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Preface

The theory presented in this thesis relates to observer design and output
feedback control of nonlinear systems. Robot manipulators constitute one
important class of nonlinear systems which has been considered.

The work has been conducted within the program “Mobile Autonomous
Systems” connected to the Robotics Lab at the Department of Automatic
Control, Lund Institute of Technology. Robotics is indeed a multidisci-
plinary topic and the constitution of the project group has lead to a fruit-
ful interaction with a lot of people with different views on robotics. The
Open Robot System which is used as the platform for the experimental
research in the robotics laboratory has been one important corner stone.
Through this concept it has been possible to implement dedicated control
laws and to perform experiments on an industrial robot manipulator.

The variety in each part and the need of all the links to form a complete
chain, not necessarily a kinematic one, is really the main reason for why I
find control engineering being such an exciting and fascinating area. The
requirement to cover, at least partially, the whole span from modeling,
the analysis and theoretical design, re-iterated via simulations, the real-
time aspects of implementation, ending up with running experiments in
the laboratory, and then starting it all over again, has been challenging.
To summarize, it has been a very interesting and most rewarding path
to follow, giving me insight into both practical and theoretical aspects of
robotics.

The work presented in this thesis is mainly based on the following publi-
cations:

Johansson, R. and A. Robertsson (1999): “Extension of the Yakubovich-
Kalman-Popov lemma for stability analysis of dynamic output feed-
back systems.” In Proceedings of IFAC’99, vol. F, pp. 393–398. Beijing,
China.
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Preface

Johansson, R., A. Robertsson, and R. Lozano-Leal (1999): “Stability
analysis of adaptive output feedback control.” In Proceedings of the
38th IEEE Conference on Decision and Control (CDC’99), pp. 3796–
3801. Phoenix, Arizona.

Lefeber, E., A. Robertsson, and H. Nijmeijer (1999): “Linear controllers
for tracking chained-form systems.” In Aeyels et al , Eds., Stability
and Stabilization of Nonlinear Systems, vol. 246 of Lecture Notes
in Control and Information Sciences, pp. 183–197. Springer-Verlag,
Heidelberg. ISBN 1-85233-638-2.

Lefeber, E., A. Robertsson, and H. Nijmeijer (2000): “Linear controllers
for exponential tracking of systems in chained form.” International
Journal of Robust and Nonlinear Control: Special issue on Control of
Underactuated Nonlinear Systems, 10:4. In press.

Robertsson, A. and R. Johansson (1998a): “Comments on ‘Nonlinear out-
put feedback control of dynamically positioned ships using vectorial
observer backstepping’.” IEEE Transactions on Control Systems Tech-
nology, 6:3, pp. 439–441.

Robertsson, A. and R. Johansson (1998b): “Nonlinear observers and
output feedback control with application to dynamically positioned
ships.” In 4th IFAC Nonlinear Control Systems Design Symposium
(NOLCOS’98), vol. 3, pp. 817–822. Enschede, Netherlands.

Robertsson, A. and R. Johansson (1998c): “Observer backstepping and
control design of linear systems.” In Proceedings of the 37th IEEE
Conference Decision and Control, pp. 4592–4593.

Robertsson, A. and R. Johansson (1999): “Observer backstepping for a
class of nonminimum-phase systems.” In Proceedings of the 38th IEEE
Conference on Decision and Control (CDC’99), pp. 4866–4871. Phoenix,
Arizona.

A more complete list of the author’s publications within the Lund Program
on “Mobile Autonomous Systems” is found in a separate section of the
Bibliography.
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1

Introduction

1.1 Background and Motivation

In control engineering, the objective is to achieve a feasible control signal,
which based on measurements, affects the controlled process to behave in
a desired way, despite disturbances acting from the environment. Robot
manipulators constitute good examples of nonlinear systems, which are
used in numerous applications in industry. Still, they raise several chal-
lenging theoretical questions that remain to be answered. Although robot
control is an area in its own right, it also serves well as an illustrative
application for examples throughout the thesis.

For the robot manipulator, we are able to control its movements with the
torques from the drives and calculate its configuration in space from mea-
surements of the joint angles. In most industrial robot systems, there are
no sensors for measuring the velocities or the accelerations. For certain
applications, extra sensors can be added to the robot system to measure,
for instance, contact forces when interacting with the environment. Typ-
ical disturbances and uncertainties are unknown load weights, stiffness
constants, or inaccurate descriptions of the environment regarding the
exact shape or location of an obstacle or object within the working range.

