 1/(s + 1)® in a relay feedback loop. DF esti-
mated points on the Nyquist curve is shown in Figure 2.14 as ’o’ on a solid
line while the true Nyquist curve is dashed and corresponding points are
marked with ’x’. (Also, there are spectral analysis estimates marked with
triangles. See the following section about spectral analysis). The relative
transfer function error |(G — G)/G| is presented together with the distortion -
D in Figure 2.15. Note that I(@ — G)/G@| is as large as 50% even though
D =~ 10%, violating Atherton’s rule of thumb. Above the break frequency
wp = 1, however, the relative error is less than 10%. O
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Figure 2.13 Consider the system Go(s) = e~%*/(s + 1). Eleven equidistant
values of ¢ in the interval given by (2.1) are chosen to generate the DF estimate

ao(iw). The resulting points are marked with 'o’ on the solid curve. The cor-
responding true Go(iw) are marked with ’x’ on the dashed curve. Note that the
amplitude margin is overestimated by the DF method! ’ /

EXAMPLE 2.3—Filtering to improve distortion D at low frequencies

In the above example the accuracy of the DF estimate Gy(iw) was more
dependent on whether w was larger than the break frequency or not, than it
was dependent on whether D was less than 10% or not. The example showed
that it is not enough to require the system to be low pass to get accurate
DF estimate. It should be low pass at the frequency w, i.e. w should not be
far below the break frequency of the system. To be able to identify points
on the Nyquist curve, Go(iw), below the break frequency, a relay experiment
can instead be performed on a compensated system, GGy, where G fis a
known low pass filter that is changing its break frequency. Use e.g. the filter

b2
Gy(s) = m

and adjust the parameter b to the limit cycle frequency w. Since the limit
cycle frequency w is unknown when the experiment starts, an initial large
value of b is chosen. Then w is measured, b updated to w, a new w is found, b
updated again, and so on. From the DF estimated filtered system GGy the
system Gy(iw) is extracted since Gf(iw) is known. The result is shown in
Figure 2.16, where the Nyquist curve is passing through the fourth quadrant.
Compare with previous figures how the DF estimation of Go(s) = 1/(s + 1)3
has improved at low frequencies! O
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Figure 2.14 The DF estimated Go (iw) marked with ’o’ on the solid curve. The
true Go(iw) = 1/(iw + 1)® marked with 'x’ on the dashed curve. Also, there are
spectral analysis estimates marked with triangles.
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Figure 2.15 The relative transfer function error |(60 (iw) — Go(iw))/Go (iw)|
(solid curve) and the distortion D{w) (dashed curve) for the third order system
Go(s) = 1/(s + 1)3. Note that the relative error is about 50% when D =~ 10%.
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Figure 2.16 When D > 10% below a break frequency wy the DF estimated 60
is inaccurate. By use of an adaptive low pass filter G4 (s) = b%/(s + b)?, the D
can be reduced to improve Gy (solid curve) at lower frequencies. The true system

is Go(s) = 1/(s + 1) (dashed curve). -

K

The examples above have illustrated the importance of the low pass con-
dition. The last example showed how the accuracy of the DF estimates can be
improved by making a system more low pass by use of a prefilter. However,
the procedure was quite awkward and was meant as an illustration rather
than a recommendation. Actually, there is no reason why only information
from the first harmonic should be used, as is the case with the DF method.
Instead, all information from the relay excitation can be used in a spectral
analysis, see Figure 2.14. Then the low pass condition is not needed anymore.

Spectral analysis

The error introduced by the DF method is caused by the approximation of
the relay output square wave as a sinusoid of the first harmonic. The only
reason to make this approximation is to be able to use the DF method which
is simple and gives insight. By proper choices of the relay gain and hysteresis
we can then scan the interesting parts of the Nyquist diagram without need
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of knowing the interesting frequency scale. However, when the introduced
error is large (large D) it is misuse to use the DF method. Instead we can
use the square wave relay output and the nonsinusoidal output from Gy to
provide a spectral analysis estimate of Go(iw). In Figure 2.14 the spectral
analysis estimate of Go(iw) is marked with triangles. The accuracy is seen by
comparing with the true Go(iw) marked with ’x’ on the dashed curve. The
Matlab identification toolbox function spa (SPectral Analysis) has been used.
This is using standard signal processing techniques to produce the estimate

of Gy(iw), see Ljung (1987) or Ljung (1988).

EXAMPLE 2.4—Another misuse of the DF method

The DF method is typically inaccurate to use below the break frequency
of low pass systems as indicated earlier. Very often the systematic error
is conservative in the sense that the stability margins are underestimated,
however, not always, as has been demonstrated. It is illustrative to show how
bad the DF results are when used on a system with poorly damped zeroes,
i.e. a system where D > 10%. The Nyquist curve of the system Go(s) =
(s240.25+1)/(0.1s+1)3 is shown in Figure 2.17. The DF estimated Nyquist
curve is marked with ’o’ on the solid curve and corresponding frequency points
for the true system are marked with ’x’ on the dashed curve. The spectral
analysis estimates are marked with triangles. '

40

30 e

20

Im
<
3/

Nox
-20 -

-30

40 i
-60 -40 <20 0 20 40 60

Re

Figure 2.17 The DF estimated Nyquist curve for the system Go(s) = (s? +
0.2s 4+ 1)/(0.1s + 1)3 is marked with '’ on the solid curve and corresponding
frequency points for the true system are marked with ’x’ on the dashed curve.
The spectral analysis estimates are marked with triangles.

27




Chapter 2 Introduction to relay feedback systems

2.3 Limit cycle periods

It has been shown that the DF method can predict limit cycle periods. The
DF predicted period T corresponds to the intersection of the presumed known
Nyquist curve Go(i@), @ = 2 /T with the line —1/Yn(A). Due to approx-
imation errors of the DF method the estimate T will deviate from the true
limit cycle period T'. Exact results about T are given here.

THEOREM 2.1—Necessary condition for symmetrical limit cycles

Assume that the relay feedback system defined in Figure 2.1 has a symmet-
rical limit cycle solution with the period T'. Let H;(z,h) and H;(z,h) be the
zero order hold sampled systems corresponding to G1(s) and sG1(s) respec-
tively, where Go(s) = G1(s) + Go(o0) and the sampling period is h = T'/2.
Then it follows

(4) [ﬁ1(—1,h)—231112°sal(5)] d<0
(u) Hl(_lah) - GO(OO) = _cil

Proof: This is a reformulation of Tsypkin’s conditions, see Arzén (1987). =

The condition (z) means that the derivative of the output should be such
that the hysteresis is passed in right direction at the switch occasion. The
condition (i7) means simply that the output is —¢ when the relay is switching
from —d to d. Since the theorem only considers conditionms for the sampled
system and is not taking into account the behaviour of the output between
samples, there are sometimes solutions to () and (i7) that are not corre-
sponding to limit cycle solutions. Extensions of the theorem to overcome
this were made in Arzén, but only for finite dimensional systems. We will
here, however, just consider the above theorem and make comparisons with
the describing function analysis. The theorem gives the ezistence of symmet-
rical limit cycle solutions and the exact period time T for such a solution (or
solutions). The following example will illustrate the correspondence between
the exact solutions, T', given by the theorem and the approximate solutions,

~

T, given by the DF method.

EXAMPLE 2.5—Limit cycle solutions where h < 1

Consider the system Go(s) = e™?/(s® + s + 1) in a relay feedback loop with
relay gain, d, and hysteresis, €. The choice €/d = 0.005 gives 5 symmetrical
solutions, h, to Theorem 2.1, see Figure 2.18. The solutions, that are num-
bered from 1 to 5 in growing frequency order, are also shown in the Nyquist
diagram in Figure 2.19 and a magnified curve in Figure 2.20. The exact
limit cycle frequencies from Figure 2.18 are marked with ’x’ on the Nyquist
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Figure 2.18 The function Hi(—1, k) (solid curve) and —e/d = —0.005 (dashed

line) and fIl(—l,h) (dotted curve) as functions of h = T/2 (half Limit cycle
period). The system is Go(s) = e~ */(s% + s +1). According to Theorem 2.1, the
condition (i) gives 5 solutions at the intersections of the solid and the dashed
curve. These solutions are marked in growing frequency order. Condition (i)
gives the sign of the relay gain d, i.e. when the dotted curve i& positive the relay
gain should be negative and vise versa. Therefore the solutions (1), (3) and (5)
correspond to d > 0 while (2) and (4) correspond to d < 0.

curve. For the choice d = 1 and ¢ = 0.005 the line —1/YxN(A) is emerging -
leftwards in the third quadrant (dashed curve) passing through the solutions
(5),(3),(1). For the choice d = —1 and € = —0.005 the line —1/YnN(4)
is emerging rightwards in the fourth quadrant (dash-dotted curve) passing
through the solutions (4) and (2). Thus, the DF method automatically gives
the signs of the relay gains. These are in well agreement with the results from
Theorem 2.1, see Figure 2.18. Notice, that the DF method actually predicts
yet another solution to the right of solution (2) in the fourth quadrant. This
should correspond to a very low frequency. However, at such a low frequency
the system is not low pass anymore and the DF method is not applicable.
The solution does not exist and the DF method fails. This is a typical ex-
ample showing that it is not enough to require Gy to be low pass. It should
be low pass at the limit cycle frequency! The true different relay feedback
systems with d,e > 0 and d,e < 0 respectively are shown in block diagrams
in Figure 2.21.

The solution (1) is predicted by the DF method to be locally stable.
Also, it is the only solution that has the half period larger than the time
delay, i.e. h = 2.6 > 7 = 1. The other cases, solutions number (2) to (5),
correspond to h < 7. This peculiar fact means that the cases (2) — (5) must
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Figure 2.19 Nyquist curve for the system Go(s) = e~ ?/(s? + s + 1) and the
line —1/Yy(A) for d = 1, € = 0.005 (dashed curve) and for d = —1, ¢ = —0.005
(dash-dotted curve). The theoretical exact limit cycle frequencies are marked
with ’x’ and numbered in growing order.
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Figure 2.20 Magnified part of Figure 2.19. Compare the DF estimated fre-
quencies, marked with ’x’ and numbered in growing order.
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Figure 2.21 Block diagram of example 1.4 showing relay gain and hysteresis
both being a) positive (d, e > 0) and b) negative (d,= < 0).

be initialized with a time history, y(t), t € {—7, 0} that passes the hysteresis.
The definition of y is shown in Figure 2.21. It is illustrated in Figure 2.22
how y(t) is passing the negative hysteresis at { = —7 and t = A — 7 in order
to start up the infinite dimensional relay feedback system near the limit cycle
solution number (2) (d = —1, ¢ = —0.005). Compare Flgure 2.22 to Figure
2.21b to easier realize the behavmur of the negative d and €.

The solution number (3) is easy to initialize. The reason is since T = 7
the corresponding finite dimensional system without the time delay will have
the samelimit cycle solution. Therefore choose d = 1, € = 0.005, and simulate
the system from ¢ = —7 to ¢ = 0 without the time delay, such that y(t)
passes the hysteresis three times; at t = —7 = —2h,t = h— 7 = —h and
at t = 2h — 7 = 0. Then introduce the time delay 7 = 1 and the solution
number (3) is started up in the limit cycle, see Figure 2.23. Compare Figure
2.23 to Figure 2.21a to confirm the behaviour for positive d and . O

EXAMPLE 2.6—Solutions that are not limit cycles

Not all solutions given by Theorem 2.1 correspond to relay feedback solutions.
The relay should switch the first time the hysteresis is passed correctly. This
condition is not covered by the conditions (z) and (i¢) in Theorem 2.1. To
clarify the situation the Figure 2.18 is replotted for larger h in Figure 2.24.
Here, —¢/d = —1 (dashed curve) indicates a lot of possible solutions, h.
However, only two of them correspond to relay feedback solutions. To realize
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Figure 2.22 Start up of the limit cycle solution number (2) having h = (T/2) =
0.91. The solution corresponds to negative relay gain, d = —1, and negative relay

hysteresis, ¢ = —0.005. Above is the relay output u and below are y and z shown.
These are defined in Figure 2.21b. ,
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Figure 2.28 Start up of the limit cycle number (3) having h = (T/2) = 7/2 =
0.5. The solution corresponds to positive relay gain and positive relay hysteresis,
here chosen as d = 1 and € = 0.005 such that —e/d = —0.005.
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-14
0

Figure 2.24 The function H;(—1, k) (solid curve), the line —e/d = —1 (dashed
line) and I?l(—l,h) (dotted curve) for the system Go(s) = e~ */(s? + s + 1).
Intersections between the solid curve and the dashed line indicate limit cycle
solutions according to Theorem 2.1. However, only two of them are relay feedback
solutions: The one with h = 3.5 corresponds to d = 1, € = 1 and the second with
h = 7 corresponds to d = —1, ¢ = —1. All the other solutions are not relay
feedback solutions.

that, the solutions for the first three intersections are shown. Square waves
with periods corresponding to the solutions are used as inputs to the system
Go = e7*/(s® + s + 1). By investigating the outputs and comparing with
the behaviour of a relay with hysteresis we can conclude which solutions that
could have been generated by a relay in a feedback loop. The one with h = 3.5
is shown in Figure 2.25. From the definition of the relay it is concluded that
d =1and e = 1. The next solution with A = 7 is shown in Figure 2.26. From
the definition of the relay it is concluded that d = —1 and € = —1. The third
solution with A = 10.5 is shown in Figure 2.27. From the definition of the
relay this can’t be a relay feedback solution. The hysteresis is passed once
before the input is switching. Thus, the input couldn’t have been generated
by a relay feedback. O

2.4 Conclusions

The describing function analysis (DF) is often used for relay feedback sys-
tems. The strength of it is, no doubt, its simplicity but also the intuition and
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Figure 2.26 A square wave input (solid curve) to the system Go(s) = e~*/(s?+

s+1) and the output z (dashed curve) when the period is chosen to be T' = (2h)
14. From the definition of a relay this could have been generated with a relay

feedback with d = —1 and e = —1.
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Figure 2.27 A square wave input (solid curve) to the system Go(s) = e~*/(s?+
s+1) and the output z (dashed curve) when the period is chosen to be T = (2k) =

21. From the definition of a relay this could not have been generated by a relay
feedback.

insight it can give. For a large number of plants the relay feedback causes
oscillation into a limit cycle. The excitation at the limit cycle frequency,
w, gives information about the transfer function Go(iw). If Gy is low pass
enough above w the DF method can be used accurately. Then the output can
be approximated by a sinusoid with the frequency w. All higher harmonics
can be neglected. Distortion, D, is a common measure of how well a function
is approximated by a sinusoid. It is, however, a very crude measure and can
give rise to misleading judgements, as has been demonstrated with examples.

Often, the relay hysteresis is defined to be positive. But it is also possible
to generalize the definition and have a negative hysteresis. However, this is
not straightforward since we then have to demand that the relay input must
have been outside the hysteresis band before a switch can occur.

Actually, there is no reason why only information from the first harmonic
should be used, as is the case with the DF method. Instead, all information
from the relay excitation can be used in a spectral analysis. Then the low
pass condition is not needed anymore.

The DF method can be used to predict the limit cycle frequency given
relay characteristics, gain d and hysteresis €. This is done by investigating the
Nyquist curve. The method is simple and appealing, and is therefore often
used as a first approach. Exact results are also available, but they require
more elaborate calculations.
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A relay with
adaptive hysteresis

Simple tuning rules for simple controllers have always been an interesting
topic for control engineers. The tuning rules use data from an experiment
that reveals some basic characteristics of the system. It could be a step re-
sponse experiment or a frequency domain experiment like the Ziegler-Nichols
ultimate-sensitivity method. For controller design purposes it is of special
interest to know the system behaviour around the phase shift —180°. In the
ultimate-sensitivity method the transfer function is identified at the phase
shift of —180° by tuning of a P-regulator to its stability boundary. The same
phase shift is obtained when instead a relay feedback system is used, as de-
scribed in Astrém-Hagglund (1984). The system is forced into a limit cycle
with the prescribed phase shift. The relay feedback system makes a self-
generated experiment and is therefore suitable for autotuning purposes. It is
of interest to make similar experiments for determination of points where the
phase shift of the plant is specified at other values than —180°. This chap-
ter will describe a nonlinearity which allows this. When describing function
analysis is applicable the nonlinearity can be used to perform phase analysis
experiment. Apart from applications to autotuning the result is also useful -
for other problems like in expert control (Astrém-Anton (1984)) when it is
of interest to explore the properties of the open loop transfer function of a
system.
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Figure 3.1 Desired negative inverse describing function
3.1 The basic idea

The key problem is to construct a nonlinear system such that the negative
inverse describing function, —1/¥n(4), is a straight line segment through
the origin, as shown in Figure 3.1. Consider the relay with gain, d, and
hysteresis, €. In that case we have Tt

1 A €y ,. €
_T(A):_H[Vl_(z) +"Z]

This is defining a horizontal line in the complex plane, with constant imag-
inary part. We would instead like to have a constant phase. Thus, if we let
the hysteresis vary proportional to the amplitude with

e =sin(p) - A (3.1)
we would get
1 T4
—_—_ = ——e
Yn(A) 4d

which gives a constant phase lag

N ( 1 ) -+ d>0
arg(————=) =
8 Yn(4) ¢ d<0

By choosing the parameters ¢ and d properly we get a DF estimation G (w) =
—1/Yn(A) with the prescribed phase shift. To maintain the relation (3.1)
it is necessary to change the hysteresis as a function of the amplitude by
some feedback mechanism. Instead of scanning in frequency and measure
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amplitude and phase shift like the usual frequency analysis experiment we
are able to scan in phase shift and instead measure amplitude and frequency.
The identification results should be the same irrespective of what method
we choose; frequency analysis or phase analysis experiments. Conditioned,
of course, that describing function analysis is appropriate, i.e. the system
is low pass enough at the limit cycle frequency. To make frequency analysis
an external sinusoidal signal has to be generated. That is not needed when
using the relay excitation. The most important reason for using the phase
analyzer is that we don’t need to know the interesting frequency range. On
the other hand, we know the interesting phase range for controller design
purposes. To get a robust control design we would like to know the system
around the phase —180°. Moreover, several points on the Nyquist curve can
be identified for different phases to be used in more advanced design schemes
in the frequency domain, see Lilja (1989).

3.2 Automatic tuning

The relay with phase adaptive hysteresis makes it possible to identify a system
at a certain phase without knowing the corresponding frequency beforehand.
This is an interesting feature especially in autotuning applications where it
is of interest to find out the system Nyquist curve in the neighbourhood of
—1. The implementation of the relay with phase adaptive hysteresis will be
shown later. First, an example will show the use of the phase analyzer.

ExXAMPLE 3.1—Eight order low pass system

To show the behaviour of the adaptive hysteresis relay feedback system,
the low pass system G(s) = 1/(s + 1)% will be investigated. Assume the
DF interpretation to be valid at the resulting limit cycle frequencies. The
parameter choice ¢ = 45, d = 1 would then correspond to the phase lag
arg(G(iw)) = —3w /4. We would therefore expect to get the limit cycle fre-
quency @ = tan(3T-1),ie T ~ 21, and an amplitude |G(iw)|4d/m ~ 0.89. A
simulation of the system with the phase adaptive hysteresis is shown in Figure
3.2. The experiment gives a period T =~ 21 and an amplitude 4 ~ 0.89. No-
tice, the fast convergence to the limit cycle. The parameter choice ¢ = —45,
d = 1 would correspond to the phase lag arg(G(i@)) = —57/4. We would
therefore expect to get the limit cycle frequency & = tan(=f 2. 1 ,1.e T ~ 11. 8,
and an amplitude |G(zw)]4d/ m &~ 0.47. A simulation of the system with the
phase adaptive hysteresis is shown in Figure 3.3. The experiment gives a
period T' =~ 11.8 and an amplitude 4 =~ 0.47. The DF estimated G’(zw) for
the two chosen phases —37/4 and —57/4 are shown in the Nyquist diagram
in Figure 3.4. The gain function is calculated as |G(iw)| = Aw/(4d) where A
is the measured amplitude.
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Figure 3.2 The relay output, u (solid), the output y (dashed) and the adaptive
hysteresis proportional to the amplitude, i.e. ¢ = sin(p)A (dotted). With the
parameter choice ¢ = 45, d = 1 it is expected a phase lag of

arg(G(iw)) = —%1, ie. T = 21, and an amplitude |G(iw)|4d/m ~ 0.89. The
experiment gives a period T = 21 and an amplitude A = 0.89.

/

3.3 Indication of nonlinearities

If a system Gy is low pass enough for DF analysis the two identification meth-
ods: frequency response analysis and phase analysis (by the relay) should give
the same result. On the other hand, if Gy includes a nonlinearity there is no
reason to expect the results to be the same since the excitations are made
by different signals; sinusoidals and square waves respectively. The difference
from the two experiments contains information that might be used for iden-
tification of the nonlinearity. One example is a backlash at the input. When
generating a Bode diagram from a frequency analysis experiment both the
gain curve and the phase curve will be changed by the backlash nonlinearity.
Corresponding phase curve from a phase analysis experiment, however, will
be unaffected by the backlash. The reason is that the combined effect of a
relay and a backlash in series is simply another relay with different gain but
with the same hysteresis. Since it is the hysteresis alone that tunes for the -
desired phase lag, the Bode phase curve will be the same irrespective of any
backlash at the input. Figure 3.5 illustrates the combined effect of a relay
and backlash in series. The relay output is either € = d or ¢ = —d. Then
if b < d the output from the backlash is y = a(d — b) or y = —a(d — b)
respectively. Hence, the combined effect of the relay and backlash in series is
the behaviour of a relay with the same hysteresis, €, but with another relay
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0.5+

Figure 3.3 The relay output, u (solid), the output y (dashed) and the adaptive
hysteresis proportional to the amplitude, i.e. £ = sin(¢)A. With the parameter
choice ¢ = —45, d = 1 it is expected a phase lag of

arg(G(iw)) = 3%, ie. T ~ 11.8 and an amplitude |G(iw)ldd/m =~ 0.47. The
experiment gives a period 7" =~ 11.8 and an amplitude A = 0.47. ’

0.4

-0.5 0 0.5 1

Figure 3.4 The DF estimated 6(iw) for the two chosen phases —3w/4 and
—57/4 for the system G(s) = 1/(s + 1)8. To get the prescribed phase lag the
parameter choice was ¢ = 45° and ¢ = —45° respectively (d = 1).
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3.8 Indication of nonlinearities

relay backlash y;=a(x-b)

.-‘-.,_“ q bj/y_ ' y_=a(x+b)
e ."-..‘ X | — ‘/r,)l-l'
s b X

1 e //1/

relay ;
g /o d=ad-b)

Figure 3.5 The combined effect of a relay and a backlash in series is simply
another relay with different gain but with the same hysteresis.

gain, d = a(d — b). A phase analysis experiment would therefore give the
right Bode phase curve, while the Bode gain curve would have a systematic
error _
— wA d
Go(tw)| = — = |Go(w)| -+ =
Gaiw) = T4 = ea(iw)] - & |
The differences of the results from a phase analysis experfmént compared to
a frequency analysis experiment could therefore signal for presence of certain
nonlinearities. The intention here is not to show how the phase analyzer
should be used but rather to illustrate that it might be useful at least as an
indicator for simple nonlinearities.

-

3.4 Implementation

A relay with hysteresis is not a memoryless static nonlinearity. Because of
the hysteresis, it requires a memory—a state. When we now introduce dy-
namics by letting the hysteresis to be varying we can still use describing -
function interpretation if just the updating of € occurs in a slower time scale
than everything else. A simple way to do this is to use a peak detection
as an estimate of the approximate sinusoidal amplitude A. When starting
the relay with e = 0 the amplitude detections will adjust ¢ twice a period
until ¢ = sin(yp) - A. Peak detection for finding the amplitude A may be
inappropriate if there is measurement noise. In a practical situation more
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Chapter 8 A relay with adaptive hysteresis

DISCRETE SYSTEM RELAY
INPUT e

OUTPUT u

STATE eold wold A
NEW neold nuold ni
TIME t

TSAMP ts

initial
uold = d
sort

neold
nuold
WasUp
GoUpP

e

u

sign(uold=d)

e>eps or (WasUp and e>-eps)

GoUpN = ed>-eps or (ed>eps and edeold)
GoUp if phi>0 then GoUpP else GoUpN
u if GoUp then d else -d
nk = max(A,abs(e)) "Peak detection
eps = sin(phi*3.1415/180)*A "adaptive hysteresis
ts =t + dt
gk

phi :45 "angle from real axis (in degrees)

d :1 'relay gain

dt :.01 "relay sampling period

END

Listing 3.1 A simnon implementation of a relay with adaptive hysteresis .

elaborate schemes than a simple peak detection might be used. Ones sug-
gestion is to use correlation techniques similar to what is used in frequency
analysis experiments. The intention here, however, is to show ideas rather
than practical algorithms. Therefore, for simplicity, the peak detection will
be used. A simple Simnon implementation of such a relay is given in Listing

3.1.

3.5 Conclusions

A relay with hysteresis has a negative inverse describing function, —1/Yn(4),
that is a segment of a horizontal line in the complex plane. The new idea here,
is to let the hysteresis vary proportional to the signal amplitude A. Then, the
negative inverse describing function instead becomes a segment of a straight
line through the origin, with a slope that depends on the proportionality con-
stant. This feature is useful for autotuning and for exploring of the Nyquist
curve of a system. When a system is connected to the relay with adaptive
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3.5 Conclusions

hysteresis in a feedback loop, a prespecified phase shift could be chosen to
get a specific crossing with the Nyquist curve. Valuable information of the
system is then received from a stable limit cycle.

The idea assumes and is dependent on the validity of describing function
analysis. This restricts the use of the relay feedback system to processes
having low pass behaviour around the chosen phase shift. When this is
the case, the relay with adaptive hysteresis can act as a phase analyzer by
scanning in phase rather than in frequency as is the case in usual frequency
analysis experiments. If the results from the phase analyzer differs from that
by the frequency analyzer this could indicate presence of nonlinearities, e.g.
an input backlash.

4
Lo
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First order systems with
a time delay

g e

In chapter 2, limit cycles were analyzed using describing function analysis.
The approximate analysis gave an indication of stability and existence of
a limit cycle. The quality of the results depend on the validity of the ap-
proximate analysis. For example, a first order system, was not suitable for
describing function analysis, the reason being that higher harmonics are not
sufficiently attenuated. That case will therefore be investigated thoroughly
here. Conditions for convergence to different types of limit cycles will be given
for relay feedback of a general first order system with a time delay. The sys-
tem can be stable as well as unstable and it may include a direct term. A first
order system with direct term can be thought of as being an approximation
of a second order system with one fast and one slow mode. Due to the direct
term and the time delay the feedback system can have different types of limit
cycles with different stability properties. Also, asymmetrical limit cycles are
found. Notice, that such limit cycles cannot be predicted by Theorem 2.1.

4.1 Introduction

Consider the first order system with direct term

b
s+a

G’(s) = bo + (41)
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4.1 Introduction

relay time delay

e 6 P o T

-1

Figure 4.1 Relay feedback of a system with time delay

in series with a time delay 7 in a relay feedback loop with relay amplitude
d and hysteresis ¢, as shown in Figure 4.1. Because of the time delay the
system is infinite dimensional. This means in particular that it is possible to
find infinitely many limit cycle solutions when € = 0 as has been shown in
Chapter 2. Most of these, however, have periods shorter than the time delay.
Typically, these can be started up by letting y(t) pass the hysteresis a number
of times during a time equal to the time delay before the relay is connected.
Relay switchings can in this way be accumulated. Such startups where shown
in Example 2.4 in Figure 2.21 and Figure 2.22. Such solutions will not be
considered in the following. Instead we will consider a more practical startup
situation with no accumulated switchings at the time when the loop is closed.
The relay is introduced at time ¢ = 0+ with a switch from —d to d. This
first switch is deliberately made by us at the time instant when we close the
loop. All following switches are then caused by the feedback system itself
and not by any accumulation of switchings constructed before the loop was
closed. The history, y(t), t € [—7,0—], can be regarded as the initial state of
the system. The considered startup situation is the following constraints.

y(t) <e, —7<t<0-
w(0-) = —d (4.2)
u(04+)=d

When the startup (4.2) is satisfied there are still a number of different kinds
of behaviours of the feedback system to be considered. This is illustrated
in Figure 4.2. Due to the direct term different types of relay switches may
occur depending on how y is passing the hysteresis: One where y passes
the hysteresis continuously, a C-switch, and another one where y passes the
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Figure 4.2 Definition of different kinds of relay switches. The Figures a) — c)
show examples of the considered case where the initial condition (4.2) is satisfied
while Figure d) does not satisfy (4.2). Suppose (4.2) is satisfied. Then a switch is
a C-switch if y does not pass the hysteresis discontinuously and if y is passing the
hysteresis continuously after the switch. The continuous pass is indicated by C
and if the i : th switch is a C-switch this is marked as C;. Typical C-switches are
shown in Figure a) and the second switch in Figure b). In a D-switch, y instead
passes the hysteresis boundary discontinuously. Note that we still assume that
(4.2) is satisfied. In Figure b) the first and the third switch are D-switches. In
Figure c) the first switch is a D-switch. When the second switch occurs in Figure
¢) the corresponding hysteresis boundary has already been passed, i.e. a new
switch is accumulated. A switch that has accumulated new switches like this is a
C*-switch. Notice that y passes the hysteresis continuously before a C*-switch
while it passes the hysteresis continuously after a C-switch. Notice also that the
time to the switch after passing the hysteresis is equal to 7. This means that the
time between C-switches is > 7, while it is < 7 between C*-switches and = 7
between D-switches.
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hysteresis discontinuously, a D-switch. Then there are yet another continuous
switch, a C*-switch. This is shown in Figure 4.2c and can occur after starting
with a D switch. A C*-switch is defined by the fact that y has already passed
the hysteresis and accumulated a switch when the C*-switch comes. The time
to the next switch after passing the hysteresis is always 7. Therefore, the
time from the C*-switch to the following switch becomes less than 7. This
is contrary to a C-switch which has no accumulated switchings. First some
time is required to reach the hysteresis and then after time 7 the following
switch will occur. Consequently, the following switch after a C-switch would
occur after a time that is longer than the time delay, see Figure 4.2a. Like
C-switchings, D-switchings do not have any accumulated switchings. The
time to the following switch after a D-switch is therefore equal to 7.

If the condition y(0+) < € is added to the startup conditions (4.2) (i.e
the first switch is not a D-switch), then C*-switches are not possible. It will
be shown that only C-limit cycles, D-limit cycles and mixtures of these, CD-
limit cycles are possible. Also, it will be shown that in the mixed case the
only possible limit cycle is when the relay switches twice each limit cycle, like
(CD)(CD)(CD).... For example, switches of the type (CDD)(CDD)...
are not possible. Necessary and sufficient conditions for each of the three
possible cases will be given. /

However, if y(0+) > €, then the first switch is a D-switch. From such a
startup limit cycles that involve C*-switches are also possible. The C*-limit
cycles differs from the C-limit cycles in that the half switch period h is less
than the time delay 7. Also they differ in terms of stability. It will also be
demonstrated that there are stable asymmetrical C*D-limit cycles. These
also have different stability properties than the CD-limit cycles. Depending
on the initial state z(0) one system can reach different types of limit cycles.

Notations and definitions

Split up u(t) and y(t) into segments between consecutive switchings ¢; and
t;+1. Let h; = t;41 — t; be the switch time period and define

A1) = y(t + t;
{y() y(t + ) 0+ <t<h

uit) = (~1)"d

This is illustrated in Figure 4.3. Notice that y;(¢) is defined as being contin-
uous from the right. This is emphasized by denoting y;(0) as y;(0+). The
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e C _— Yi(hi)=Vi+{(°-) € ] yi(hi)=yi+1(o_)
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hI tis tis
y.(0+4) I
= ~y.(0-) ¢~~~y ~—1P
Ci Di D i+2
u(t) u(t)
Ui Ui
d+ ~dt
ti h; i ti hi=t rti+1
—d d '
Ujp1 Uis1
Figure 4.8 Tllustrations of the notations, indexed by 1. Above, y, and below,
corresponding relay output, u. To the left, C-switches are shown \ybgn using both
positive hysteresis and relay gain, €,d > 0. To the right, D-switches are shown
when using both negative hysteresis and relay gain, ¢, d <0, '
limit of y;(t) as t — h; is denoted yi(h;) = ¥i+1(0—). We have
yi(t) = (——1)‘—1b0d+ zi(t) ; 0+ <t < hy
b
e % (0) + —(1— e ®u;  a#0 (4.3)
a .

.’l:i(t) =
:l:i(O) + bitu; a=20

where x;(t) is the state. Sometimes the shorter notation is preferred

zi(t) = ®(t)z:(0) + I'(¢)us

where
(L-eofa  a#0
blt a=20

d(t)=e* and T(t)= {
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Also, when ¢t = 7 the notation ® and I'" will be used for brevity. Notice,
that the direct term makes y(t) discontinuous such that y;(h;) = yi+1(0-) #
¥i+1(04+). In fact,

yi(0+) = :(0-) +2(-1)""1bed  i>1

However, the state z(t) is continuous, i.e. z;(h;) = 2;4+1(0). The conditions
for the i:th switch to be a C- and a D-switch, are written for brevity C; and
D; respectively. The definition for C; is

DEeFINITION 4.1—C;

a) y has not passed the considered hysteresis boundary during a passed
time length of 7 before the switch.

b) vy does not pass the considered hysteresis boundary within a time length
of h; — 7 after the switch, where h; > 7.

¢) y passes the hysteresis boundary after the time h; — 7. O

A formal definition is given below, clarifying the meaning of passing the
hysteresis boundary. g

DEFINITION 4.1°

a) No point t € (t; — 7,t;) where

200 > 0
(1)) =

b) No point t € (0,h; —7), h; > 7 where

21 () > 0
(-1 'w(t) =

c¢) Passing of the hysteresis boundary

d .
a(—l)z lyi(hi — ‘T') >0
(1) 'yi(hi—T) =€, hi>T
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The definition for D; is

DEFINITION 4.2—D;

a) y has not passed the considered hysteresis boundary during a passed
time length of T before the switch.

b) y passes the hysteresis boundary discontinuously - O
A formal definition is

DEFINITION 4.2’

a) No point t € (t; — 7,t;) where

2 (1) 7y(0) > 0

(D) y(t) =¢
b) Discontinuous passing
(1) (0-) <e < (=1)7 ui(0)

a

Notice, that in both cases, C; and D;, the hysteresis is passed which
guarantees a switch after the time h;. In case of C;, then h; > 7, and in.case
of D;, then h; = 7 (cf. Figure 4.2b). The C*-switch described in Figure 4.2¢

is defined as

DEFINITION 4.3—C*
A C*-switch is a switch that does not satisfy the condition a) in the definition
of a C- or D-switch. O

Violation of the condition a) means that the hysteresis boundary has
already been passed, i.e. a switch has been accumulated. The following
switch will therefore be within less than the time delay, h; < 7, as was shown
in Figure 4.2c.

4.2 C-limit cycles

A C-limit cycle is defined as
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4.2 C-limit cycles

DEFINITION 4.4—C-limit cycle
A C-limit cycle is a limit cycle consisting of an infinite sequence of C-
switchings. O
Conditions that guarantee that a C-limit cycle is reached will be given.
The conditions will be expressed in the system parameters. Also, the influ-
ence from the initial state, z(0), will be investigated. It will be shown that
z(0) must lie in certain intervals in order to reach a C-limit cycle. To simplify
the analysis the conditions in the definition of C; will be reformulated, taking
into account that we are dealing with a first order system. The conditions to
be considered are given in the lemma below.

LEMMA 4.1

Consider the first order system (4.1) in the relay feedback loop as in Figure
4.1, and suppose the condition a) of the definition of C; is satisfied. Then all
conditions for C; are satisfied if and only if

—1)t (04) <e
(=1 1y( ) (4.4)
(-1)yi(hi—T1)=¢, hi>T
Proof: After the switch at time ¢; the relay output is constant when ¢ €
(0,h;). Therefore, y;(t), t € (0,h;) will be strictly monotone. The mono-
tonicity of y;(t), t € (0, h;) together with the conditions b) and c) give

d )

a(»l)’_ly;(t) >0 te (0,h; — 7]

(1) lyi(hs — 1) =¢ hi>T A
The same conditions are derived from the monotonicity together With (4.4).
The equivalence is therefore established. ]
LEMMA 4.2

The state z;(0) at time ¢; is uniquely specified if the previous switch was
Ci1. Itis

b b
2:(0) = {= + e_‘"(s —bo — = )}uics a#0
={§—bo+b17}ui—1 a=10

Uj—1 = (—“1)1(1
Proof: At the continuous pass after the C;_; switch we have

Yi1(hi-1 —7) = (=1)’€
Uj—1 = (—-l)id
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The state is then

zi—l(hi—l — T) = (—1)i6 - bo’lLi_1 = (E/d — bo)u,'_l

Hence
z;(0) = ®z;—1(hi—1 — 7) + Tui—y =
b —ars€ b ’
=‘-{;1+6 (c—l“bo—;l)}ui—l a#0
={§_b0+b17}ui—1 a=0
-]
Remark. By using the notation
T _ bud tanh(ﬂ) a#0
X = —T—Ed = Ta 2 (4.5)
+ — Zbyd a=0

the state can be expressed as
(_1)1.:”1(0) = _e—a"r(x + bod - 6) - _X:« ”

This will be useful later when it is shown that the sign of x + byd —¢is
important. O

Lemma 4.2 shows a fundamental property of a C-switch when dealing
with first order systems. This has many implications, one of which is given
below. :

LEMMA 4.3
Suppose there are two consecutive C-switchings, C; and Cj4;. Then the
system has reached a C-limit cycle. The limit cycle is defined by

(—1)zi(hjy1 —7) = (=1)z;(h; —7) =bod —&, Vi>j

and the limit cycle period, T, is unique and defined by

1 2b1/d —ar
T+Eh‘{bo+bl/a_e/d_e } a0

£ — bod
bid

T/2=hj1 = (4.6)

27+ 2

a=0

Proof: When passing the hysteresis boundary after the C-switchings the
corresponding states are, according to Lemma 4.1,

(—1Yzj(hj — ) = (1) @jp1(hjy1 —T) =bod — €, hj hjy1 > 7
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Then the next initial state, z;45(0), satisfies

(—1)*?212(0) = (=1) 241 (hj41) =
= (~1)**[@2j41(hjt1 — 7) + Tujpa] =
= (—1)*[®2;(hj — ) + Tuy] = (~1)"*a;(h;) =
= (=1)"*'2j11(0)

Since (—1)*?uji2 = (—1)*lujy; and (=1)7+%2;12(0) = (=17 2;41(0)
this implies that

(1) 2zj42(hjp1 — 7) = (1) 2jp1(hjyr —7) = bod — ¢

i.e. the (j+2):th switch is also a C-switch and hj42 = hj41. The limit cycle is
reached. The half period hj;1 can be calculated from (—1)7y;11(hj41—7) =€
after rewriting (4.3) as

(=1Yyj(t) = { = (bo +b1/a)d — [(-1)" 2;11(0) + brd/ale™  a#0

=bod—(—l)j+1(cj+1(0)+bld't a=10
This gives | /
1)+, ,(0) + bad
-r+11n(( (2 ;;’J;l()d)i“ a#0
a a)d —
hjy1 = P A

1 ; '
i bl—d((_l):’-i_lmj‘f‘l(o) +e—bed) a=0]

Then use Lemma 4.2 to express (—1)"+1z;1(0) into system parameters, and
(4.6) follows. .

Remark. Notice that the lemma shows that if there are two consecutive C-
switchings the C-limit cycle is reached already when passing the hysteresis
boundary after the first C-switch. On the other hand, one C-switch is not
enough to conclude that there will be another one. O

We will now consider conditions for two consecutive C-switchings which
according to the above lemma gives a C-limit cycle. It is convenient to °
reformulate the conditions on y;(t) into equivalent conditions on z;(0) and
system parameters. This can be done after rewriting (4.3) as

lbo + by ald — [(~1)'2:(0) + 22e=t a0

(1) w(t) = { _
bod — (—1)iz;(0) + byd -t a=0
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Later, Lemma 4.2 can be used to express also (—1)*z;(0) into system param-
eters. Assume that condition a) of the definition of C; is satisfied. Then the
conditions for the following switch to be C; are, according to Lemma 4.1,

(1 24(0) + 22 < e [bo + b fald |
brd =70
C(=1)zi(0) + & e~ — ¢ _[by + by /ald, hi>T

{%d-pJme)<e
bod — (—l)imi(O) + bld(hl - ‘7’) =g, hi>T

If a > 0, these conditions can hold if and only if
p bid
—K—Dmd®+~;ﬁ<e—{%+bd4d<o

or rewritten

(4.7)

/

[bo +b1/a]d—g >0
(_1)1:0"(0) > bOd — € "’%;;:/",4-

The first condition means that the stationary gain must be sufficiently large
to be able to pass the hysteresis boundary, i.e. G(0)d > e. The second
condition rules out a D-switch. When e < 0, we get instead the conditions

A

0<—K—n%4m+§§]<e~wr+hmu

or rewritten
Again, the left condition is the one that rules out a D-switch. The right
inequality guarantees that the hysteresis boundary is passed. When a = 0,

the conditions are equivalent to

{vJYmm>>md—e (49)

bid >0

Lemma 4.1 can now be reformulated into conditions on system parameters
by expressing (—1)*z;(0) according to Lemma 4.2.
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4.2 C-limit cycles

LEMMA 4.4
If C;_; then C; if and only if

bd 1 a>0
X b0d< !

Tal |2¢°7 —1 a<0 (4.10)
X<€—bod, biyd> 0 a=20

where x is defined in (4.5).

Proof: Using the expression for z;(0) from Remark in Lemma 4.2, the con-

dition (—1)*z;(0) > bod — € in (4.7), (4.8) and (4.9) becomes

(—1)*z;(0) = —e™®"[x + bod — €] — x > bod —
=4 X+b0d—€ < 0

which is the left inequality in (4.10). The conditions in (4.9) for the case
a = 0 are now completely expressed in system parameters in (4.10). The
first condition in (4.7), bod + b1d/a — € > 0, gives the right inequality of
(4.10) for the case @ > 0. When a < 0, Lemma 4.2 is used in the condition
(—1)*z;(0) < —b1d/a from (4.8). This gives /

i _ 61 — bid bid
(—1) :c,(O) = (6 - bod- -—‘;-) < “"‘z—
=4 g — bod < —7(26‘” — 1) -
which is the right inequality for the case a < 0. m
Remark. One can prove that (4.10) implies that b;d > 0. O

THEOREM 4.1

There exist initial conditions such that the relay feedback system (4.1) in
Figure 4.1 enters a C-limit cycle, if and only if (4.10) is true. The period of
the limit cycle, T, is unique and given by (4.6).