The inertia of the manipulator varies considerably with respect to the
configuration, and for fast movements the influence of the centrifugal and
Coriolis forces increases drastically. Nevertheless, with high-gain feedback
much of the effects from the nonlinearities can be overcome and large
gear-ratios may help to decouple the effects among the robot links. De-
spite all the nonlinearities in the equations of motion, control laws based
on linearization—i. e., a locally valid approximation of the equations—
perform well in a lot of applications. On the other hand, there are systems
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Chapter 1. Introduction

where a linear approximation would provide very little help, if any, in the
controller design. Examples of this type of systems are the mobile robots
in chained-form considered in the thesis. The linearization of this class of
system around any equilibrium is not asymptotically stabilizable.

The performance can often be improved significantly if the knowledge of
the nonlinearities are taken into consideration. Even though all gravity
forces are hard to compensate for exactly, due to uncertainties in load,
etc., the gravity forces acting on the manipulator itself are well known
and can be taken into account a priori in feed-forward terms. Feedback
is then used for stabilization and to compensate for inaccuracies in the
model and the effects of external disturbances. The idea behind feedback
linearization is to compensate for known nonlinearities and if possible
transform the system, without any approximations, into a linear system
for which a lot of control design methods apply. This concept has been used
for long in robotics under the name of computed torque or the method of
inverse dynamics.

For the trajectory tracking problem it is also of interest to let the control
signal consist of one feedforward part based on the desired behavior and
one part consisting of feedback with respect to the deviations from the
desired trajectory. A reference trajectory for the manipulator does not only
consist of the reference positions at every time, but also of the consistent
velocities and accelerations.

The compensation for nonlinear terms and the trajectory tracking problem
mentioned above imply the need for measuring or estimating the states
in a system. The title of this thesis, “observer-based control of nonlin-
ear systems”, should be read in contrast to “state feedback” control. The
feedback principle is an important concept in control theory and many
different control strategies are based on the assumption that all internal
states are available for feedback. In most cases, however, only a few of the
states or some functions of the states can be measured. This circumstance
raises the need for techniques, which makes it possible not only to esti-
mate states, but also to derive control laws that guarantee stability when
using the estimated states instead of the true ones. In general, the com-
bination of separately designed observers and state feedback controllers
does not preserve performance, robustness, or even stability of each of
the separate designs. A fundamental difference in properties of linear
and nonlinear systems is found in the effects of bounded disturbances
over a finite time horizon. Consider a linear system, for which there is
a stabilizing state-feedback law. If the feedback law is fed with estima-
tions of the actual states , the closed loop system will still be stable under
the assumption that the observer errors converge to zero. For nonlinear

12



1.2 Outline and Summary of Contributions

systems stability is not guaranteed by exchanging measured states for
estimated ones, even if we have exponential convergence in the observer.
One obstacle is the finite escape time phenomenon where a solution may
grow unbounded before the estimated states have converged.

In this thesis the question of observer design is addressed. The stability
problem for the combination of observers and state feedback controllers
is also investigated. For a special class of nonholonomic systems a sep-
aration principle is shown, which guarantees the stability for the com-
bination of independently designed state feedback controllers and state
observers. As mentioned before, few systems have this strong property,
which justifies controller designs considering the effects from estimated
states. We present an extension to the output-feedback design of observer-
based backstepping. The extension applies to a class of nonlinear systems
with unstable zero-dynamics, which was not previously comprised.

1.2 Outline and Summary of Contributions

This thesis consists of two major parts. The first part includes preliminary
material and a short survey of related work. The second part consists of
five appended published papers containing the main results of this thesis.
The introductory Chapters 2, 3, and 4 aim towards a sufficiently complete
overview of the dynamic output feedback problem and the observer design
problem to present the contributions of the five papers in their appropriate
context. To this purpose, some examples illustrating our results are also
provided. Finally, Chapter 5 concludes the thesis by a summary of the
results and a short discussion on open issues.

Below, the contents and main contributions of the papers are summarized.
References to related publications are also given.