Proof: The fact that a C-limit cycle implies (4.10) follows directly from
Lemma 4.4. The other direction, that (4.10) implies a C-limit cycle follows
from Lemma 4.3 and Lemma 4.4, if initial conditions can be chosen such
that the initial switch is C;. Thus, it remains to find uo(t), yo(t), t € (—7,0)
such that when the relay is connected at ¢ = 0, with u; = d, there will be
a C-switch. Choose ug(t) such that startup (4.2) is satisfied and such that
—21(0) = —®[x + bod — €] — x as in Lemma 4.2. Then the system is started
up at the limit cycle solution. Finally, the period time T follows from Lemma

4.3. B
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4.3 D-limit cycles

second switch is a D-switch according to Lemma 4.6. Continuing like this
gives successively that (—1)*z;(0) = —x, i.e. a D-limit cycle. The questions
about the stability follow from Lemma 4.6 and the period was given in Lemma

4.5. ]

Remark. It is not possible to have both a C-limit cycle and a D-limit cycle
for the same system. O

It follows from Lemma 4.7 that the D-limit cycle is stable when a > 0.
In order to find the initial conditions that will lead to the D-limit cycle a
couple of lemmas will first be stated.

LEMMA 4.8
Suppose a > 0 and that there is a switch C; or D; followed by D;;;. Then
all following switchings are D-switchings, D; Vi > j + 1.

Proof: 1If the j:th switch is a D-switch the next state is
zj+1(0) = z;(7) = ®2;(0) + T'u;
This can be written as
(~1)7*12141(0) = ~&(~1)z;(0) + Td= /
= —@[x +(~1)2;(0)] - x

But also the (5 +1):th switch is a D-switch. Therefore, the (5 + 2):th switch

satisfies ' . .
(1Y *2542(0) = (—2)*[x + (~1)=;(0)] — x
It now remains to show that this switch is D 5. If that is the case, we then

have another two consecutive D-switchings, D;+1Dj42, which in the same
way imply Dj13, and so on. The fact D;D;4; implies by Lemma 4.6 that

x + (=1)'2;(0)
— ®[x + (~1)2;(0)]

D;

x —bod —e <
Dj1 ’ {

} <x+bd—c (4.13)

But (—1)7*2z;42(0) + x satisfies

(=1 22;12(0) + x = (—@)*[x + (1) 2;(0)]
>{ X+ (—1)z;(0) when x+ (—1)7z;(0) <0
~ =®x + (-1)2;(0)] when x+(—1)’z;(0) >0
{—<I>[x+(——1)jwj(0)] when x +(-1)’z;(0) <0

<
N x + (=1)7z;(0) when x+ (—1)j:t:j(0) >0
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Chapter { First order systems with a time delay

Remark. For every first order system with a time delay there are € and d
such that the relay feedback system will have a C-limit cycle. O

Remark. In the stable case when 7 = 0 and ¢ = 0 the conditions in the
theorem implies that G(s) must be nonminimum phase. O

The startup (4.2) makes all future switching conditions dependent only
on (0). It now remains to investigate under what initials z(0) the feedback
system will enter a C-limit cycle. One possible startup has already been
shown in the proof of Theorem 4.1. It is shown in the following theorem that

there are only two ways to enter a C-limit cycle, either from C;C;... or
from D;C,....

THEOREM 4.2
Suppose (4.10) is satisfied and that the startup is according to (4.2). Then

( IIC & G106,
IS & DiCyCs...
z1(0) € ﬁ IS & unstable stationarity
I & divergence g,
¥l ¢ & Ddivergence /
When a > 0 the intervals are
If’ = (—00,6 - bod) PN )

IS = [e — bod, € + bod)

18,17,1I5 =0

and when a < 0 the intervals are

( bid
I? = (& —bod)
C : bld arT
Iy =e— bod,mm{—m(% —1), €+ bod})
bid bid b1 d
c_)Jnt = ar _ oz aT. _.
Iy = { o' Td (2e 1)} when o] (2e 1) < e+ bod
bid bid
I¢ = {—L} when -——(2€°" —1) > ¢+ bod
a la|
b1 d
ey
b,d
IC = (-2-(2e%" — 1),e + bod
k 5 ( |a‘ ( ) 0 )
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4.2 C-limit cycles

Proof: The startup (4.2) implies that Lemma 4.1 is applicable, which gives
the conditions (4.7), (4.8) and (4.9) for the cases @ > 0, a < 0 and a = 0
respectively. The condition (4.10) implies, by Lemma 4.3 and Lemma 4.4,
that once there is a C-switch a C-limit cycle is reached. Since (4.10) is
assumed, the system parameter constraints of the conditions (4.7)-(4.9) are
satisfied. The remaining part is the dependence on the initial state. The
conditions (4.7), (4.8) and (4.9) gives

C - (0) ¢ (—o00,& — bod) a>0
! 1 (bid/a,e —bod) @ <0

But one C-switch implies by Lemma 4.3 and Lemma 4.4 that a C-limit cycle
is reached, i.e.

o (—o00,e — bod) a>0
VUl (hid/a,e—bed)  a< 0

On the other hand, if the first switch is Dy, then y(0—) < € < y(0+), i.e.

D1 =2 331(0) & [€—b0d,€+b0d)
and then z,(0) = ®2:(0) + I'd = —®(x — z1(0)) — x. UWhen a > 0, the
conditions (4.7) and (4.9) give

02 L= X+¢~1[X+bod—€] < :cl(O)

.
o

Thus, the conditions for D, C, are

D, —[x+bod —¢] <

z1(0) —x < =[x —bod —¢

C, <I>_1[x—|—bod—e]<} 1(0) =x < =lx = bod =]

By (4.10) if follows that ®~[x + bod — €] < 0 < —[x + bod — €]. Therefore,
IY = [e — bod,€ + bod) when a > 0. The conditions (4.7) and (4.9) give no
other restrictions on z1(0). Therefore, IS —IF = () when a > 0. When a < 0,
(4.8) gives

Di —[x+bd—¢]< —[x — bod — ¢]
1 121(0) —-x < -1
C» O x +bod —€] < 7 [x — b1d/a]

Again (4.10) implies that ®~[x + bod — €] < 0 < —[x + bod — €]. Therefore,
since x + ®![x — bid/a] = b1d/|a|(2¢*” — 1), the interval can be written
as IY = [e — bod, min(b:d/|a|(2e*” — 1),& + bod)) when a < 0. By (4.8)
it follows that if (—1)*z;(0) > —b;d/a then z;(t) is moving in the wrong
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direction and the hysteresis will never be reached. Thus, z1(0) = b;d/a and
z3(0) = —byd/a corresponds to steady state solutions. Rewritten in z;(0) the
second one becomes z1(0) = b;d/|a|(2e*” —1) conditioned that the first switch
is D;. Notice, that since Dy & z1(0) € [e — bod, € + bod) it is only possible to
reach the steady state solution z5(0) = —b1d/a if b1d/|a|(2e®™ —1) < €+ bod.

This gives the intervals IC — IC. "

The two theorems will now be illustrated in an example. The system
is assumed to fulfill the initial startup condition (4.2). The existence of a
C-limit cycle is checked by Theorem 4.1 and different initials (0) are chosen
according to Theorem 4.2 to show the different switching behaviours.

EXAMPLE 4.1

Consider the system (4.1) with parameters by = 0.5, b1 = 1, a = —1 and time
delay 7 = 1. Let the relay characteristics be d = 1 and € = 0.1. Then there
exists a C-limit cycle solution, since by Theorem 4.1

b, d
x <e—bod < 2-(2e7 —1)
N~ N e’ la|
—0.46 ~0.40 e Ve
—0.26

i
&
N

and the different startup intervals in Theorem 4.2 are

I¢ = (-1,-0.40)
IZ = [-0.40,-0.26)
IZ = {-0.26,-1}
I = (—o0,-1)

IS = (—0.26,0.60)

The following choices of z(0) are illustrated in Figure 4.4.

([ —11eIf divergence

~1er?f unstable stationarity
—09¢cI’ CiC,
~045€ I C1C,
-035¢ I DG,
| —0.25 ¢ g D; divergence

z(0) = <

The C-limit cycle period is T' = 3.0. : O
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Figure 4.4 The system (4.1) with parameters b = 0.5, b = 1, a = —1 and

time delay 7 = 1. The relay characteristics are d = 1 and ¢ = 0.1.

Differ-

ent initializations illustrate the behaviour according to Theorem 4.2. Note that

¥:(04) = 9:(0=) + (=1)*~12bod and y;(0+) = (=1)*1bod + z,’(Q)

ExaAMPLE 4.2

Modify the previous example to a = —0.4. Then there exists a C-limit cycle

solution, since by Theorem 4.1

b,d
x <e—bod< —=(2e —1)
—0.49 —0.40 e Ve
0.85

But
Izc = {6 -— bod,E + bod)

bid
e+bod < —(2°" =1) = (IS ={bd/a}
ey st |a‘ c
0.6 N, et I5 — (D
0.85

It is therefore not possible to get divergence after an initial D-switch. The
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Chapter {4 First order systems with a time delay

different startup intervals in Theorem 4.2 are

IP = (—2.5,-0.40)
Ig = [—0.40,0.60)

I¢ = {-2.5}
I = (—00,—2.5)
I =0

The following choices of (0) are illustrated in Figure 4.5.

-2.51 € I? divergence
-2.50 € IY unstable stationarity
—249¢If CCy

0.59c IS  D;C,

z(0) =

The C-limit cycle period is T' = 2.6.

3 T T T T T T T T T
4
e
it
11 DI1C2
2 S .
,' )
i
i
! .
! e
; N -
2 A
1 » ’." ] IH 1
L I O
b s [
“, Fa1 o ‘o A
A3 S [ s N
M i 1 L v ; 4
’ K ’ .
A 1 l\ I R
; L
- B . ‘ E .
0 s ’ s N \ - e )
o DU O E)
N 1 Ay i \ H K
Lo S vt
v vl A1
v v ! o
. 3 !
(B ‘! '.‘ i
1 N v R
- p 1 L -
- » \ '
't T B
L 1 1

0 2 4 6 8 10 12 14 16 18 20

Figure 4.5 The system (4.1) with parameters by = 0.5, b = 1, a = —0.4
and time delay 7 = 1. The relay characteristics are d = 1 and ¢ = 0.1. Differ-
ent initializations illustrate the behaviour according to Theorem 4.2. Note that

¥i(04) = 9;(0=) + (=1)"12bod and yi(0+) = (=1)*"1bod + z;(0).
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4.2 C-limit cycles

4.3 D-limit cycles

A D-limit cycle is defined as

DEFINITION 4.5—D-limit cycle

A D-limit cycle is a limit cycle consisting of an infinite sequence of D-

switchings. O
The D-limit cycle differs form the C-limit cycle in many respects. First

we notice that

LEMMA 4.5
All D-limit cycles have the period T = 27.

Proof: Since y(t;) passes the hysteresis boundary at time ¢; and, according
to condition a) if the definition of Dy, it has not passed the hysteresis bound-
ary within a time period of 7, then the output passes the hysteresis boundary
the first time at £ = ¢; + 7. The next switch is therefore at ¢;11 = t; + 7, i.e.
the half period is h; = 7. L

Contrary to C-limit cycles, D-limit cycles are not reached in finite time.
Nor can a stable D-limit cycle exist when G(s) is unstable. Conditions for
existence of D-limit cycles will be given. Also, the dependence on the injtial
state, #1(0), will be investigated. In order to do that the D-switch conditions
are first reformulated into conditions on ;(0).
LEMMA 4.6

Suppose the system satisfies the condition a) in the definition of D;, i.e. that
there has not been accumulation of switchings. Then the conditions D; are
satisfied, if and only if

—~bod < (=1)*2;(0) + € < bod (4.11)

Proof: 1t follows from the definition of D; and that y;(0+) = (—=1)*"1bed +
2;(0) = y;(0—) + (—1)*"12bod. m

Remark. In order to get D-switchings we have to have byd > 0. O

Suppose there are only D-switchings. It is then straightforward to solve
for (—1)*"1z;(0) since we know that h; = 7, Vi. The result is given below.

LEMMA 4.7
Suppose the system has only D-switchings, i.e. D;D3...D;. Then

(~1)'2:(0) = (~8) [y 21 (0)] —x, 1<i<j+1
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and
a>0 (=1)*z;(0) - —x, i— o0
a<0 : z1(0)=x (—1)*z;(0) = —x

' — 1(0) 1 odd
a=0 (=1)'z;(0) = {:1:1(0) —\2X 1 even

Proof: Use that I'd = —x(1 + ®) to eliminate I'd below

22(0) = z1(7) = ®21(0) + I'd = —®[x — 21(0)] —
—23(0) = —25(7) = ~®23(0) + Td = (—&)*[x — 21(0)] — x

(—1)'2:(0) = (— )" [x — z1(0)] — x

This can converge only in the stable case when a > 0 since then ® < 1. In
the unstable case, a < 0, it will diverge when #1(0) # x. When a = 0 the
feedback system is at the stability boundary. Note that if 21(0) # x when
a = 0 the limit cycle is asymmetrical. m

It is now possible to express the existence of D-limit cycles in conditions
on system parameters.

THEOREM 4.3 o '
There exist initial conditions such that the relay feedback system (4. 1) in
Figure 4.1 enters a D-limit cycle, if and only if

—bod < —x + € < bed (4.12)
Moreover, the limit cycle is

- X a#0
(—l)imi(O) = { — 1131(0) ’L Odd

z1(0) — 2x i even

a=0

which is stable when a > 0 and unstable when a < 0. The period is T = 27.

Proof: The fact that a D-limit cycle implies (4.12) follows directly from
Lemma 4.6 and Lemma 4.7. To realize that (4.12) implies a D-limit cycle
we choose startup (4.2) and let 2;(0) = x. Then (4.12) implies that the
first switch is a D-switch according to Lemma 4.6. The next state is then,
according to Lemma 4.7, z3(0) = —x. Again, then (4.12) implies that the
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Now apply (4.13) which gives
—bgd < (—1)j+2:l3j+2(0) +e< bod

and Lemma 4.6 gives D;;5. The case with C;D; 4, follows in the same way
with (—1)7z;(0) replaced by bod — e. | L

LEMMA 4.9

Suppose @ > 0 and that (4.12) is satisfied. Also assume that ¢ > 0. Then
after a C-switch, Cj, it will follow only D-switchings, Dy, Vi > j. The same
is true when € < 0, if and only if

—®[x +bod—€] > x —bod — € (4.14)

otherwise no further switchings will occur.

Proof: By Lemma 4.8 it is enough to show that the (j + 1):th switch is a
D-switch. The next state is

(1) 2;41(0) = ~B[x + bod — €] — x < bod — ¢

where the inequality follows from x + bpd — ¢ > 0 in (4:12). By Lemma 4.6
this switch therefore is D41 if and only if the condition (4.14) is satisfied. A
C-switch cannot be followed by a C*-switch since a first order step response is
monotone. Therefore, if (4.14) does not hold the hysteresis corresponding to
the (j +1):th switch is never passed. That can happen when ¢ < 0. However,
when € > 0, (4.14) is automatically satisfied. To see this wé rewrite the state
as

(=1)7*12;,1(0) = —®(byd —€) + 'd =
— P(bod+b1d/a—€)+bid/la a>0
{—bod+e+b1dr a=0
Since there was a C-switch we know from (4.7) and (4.9) that

bod+b1d/a—€>0 a>0
bld>0 a:O

Therefore ' ,
(—1)*'2;41(0) > —bod +€ > —bod — ¢

where the assumption € > 0 is used. Thus
—bod < (—1)j+lil}j+1(0) +e¢ S bod

which imply D;41 according to Lemma 4.6. ‘ B
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LEMMA 4.10
After a C- or D-switch it cannot follow a C*-switch if (4.14) holds.

Proof: If C¥ then (—1)"'y;(0~) > ¢ and since (—1)""1y(0—) = —bod —
(—1)%z;(0) the state must satisfy

(=1)*2;(0) < —bod — ¢
But after C; the state satisfies
(=1)7F22;41(0) = —®[x + bod — €] — x > —bod — ¢
where the inequality follows from (4.14). And after D; the state satisfies
—bod — € < (—=1)7z;(0) < bod — ¢ }

(1Y 211(0) = —8[x + (—1)2;(0)] — x
= (=1)12;41(0) > —B[x + bod — €] — x > —bod — ¢

Again, the last inequality follows from (4.14). Consequently, the (j + 1):th
switch cannot be a C*-switch. L]

Remark. It is not a guarantee to get a C*-switch when (4.14) is false. There
are more conditions that must be fulfilled to get a C*-switch. O

LEMMA 4.11 :

Suppose a > 0 and that (4.12) is satisfied. Also assume that startup (4.2)
is used. Then the system converge to a D-limit cycle, by making only D-
switchings, D;DyDg ..., if and only if

2(0) € IP = [e —bod, ® *(x + bod —€) + x] N (@ (x — bod — €) + x, € + bod)

Proof: By Lemma 4.8 if is enough to show exactly the conditions for D;Ds.
According to Lemma 4.6 the conditions are

D, —bod < —1121(0) + € < bod
D2 ‘“bod < mz(O) +e< bod

The second conditions can be rewritten in 21(0) by using Lemma 4.7. Then

€—bod < () <@ (x+bod—¢€)+x
T
3y —bod—e)+x<| | <e+bod
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LEMMA 4.12
Suppose a > 0 and that (4.12), (4.14) and

€ —bod < bd/a a>0

4.15
b1d>0 a=0 ( )

are satisfied. Also, assume that the startup (4.2) is used. Then the system
converge to a D-limit cycle like, C;D;Dg3..., if and only if

2(0) € IP = (~o0,€ — byd)
Proof: The conditions (4.15) together with z(0) € IP give (4.7) and (4.9)

which are exactly the conditions that give C; when @ > 0 and a = 0 respec-
tively. Then the rest follows from Lemma 4.9. ]

Remark. Notice, that when a > 0 it is possible to have b;d < 0 and still get
C,, and then have convergence to a D-limit cycle. See Example 4.4. That is
contrary to the C-limit cycle case.

LeMMmA 4.13

Suppose @ > 0 and that (4.12), (4.14) and (4.15) are satisfied. Also, assume
that the startup (4.2) is used. Then the system converge to a D-limit cycle
like, D;C3Ds... ., if and only if

2(0) € I = (@7 [x + bod — €] + X, € + bod)
Proof: From Lemma 4.6, an initial D-switch gives the constraints
D1 — bod < —1131(0) +e€ S bod - 1?1(0) S [E - bod,e + bod) (416)

Since the conditions (4.15) are satisfied a following C-switch will occur ac-
cording to (4.7) and (4.9), if and only if

C, m2(0)+6>b0d

where
22(0) = —2[x — 21(0)] — x
Expressed in z1(0) this gives the constraints

21(0) > ® x4+ bod — €]+ x > € — bod (4.17)

where the last inequality follows from x+byd—e > 0in (4.12). The constraints
(4.16) and (4.17) now gives IP and by Lemma 4.9 all following switchings
will be D-switchings. "
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THEOREM 4.4
Suppose a > 0 and that (4.12) is satisfied. Also, assume that the startup is
according to (4.2). Then

:Bl(O) € IP & D;D,...
Suppose also that (4.14) and (4.15) are satisfied. Then there can be C-

switchings as well, but no C*-switchings. The additional ways to reach a
D-limit cycle are then

IP & C,;D;Ds...
z1(0) € IZD
3 = D:CyDs;...

The intervals are

IlD = [aalg] N (A’B)

IZD = (—oo,a)

I:P = (B,B)

where

o =€ — bod

B=3""x+bod—e]+x v+

A=3"1x—bod—e]+x

B=c¢ + bod
Proof: The intervals IP,IP and IP follows from the Lemmas 4.11-4.13 and
Lemma 4.10 exclude the possibility to get a C*-switch. o ' »

Remark. The condition (4.14) is equivalent to & > A. Also, the‘conditions
a < A and (4.12) imply that B < §. Therefore, when (4.14) fails the intervals
become IP = (A, B) and IP = I = 0. See Example 4.3. O

Remark. Even though (4.12), (4.14) and (4.15) are satisfied it may happen
that IP =0, i.e. B > B. See Example 4.4. O

Remark. The theorem does not exclude that it would be possible to get
D, C;. O

EXAMPLE 4.3

Choose the parameters by = 0.1,b; =a=1,7=10.9 and the relay amplitude
d = 1 and hysteresis ¢ = —0.5. Also, assume that the startup (4.2) is used.
The condition (4.12) is satisfied since

—bgd< —X+€ S bod
S N’ N
—0.1 —0.08 0.1
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Therefore, a D-limit cycle exists, according to Theorem 4.3, and it is defined
as (—1)'z;(0) = —x = 0.42. However, the convergence can not include any

C-switchings, according to Theorem 4.4, since (4.14) is not satisfied. From

the remark in Theorem 4.4 it follows that
IP = (A,B) = (—0.48,-0.40)

IP=1P =0
The boundary cases ©,(0) = —0.40 and z;(0) = —0.48 are shown as dashed
and solid curves respectively in Figure 4.6.

-eps

0.6

2 2.5 3

Figure 4.8 The parameters of the system (4.1} are g = 0.1,y =a=1,7=10.9
and the relay amplitude d = 1 and hysteresis e = —0.5. The two initializations,
O

z1(0) = —0.40, —0.48, show the narrow convergence region.

EXAMPLE 4.4
Choose the parameters by = 0.1, by = —0.1, a = 10, 7 = 1 and the relay
amplitude d = 1 and hysteresis ¢ = 0.08. Also, assume that the startup (4.2)

is used. The condition (4.12) is satisfied since
—bod < —X+€ S bod
St N
0.1

—0.1 0.07
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4.8 D-limit cycles

Therefore, a D-limit cycle exists, according to Theorem 4.3, and it is defined
as (—1)iz;(0) = —x = —0.01. Also, the convergence can include a C-switch,
according to Theorem 4.4, since (4.14) is satisfied. The interval boundaries,
according to Theorem 4.4, are a = —0.02, 8 = 660, A = —374 and B = 0.18.
Since @ > B then IP = 0, i.e the situation D;C, is impossible. The intervals
are

IP = [a,B) = [-0.02,0.18)
IZD = (—o0,a) = (—o0,—0.02)
IP=0

The following choices of z;(0) are illustrated in Figure 4.7.

~0.02 ¢ IP D,D,...
21(0) = 0179 € IP D;D;...
—0.15 ¢ I? C:D;...

0.3

0.25

ERd
L

021 .
0.15+ “.‘ ’ oA

0.1F .. E
— : eps

0.05 .

-0.05} 1
i -€ps

-0.15

Figure 4.7 The parameters of the system (4.1) are bg = 0.1, by = —0.1, a = 10,
7 = 1 and the relay amplitude d = 1 and hysteresis ¢ = 0.08. The following
initializations are shown, z;(0) = —0.02 € IP (solid), z;(0) = 0.179 € IP
(dashed) and z1(0) = —0.15 € IP (dotted). Notice, that it is possible to have
b1d < 0, which is not possible when having a C-limit cycle. Notice also, that
IP = 0.
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EXAMPLE 4.5

Choose the parameters by = 0.1,b; = a =1, 7 =0.1 and the relay amplitude
d = 1 and hysteresis ¢ = 0.04. Also, assume that the startup (4.2) is used.
The condition (4.12) is satisfied since

—bod < —x + € < byd
—0.1 0.09 0.1

Therefore, a D-limit cycle exists, according to Theorem 4.3, and it is defined
as (—1)'z;(0) = —x = 0.05. Also, the convergence can include a C-switch,
according to Theorem 4.4, since (4.14) is satisfied. The interval boundaries,
according to Theorem 4.4, are a = -0.06, 8 = —0.04, A = —0.26 and
B = 0.14. The intervals are

IP = [a, ] = [~0.06, —0.04]
I = (—0,a) = (—c0,—0.06)
IP = (8,B) = (—0.04,0.14)

The following choices of z;(0) are illustrated in Figure 4.8. ,

~0.06 € IP D.D,...
() —0.04 € IP D;D;...
i =
' —02¢IP CiD;... ..
0.13 ¢ IP D;C;D;...

4.4 CD-limit cycles

A CD-limit cycle is defined as

DEFINITION 4.6—CD-limit cycle

A CD-limit cycle is a limit cycle consisting of an infinite sequence of C- and
D-switchings, such that one period consists of one C-switch followed by one
D-switch. O

70




= O Uy

N
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03

T
1

02l | :

0.1+

Figure 4.8 The parameters of the system (4.1) are by = 0.1, by = a = 1,
7 = 0.1 and the relay amplitude d = 1 and hysteresis € = 0.04. The following
initializations are shown, z1(0) = —0.06 € IP (solid), =,(0) = —0.04 € IP
(dashed), z,(0) = —0.2 € IP (dashed-dotted) and z;(0) = 0.13 EﬂI:? (dotted).

LEMMA 4.14

Suppose a < 0 and there are switchings, C;D;;1Cj;2. Then the CD-limit
cycle is reached and the state satisfies

(=1 z;(h; — 7) = bod — ¢, hj >

(1Y '2j1(0) = (=1) (k) = —@[x + bod — €] — x
(_1)j+2“’j+2(0) = (_1)j+2mj+1(7') = q)z[X +bod — €] — x
(=1 2z 12(hjra — 7) = bod —¢, hjy2 > T

The limit cycle period, T, is unique and defined by

1 —<I>2[x+b0d—e]+x—bld/a,
T—2T+(h3+2—T)—2T+;ln{ e~ [0 1 b1 /ald }

Proof: The remark in Lemma 4.2 gives the expression for z;41(0). Then
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using that I'd = —x(1 + ®) we get

(=1)Y"22;42(0) = (—1)?[®2j41(0) + Tujt1] = —®(—1) T 2;41(0) + Td =
= —®[x + (—1)* 2;11(0)] — x = ®%[x + bod — €] — x
Then use that
(1) 225 5 (hjyz — 7) =
= bod — & = (=1)"**[®(hjrs — T)j42(0) + T(hjts — TIujis] =
= e~ i+ [B2(x + bod — €) — x] — brd/a(1 — e~ hi+2—7)) =
= e—a(hj.“—-r) [@2()( -+ bgd - E) —X + bld/a] — bld/(l

—®%[x + bod — €] + x — bld/a}

= h; —11
ALEEEE € — [bo + b1 /a]d

THEOREM 4.5
There exist initial conditions such that the relay feedback system (4.1) in
Figure 4.1 enters a CD-limit cycle, if and only if ’

a<0
X —bd—e < —®[x+bd—e]<0 . (4.18)
®%[x + bod — €] — x < —b1d/a

No other limit cycles involving both C- and D-switchings are possible.

Proof: From Lemma 4.8 if follows that we must have a < 0. From Lemma
4.6 if follows that after C; it will follow D;; if and only if

—bod < (—1)72;(0) + € < bod
Put in the expression for (—1)7z;(0) from Lemma 4.14. This gives
X—bod—é‘ < —@[X-l—bod—E]

and
—®[x +bod—e]<x+bd—e & x+bd—e>0

respectively. But if x 4+ bpd — ¢ = 0 a D-limit cycle is reached once the
hysteresis is reached continuously. Because (—1)iz;(h; — 7) = bod — € = —x
gives according to Lemma 4.7, that (—1)*z;(0) = —x, Vi > j. Therefore we
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have to have x + bod — e > 0. Since a < 0 the following switch is Cj4,
according to (4.8), if and only if

bod— £ < (—1)j+2$j+2(0) < —bld/a

Put in the expression for (—1)7*%z;5(0) from Lemma 4.14. This gives the
constraints

X+bod*€>0

and
®2[x + bod — €] — x < —bid/a
respectively. Suppose instead that the switch is D;j;5. Then
(—1)*22;12(0) < bod — ¢

which after using the expression from Lemma 4.14, gives

X—{—bod——EZO & (1,20
X+bd—e<0 & a<0

But x + bod — € > 0 and a < 0. Therefore D;,; is impossible. A limit cycle
involving both C- and D-switchings can therefore not have two consecutive
D-switchings. Nor can there be two consecutive C-switchings, since that
would imply, by Lemma 4.3, that a C-limit cycle is reached. =

THEOREM 4.6 s ‘
Suppose (4.18) is satisfied and that the startup is accordlng to (4.2). Then

z1(0) € IfP & DiD;...D;_1C;D;11Cjys ...

where the interval is

=)

(2
76D _ | (X X+bo —¢],min{x + &~ 1[X_f’__‘1] €+bud}> j=2
|

x— &Gy 4 bod — ], 5 — 8=G~D]y + bod —e]),odd i>3

(X‘*“I’—(] 1)X+b0d—€] x—}—@”(’ 3)[x+bgd—e]],even j24’

Proof: 1t follows from Lemma 4.6 and Lemma 4.7 that the conditions for
D;D;...D;_; are

6Dy —bd—e] < (~1)(21(0)—x) £ 8 D+bod—e], 1<i<j-1
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and from (4.8) that it will follow a C-switch if and only if

&~ U]y + bod — €] < (=1)*(21(0) — x) < @~ V[x — b1d/d]
The function ®~* is decreasing with increasing i. Therefore, the above con-
straints for Dy ...D;_; hold if they hold when ¢ = j—2 and ¢ = 7 — 1. Thus,
the conditions for D; ...Dj_;C; are when ¢ > 3
Djs: 2 U V[x—bed—e] <(~1)(21(0) —x) < @7 V[x + byd — ]
Dj_1: —® U=y 4 bod — €] < (—1)7(21(0) — x) < =B~ [y — byd — ¢
Ci: & U Dy +bod—e] < (~1)(21(0) - x) < 8~ V[x — by d/a]
But from (4.18) it follows that

U3y —bod —¢ .
Y b= bo ] <0< ® U D[y 4 bod — £]
—-0- )[X + bod — €]
and that
. 3~ U-DP[y + bod— €] < =Gy — pyd — ¢
=Gy 4 byd — €] = { [x + bo ] [x — bo ]

U1y + byd — €] < 8~ V[y — b1d/a]
Therefore we get the constraints |
S0 + bod — €] < (=1)(21(0) = x) < 7Gx + bod ~ ¢]

which then gives the intervals when j > 3. When j = 1, (4.8) glves dlrectly
IFP. When j = 2, (4.8) and (4.11) give

D, : —[x + bod — €] < ) < —[x — bod — €]
2 (0) —
Cy: & lx+bd—cl< < @7 'x —bid/d]

By (4.18) it follows that —[x + byd — €] < ®![x + bod —€]. Then I follows

as above. B

EXAMPLE 4.6

Consider the system (4.1) with parameters by = b; =1,a = —0.5, 7 = 0.1 in
a relay feedback loop with relay characteristics d = 1 and € = 0.1. According
to Theorem 4.5 there exists a CD-limit cycle, since (4.18) is satisfied.

X bod—€< @[X'i‘bo ——E]

-—1 15 —0,9
@2[X+b0 -8]—X<—b1d/a
- ~ - N, s’

1 2
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4.4 CD-limit cycles

Start with #;(0) = 0 # x = —0.05. Then according to Theorem 4.6, the
CD-limit cycle will be reached after the 58:th switch, since

ISP = (4-107%,1.1077
21(0) € ISP = (-8-107%,4.1079]
The situation is illustrated in Figure 4.9. An oscillation starts near the un-

stable symmetrical D-limit cycle. But since, z1(0) # x, the oscillations will
drift over into the stable asymmetrical CD-limit cycle.

1.5+

0.5+ . i

eos 1T
—eps [T HHHFFH HAH 1 111 s

-0.5H

Figure 4.9 An oscillation starts near the unstable symmetrical D-limit cycle
and drifts over to the stable asymmetrical CD-limit cycle. Since z;(0) € I5CBD ,
the CD-limit cycle is reached after the 58:th switch.

The intervals giving a CD-limit cycle after 2 and 4 switchings respec-
tively are

IZP = (0.759,1.100]
IFP = (0.682,0.759)

The two choices of initials

o 0.76 € I7P
r =
' 0.75 € ISP
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2 T »
1.5¢ .
1 F 1
0.5 i
sp(s)
-eps I e T,
P 1= 1= =] T
-0.5 s L L s s ) s 2 '
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 4.10 Two initials z;(0) € ITP (solid) and z,(0) € ICP (dashed), will
make the relay feedback system reach a stable asymmetrical CD-limit cycle after
the second and fourth switch respectively. The period of the CD-limit cycle is
T = 0.37. Y

7

are illustrated in Figure 4.10. The period is T = 0.37. O

EXAMPLE 4.7—The limit cycle period in a bifurcation diagram

Consider the system (4.1) with parameters by = b; = 1, @ = —0.5 and the
relay characteristics d = 1 and ¢ = 0.1. Depending on the time delay =
there will be one stable C-limit cycle solution or two solutions: one stable
CD-limit cycle and another unstable D-limit cycle. This is illustrated in a
bifurcation diagram in Figure 4.11, where the limit cycle period T is plotted
against the time delay 7. O

4.5 C*- and C*D-limit cycles

A C*-limit cycle is defined as

DEFINITION 4.7—C*-limit cycle

A C*-limit cycle is a limit cycle consisting of an infinite sequence of C*-
switchings. O
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12

10

T
1

CD C

0 L 1 L S =t
0 0.5 1 1.5 2 2.5

Figure 4.11 The limit cycle period T as a function of the time delay 7. The
other parameters are bp = b; =1, ¢ = —0.5, and the relay parameters are d =1
and £ = 0.1. -

o

From the definition of a C*-switch it follows that

%(_1)1'-1%_1@) >0
(-1 yia(t) =€

C;:

The situation is illustrated in Figure 4.12, where ¢ is odd such that u; = d.
At switch 7, the following hysteresis has been passed already at #;_; time
units earlier. Since (4.3) gives that

(—1)yima () = bod + (1) Ve (t) =
{ — [bo +b1/ald + [(—1)" 21 (0) + bid/ale™™  a#£0
(_1)i—1¢'3i—1(0)—b0d—b1d.t =0
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[ P
Py

y(04),

Vi-1(hi-1—0i-1)
\

Figure 4.12 Illustration of C*_switches where the time between the switches
are less then the time delay, h; < 7.

the conditions for C] becomes

e

(—1)i”1:ci_1(0) + bld/a <e+ [bo -+ bl/a]d < 0 a>0
0 <(—1)"'2;-1(0) + bid/a < € + [bo + b1/ald a<0 (4.19)
(—1)'._1:1:,-_1(0) < e+ bod, bid <0 o a= 0 :

-

The following boundaries of a C*-limit cycle can be estimated.

LEMMA 4.15
If a C*-limit cycles, (—1)*z*, exists, it must satisfy

bid/a < (—1)'z* <0 a>0
—byd/a < (-1)'z* <0 a<0 (4.20)
bd <0, (—1)'z*<0 a>0

Proof: From the definition of C} it follows that

(=1)"2i-1(0) < €+ bod
(=1) i1 (hicy — 8i—1) = € + bod
(=1 121 (hi1) > € + bod

The last inequality gives
(=1)f2:(0) = (~1)'ziz1(hi-1) < —(e + bod)
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4.5 C¥*- and C*D-limit cycles

i.e. a C*-limit cycle satisfies both (—1)*z* < e+bod and (—1)'z* < —(e+bod).
Therefore '

(—1)'z* <0
Then (4.20) follows from (4.19) when a < 0. It remains the boundary b;d/a <
(—1)'z* when a > 0. But a C*-switch gives when a > 0 that

(_1)1.-'”1'(0) = ("1)i[@(9i—1)$i—1(hi—1 —0;—1)+ F(0;~1)ui_1] =
—_ _e—aei-l(e + bod) + ?_:_I(i(l _ e—a.@.-_l) -

, bid  bid

= —e%%-1[e + (by + by /a)d] + —j—z— > 17
where the inequality follows from (4.19). "
Remark. It follows from the lemma that b;d < 0. Notice, that such a
constraint can not give a C-limit cycle. O

The map (—1)*z;(0) — (—1)**'z;41(0), caused by a C*-switch, will now
be derived and its stability properties will be investigated. First, we notice
that

(_1)"::13,'(0) = (—l)imi—-l(hi—l) = .
= (_1)i[¢(0i—1)‘”i—l(hi—1 — 0i——1) + I‘(ﬂi_l,)ui~1] =

. b:d 4.21
_{—e‘“"=-1[e+(bo+b1/a)d]+~—1a— a#0 (421)
— (E + bod) + bld . 01'_1 a’_g'O‘
At the next switch we get
(1) ei412(0) = (~1)* 2i(hi) = ~®(h:)(=1)'24(0) + L(hs)d =
- bid. bid
{ e[ (0) + 0+ 20 a0
= a a
—(=1)'z;(0) + b1d - h; a=0
Use that h; = 7 — 6;_1 and from (4.21) that
abi_1 _ (bo + b1/d)d+ [
¢ T T (~1):(0) - bud/a a#0
~b1d;_1 = —(e + bod) — (=1)'z;(0) a=0
Then we get
— bl (—1)123-,,(0) + bld/a bld
) e “T[(bg + =) +¢ - +—, a#0
(_1)z+1mi+1(0) _ [( 0 a ) ](_1)1:31,(0) —bid/a a e
bidr — (e 4 by) — 2(—1)*z;(0) a=0
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Introduce for brevity

i i= (—1)z;(0)
A:=e"[(bg + b1/a)d + €]

bid
B:= 1
a
then the map can be written
z; + B
A + B a#0
Tit41 :f(mz): :Bi"‘B
bldT—(€+bod)—2(Bi a=0

THEOREM 4.7
All C*-limit cycles are unstable.

Proof: The case a = 0 is clear since f'(z) = —2, Vz. When a # 0 the

derivative is
2AB

fl(z) = “G_Bp

At the limit cycle solution, z*, we have

¥ = f(z*) = (w*—B)zzA(:c*—kBﬁ)“ .

Ed

Thus,
2B
I * —_ ___1
£(=") z*+ B <
where the inequality follows from Lemma 4.15. u

A C*D-limit cycle is defined as

DEFINITION 4.8—C*D-limit cycle

A C*D-limit cycle is a limit cycle consisting of an infinite sequence of C*-
and D-switchings, such that one period consists of one C*-switch followed
by one D-switch. O

LEMMA 4.16 :
Suppose there exists a C*-limit cycle and that @ # 0. Then after Cr it will

follow
Citi &  —x<z; < —(bod +e¢)

D;.;, & Fl(bod —€) <z; < —x
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Proof: Since the j :th switch is a C*-switch, then (—1)*"1y;(0—) > €. This
gives

T3 S —(bod + E)

The next switch is a C*-switch, if and only if

Ti4+1 = f((l},) _<_ *-(bod + 6) ' (422)
But _9AB
fl(z) = @—BY <0

since A < 0 and A > 0 when a¢ > 0 and a < 0 respectively by (4.19), and
B < 0and B > 0 when ¢ > 0 and a < 0 respectively by Lemma 4.15.
Therefore the constraint (4.22) can be written

FH(~(bod +€)) < z;
According to (4.11) the next switch is instead a D-switch, if and only if

—bod— e < f(flh) S bod— [

Again, since f' < 0 this gives the constraints o
FH(bod —€) < z; < fY(—bod —€)
Then since 1 Atz—B ~
@) =B 5
it follows that f~1(—bod — £) = —. .

The map z; — z;41, caused by a D-switch, is

zit1 = (-1)F12i41(0) = —(=1)'=i(7) = —8(-1)'z:(0) + T'd =
N — ®[z; + B]+ B a#0
o(i) = — @; + bydr a=0

Define the map zi12 = F(z;), where F(z;) = f(f(2:)) if there are two
consecutive C*-switches and F(z;) = g(f(z:)) if the i:th switch is a C*- .
switch and the following switch is a D-switch, i.e.

» fof: zi—miys —x < z; < —(bod +€)
. go f . (Di—f)$i+1—g—-)$i+2 f_l(bod - E) S ; < —X
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LEMMA 4.17
There exists no C*D-limit cycle when a < 0.

Proof: When a < 0 the conditions for C} gives
z; = (—1)"[®(Bi—1)zic1 (hicy — Bi1) + T(0ia Juia] =

= -—e_"’o"—l[e + (bo + bl/a)([] + bid/a
{ < —e—byd< B

> —e e+ (bo+b1/a)d] + b1d/a=—-A+ B

Hence, 0 < B — z; < A which gives that A/(B — z;) > 1. Now, suppose ¢ is
a C*D-limit cycle solution. Then

o = g(f(s)) = ~{(4272 + B) + B+ B
- m—B:@[B_m(:z:—{—B)—ZB]

But the right hand side gives that

TR L&

A >z —B when ¢ + B > 0
¢ B)—-2B
\/[B——:n(m_._ ) ]{<m—B when z + B <0
>1 Nem—r
>1
Consequently, there is no such solution z. | , ]

THEOREM 4.8
Suppose there exist both a C*- and a C*D-limit cycle. Then the C*D-limit
cycle is stable.

Proof: The derivative of the map that is defining a C*-switch followed by a
D-switch is p S ABD
F' = =
(2) = o) = e >0
The inequality follows from that, when a > 0, then A < 0 by (4.19) and B < 0
by Lemma 4.15. By the assumptions there exist both a C*- and a C*D- -
limit cycle and the C*-limit cycle is unstable, by Theorem 4.7. But F(z) is
continuous. Therefore, there can only exist a C*D-limit cycle solution, z, if

0 < F'(z) < 1, i.e. a stable solution. ]

Remark. This doesn’t mean that a C*D-limit cycle always is stable. When
x — bod — € < 0 there exists no C*-limit cycle. In spite of that a C*D-limit
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cycle can exist. Also, a stable D-limit cycle can exist under such a constraint.
It seems, thought, that the C*D-limit cycle then always becomes unstable.
O

EXAMPLE 4.8—C*- and C*D-limit cycles

Consider the system (4.1) with b = 0.1, by = —1, a = 1, the time delay
7 = 1 and the relay characteristics d = 1 and ¢ = 0.3. Suppose the startup
situation is y(t) < ¢ then t € [-7,0—] and u(0+) = d. Then y(0+) > ¢
if 2(0) > € — bod = 0.2 which will cause a D-switch. Choose z(0) = 0.55

which will make a startup close to the unstable C*-limit cycle. The map F
is defined as

7 fof when —0.462 < 2; < —0.4
| gof when — 0.56 < z; < —0.462

The map z;+2 = F(z;) is shown in Figure 4.13. The convergence is shown
starting with z; near the unstable C*-limit cycle and successively drifting
down to the left towards the stable asymmetrical C*D-limit cycle.

-0.36

-0.38}

-0.42

T

-0.44

-0.46

-0.48

D

I

6 el L L L : L )
-0.56 -0.54 -0.52 -0.5 -0.48 -0.46 -0.44 -0.42 -0.4

T;
Figure 4.13 The map z;42 = F(z;) (solid curve) and the unity map z;12 = =;

(dashed line). Starting with z3 near the unstable C*-limit cycle successive maps,
shown as the staircase, will converge to the asymmetrical C*D-limit cycle.

The corresponding curve y(t) is shown in Figure 4.14. O
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0.8

12 14

Figure 4.14 Convergence to a C*D-limit cycle when starting near the unstable
C*-limit cycle. Compare with Figure 4.13.

gk

4.6 Summary

It has been shown that relay feedback of first order systems with direct term
and a time delay can exhibit different types of limit cycles. It is interesting to
notice that a few expressions repeatedly show up in the analysis as conditions
associated with the different types of limit cycles. To give a quick overview
these expressions are listed below.