Paper A and B

Observer-based controllers for the output tracking problem of nonholonomic
systems in chained form are presented in the two papers

Lefeber, E., A. Robertsson, and H. Nijmeijer (1999a): “Linear controllers
for tracking chained-form systems.” In Aeyels et al , Eds., Stability
and Stabilization of Nonlinear Systems, vol. 246 of Lecture Notes in
Control and Information Sciences. c&1999 Springer-Verlag, Heidelberg.
ISBN 1-85233-638-2.
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Chapter 1. Introduction

Lefeber, E., A. Robertsson, and H. Nijmeijer (2000): “Linear controllers
for exponential tracking of systems in chained form.” International
Journal of Robust and Nonlinear Control: Special issue on Control of
Underactuated Nonlinear Systems, 10:4. In press. c&1999 John Wiley
& Sons, Ltd.

Contributions New time-varying state feedback controllers and ob-
servers for the output tracking problem of nonholonomic systems in chained
form are presented. A global stability result for the combination of con-
trollers and observers in a “certainty equivalence” way is given, using
theory from time-varying cascaded systems. Furthermore, in Paper B we
present a stability result for linear time-varying systems. The state feed-
back and the output feedback control problem are considered also under
partial input saturation constraints.

Related publications are [Lefeber et al , 1999b; Lefeber et al , 1999c].

Paper C

Stability analysis related to the Positive Real Lemma is presented in

Johansson, R. and A. Robertsson (1999): “Extension of the Yakubovich-
Kalman-Popov lemma for stability analysis of dynamic output feed-
back systems.” In Proceedings of IFAC’99, vol. F, pp. 393–398. Beijing,
China. c&1999 IFAC

Contributions Relaxations of the minimality conditions in the Positive
Real lemma, also known as the Yakubovich-Kalman-Popov lemma, with
relevance to observerbased feedback control are presented.

Related publications are [Johansson and Robertsson, 1998; Johansson
et al , 1999].

Paper D

A generalization of the design method observer-based backstepping is con-
sidered in an extended version of the paper

Robertsson, A. and R. Johansson (1999c): “Observer Backstepping for a
Class of Nonminimum-Phase Systems.” In Proceedings of the 38th
IEEE Conference on Decision and Control (CDC’99). Phoenix, Arizona.
c&1999 IEEE

Contributions The design-method “observer-based backstepping” by
Kanellakopoulos et al(1992) is extended to cover also a class of nonlinear
systems in output-feedback form with linear unstable zero-dynamics and
an algorithm for the observer-based controller is presented.
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1.3 Co-author Affiliation

A related publication is [Robertsson and Johansson, 1998c].

Paper E

An observer design for the purpose of output feedback control is presented
in

Robertsson, A. and R. Johansson (1998a): “Comments on ‘Nonlinear
Output Feedback Control of Dynamically Positioned Ships using
Vectorial Observer Backstepping’.” IEEE Transactions on Control
Systems Technology, 6:3, pp. 439–441. c&1999 IEEE

Contributions The paper presents a globally exponentially stable ob-
server design for the purpose of output feedback control of ship dynamics
[Fossen and Grøvlen, 1998]. The Lyapunov-based design extends previous
results to ship with unstable sway-yaw dynamics.

Related publications are [Robertsson and Johansson, 1997; Robertsson
and Johansson, 1998b].
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2

Nonlinear Feedback Control

2.1 Introduction

Many phenomena in nature and society can be described or approximated
by mathematical models. The use of ordinary differential equations is one
way of describing dynamic processes where one or more variables de-
pend continuously on time. The description of a process in a mathemati-
cal terminology allows for a uniform framework of analysis and synthesis,
the system theory, despite the fact that the original problems may come
from widely differing areas such as robotics, biochemistry, economics, or
telecommunication.