C — limit cycle = x+bd—e<0
{D—]jmit cycle = x+bd—€e>0

D — limit cycle = x—bid—e<0
{C*—limit cycle = x—bd—e>0

C — limit cycle = bid>0
{ = bd<0

CD — limit cycle = x—bod—e < —®(x+bod—¢)
{C*D—Hmit cycle = x—bod—e>—B(x+ bod —¢)

C* — limit cycle

Where x is given by (4.5) and & = e~ %". Notice that a system can sometimes
reach different types of limit cycles depending on initial conditions. There
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are systems that can reach

unstable D — limit cycle
stable CD — limit cycle

Another possibility is

unstable C* — limit cycle
stable C*D — limit cycle

However, a system can have a C*D-limit cycle without having a C*-limit
cycle. Such a system might instead have a D-limit cycle. It is not clear
whether the C*D-limit cycle in such a case must be unstable. No example
have been found where a system can have more than one type of stable limit
cycle. It has, however, not been shown and is left as a conjecture, i.e.

unstable? C*D — limit cycle
stable D — limit cycle

The particular studied startup (4.2) assumes that no prior passing of the
hysteresis has been made before the relay is connected. If there is no passing
at the moment of connection, i.e. if the first switch is not a D-switch, then
a first switch can only be a C-switch. This particular startup, without an
initial D-switch, can only give rise to three different types of limit cycles.
Thus, if the first switch is a C-switch one system can only reach one of the
following types of limit cycles.

C — limit cycle
D — limit cycle
CD — limit cycle

Which one of these that can be reached is depending only on the system
parameters. How the limit cycle is reached is depending on initial conditions.
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Second order systems

Consider the second order system

Y+ a1y +ayy = by + bpu TS (5.1)
in a feedback loop with a relay having amplitude, d, and the hysteresis, .
The behaviour of the system is quite complex. For the purpose of analysis a
number of different cases are considered separately.

et
o

e  Transfer function with real poles and no zero
e  Transfer function with complex poles and no zero

e  Transfer function with real poles and a zero

First a theorem of general nature will be given. This guarantees con-
vergence to a limit cycle for any stable second order system during relay
feedback provided, however, that a unique limit cycle exists. The existence
and uniqueness questions are then answered in separate subsections for the
different cases above. Conditions for the existence and the uniqueness are
shown for the case with no zero in the transfer function. Before the study
of the different special cases another theorem of general nature is also given.
The theorem is relating results for stable systems to corresponding results for
unstable systems. This is useful when investigating all possible situations of
stable and unstable systems in the special cases above. There are, however,
some borderline cases where one or two of the eigenvalues are zero that are
not considered. Also, the case with a zero in the transfer function is not fully
explored. Examples are given to show that in this case there is not always a
unique limit cycle solution.
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We will address the question of convergence to a limit cycle. It is con-
venient to introduce the Poincaré map, P.

DEFINITION 5.1—The Poincaré map, P
The above relay feedback system (5.1) has two switch lines in the phase
plane, see Figure 5.1. One where the relay output changes from v = d to
u = —d, defined as Sy = {y = ¢,y > 0} and another for the opposite
switch, S_4+ = {y = —¢,¥ < 0}. From the symmetry S;_ = —S_;. The
Poincaré map is the map from S;_ to itself, i.e. P((e,3(0))) = —(e,3(¢)).
For brevity we use P(y(0)) = —y(t) where it is assumed that y(0) = ¢ and
y(t) = —e. When there is a zero in the transfer function, b; # 0, then g(0) is
discontinuous. In such a case the map is defined from ¢ = 0—, i.e. P(y(0-)).
O
The Poincaré map is useful since a fixpoint of the map, P(y*) = y*,
corresponds to a limit cycle solution in the phase plane, (y,y). The limit
cycle is stable if |P'| < 1.

Sy

/

S—+

Figure 5.1 Definition of the Poincaré map, P : S4_ — §4_, i.e. P(y(0)) =
—7(t), where y(0) = ¢ and —y(f) = €. In the Figure we have P(a) =8 > a.

When b; # 0 there is a discontinuity at S;_ when the relay switches
from v = d to v = —d. Introduce the notation G(s) = B(s)/A(s) and let
t = 0 at the switch line S;_. Then the Laplace transformed system is

s+ ay

Y =G(s)U + —— o)

$(0-) + 7579(0-) = Z5740-)
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where Y = L[y], U = L[u] = —d/s, y(0-) = ¢, §(0—) > 0, u(0—) = d. From
the initial value theorem it follows that y(0+) = y(0—) = ¢ and that the
discontinuity is

9(0+) = 9(0-) — 2b:d

The following theorem uses the fact that phase plane trajectories cannot
cross each other. This means that the P-map will be monotone and growing,
ie. P'(y(0-)) > 0, as long as y(0+) > 0. However, if b;d > 0, then
9(0+) < 0 when §(0—) < 2b;d. This will make the P-map nonmonotone, i.e.
P'(9(0—-)) < 0 when y(0—) < 2b;d and P'(y(0—)) > 0 when y(0—) > 2b;d.
In the theorem, only the monotone part of S;_ is considered, i.e. where

P > 0.

THEOREM 5.1—Global stability for stable systems during relay feedback
Assume that the second order system (5.1) is asymptotically stable and con-
nected in a relay feedback loop with the relay gain, d, and hysteresis, €. Also,
assume there exists a unique limit cycle P(y*) = y* > max(2b:d,0) on S4_.
Then for all initials §(0) > max(2b;d,0) on S4_, the system will converge
monotonously to the limit cycle, i.e.
P(yi) =giy1 = §%, 00 TS

where 3o = 3(0) and 0 < P'(3*) < 1.
Proof: The solution must be finite since an asymptotically stable system
is always bounded-input-bounded-output stable. Thus, if the Poincaré map,
P, is monotone, consecutive mappings P(3) = 91, P(¥1)"= ¥2,... must in
the limit reach a finite fixpoint, P(y*) = y*, i.e. a limit cycle in the phase
plane (y,y). The monotonicity is realized from the fact that trajectories in the
phase plane cannot cross each other for an autonomous, linear, time invariant,
second order system. When b; = 0 the transformation, z = y + b2d/as,
makes the system autonomous between the switch lines Sy and S_4, i.e.
Z+ a1z + a3z = 0. Once the uniqueness is established, we know that the
solution is stable and that the convergence is global, P*(3(0)) — %*, k — oo,
for all (y(0),(0) € 5y

Now let by # 0. Then there is a discontinuity y(0+)—y(0—) = —2b;d on
S+-. But this doesn’t change the monotonicity of P as long as y(0+) > 0. If
9(0+) < 0 when € > 0, then the P-map is nonmonotone, P'(3(0—)) < 0. The
relay function will be undefined if §(0+) < 0 when € < 0 since the trajectory
will reach S _ once again instead of reaching S_ as we want. The demand
9(0+) > 0 is guaranteed if §(0—) > max(2b;d,0), which is a restriction of
Sy_. n

The theorem gives information about the behaviour of a stable second
order system during relay feedback only when an assumed unique limit cycle
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exists. It does not say anything about conditions for existence or uniqueness
of a limit cycle. These conditions will be given for the special case where
there is no zero in the transfer function.

The results for stable systems can be transferred to results for unstable
systems by use of duality. The duality will be defined in a theorem. The idea
is to recognize a symmetry between different trajectories in the phase plane
(y,7). The state vector z = (y,7)7 gives the realization

RS S R 1Y
= T = T u
¢ A SV VRS VNI ¥ b
Assume u = —d. Then the stationary point is
—bd/(A1 A
3 =—A"1B(-d) = [ /E) ' 2)]

In all expressions, the factors b and d always appear as the product bd. 1t is
therefore no restriction to reparameterize such that bd = bd, where b = {)\1 Az
and d = bd/b. In the interest of brevity we skip the bar and assume in the
following that b = |A1)z|. The stationary point is then § = —d for the
cases A1,z > 0 and A,y < 0 while it is § = d in the saddle point case,
X1 > 0 > Xy. The eigenvectors corresponding to Ay and ), are

-(n) ==1s)
“EAIN) P )

These will be useful in the following study of the behaviour of the phase plane
trajectories. When the eigenvalues are real, v; and v, define line segments
in the phase plane that cannot be crossed by the trajectories. This will be
illustrated when studying transfer functions with real poles. But first another
general result is presented below that will hold also for complex eigenvalues.

THEOREM 5.2—Dual limit cycle solutions
Suppose one stable limit cycle, P(y*) = ¢* > max(2b;:d,0), with period T,
exists for the second order system

b18 + b2
s2 4 a1s+ ay

Gl (8) =

connected in a relay feedback loop with relay gain d and hysteresis €. Then,
relay feedback of the system

—-b18 + bz

82 —a18+ az

Gz(s) =
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1 — — 1 .
0.8} t=0- { 0.8¢ t=0+
0.6} {06}
t=0+ t=0-
0.4} { 04t
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02} Se {02t
0 0
0.2} S-+ {02t
0.4} 1-044 t=h
-0.6} {-06}
0.8} t=h 1.0l S-+
-3 s U7 02 0 02 07 05 03 s s vz vz v 02 0F 05 0%

Figure 5.2 Trajectories illustrating the limit cycles for the dual feedback sys-
tems in Theorem 5.2. The discontinuity at S4_ is caused by the zero, i.e if

by # 0.

with relay gain d and hysteresis —¢ has an unstable limit cycle solution with
period T'. gk

Proof: The situation is visualized in Figure 5.2. Consider the phase plane
trajectories, (y,7), between S;_ and S_4 when u = —d, for system Gi.
The stationary point is § = —G1(0)d = —byd/as. Let the gigenvalues to the
system Gi(s) be A; and A;. First assume that b = 0. Then the geﬁeral
solution in the phase plane (y —§,y) is formed by a linear combination of the
eigenvectors v; and v,. Hence

t) — vy 1 1
[ ul ) Y ] = creMtvy + ey, 3 v = { ] ;. V2= [ ]
y(t)

Now, consider the other system, G3(s), with eigenvalues —A; and —A;. De-
note the corresponding output z(¢). The stationary point will be the same,
i.e. 2 =9, and the general solution is

o R N R
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()4 (3] (3) -
— g 1
- [y(—a;)(h)y] = [ Y ] e [ ~Xg ]

i N R ey

Hence, if the first system has a limit cycle, §(0) = —y(h), so has the second
system, 2(0) = —y(h) = 9(0) = —z(h). Thus, the phase plane trajectories
for the system with eigenvalues —A; and —A, will be the same as those for
the system with eigenvalues A; and A, after reflection along the y-axis and
change of time direction. The rotation along the y-axis also gives a new
interpretation of the hysteresis, now being —¢, i.e. after the rotation the old
Si_ has become our new S_; and vise versa because of the change of time
direction. The change of time direction gives the systems opposite stability
properties. Now, suppose b; # 0. Then we choose 2(0+) = —g(h) which
gives y(0+) = —z(h). The discontinuities at the respective switch lines S,
are v

9(0+) = 9(0—) — 2b:d o

2(04+) = 2(0—) + 2b,d

If the first system has a limit cycle then §(0—) = —g(h). But then the second
system also must have a limit cycle solution with the same half period h since

5(0=) = 5(04) — 2byd = —j(h) — 2b;d = §(0~) — 2b,d = §(0+) = —3(h)

Remark. If the process transfer function does not have zeroes the theorem
implies that H(—1, k) changes sign if the corresponding continuous time sys-

tem eigenvalues changes signs. O -

To get some intuition about the phase plane trajectories and convergence
rates we start to investigate the case with real poles.
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5.1 Transfer function with real poles and no zero

Restrict the consideration to the system

b b 1 1

Gle) = G- -%) N —/\2(3—)\1 B 3“)‘2)

(5.2)

with A; and A real. The following three situations will be investigated: the
stable case, A1, A2 < 0, the unstable case, A\, Az > 0, and the unstable saddle
point case, A\; > 0 > A,.

Uniqueness of limit cycle solution

A necessary condition for a limit cycle with period T' = 2h is according to
Theorem 2.1 that H(—1,h) = —¢/d. It will be shown in the following that
this equation can have only one solution when A; 4+ Az # 0. Zero order hold
sampling of the transfer function (5.2) gives

b 1 h 1 h
1 h)= —0 (= " x,) — — tanh(~ ,
H(-1,h) v ,\2(}‘2 tanh(zz\z) )\1 anh( 2)\1)) (5.3)

The derivative with respect to A is L

dH _ b/2 1 B 1 - ) =
dh A — ), COShz(%Az) coshz(g—)\l) B
_ [cosh(hA1) — cosh(h)z)]b/4
(A1 — Az)(cosh(221) cosh(222))2 .~ .

Choose A\; > A, and assume b > 0. Then since cosh (A1) — cosh(X;) > 0
when |A1] > |z we get 2 > 0 if and only if A1 > —X;. The other cases
follow correspondingly. Summarized we get

>0 A1+/\2>0

dH
E = = 0 Al + Az - 0
<0 Al + A <0
The case, A\; + A2 = 0, has infinitely many solutions when ¢ = 0, since

H(—1,h) = 0 for all h. In all other cases H(—1,h) is monotone, either
increasing or decreasing. Hence, generically there is only one solution, h
to the equation H(—1,h) = —e/d. The other part of Theorem 2.1 can be
used to specify the signs of d and €. This will not be done here. Instead,
we will use phase plane analysis. This will give the correspondence between
the constraints of solutions to H(—1,h) = —e/d and the behaviour in the
phase plane (y,y). Examples with trajectories in the phase plane will then
also illustrate the convergence rate to the limit cycle.
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5.1 Transfer function with real poles and no zero

Existence of limit cycle solution

Since H(—1,h) is monotonically increasing (A; + A2 > 0) or decreasing (A; +
A2 < 0) there are the following constraints for existence of solution to the
equation H(—1,h) = —¢/d.

H(-1,00) > =5 > H(~1,0) =0 A 42 >0
d (5.4)
H(—l,oo)<—(—i<H(—1,0)=0 A1 +A2<0

Since tanh(Ah) — sign(A), when h — 400 we get

(b

- 0<2A A

i 1 <A < A

(A1 4+ A2)b A1+ A

— ={ — = A A

H(=10) = ~ = ~ =% 2 <0<h
b

\_A1A2=_1 A2 <A1 <0

where the factorization b = |A;A;| has been used. Thus, the constraints, for
the stable case, 0 > A; > Ag, and unstable case, Ay > Ay > 0, have always
the same form respectively, while for the saddle point case they take one of
two forms whether A; + A2 > 0 or A\; + A2 < 0. By Theorem 5.2, it follows
that one of these cases has a stable limit cycle. It will be shown later that
the stable solution occurs when A; + Ay < 0. o

The different cases
o The stable case: Ay < A1 <0
e The unstable case: 0 < Ay < A\

o The saddle point case: Ay <0 < A;

will now be explored in the phase plane. This will give the signs of d and e.
Also, it will illustrate both the existence and the stability /instability of the
limit cycle solution.

The stable case , Ay < A1 < 0: If the point § = —d is to the left of the
switch line S_, i.e. —d < —e¢, then there will always be relay switches and -
therefore convergence to the stable limit cycle. On the other hand, if § is to
the right of S_4 there will be no oscillations. Compare with the constraints
earlier, H(—1,00) = —1 < —¢/d < H(-1,0) = 0. Together with the phase
plane constraint, d > €, this yields 0 < ¢ < d.
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Chapter 5 Second order systems

EXAMPLE 5.1—The stable case, Ay < A; <0

The phase plane is illustrated in Figure 5.3. The eigenvalues are A\; = —1
and Ay = —2 and the relay characteristics are d = 1 and ¢ = 0.5. Two
phase plane trajectories emerging from S;_ have been plotted. One with
the initial condition §(0) = 0 and the other with §(0) = 1. Note that these
curves cannot cross each other. Nor can they cross the slow eigenvector, vy,
ie. P(y) < —di(d—e) = 0.5, when (y,7) € S+-. The fast contraction of the
Poincaré map gives fast convergence rate to the limit cycle solution. In this
example P(1) — P(0) = 0.004. In fact, all § > 0 are mapped into the narrow
interval P(0) = 0.4494 < P(y) < P(c0) = 0.5. O

T
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0.4

0.2
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i
'S
T

:
o
)
T
i

N ~
o .
v2 N vl
AN

3 A 1 1

’
k-

I 1 1 1

-1 -0.8 06 04 -02 0 0.2 0.4 0.6 0.8 1

Figure 5.3 The stable case in Example 5.1, with eigenvalues A; = —1 and
Az = —2 with corresponding eigenvectors vy and vz. The relay characteristics
are d = 1 and € = 0.5.Two phase plane trajectories with §(0) = 0 and §(0) =1
are plotted between the switch lines, from S;- to S_4, illustrating the fast
contraction of the Poincaré map in this case, P(1) — P(0) = 0.004.

The rate of convergence depends on the ratio A; /A1. When A3/ goes
to infinity the second order system will become a first order system. We
know already that a first order system reaches the limit cycle directly after
the first switch. In the phase plane this is realized in that all trajectories
from Sy _ will move infinitely fast towards v;. Then for all initial conditions
(y,9) € S4-, the trajectories pass the hysteresis infinitely close along ;.
The limit cycle is therefore reached after the first switch with the Poincaré
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5.1 Transfer function with real poles and no zero

fixpoint —§* € v1. The limit cycle is defined as P(y*) = y* where y* =
—X(d — g). The same follows from the conditions in Chapter 4 used on the
system G(s) = —A1/(s — A1)

The unstable case , M1 > Az > 0: This case is a direct application of
Theorem 5.2 used on the stable case previously. After changing the signs
on the eigenvalues and € there will be an unstable limit cycle. The phase
plane picture looks like the previous stable case reflected along the y-axis,
see Figure 5.4. But now the trajectories are emerging out from the unstable
node. The switch line S4— corresponds to a negative hysteresis. Together
with the constraints H(—1,0) =0 < —¢/d < H(—1,00) = 1, this yields the
condition 0 < —¢ < d for existence of a limit cycle solution.

ExAMPLE 5.2—The unstable case, A>A>0

In the example in Figure 5.4, the eigenvalues are Ay = 2 and Ay = 1 and
the relay characteristics are d = 1 and ¢ = —0.5. Just as the P-map was
contracting in the stable case, in Figure 5.3, the map is diverging in the
unstable case, P(0.4494) =0 < P(y) < P(0.5) = 00, (¥,9) € S+~ The limit
cycle is unstable. O
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Figure 5.4 Phase plane trajectories for the unstable case in Example 5.2, dual
to the stable case in Figure 5.3. Thus, the eigenvalues are Ay = 2, Az = 1 and
the relay characteristics are d =1, ¢ = —0.5. The limit cycle is unstable.
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< e
wn
H

S_+
Figure 5.5 Illustration of convergence to a stable limit cycle for the case when
A1+ Az <0 and € > 0. The point A; is mapped down to Aj ('P(Al) = Az < 4),
while the point B, is mapped up to By (P(B1) = Bz > By). Hence, there is
a stable limit cycle, P(y*) = y*, in the interval B, < §* < A;. The region of
contraction is the shadowed area, provided that a; > a3.

The saddle point case , A; > 0 > );: Consider the phase plane shown
in Figure 5.5. A curve starting on S;_ under the eigenvector v, must always
reach S_ since it cannot pass v; or v, and it passes the y-axis vertically.
This of course, provided that the stationary point, § = d, is in the right half
plane, i.e. d > 0. If @3 > a3 then the point A; on S;_ is mapped to A,
on Sy_ (after the reflection S;_ = —S_4), which is below 4;. However,
another point B; is mapped upwards to By. Clearly we have in this case
contraction to a limit cycle positioned somewhere between A, and By on
S4—. Straight forward trigonometric calculations give

A = -2

YT e+d N {a1=)\2(e——d)
SV as = M\(e+d

As Py 2 = g )

and the condition a; — a3 > 0 can be written

a1 — Qg Zd(/\l +>\2) —E(Al —Az) >0
€ _ A+ A

A LA R - /O
= d>)\1—)\2 (—1,00)
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5.1 Transfer function with real poles and no zero

According to (5.4) this corresponds to a limit cycle solution if and only if
A1 + A2 < 0. Since d > 0 the conditions (5.4) can be written

(Al -+ Az)d/(Al — Az) <—-e<0
The other case, A\; + A3 > 0, follows now from Theorem 5.2 by duality, i.e.
the limit cycle is unstable and corresponds to ¢ < 0 and d > 0. Together
with the existence constraints (5.4) this yields

0<—e< (Al + Ag)d/(Al —_ >\2)

Figure 5.6 illustrate the situation. Note that the existence of a limit cycle
now governs by the condition a; < as.

Sy y

Ao—P

A—>

B{—P

a r

0(1 2

B A

......... . }’
N \V2

%)

S—+

Figure 5.8 Illustration of divergence from an unstable limit cycle for the case
A1+ A2 > 0 and € < 0. The point A; is mapped up to Az (P(41) = Az > A1),
while the point B; is mapped down to B; (P(B1) = B; < B,). Hence, there is
an unstable limit cycle, P(3*) = 3*, in the interval B; < y* < A;.

The case Ay + A2 = 0 when € = 0 was shown to have infinitely many
solutions. The phase plane interpretation is shown in Figure 5.7. From the
figure it is clear that d > 0 since the fixpoint, § = d, must be in the right
half plane. The case, real poles without zero, is summarized in the following
theorem.
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S_+
Figure 5.7 Ilustration of existence of infinitely many limit cycles in the shad-
owed area, for the case A; + A2 = 0 and € = 0. The fixpoint § = d is positive, i.e.
d > 0. All of solutions are at the stability boundary. The existence condition is
now a1 = os.

g L

THEOREM 5.3—Transfer function with real poles and no zero

Consider the second order system, G(s) = b/(s — A1)(s — A2), with real,
nonzero, eigenvalues, A\; > Az, in a relay feedback loop with the relay gain
d and hysteresis €. Factorize bd such that b = |A\;Az|. Then the following is
true.

The stable case, 0 > A; > X;: There is a unique globally stable
limit cycle, P(3*) = ¢*, if and only if 0 < € < d. The limit cycle satisfies
0 <yg* < —X(d—e).

The unstable case, A\; > A; > 0: There is a unique unstable limit
cycle, P(y*) = ¢*, if and only if 0 < —¢ < d. The limit cycle satisfies
0 <y* < Ai(d+e).

The saddle point case, A; > 0 > A;: Here three different situations
can occur depending on whether A\;+ Xz <, >, or = 0. When A;+X; < 0 there
is a unique stable limit cycle if and only if (A1 +X3)d/(A1 —X2) < —e < 0. The
region of convergence is 0 < §y < A2(e — d) on S4—. When A; + X3 > 0 there |
is a unique unstable limit cycle if and only if 0 < —e < (A1 + A2)d/(A1 — Az).
When A; + A3 = 0 there are infinitely many limit cycles if and only if € = 0
and d > 0. They are all on the stability boundary and are in the region
0<y<—Azd on S+_.

Proof: See above! ™
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5.2 Transfer function with complez poles and no zero

5.2 Transfer function with complex poles and no zero

Now, restrict the consideration to a relay feedback of a second order system
with complex poles

w2

82 + 2{ws + w?

G(s) =

We already know by Theorem 5.1 that there is global convergence to a stable
limit cycle, conditioned that the limit cycle solution is unique. Thus, what
remains in order to use Theorem 5.1, is to show that there is just one limit
cycle solution to the relay feedback of (5.5), given the relay characteristics d
and €.

0<(<1 (5.5)

Uniqueness of limit cycle solution

Again, we will show that for a chosen relay gain, d, and hysteresis, ¢, there
is only one limit cycle solution to H(—1,h) = —¢/d that corresponds to
the chosen relay feedback. However, contrary to the real poles case, the
equation H(—1,h) = —e/d can have many solutions. The equation reflects
the behaviour of the open system driven by a square wave input. It does
not, however, take into account the behaviour of a relay feedback. This need
to be done in order to show uniqueness of the limit cycle solution. Some
calculations give

(wh _ 9lw ( h)—- —(wh

(3 sin (wy €

H — = — w1 M freeed E — (2
(=1,h) e¢wh + 2 cos (wih) + e~ ¢k p wiEevi=¢

Written in this form it is easy to see that H(—1,k) is an odd function of {, in
agreement with Theorem 5.2. The derivative with respect to h can be shown
to be

dH(—1,h) 4(C9X 4 ;) sinh (wh) :
=t = (o ;2 con (o) T G - sin (w1 k)
The factor within the brackets has constant sign. Thus,
d—}—I—(d_%’Q =0 when wih =0,m,27,...
Denote vy = —g%’l—r Then
(- 1mfon) = s =~ -
= —:%i:—z; = —coth ()
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Correspondingly
H(-1,27/w;) =... = —tanh(2y)

The function H(—1,h) is shown in Figure 5.8.
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Lcoth(z*w*pi/(2*w1))
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pi/wl 2*pifwl
Figure 5.8 The function H(—1, k) for the system (5.5) where ¢( = 0.5 and
w = 1. A solution to the equation H(—1,k) = —e/d in the interval 0 < wih < 7

corresponds to d,e > 0. A solution in the interval 7 < wy h < 27 corresponds to
d,e < 0. No other solutions correspond to a relay feedback limit cycle.

It will be shown in the following that all solutions in the interval 0 <
h < w/wy correspond to d > 0 and ¢ > 0. The solutions in the interval
m/wy < h < 27/w; correspond to d < 0 and € < 0. No other relay feedback
limit cycle solutions exist.

Between the switch line S _ and S_., the phase plane solution (y,3) is

y(t) = —d + e $“* Asin (w1t + @)
Y(t) = —we ™ “* Asin (wit + o — 6) ; 0 = arccos(()

where A and ¢ are chosen such that (y(0),9(0)) € S4+—. The limit cycle
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5.2 Transfer function with complez poles and no zero

solution corresponding to wih = 7 must satisfy

9(0) = —wAsin (p — 0) = —g(h) = we™“* Asin (w1 h + ¢ — 0) =
= —wAsin(p — ) - e ¢wh
> §(0) = ~i(h) = 0
This corresponds to a relay that is switching at the maximal overshoot. This

is the boundary case that can occur both withd > 0,e >0and d < 0, <0,
see Figure 5.9.

S+

0 y(h)

A3 B 05 t 5033 B 05 1 I

Figure 5.9 The boundary case, /d = coth ((wn/(2wy )), can occur both with
d >0, e> 0 (left) and d < 0, € < 0 (right). Both correspond to relay switches at
the maximal overshoot. c )

Similarly, it is shown that h = 27 /w; corresponds to switches at the
maximal undershoot. This is caused by d < 0 and € < 0 as is illustrated in
Figure 5.10. Solutions where wih > 27 do not correspond to relay feedback
solutions since the hysteresis boundary is then passed more than once by over-
and undershoots before a switch occurs. The function of a relay doesn’t allow
that.

It is now plausible that all solutions in the interval 0 < wih < 7 are
caused by d > 0, € > 0 and the solutions in the interval # < w h < 27 are
caused by d < 0, ¢ < 0. In fact, this is true and is shown in the following .
theorem.

THEOREM 5.4—Transfer function with complex poles and with no zero
Suppose the system (5.5) is stable and connected in a relay feedback loop
with relay gain d and hysteresis €. Let w; = w+/1 — (2. Then there is a
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Figure 5.10 The boundary case, ¢/d = tanh (¢wmw/wr), whend < 0, e < 0,
corresponds to relay switches at the maximal undershoot.

unique stable limit cycle solution with period T = 2h satisfying

0<wh<m wﬁéﬁfi}d,e>0
w<wih <27 when d,e <0

H(-1,h) = —¢/d = {

The convergence is global, P*(g(0)) — §*, k — oo, for all (y(0),y(0)) € S4—.
Proof: A solution A in the interval, 0 < h < 7/w;, must-satisfy

€ ™ 1-{—:3‘27
_f — H(=1,h) > H(-1,—) = —coth(y) = ————=
0 > d H( ) ) el ( 11 wl) co (7) 1 _ 6_27

where v = (wm/(2w;). Depending on the signs of d and ¢ we get the following
inequalities.
< —¢(1—e7 %) d,e >0

> —¢(1—e %) d,e <0 (5.6)

—d(1+ e7?Y) {

Regard the map from §(0) = §* € S4— to —g(t) where t = 7/w;. We will
now show that ¢t > h when d,e > 0 and that t < h when d,e < 0. Another
way to put it is to show that y(t) —e (S_4 already passed,i.e. h < t) when
d,e > 0 and that y(t) > —¢ (S—+ not yet passed, i.e. h > t) when d,e <0.
y(0) =e =—d+ Asin(p) = Asin(p)=d+e
y(t) = —d + Ae “Psin (wit + o) = —d —e 27 Asin (p) =
=—d—e 2 (d+e)=—ee 27 —d(1 + e )
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5.2  Transfer function with complez poles and no zero

Use (5.6) to get
) < -—¢ d,e >0 = h<t=mw/w
LA de<0 = h>t=m/w

For the global convergence, see Theorem 5.1. There are no limit cycles such
that h > 27w /w; since the hysteresis can just be passed once. u

Remark. Notice, that Theorem 5.2 can be used only to partly cover the
unstable case. It is not covered completely since more solutions are found
in the unstable case. These correspond to spiraling phase plane trajectories
that make several revolutions before reaching the hysteresis boundary. Such
solutions can also give chaos. See Cook (1985) and Amrani-Atherton (1989).

[

5.3 Transfer function with real poles and a zero

When b; # 0 there is a zero in the transfer function. The influence from the
zero on the switching behaviour will be considerable more complicated since

’

e the P-map will not always be monotone

e H(—1,h) will not always be monotone

In the case with no zero in the transfer function there could be no more
than one limit cycle solution, stable or unstable. Even when H(—1;h) was
nonmonotone the different solutions to H(—1,h) = —e/d was shown to corre-
spond to different signs of d and €. When a zero is introduced in the transfer
function this is no longer always true. The different solutions may or may
not correspond to different relay characteristics d and €. As an illustration
of the phenomena we restrict our consideration to the real poles case

bis + by 1 by + Aiby by + Azbl}

G(s):(s—)\l)(s—)\z):Al-*Az S—)\l S—Az
The function H(—1,h) (compare (5.3)) is then modified to

1 by + A2bq h by + A1by
tanh(—-JXy) — ———
v vl I v R M

H(-1,h) = tanh(g)\l)]

In some situations H(—1,k) will no longer be monotone. This is seen by
investigating the sign of

dH(-1,h)  1/2 (b2 + Agbl)coshz(%)\l) — (b2 + A1b1) cosh?(2 ;)
dh IRYERY (cosh(%)\l)cosh(%)\z))2
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Since one of the cosh?‘(-)-terms in the numerator always will grow faster than
the other, H'(—1, ) must be monotone. So is H(—1,h) if sign[H'(-1,0)] =
sign[H'(—1,00)]. For all cases we have

sign[H'(—1,0)] = — sign[b1]
On the other hand

sign[bg + Azbl] A1 +A2>0

. 1

Slgn[H ( 1,00)] N {— sign[bz + Albl] Al + Az < 0

This is realized from the following. Let A; + Ay < 0. Then |A3| > ||, since
A1 > )y by definition. The term with coshz(h)\g /2) will then dominate over
that with cosh?(hA;/2). The sign of the coefficient in front of cosh?(h);/2)
is then determining the sign of H'(—1,h) when h — oco. The case A; + Ay >
0 follows correspondingly. In the following, the case A; + Ay < 0 will be
investigated. Many results are then automatically transferred to the other
case by using the duality in Theorem 5.2.

Monotone H(—1,h): Assume that

&
LY

sign[bi] = sign[by + A151] > 0
A1+ A2 <0

Then H(—1,k) is monotonously decreasing and there will be-a unique solution
if
H(~1,00) < —= < H(-1,0)

The interpretation of the signs of d and ¢ will be the same as for the case
with no zero in the transfer function. This is realized from the following.
Suppose b; = 0 and there is a limit cycle P(y*) = ¢* for a particular choice
of d and €. Choose a g # y* and let 3 = P(¥o). Now, choose b; such
that 1 — 9o = 2b;1d, which corresponds to the discontinuity at S;_ where
9(0—) = g1 and §(0+) = go. Then the new system will have a limit cycle
defined as P(y1) = 91 and the relay characteristics d and € are still the same.
Note that when € > 0 it is possible to choose gy < 0 (but with g; > 0) if we
extend &4 _ toinclude yo. The resulting limit cycle, 9;, is then nonmonotone
in the sense that P'(y1) < 0. However, in such a case Theorem 5.1 cannot
be used since 7; < 2b,d.

In the stable case we can choose b = A1), as before. Then the only
possibility for H(—1,h) to be monotone when b; > 0 is that

by < —A2
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¥ Si-

e

z(0+)

Figure 5.11 When H(—1, k) is monotone for a stable system, then the con-
dition by < —Az holds. The condition guarantees that it is possible to choose ¢
such that P(0) = 0. Here, two curves y and z, satisfying and not satisfying the
inequality respectively, illustrate the phase plane behaviour. The boundary case
—e/d = H(~1,00) is only possible with the y-curve. The z-curve ‘case must have,
a nonmonotone H(-1, h).

The inequality can be interpreted as follows. If H(—1,hk) is monotone it
should be possible to choose € such that h — o0, i.e. —¢/d — H(—1,00) =
—1. This is only possible if § € S_4, i.e. ¥* = 0. Then't > oo when the
trajectory reaches S_;. In Figure 5.11, it is shown that the map P(0) = 0
is only possible when the discontinuous part of the map doesn’t pass the
eigenvector vg, i.e. when b; < —A;. Two curves are shown, one that satisfies

9(0—) — 9(0+) = 2b:d < —A3(2d), and another that does not.

The boundaries, H(—1,0) and H(—1,00), are the same as for the case
with no zero in the transfer function except for the saddle point case where
there is a dependence on b, as

1
A1 — Ay A/\

H(—l,oo) = (Al -{'- Az) 2b1 Az < 0 < )\1

The dependence on b; in the saddle point case is illustrated in Figure
5.12. (Note that b = —A;A; such that the stationary point is § = d.) The
discontinuity at S4_ is y(0—) — y(0+) = 2b1d. According to the Figure 5.12,
the condition for existence (and stability) of a limit cycle is

2b1d+ a; > Qg
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P s
y(0-) —>
" 0n) } 2b4d
v
(Xl """""" }
ey
g d
%] ™
Vo

S_+

Figure 5.12 Illustration of the boundary case —e/d — H(—1,c0) when b; # 0.
Then P(y*) =3* — as.

Since vy = (1 Al]Tandvzz [1 Az)Tweget

Q) = —}\2((1 - 6)
Qo = Al(d-}- 6)
Thus, A
2bld — Ag(d — 6) > )\1((1-4— 6)
€ 1
= _(_;l > M—_E[A1+)\2—2b1]—H(—1,OO)

Nonmonotone H(—1,h): It is more interesting to notice what happens
when

sign[bl] = — sign[bg + Al bl]

Then H(—1,k) is nonmonotone and H(—1,h) = —¢/d can have two solutions,
hy and hy (> h1). In the case A1 + Az < 0, the solution hy can be constructed
as before in the monotone case, i.e we conclude that d > 0. It will be shown

that the other solution hy is associated with either d < 0 or d > 0. Thus, for .

some relay characteristics there could be two limit cycle solutions. However,
just one of them (hy) is stable.

In the stable case when by = A1 )s, we get
— sign[b2 -+ Albl] = sign[)\z -+ b]_]
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5.8  Transfer function with real poles and a zero

Thus, a stable system that is nonminimum phase has always a nonmonotone
H(—1,h), while if it is minimum phase there is the additional condition,
by > —Ag, for nonmonotonicity.

EXAMPLE 5.3—A stable nonminimum phase system
Consider the stable nonminimum phase system

—s+2
) = e T2

The nonmonotone function H(~1,hA) is shown in Figure 5.13.

0.4 T T T T T T T T T

-eps/d

0.2

H
S
!

7 8 9 10

Figure 5.13 Example 5.3, where the function H(—1,}) intersects the bound-
ary case —e/d = 0.177, A limit cycle solution in the interval 0 < h < 0.45
corresponds to d < 0. In the interval 0.45 < h < 0.86, there are two solutions
both corresponding to d > 0. A solution where h > 0.86 corresponds to d > 0.

One might expect, that one type of solution (signs of d and ¢) is associ-
ated with solutions to the left of max[H(—1, k)] and another one to the right.
That was the case when the transfer function had no zero. That is, however,
not the case now. Instead, two solutions h = 0.45 and A = 0.86 have been
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indicated at the intersection of —e/d = 0.177. These are the boundary solu-
tions for this example. The following signs of the relay gain d, corresponding
to different relay feedback limit cycle solutions, can occur

0<h <045 one solution with d < 0

0.45 <h < 0.86 two solutions with d > 0

0.86 <h one solution with d > 0
First consider the case when d = 1 and let ¢ = —0.177. Then there are
two solutions h; = 0.45 and hy = 0.86. When ¢ is reduced to —0.2 the
two solutions coincide, hy = hy = 0.6. The Poincaré map, P(y), where

(y,9) € S4—, is given in Figure 5.14 for the two situations, ¢ = —0.177 and
e = —0.2.

0 0.1 0.2 03 0.4 0.5 0.6
y
Figure 5.14 The Poincaré map, P(y) (solid curve), for the two cases e = —0.177
and € = —0.2, in Example 5.3. The limit cycle solutions, P(3*) = y*, are the
intersection by the dashed line. When ¢ = —0.177, this gives two solutions y* = 0
and y* = 0.56, corresponding to h = 0.45 and h = 0.86 respectively, while when

e = —0.2, the two solutions coincide. The left solution is always unstable and the
right one is stable.

Since the P-map is continuous and monotone in this case it can be
concluded that the largest of the two limit cycles, y*, must be stable, 0 <
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Figure 5.183 The unstable limit cycle, y* = 0, corresponding to A = 0.45 in
Example 5.3. The relay isd =1 and ¢ = —0.177.

P'(y*) < 1, and the smallest unstable, P'(y*) > 1, as is shown in Figure 5.14.
Otherwise there would be solutions growing to infinity which is impossible
since the system G(s) is asymptotically stable driven by a bounded input.
The phase plane trajectory for the limit cycle solution associated with A =
0.45 are shown in Figure 5.15, where g* = 0. In Figure 5.16, the limit cycle
associated with h = 0.86, where ¢* = 0.56, is shown.

When d = —1 and € = 0.177 there is another limit cycle with the half
period h = 0.45. This solution, where §* = 0, is shown is Figure 5.17, and
corresponds to a nonmonotone P-map, i.e. P'(0) < 0. O

EXAMPLE 5.4—A stable minimum phase system
Consider the stable minimum phase system

3542

¢ = GG+

which is satisfying the condition b; > —As, giving a nonmonotone H(-1,h).
The function H(—1,h) is shown in Figure 5.18. The function H(—1,h) inter-
sects the boundary case —e/d = —1.177 at h = 1.55 and h = 1.80. Like the
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25} =0+

L5}

o5k t=0-

.........

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4

Figure 5.16 The stable limit cycle, y* = 0.56, corresponding to k = 0.86 in
Example 5.3. The relay is d = 1 and ¢ = —0.177.

0.5+

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Figure 5.17 A limit cycle, §* = 0, corresponding to k = 0.45 in Example 5.3.
The relay is d = —1 and £ = 0.177.
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1 6 7 8 9 10
1.55 1.%0 3 4 5

Figure 5.18 Example 5.4, where the function H(—1, k) intersects the boundary
case —¢/d = —1.177 at h = 1.55 and h = 1.80. A limit cycle solution in the
interval 0 < h < 1.55 corresponds to d > 0. In the interval 1.55 < h < 1.80,
there are two solutions both corresponding to d < 0. The solutlon for h > 1. 80
corresponds to d < 0. ,

previous nonminimum phase example these are defining an interval where
two limit cycle solutions exist, associated with the same relay feedback. The
following signs of the relay gain d, corresponding to dlfferent relay feedback
limit cycle solutions, can occur

0<h <1.55 one solution with d > 0
1.55<h < 1.80 two solutions with d < 0
1.80 <h one solution with d < 0

First consider the case when d = —1 and ¢ = —1.177. Then there are two
solutions h; = 1.55 and hy = 1.80. When ¢ is reduced to ¢ = —1.180 the two
solutions coincide, hy = hy = 1.67. The Poincaré map, P(y), (v,9) € S+-,
is given in Figure 5.19 for the two situations, ¢ = —1.177 and ¢ = —1.180.
As in the previous example, the largest of the two limit cycles, §*, must be
stable, 0 < P'(y*) < 1, and the smallest unstable, P'(g*) > 1,

The unstable limit cycle solution, where y* = 0, is shown in Figure 5.20.
Note that the condition b; > —M;, guarantees that the trajectory always
passes the eigenvector vy at the discontinuity on S4_. This in turn, means
that the trajectory, which must tend toward ¢ along v, is making a turn and
enters S_ from the right, as it should. O
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Figure 5.19 The Poincaré map, P(y),for the two cases ¢ = —1.177 and ¢ =
—l 180, in Example 5.4. When ¢ = —1.177, there are two solutions §* = 0 and

= 0.07, corresponding to k; = 1.55 and hy; = 1.80 respectlvely, while when
€ = —1.180, the two solutions coincide. The left solution is always unstable and ,
the right one is stable.

-1

S+-

-1.5 -1

I g4

Figure 5.20 One of the limit cycle solution, y* = 0, for the boundary case in
Example 5.4, where h = 1.55. The relay is d = —1 and ¢ = ~1.177.
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5.4 Summary

5.4 Summary

Second order systems with relay feedback can have a complex behaviour. In
order to simplify the analysis the strategy was to look for conditions that
guarantee

e a unique limit cycle solution

e a monotone P-map

Such conditions were found for the case with no zero in the transfer
function. Conclusions about stability and convergence regions were drawn.
In particular, stable second order systems with relay feedback have global
convergence to the unique limit cycle. Stable limit cycles for unstable systems
were also found.

Complete results were not given for transfer functions having a zero.
Instead it was illustrated by analysis of a special case that there is

e not always a unique limit cycle solution
e not always a monotone P-map

Both items make the analysis more complicated. The convergence has
only been shown for the case when the P-map is monotene. The nonunique-
ness of limit cycle solution has nothing to do with the P-map being non-
monotone or not. Nor has it to do with nonminimum phaseness that may be
introduced by the zero. In fact, two examples; one minimum phase and an-
other nonminimum phase, both with monotone P-maps were shown to have

s

two limit cycle solutions for some relay feedback. o
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Chaos in relay feedback
systems

’

Quite peculiar behaviour was discovered in Chapter 4, where feedback of an
unstable first order system with direct term and a time delay showed both
symmetrical and unsymmetrical limit cycles solutions. The system can be -
thought of as an approximation of a second order systern where the direct
term is a faster mode. If the poles are complex, however, it is possible to
get even more complex behaviour. In Cook (1985) an example was given of
a second order system, containing a relay with hysteresis, which can display
chaotic motion. The idea is there to let the second order system have unsta-
ble complex poles. This makes a phase plane trajectory to spiral away from
the equilibrium point until it reaches the appropriate switching line defined
by the relay. Depending on initial conditions different numbers of revolutions
may be needed before the switching line is reached. This makes the Poincaré
map from one switching line to the other discontinuous. The same exam-
ple was further investigated in Amrani-Atherton (1989). In this chapter a
similar approach is used to construct chaotic systems. The similarity is the
expanding spiral. But here, the influence of a time delay is also considered.
For some time delays, there is a bounded region in the state space which no
trajectory can leave. Inside that region, the behaviour depends on the highly
irregular Poincaré map. The system will exhibit strange behaviour like, multi
switch limit cycles and chaos. Unlike the Cook example, some of the limit
cycles are found to be stable. Also, in order to get chaos in the Cook example
it is crucial to have positive feedback. When having a time delay, chaos is
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possible also during negative feedback.

6.1 Second order system with a time delay

Second order systems with time delay are infinite dimensional. It turns out,
however, that much insight can be derived from analysis in a two dimen-
sional phase space. To analyse the system we will consider a phase space
representation for the linear second order system in Figure 6.1.

The solutions to a second order system step response for different initial
values will give rise to curves in the phase plane that cannot cross each other.
This noncrossing fact implies that the Poincaré map, P, is monotone. This
was used in Chapter 5 to prove that a stable second order system during
relay feedback had global convergence to a limit cycle. However, if a time
delay is introduced in the loop, as in Figure 6.1, the Poincaré map will not
always be monotone.

relay 2nd order time delay

di
‘ u G(s) y ,ve"ST .

-1 T

Figure 6.1 A relay feedback system with time delay

Parameterize the second order system with complex poles as

w2

52 + 2ws + w?

G(s) = (6.1)

Assume the relay output to be u = 41. The step response y(t) is then
y(t) = 1+ e $“* Asin (w1t + ) w1 =wy/1—(? (6.2) 'Q

for some constants A and ¢ depending on initial conditions. The derivative
can be written as

§(2) = —we™ ¢ A(sin (wit + ) - ¢ — cos (wit + ) - /I =€)

6.3
= —we ¢“ A sin (wit + ¢ — ) (6:3)
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where ( = cos . Considerable insight into the behaviour can be obtained by
observing the remarkable fact that the relay switchings occur at a straight
line in the (y,y) plane. A similar result, but for relay servos, is given in
Graham-McRuer (1961). There, it is referred to as the delayed switching
line.

THEOREM 6.1—The delayed switching line

Consider the relay feedback system in Figure 6.1. Assume the relay output to
be u = 41 and that y passes the hysteresis ¢ when t = 0, i.e. y(0) = ¢. Thus,
the relay is switching to u = —1 at time ¢t = 7. Then (y(7),9(7)) € S4— lies
along a straight line in the phase plane for all initials §(0). The line is

sin (§ — w1 )

= W—————
sinwT

wi(l —€)e v

sinwy T

y(t) =a(y(r) —1)+ b where

b=

Proof:

sin (w17 + ¢ — §) = sin (w17 + @) cos § — cos (w1T + ) sin § =

= sin (w17 + ¢) cos § — sin §(cos w; Tcog'zp — sinw; 7 sin)
Eliminate the underlined cos p-term by use of the following relation

sinf coswiT . . ssinfcoswiT
———— = (sinw;Tcos p + coswy T sin ) —— =
sinwyT

2

sin (w1 T + ¢ -

( ) sinwyT
. sin § sin ¢ cos® wy T
= sin 0 coswiTcos p +

sinwiT
This gives

sinwyT cosf — coswyTsinf

sin (w1 T+ ¢ — 0) = sin (w17 + @) -
sinw; T
+ sinfsin sin? wyT + cos? wiT

sinwy T
sin (w1 — 6) N sin § sin

= sin (w17 + @) 3 -
sinw;T sinwyT

Multiply with —wAe™¢“" and use that Asinp = y(0)—1 = ¢ — 1 (constant!)
and that wsin# = w;. Then from (6.2) and (6.3) we get

sin (8 — w17)

(y(r) - 1)+

Y(1) = w——r: .
sinwiT sinwy T
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6.1 Second order system with a time delay

When having a time delay it is convenient to redefine the stroboscopic
Poincaré map such that the Poincaré section is as before. The Poincaré
section and the switching line §;_ are then no longer the same.

DEFINITION 6.1—The Poincaré map, P, when having a time delay

Let us define the P-map as before as the map from the half line segment
(y(0) = £,9(0) > 0) to the half line segment —(y(t*) = —¢,y(0) < 0). Notice,
that y is not the output of the system. Therefore the corresponding input »
will not switch on the Poincaré section. Instead, u(t) = d when 0 <t < 7
and u(t) = —d when 7 <t < t*. Notice, that the switching line S} _ is not
our chosen Poincaré section. O

The meaning and use of Theorem 6.1 and the definition of the P-map are
illustrated in Figure 6.2a and b. The P-map is taken as (y(0) = ¢,y(0)) —
—(y(t) = —&,9(t)). This map can be seen as first a map to the straight
line, Sy, according to Theorem 6.1, i.e. (y(0) =¢€,%(0)) — (y(7),y(7)) and
then from the line, S;_, to the Poincaré section, (y(7),y(7)) — —(y(¢),y(t))
where —y(t) = €. The first part of the map onto the line is always monotone,
while that is not necessarily the case for the second part of the map, from
the line. Define the normal to the line, N, in a clockwise sense as

N = [ wsin (8 — wyT) ] L

—sinwyT

A monotone map is illustrated in Figure 6.2a, where the flow from the line,
F, (when w = —1) is in the normal direction, i.e. NTF 3 0. In Flgure 6.2b
the nonmonotone case is shown when NTF < 0.

EXAMPLE 6.1—Second order system with time delay

Reconsider the system G(s) = e ?/(s> + s + 1) in a relay feedback loop
with relay gain, d = 1, and hysteresis, ¢ = 0.005. This example was studied
in Chapter 2 (Example 2.5) where it was shown that there were 3 different
limit cycle solutions for this choice of d and €. Two of them were, however,
constructed by use of the initial time history such that y(t) was passing the
hysteresis when 7 < t < 0. If we disregard these solutions, e.g. by assuming
that y(t) = 0, t € (—7,0), we are left with only one limit cycle solution.
This solution was concluded to be locally stable by use of the approximate -
describing function analysis. Now, we will consider the stability issue by
use of the Poincaré map. The solution is shown in the (y,y) phase plane
in Figure 6.3, starting with the initial condition (y(0),y(0)) = (&,0). The
line (y(7),y(7)) is also indicated. The corresponding Poincaré map defined
as P(y(0)) = —y(¢) where y(0) = € and y(t) = —e, is given in Figure 6.4.
Global convergence is obtained if |P'()| < 1 and P is monotone if P'(g) > 0.
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Poincare
y section
4

[¥(0).y(0)] S, |

b2

Poincare
section g E
[] Poi - ’
oo
[y(0),y(0)]
A .
a2
a
—£
b1/ %
Na— S
Poix-lcare’

section v

Figure 6.2 The P-map is defined as b; = P(a1) and by = P(az). a) (above)
Monotone P-map when NTF > 0, ie. (bs — b1)/(az — a1) > 0. b) (below)
Nonmonotone P-map when NTF < 0, ie. (b — b1)/(az —ay) <O.
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Figure 6.3 Phase plane solution, (y, §), for the system G(s) = e~*/(s? +s+1)
during relay feedback with d =1 and ¢ = 0.005. The switch line §; _ is dashed.
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Yy
Figure 6.4 The Poincaré map P(y;) = i1 (dotted curve) and yi41 = %
(dashed line) for the relay feedback system with G(s) = e~ */(s? +s8+1),d =1

and € = 0.005. Successive iterations follows the solid line starting from the initial
condition §(0) = yo = 0, then g1 ~ 0.75,... 9 ~ 1.1.
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Figure 6.5 The output, z(t), for the system G(s) = e~*/(s? + s +1) in a relay
feedback with d =1 and £ = 0.005.

This seems to be the case, at least in the plotted interval. The corresponding
output, 2(t), is shown in Figure 6.5. O

6.2 Multi switch limit cycles

From the intuition about the phase plane behaviour gained by Theorem 6.1,
we are able to construct peculiar examples. By choosing the'time delay longer
and longer the switch line S turns clockwise. This can cause contraction of
the P-map. Let us consider the unstable case with two complex poles. Then
the map to Sy_ is expanding, but from Sy_ to the P-section, y(t) = —e,
there could be contraction. Think of when the flow, F, from S, _ is tangential
to S4_, i.e. NTF = 0 (compare Figure 6.2). Then different 3 on the P-
section are mapped to the same point, i.e. contraction. When the contraction
outweights the expansion we have the basic ingredients for chaos or strange
behaviour. We will choose a quite large hysteresis such that some of the
rotating phase plane trajectories miss the hysteresis at their first revolution.
But since they expand they will hit the hysteresis on their next revolution.
This will give a discontinuous P-map. We will start with studying mults
switch limit cycles. In next section the example will be modified to produce °
a chaotic solution.

DEFINITION 6.2—Multi switch limit cycles

A k-switch limit cycle is defined as points, {¢1,92,...9x}, at the P-section
such that P(91) = 92, P(92) = s, ... P(yx) = y1 where all y;, ¢ = 1,...k,
are different. O
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Figure 6.6 The discontinuous map P(y0) = 71 (dotted curve) and 31 = yo
(dashed curve) as a function of jo. Two 2-switch limit cycles are illustrated as

solid lines. The system is G(s) = w?/(s? + 2{ws + w?) with C = —-0 1, w=1and
the relay characteristics are d =1, e = 2. :
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EXAMPLE 6.2—Multi switch limit cycles

Reconsider the system (6.1), but now with unstable poles, ( = —0.1, w =1
and with the relay characteristics d = 1, € = 2. There will be many multi
switch limit cycles, some stable, other unstable. Two 2-switch limit cycles
are illustrated in Figure 6.6. The right one of them is stable. The left
one is unstable and will eventually drift over into a stable 12-switch limit
cycle. In Figure 6.7, two 3-switch limit cycles are shown. Both these are
unstable. The left one will drift over into a stable 12-switch limit cycle and
the right one will drift over into the previous stable 2-switch limit cycle. The
stable 12-switch limit cycle is shown in Figure 6.8. It is interesting to notice
that for each multi switch limit cycle, described as above by the P-map,
there are two corresponding solutions. For example, in the 2-switch case
above we have P(y1) = ¥2, P(¥2) = %1, which corresponds to either y; = ¢,
Y2 = —€ or Y3 = —€, Y2 = €. In the 12-switch case we have P(y1) = 72,
P(32) = 93, ---P(¥12) = 91, which corresponds to either y; = (=1)i"'c or
yi = (—1)%, i = 1,2,...12. In the phase plane these two solutions are each
other’s reflection. They are both shown in Figure 6.9. Both curves have the
same stability property since they correspond to the same P-map. Thus, the
interlaced curves indicate the extreme sensitivity to initial conditions. One
of the 12-switch limit cycle solutions is plotted versus time in Figure 6.10.

O

121




Chapter 6 Chaos in relay feedback systems

1.6 r T T T T T T =

0} i - I3 1
0.6} e .

0.4} . 1

Y

Figure 6.7 The discontinuous map P(go) = ¥1 (dotted curve) and 41 = go
(dashed curve} as a function of §3. Two 3-switch limit cycles are illustrated as
solid lines. The system is G(s) = w?/(s? + 2{ws + w?) with C = —0 1, w=1 and
the relay characteristics are d =1, £ = 2.
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Figure 6.8 The discontinuous map P(yo) = ¥1 (dotted curve) and 1 = ¥o
(dashed curve) as a function of go. A 12-switch limit cycles is illustrated as solid
lines. The system is G(s) = w?/(s? + 2¢ws + w?) with ( = —0.1, w = 1 and the
relay characteristics are d = 1, € = 2.
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6.8 Chaos

Figure 6.9 Two 12-switch limit cycles (solid closed curves above and below)
corresponding to the same P-map. The system is G(s) = w?/(s? + 2{ws + w?)
with ( = —0.1, w = 1 and the relay characteristics are d = 1, € = 2. The Poincaré
sections are shown as dashed lines. '
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100

Figure 6.10 One period of a locally stable 12-switch limit cycle. The system
is G(s) = w?/(s? 4+ 2{ws + w?) with ¢ = —0.1, w = 1 and the relay characteristics
are d = 1, € = 2 (dotted). The output z(t) is dashed and the relay output (%) is
solid.

6.3 Chaos

From a practical point of view chaos can be defined as bounded steady-
state behaviour that is not an equilibrium point, not periodic, and not quasi-
periodic. One property of chaotic systems is eztreme sensitivity to initial con-
ditions: given two different initial conditions arbitrary close to one another,
the trajectories emanating from these points diverge until, for all practical
purposes, they are uncorrelated. Simply put, a chaotic system is a determin-
istic system that exhibits random behaviour. Also, the limit set for chaotic
behaviour is not a simple geometrical object like a circle or torus, but it has
fractal structure. In the previous section, multi switch limit cycles were in-
deed limit cycles, forming a closed curve in the phase plane, even though the
discontinuous P-map gave rise to quite peculiar and complicated behaviour.
Yet another property of chaotic systems is the fine structure of the limit set,
the strange attractor. This means that the attracting limit set is not a closed
curve in the phase plane. No matter how much we amplify to reveal details, -
more and more new details will always show up.

Dimension

Attractors can be classified by using the concept of dimension. An attractor
is said to be n-dimensional if, in a neightbourhood of every point, it looks
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6.3 Chaos

like an open subset of IR™. For instance, a (multi switch) limit cycle is one-
dimensional since it looks locally like an interval. A torus is two-dimensional
since, locally, it resembles an open subset of IR®. That is typically for 2-
periodic (quasi-periodic) solutions. An equilibrium point is considered to
have zero dimension. The neighbourhood of any point of a strange attractor,
however, has a fine structure and does not resembles any Euclidean space.
Hence, strange attractors are not manifolds and do not have integer dimen-
sion. There are several ways to generalize dimension to the fractional case.
One is the correlation dimension, Dc. This is easily estimated by use of
points, sampled from a trajectory, see Parker-Chua (1987).

DEFINITION 6.3—Correlation Dimension, D¢
Suppose N points of a trajectory have been gathered either through simula-
tions or from measurements. Define the correlation as

C(e)= lim —

1 | the number of pairs of points
N—oo N2

z;,z; suchthat |lz;—2;]| <e

Then the correlation dimension is

Dg = lim In C(¢)
e—0 Ine ; /
O

EXAMPLE 6.3—Chaos 4

Once again, consider the system (6.1), but modify slightly- the parameters;
¢ = —0.105 and £ = 2.1. The idea is to get multi switch solutions to come
very close to the unstable limit cycle. The nearer the solution comes the
unstable limit cycle the longer it will stay there. Thus, the P-map will scan
over a large number of points with high density near the limit cycle. Finally,
the solution will diverge far away from the limit cycle in a multi switch like
fashion until it once again comes back very close to the limit cycle. However,
not to exactly the same point as before. The P-map will once again scan
over a large number of points with high density, slightly different points than
before, producing a fine structure. The procedure repeats resulting in a
strange attractor with fractional dimension. The P-map is shown in Figure
6.11. In order to see that the solution is not a closed curve the P-map is
plotted versus iterations in Figure 6.12. The strange attractor is plotted
in the phase plane (y,y) in Figure 6.13. Note the fine structure and the
increasing density near the edge of the unstable limit cycle solution. By use
of samples of data from the strange attractor the dimension can be estimated.
In Figure 6.14, In[C(¢)] is plotted versusIn[e], where the P-map data are used.
For a finite number of data there is an interval where this curve is linear. The
slope there, approximately 0.85, will give us an estimate of the dimension of
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Figure 6.11 The Poincaré map for a strange attractor (the solid lines). The
system is G(s) = w?/(s? + 2{ws + w?) where ( = —0.105, w = 1, and the relay
characteristics are d = 1, € = 2.1. The discontinuos Poincaré map P(yiy1) = ¥

(dotted line) and §i41 = gi (dashed line) are plotted versus g;.
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Figure 6.12 The Poincaré map from Figure 6.11, plotted versus iterations.
This shows that the solution is not periodic, i.e. not a limit cycle. Also, the
increasing density of points near the unstable limit cycle is seen, indicating frac-
tional dimension close to 2.
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Figure 6.13 A strange attractor in the (y, §) phase plane. The system is G(s) =
w?/(s? + 2¢ws + w?) where { = —0.105, w = 1, and the relay characteristics are
d =1, e = 2.1. The dimension is estimated to D¢ ~ 1.85.

B

the P-map. The strange attractor (in the phase plane) will therefore have
the dimension, D¢ ~ 1.85. O

Bifurcation ~

A bifurcation plot is commonly used to illustrate the complicated behaviour
of a system that can exhibit chaos. The stable attractors shown by the P-map
are displayed versus one critical parameter. Typically, the plot shows a single
curve suddenly splitting up into multiple curves or random like patterns,
i.e. a limit cycle that suddenly change into a multi switch limit cycle or
a strange attractor. Consider Example 6.3, but let { to vary, i.e. let ¢
to be our critical parameter in a bifurcation plot. Choose the interval ¢ €
{-0.105,—0.100}. First, iterate the P-map to find the attractor. Then, store
a large number of data in order to reveal all multi switch levels or the pattern
of a strange attractor. Note, that just one attractor is found per chosen initial
condition, §(0). This means that the resulting bifurcation plot will only show .
one solution for each (. There may be many stable solutions as we saw in
Example 6.2. The bifurcation plot is given in Figure 6.15. Note that we
here did not get chaos when ¢ = —0.105 as we got before. Instead there is
a stable 5-switch limit cycle. Thus, one and the same system can exhibit
chaotic behaviour or limit cycles, depending on the initial condition.
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In[e]

Figure 6.14 Data from the P-map is used to plot the correlation In[C(e)]
versus In[e] (solid curve). For a finite number of data there is an interval where
this curve is linear. The slope there (the dashed line) will give us an estimate of
the dimension of the P-map, approximately 0.85. The strange attractor (in the
phase plane) in Figure 6.13 will therefore have the dimension Do = 1.85.

0 ! i ML it L 1 1 1 :
-0.105 -0.104 -0.104 -0.103 -0.103 -0.102 -0.102 -0.101 -0.101 -0.1 -0.1

¢

Figure 6.15 Bifurcation plot for the relay feedback system,
G(s) = e 35 /(s +2(s+1) and d = 1, ¢ = 2.1. The P-map attractors are
plotted versus . The same %(0) is used for all ¢.
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6.4 Summary

6.4 Summary

Relay feedback of a second order system with unstable complex poles can give
rise to chaos. This was shown in Cook (1985), who used positive feedback. It
was also shown that all limit cycle solutions are unstable. In this chapter we
have investigated second order systems with time delays. It has been shown
that chaos can then be obtained even with negative feedback. Some of the
limit cycle solutions also appear to be stable.
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|dentification of
dissolved oxygen
concentration dynamics

*

Relay oscillations can be used in many different ways. In Astrém-Higglund ,
(1984) it is shown how relay oscillations can be used to obtain the dynamics
required to tune a PID controller. An unconventional use of relay feedback
to determine dynamics is given in this Chapter. The dynamics of dissolved
oxygen (DO) concentration in an activated sludge system can be described
by a nonlinear, time-varying differential equation. It is characterized by the
oxygen transfer rate*, Ka, which is a nonlinear function of the air flow rate,
and the respiration rate, R, which is varying with time. The quantities, Kra
and R, are of special interest. It will be shown that a relay-like feedback
can be used to cause a self-excitation that reveals information about Kra
and R. They will both, however, contain an undetermined bias that is not
identifiable. The relay amplitude is adjusting itself to keep a prescribed
oscillation amplitude around a DO setpoint. This makes a tradeoff between
estimation and control. It should be noted that the main purpose here is -
not to regulate the DO concentration but to identify the dynamics. The
tradeoff between estimation and control has therefore been made in favour for
estimation. However, in spite of the introduced excitation the DO control will

* The notation, K a, is standard in literature and should be read as one single quantity
and not Ky, - a.
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be satisfactory. The idea has been tested in a series of full scale experiments
at Malmo Sewage Works in Sweden. Results from one of these experiments
are presented in this chapter.

7.1 Introduction

The respiration rate, R, is an essential variable in an activated sludge system.
It is the oxygen utilization rate due to the growth and decay of microorgan-
isms and will vary with different loads on the plant. Respiration rate is an
indicator of biological degradable load. Toxics may either slow down the
growth rate or kill part of the organisms. This also is reflected in R, and can
signal for a bypass action to save the organisms. The advantage of knowing
R may not be limited to process diagnostics. In Olsson (1985), it was pro-
posed to be used in step feed and sludge inventory control. It was shown in
Olsson-Andrews (1978) that the respiration rate profile along the biological
reactor is important. Knowledge of the profile can be used to adjust of the
air flow rate distribution along the basin. The profile would also suggest an
appropriate setpoint for the DO control.

The idea of on-line estimation of R given only DO sensor and air flow
signals, was proposed by Brouzes (1968), among others. However, in an open
aerator R cannot be calculated from the DO mass balance unless the oxygen
transfer rate Kpa is known. Different approaches have been suggested for
estimation of Kra and R. Certain assumptions have then been made, which
have been more or less unrealistic. In a simulation study by Ko et al (1982),
R was assumed constant. Similar simplifications were assumed by Howell-
Sopido (1985). Another approach was taken by Cook et al (1981), where
deviations of R from an unknown steady state value was estimated. Adaptive
control schemes have been applied in Holmberg-Olsson (1985), Holmberg
(1986), Holmberg et al (1988) and Marsili-Libelli (1990). In these papers
K1 a was assumed proportional to the air flow rate. In Holmberg (1990) it
was shown that this assumption is not correct. The simplification will make
any estimates of Ka and R biased.

In section 7.2 the DO model is given. An adaptive control scheme using
relay excitation is presented in section 7.3. Identifiability is discussed in
section 7.4, where it is shown that K;a and R will be undetermined by a .
bias. Reconstruction of the nonlinear Kza and the time varying R(t), apart
from the undetermined bias, are made in section 7.5. Conclusions are given
in section 7.6.
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Influent water flow

Air flow

Q
_—0  Yin
////Z%/% D(:so:ed Oxygen
Concentrations

o

Effluent water flow

Figure 7.1 The biological reactor—a full scale plant. The dashed zone is re-
garded as completely mixed.

’

7.2 The dissolved oxygen concentration-dynamics

Full scale experiments have been made at Malmé Sewage Works. The plant
is designed to serve 550 000 person equivalents but a normal load is about
400 000. A normal water flow is about 1 300 1/s. The total flow is split
between an activated sludge system and a fixed film bed reactor system. The
former is divided into three parallel double basins, each one of them having a
volume of 3 300 m3. The outline of one such double basin is shown in Figure
7.1. The influent biodegradable substrate will be removed continuously by
the activity of the microorganisms, causing a profile along the reactor of the
DO concentration and the respiration rate. We will consider a part of the
reactor, the dashed zone in Figure 7.1, as completely mixed. The influent
DO concentration, y;,, is then measured at the mid point of the reactor and
the effluent DO concentration, y, at the 3/4-point. The completely mixed
assumption approximate the DO concentration in the whole dashed zone to
be equal to y. This simplification gives the model

dy @
o = yWin —y) + Kra(u)-(c—y) - R (7.1)
where
Krpa(u) Oxygen transfer rate
R Respiration rate
Y DO concentration in the dashed zone
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7.2 The dissolved ozygen concentration dynamics

DO saturation concentration
Yin Influent DO concentration to the dashed zone

Air flow rate to the dashed zone

Water flow rate

Volume of the dashed zone
The values of Kpa(u) and R are unknown. Normally, the respiration
rate, R, has a daily variation reflecting the activity of the bacteria. It may,
however, make rapid changes (within fractions of hours) if toxic disturbances
enter the plant. The oxygen transfer rate, Kpa(u), on the other hand is
regarded to be a static function of u, the air flow rate. In fact, it will change
with time, but rather within weeks than days. This is due to clogging of the
diffusers of the air production system.

o

<O .

7.3 Adaptive control by relay excitation

First assume that
Kra(u)=a-u

If this is valid, there are two unknown parameters to consider, a and R.
Two linearly independent equations are needed in order to calculate the two
parameters. Therefore excite the system by forcing it into a limit cycle. The
equation is then considered consecutively twice a period, giving two linearly
independent equations. The two parameters, a and R, are then calculated
and used by an adaptive regulator. It is important to maintain y within some
range in order to keep an environment that favour flock forming organisms.
The regulator is therefore designed to keep y oscillating around a setpoint
Ysp- The amplitude is then adjusted to a level that compromise between
regulation and estimation. The adaptive controller can be split up into three
parts, regulation, excitation and estimation.

Regulation: Let the control error be e = y,, — y. Assume perfect
estimation, i.e. @ = a and R = R. It follows from (7.1) that the control law

— 9D (4 () — (1)) + R(t) + e(t)
a(c—y(t))

gives a closed loop system such that

u(t) =

; t=kh, k=1,2,...

de(t)
% =—e(t) ; t=kh, k=1,2,...

at the sample instants. The sampling period is A = 12 minutes. This choice
is considered appropriate for describing the dynamics in (7.1). If a too short
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sampling interval is used higher order dynamics from e.g. the air production
system makes the simplified model (7.1) unappropriate. The control signal
u will be kept constant over the sampling period. This will both reduce the
effect of unmodelled dynamics and have a practical benefit since it is easy to
accomplish. It is also useful for the identification procedure.

Excitation: Since the parameters are unknown excitation is needed
in order to receive information about the parameters. Therefore, a relay is
introduced to get self-excitation, i.e. the control law is modified to

— 5P (win(t) = y(1)) + B() + e(t) + - sign[e(?)
a(c —y(t))

giving, at sampling instants, the closed loop

diT(tt) = —e(t) —d-signle(t)] ; t=kh, k=1,2,...
A compromise between parameter tracking and accurate control is made by
tuning of the relay amplitude, d, once the system has started to oscillate. The
relay amplitude is tuned such that the amplitude of the oscillation becomes
esp, Which is a design parameter. The oscillation is considered to has started
when |e(kh) + e(kh — h)| < esp. The relay amplitude tuning is ‘

d(kh + h) = d(kh) + ka(esp — |e(kh)|)
. {kg when |e(kh) + e(kh — h)| < e,p
d= -

Ed

u(t) = it =khk=1,2,...

0 otherwise
The parameter k) determines the tuning rate of the relay amplitude once the
oscillation has started.

Estimation: Rewrite the system (7.1) as

A= —(KLa+ %)

Bz_R"‘%yin‘l‘KLa'c

Assume that all parameters are constant during the sampling period h and
introduce the notation

dy
2 —4
7 y+ B

B = (e 1)

Then the zero order hold sampled system is

B
y(kh+ ) = etty(kh) + —(e** —1) =
= (Ah* + 1)y(kh) + Bh*
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Thus,

y(kh + h) — y(kh)
h*

dy(kh)
dt

= Ay(kh) + B =

If an old estimate of a is used in the calculation of h* = h*(do14), the deriva-
tive can be approximated by

dy(kh) _ y(kh+ h) — y(kh)
dt h*(&old)

Starting from scratch with @ = 0, we get the Euler approximation since
h*(0) = h. Now, use the estimator model

@ Q= (we-v) 1) (5]

This equation is now considered at two time instants. Beétween these instants
the system is excited by the relay such that the two considered equations
become linearly independent. It is then straightforward to solve for @ and R.

Simulation

The behaviour of the proposed controller is illustrated in Figure 7.2. No noise
is present in this simulation and the parameters are constants, a = 0.005 and
R = 10. The tank dilution is constant, Q/V = 1, and y;, = 0. The DO
setpoint is y,p = 2 mg/] and the oscillation setpoint is e,, = 0.2 mg/l. The
intention here, is to illustrate the control/excitation part of the algorithm.
The control input affects the time constant of the system through Kpa. A
step response upwards is therefore different form a step response downwards.
This has the effect that the mean value of y during the oscillation is becoming
slightly different from y,,. This is not compensated for. Thus, instead of .
oscillating between y,p + €;p = 2.2 and y,p — €,p = 1.8 the results are 2.16
and 1.76 respectively. The relay amplitude is initialized to d = 1. When
the oscillation starts, the relay amplitude is adjusted to give an oscillation
amplitude e,,. The tuning gain is kg = 1. The adjusted relay amplitude d is
shown below in Figure 7.2. The parameters converge quickly and are already
after 3 sampling periods @ = 0.0051 and R=102.
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Figure 7.2 Simulation to illustrate the control/excitation part of the algorithm.
All parameters are constants, a = 0.005, R = 10, Q/V = 1 and y;, = 0. The
control parameters are y,p = 2 mg/l and e;p, = 0.2 mg/l. The relay tuning
gain is kg = 1 and the relay amplitude is initialized to d =.1, Above, the tuned
oscillation, y, and below, the tuned relay amplitude, d, are shown ,

Experiment

The above adaptive control scheme was tried during a 3-day experiment at
Malmoé Sewage Works. The resulting y and v are shown in Figure 7.3. The
dotted lines indicate y,, + 2e,p,, where y,, = 2 mg/l and e,, = 0.2 mg/L.
The output y is supposed to oscillate between y,, + e,5. Due to disturbance
the amplitude of the oscillation will be larger. Figure 7.3 shows that it is in-
creased roughly with a factor of 2, except for two occasions where the input
u is saturated. A square wave is used when u is saturated. Then at least
the estimation can continue during the saturation. The control is not much
worse than with conventional control although we introduce the excitation to
be able to estimate the parameters. The tradeoff between regulation and es-
timation is made to benefit the estimation. On the other hand the regulation
we get is considered to be quite satisfactory.

Model mismatch could lead to large estimation errors. In order not to
propagate an occasionally large error in the estimate @ into the calculation

of %, the estimate a was filtered. The estimate was limited to non-negative
values. The unfiltered a is shown in Figure 7.4 together with the input u.
Note that @ and u are changing in opposite phase to each other. The model
assumption Kra(u) = a - u is therefore inappropriate. When wu is large the
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Figure 7.3 A three day experiment at Malmé Sewage Works. Above, the DO
concentration, y, and below the air flow rate, . The dotted lines show twice the
oscillation setpoints, i.e. ¥sp £ 2e,p, where y,p = 2 mg/l and=e,5 = 0.2 mg/l.
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Figure 7.4 Above, the estimated slope, é. For comparison, the air flow rate u
is shown below. Notice that @ and u are changing in opposite phase. This is an
indication of a nonlinear relation between Kya and u.
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slope a is small and vise versa. The relation between Kra and u can thus
be expected to be nonlinear. Such a character of Kpa can be observed by
independent aeration efficiency experiments. A proposed qualitative shape
of such a nonlinearity is sketched in Figure 7.5. Thus, a local approximation

Kra(u)=a-u+b

would be an appropriate model. The problem is that, during control of y, u
is varying quite rapidly to outweigh the influence from R. The parameters
a and b are therefore constant only during short intervals where u is not
changing too much.

| slope 8
slope @y / " /
3 ..................
bl
A /
o,/ |
|
Uy L |

Figure 7.5 A sketch, illustrated the assumed shape of Kypa(%): When u = uq;
the Kpa model is approximately Kra(u) = a; - u + b, with a large a; and a
small b;, while when u = u3, the model is Ky a(u) = a3 - u + b3, with instead a
small a; and a large b,.

The errors made by not having the parameter b in the estimator model

is investigated below. Suppose for simplicity that ‘;—f = %. Then, consider
the DO equation at two consecutive sampling instants (indexed 1 and 2)

e D) (R) = (o ) (R) e (6o2)

Solving for & and R gives

i=a+ Y1 — Y2 ~a

- ul(c—yl)(c—yz)—UZ(C‘?IZ)(C_yl)N —b(c —
R=R+b uz(c —y2) —ui(e —y1) ~ = He = )
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Figure 7.8 The estimated respiration rate, R. The true R is expected to vary
together with u during control to keep y constant. This is not seen here. The
reason is that R = R — b(c — ysp) where b is changing together with u (see Figure
7.5). The variations in R is therefore suppressed.

g, 4

since y; & Yp RN Y,p during control. Thus, the estimate @ is expected to be
accurate while R will be biased. Moreover, u is changing together with R
during control to keep y constant. It follows from the graph of Kpa(u) in
Figure 7.5 that the bias, b, increases with increasing u. The daily variations
of R would therefore be suppressed in R, if seen at all. The estimated IAZ,
in Figure 7.6, supports this. Hardly no dayly variations are seen, just noise
around a fairly constant level.

The following conclusions can be drawn from the experiment. The relay
adaptive controller succeeds fairly well to keep y within the prescribed limits.
This was, however, not the primary goal. The main purpose was to find Kpa
and R. This was not succeeded. The reason was that the Kra model was
inappropriate. A nonlinear relation between Kra and u should be used.
On parts of the data where u is fairly constant the nonlinear model can be
approximated by

Kra(u)=a-u+b ” (7.2)

Different estimates & and b associated with different levels of u are then
forming the nonlinear K7,a model. However, next section shows that the pa-
rameter b is not identifiable, leaving any estimated Kra and R undetermined
by a bias.
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7.4 Identifiability

Consider a part of the data where u is fairly constant such that the linearized
Kpa model (7.2) is appropriate. Let the true system be defined by

Ri(%)
{KLal(u):a-u+b — y1(t)

Then
— ya(t)

{Rz(t) = Ry(t) — ble — 3 (2)]

Kras(u)=a-u

will give the same result, y,(t) = wi1(¢). No identification algorithm can
therefore distinguish whether the data y;(f) have been generated by Kra,
and R; or by Kras; and Ry, i.e. the bias parameter b is not identifiable.
If R(t) and y(t) could be assumed uncorrelated there would be a chance
for identification of b. Such an assumption can, however, not be justified.
The identification is therefore focused on the parameter a for different levels
of u. Biases on any estimation of R and Kja are something that have to
be accepted. This will be illustrated later (Figure 6.9) where two different
choices of the bias parameter b give rise to very similar § that can be made
arbitrarily close to the true y by letting R vary.

7.5 Reconstruction of Kra(u) and R(t) o~

The local K1 a model was found to give parameters that were depending on
the air flow rate, i.e.

Kra(u) = a(u) - u + b(u)

In Figure 7.4 the dependence between a and u was recognized and in Figure
7.6 the expected load peaks in R were missing due to variations of b together
with u. A more appropriate model is therefore a nonlinear relation like

I?L\a(u) = pou® + p1u + pg (7.3)

with presumably constant parameters pg, p; and p;. The parameters py and
p1 are then used to model the relation a(u). The parameter py, on the other -
hand, will be unknown like b. But unlike b it will be constant for all u. The
global model (7.3) is associated to the local model (7.2) around a given air
flow rate, ug, as

dKza(uo)

I?;z(u) ~ I?L\a(uo) + 7

(v—up)=a-u+b
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7.5 Reconstruction of Kra(u) and R(t)

where -
dKpa(u
a — —# 22'11.0}70 —|—p1
— dK a(u
b= Kra(uo) — —%#zuo = p2 — pou}

By using the estimated slope @, the parameters pg and p; can be calculated
by the least squares method from the equation system

( &1 \ ( 2u1 1)
&2 2U2 1
[ Po ] Po
. = . . —
n "N
\ &n 7 \ 2un 1 /

where n is the number of data used with the sampling interval A = 12 minutes.
Note that, the parameter p, will be undetermined, giving a bias in Kpa. In
order to see if the estimation of py and p; gives reproducible constant values
we split the data series into two halves. The resulting least squares estimated
parameters are et

po = —4.6-107° .
Thuesday — Wednesday night

p1 =8.5-10"°

~

and

Wednesday night — Friday

po =—3.3-107°
pp =T71-1073

respectively, while the whole data series gives

po = —4.0-1078 _
Thuesday — Friday

pr=79.10"°

The estimated slopes @ are plotted against the air flow rate » in Figure 7.7.
The estimates @ are marked 'z’ and 'o' in the first and ‘second half of the

data series respectively. Corresponding data are used in least squares fitting

of straight lines @ = 2pg + u + p;. These are dashed and dotted respectively.
The solid line is the least squares fitting using the whole data series. Notice
the negative slope of the lines, py < 0, which makes @ and u to vary in opposite
phase as was seen in Figure 7.4. Compared to the large noise level of a(u) the
least squares fitting of a straight line is surprisingly reproducible. The small
change of the parameters pp and p; during the experiment is considered to

141

¥




Chapter 7 Identification of dissolved ozygen concentration dynamics

a (’x’ and ’0’) and 2p0*u+p1 (lines)
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Figure 7.7 The estimated slopes d plotted against u, compare Figure 7.4. The
estimates @ are marked 'z’ and 'o’ in the first and second half of the data series
respectively. Corresponding data are used in least squares fitting. of straight lines
a = 2po - u + p1. These are dashed and dotted respectively. The solid line is
the least squares fitting using the whole data series. Notice the negative slope of
the lines, po < 0, which makes @ and u to vary in opposite phase as was seen in
Figure 7.4.

be unsignificant. We therefore take the estimated py and p; corresponding to
the whole data series as our estimates. The unknown p; will be put to zero.

Once I?L\a(u) is estimated, it can be used in the DO mass balance equa-
tion for calculation of R(t). Since Kpa is biased, so is B. The estimated

function I?L\a(u) and the corresponding ﬁ(t) are shown in Figure 7.8. Com-
pare the result of Figure 7.8 with Figure 7.6.

To show the influence of the bias parameter p; (or b), a smaller part -
of the data will be considered, see Figure 7.9. Now, the sampling interval,
h = 2 minutes will be used in order to reveal more details. The estimated
K a function, from Figure 7.8 above, is used with p; = 0 and p; = 1 re-
spectively. Corresponding estimates for the respiration rate are calculated
via the balance equation. These estimates are quite noisy due to the shorter
sampling interval. They are therefore filtered through a low pass filter. In
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Figure 7.8 Above, the estimated function Kpa(u) = pou? + piu + pz, where
po=—4.0-10"% p; =7.9. 10 ~3 and the undetermined p, is made zero. Below,
the corresponding estimated R(t) -~

Figure 7.9, these filtered R(t) are shown. The curve corresponding to ps = 0
is plotted with 'o’ and the curve corresponding to ps =1 is plotted with 'z’
Corresponding 3 calculated through the DO mass balance equation are also
shown together with the true y. The error y — § can be made arbitrarily
small by less filtering on R.

7.6 Conclusions

Identification of the dissolved oxygen (DO) concentration dynamics can be
made during DO control. The system is self-excited by a relay-like feed-
back that forces the system into an oscillation around the DO setpoint. The
oscillation gives information about the oxygen transfer rate, Kpa, and the
respiration rate, R. A nonlinear model relating the air flow rate, u, to Kya
can be estimated. The respiration rate, R(t), can also be reconstructed as
a function of time. However, there will remain biases in the estimated Kpa
and R. The bias of R can be measured by independent measurements. It

143




Chapter 7 Identification of dissolved ozygen concentration dynamics
3 . y (’-’), estimated y when p2=9 (oY, p2=1| Cx)
25M4} ' & -
4 3 b A :" : " A
' d R :'0 ¢ 2 0 » P 4R : b ¥
0g 0} f -." ] X : 23 -.‘1 ,‘..;’; ,ﬁ’x p o
2 !3' “ AR | L3 X 2 ‘i;'- -" } 2 (1% i ¥ B .
2 f
1'5 L hY I3 t I 1
1.2 1.25 1.3 1.35 14 145 1.5 1.55
days
10 ! Il 1 N 1 £
1.2 1.25 1.3 1.35 14 145.. . 1.5 1.55
days |

Figure 7.9 Below, estimated ﬁ(t) corresponding to the estimated Kya(u) with
P2 = 0 (marked '0’) and p2 = 1 (marked ’x’) respectively. Above, the correspond-
ing § with similar marking and the true y (solid). The deviation between the §’s

and y are due to filtering on R(t)

~

is physically reasonable to assume that the bias is fairly constant over quite
long periods (~ weeks). This means that the estimation technique is a useful

operational tool.
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Conclusions

Relay feedback of dynamical systems are common configurations in control
systems. Automatic tuning is one recent area of application. The idea is to
force a dynamical system into a limit cycle by use of a-relay feedback. In-
formation for tuning simple PID controllers or pretuning more sophisticated
controllers is then obtained from the oscillation. All controllers, also adaptive
controllers, need prior information for their initialization. A relay experiment
is appealing since it is simple and often gives the required information. The
problem, however, is that even though it usually works fof many processes
the behaviour is not fully understood. It is therefore not clear for what class
of systems the relay experiment is applicable. Strange behaviour of systems
with relay feedback has also been observed. The aim of this thesis has been
to develop an understanding of the behaviour of systems with relay feedback.
This is done by analysing simple systems. These simple systems are, however,
often used as models in process industry where pre-tuning is most popular.

The behaviour of a relay feedback system is complicated. The describing
function method is a simple approximate technique. A brief overview of the
describing function analysis technique has been presented in Chapter 2. In
Chapter 3, it has been demonstrated that a relay with a variable hysteresis
can act as a nonlinearity with a specified phase shift. This can be of particu-
lar interest in pre-tuning applications since the Nyquist curve can be scanned
in phase rather than in frequency. For the purpose of design of simple con-
trollers it is of interest to know the transfer function where the phase lag is
in the range of 45° — 180°, while the interesting frequency range usually is
unknown. In process industry many processes can be approximated by a first
or second order system with a time delay. Relay feedback of such systems
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Chapter 8 Conclusions

have been investigated in Chapter 4-6. The mechanisms behind the oscilla-
tions are quite complicated. In Chapter 4, it was shown that relay feedback
of a first order system with a time delay can exhibit a large variety of differ-
ent types of limit cycles with different stability and convergence properties.
The first order system includes a direct term. This can be regarded as an
approximation of a second order system with one fast and one slow mode.
Necessary and sufficient conditions for reaching the different types of limit
cycles have been given. Relay feedback of stable as well as unstable systems
can have stable limit cycle solutions. Also, peculiar behaviour with differ-
ent types of stable asymmetrical limit cycles were found. Relay feedback of
second order systems were analyzed in Chapter 5. It was noticed that a sta-
ble system without a zero in the transfer function had a unique limit cycle
solution. However, a zero can give two limit cycle solutions, even for nice
systems which are stable and minimum phase. It has also been investigated
how a phase plane trajectory approaches a stable limit cycle. This analysis
gives automatically an understanding both for the existence of a limit cycle
solution and for the convergence mechanisms. When one eigenvalue is much
larger than the other, then the convergence is extremely fast. This is in
agreement with the results in Chapter 4, where relay feedback of first order
systems reach the limit cycle solution directly after one-switch. The results
explain why automatic tuning with the relay method is so fast. In Chapter
6 it is shown that strange behaviour can be found by relay feedback of an
unstable second order system with complex poles and with a time delay. This
could lead to multi switch limit cycles and chaotic motions. The difference to
other works is the introduction of the time delay, which makes it possible to
construct chaos also with negative feedback. Another difference is that some
of the limit cycle solutions appear to be stable.

Identification of the dissolved oxygen concentration dynamics in a bi-
ological reactor has been made in Chapter 7. A relay feedback excite the
dynamics in order to get identifiability. The idea has been tried successfully
in a series of full scale experiment at Malmé Sewage Works. The dynamics
are described by the oxygen transfer rate, Kpa, and the respiration rate, R,
both valuable for diagnoses and operation of the waste water treatment plant.
It was found that both Kza and R will be undetermined by a bias. However,
the daily variation of R can be estimated. Also, Kra can be modelled as
a nonlinear function of the air flow rate. The bias of R can be measured
by independent measurements. The estimation technique is therefore still a
useful operational tool.

The main new results were given in Chapter 4, where different types of
limit cycles were found and classified. Future research can be made on relay
feedback of second order systems with a time delay. The estimation technique
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described in Chapter 7 is also considered to be original and successful. A
future research how to use the estimated respiration rate in other control
loops is suggested. Also, the influence of the respiration rate profile along
the basin would be interesting to investigate.
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