In the scope of linear systems, a vast collection of methods have been
developed. Their use is found in both analysis and systematic design for
continuous as well as for discrete-time systems, with system representa-
tion in the time domain or in the frequency domain, and in a deterministic
or a stochastic setting. An important property distinguishing linear sys-
tems from nonlinear systems is that of the superposition principle, where
the output response to a sum of different input signals is the sum of their
individual responses. This allows for a simplified stability analysis. The
influence of additive disturbances, such as measurement noise or load dis-
turbances, can be considered separately in the linear case. Even for the
simplest first-order nonlinear systems the questions of uniqueness and ex-
istence of solutions indicate the difficulties that we may encounter when
we are leaving the linear framework [Khalil, 1996]. For general nonlin-
ear systems very little can be said about specific properties and thus few
general methods apply. The characterization of nonlinear systems with
respect to special structures and particular properties is therefore a stan-
dard approach.
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2.1 Introduction

Robot dynamics represent a class of nonlinear systems which play an im-
portant role for industrial production and at the same time raise challeng-
ing theoretical questions. This has inspired and driven a lot of the devel-
opment of nonlinear control theory during the last decades. An industrial
robot consists of links connected by joints into a kinematic chain. Further-
more, there are typically some actuators and an end-effector with some
application-specific tool attached. The kinematic chain can be described
by trigonometric functions and the dynamics for the manipulator are of-
ten derived via classical mechanics using the Euler-Lagrange equations
or the Newton-Euler formulation [Spong and Vidyasagar, 1989; Sciavicco
and Siciliano, 1996]. Within the working range of a robot, the application
often puts extra constraints, not only on the desired, but also on the feasi-
ble motion. In force control applications such as grinding, the interaction
between the robot and a stiff environment can be modeled by holonomic
constraints. The combined motion/force-control is restricted to a surface
in space which can be described by the manipulator dynamics projected
on a (sub-)manifold of the position coordinates [Goldstein, 1980]. The de-
grees of freedom, i. e., the number of independent state variables for the
system, are reduced accordingly.

Figure 2.1 Left: Industrial robot with holonomic constraints in a path following
operation. Right: Redundant robot arm and mobile robot with nonholonomic con-
straints (rolling without slipping).

Nonholonomic constraints, however, do not reduce the order of a system
and such constraints can not be given in integrated form without actually
solving the problem for a feasible trajectory [Goldstein, 1980]. An often-
used example to illustrate nonholonomic constraints is a tire rolling on a
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Chapter 2. Nonlinear Feedback Control

surface without slipping. The constraints for not sliding are given as al-
gebraic constraints involving the velocities, that is, for the derivatives of
the states rather than for the states themselves. Both underactuated ma-
nipulators and redundant robot arms under inverse kinematic mappings
can be subject to nonholonomic constraints [De Luca and Oriolo, 1994].
Although performance is an important criterion in control applications, a
prerequisite, if not the primary goal, is asymptotic stability or stabiliza-
tion of the system along a desired trajectory or to an equilibrium point.
The possibility to determine stability without explicitly solving the sys-
tem equations is a crucial part in nonlinear analysis and here the Lya-
punov theory of Lyapunov, LaSalle, Krasovsky, Kalman et al plays a very
important role [Khalil, 1996]. Although physical insight and energy-like
functions often provide good guesses for Lyapunov functions, there is still
a lack of general constructive methods.

The first two sections of this chapter review some important stability con-
cepts and an overview of design methods for nonlinear systems is given.
This introduction is intended both to present a foundation for some of the
results presented in this and forthcoming chapters, and also to give an
overview of the present state-of-the-art. In that perspective, two contri-
butions are presented: Firstly, a new matrix formulation of the Kalman-
Yakubovich-Popov Lemma is provided. Secondly, linear time-varying con-
trol for output feedback tracking of systems in chained form is presented.

2.2 Stability Theory

A comprehensive survey on general conditions on existence, uniqueness,
and finite-escape time of solutions to ordinary differential equations is
found in [Khalil, 1996]. In this section we recapitulate some central results
and definitions in stability analysis, which will be used later on.

Lyapunov Stability Theory

DEFINITION 2.1—STABILITY [LYAPUNOV, 1892]
Assume that there is an autonomous system

S :
dx
dt
� f (x), x ∈ IRn (2.1)

with an equilibrium xe. The point xe is a stable equilibrium if and only if
for all ε > 0 there is a δ > 0 such that for fx(t0) − xef ≤ δ it holds that
fx(t) − xef ≤ ε for all t > t0.
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2.2 Stability Theory

DEFINITION 2.2—ATTRACTIVITY

The equilibrium xe is said to be attractive if, for each t0 ∈ IR+, there is a
δ (t0) > 0 such that for fx(t0) − xef < δ (t0) and t > t0

fx(t) − xef → 0, t →∞ (2.2)

DEFINITION 2.3—ASYMPTOTIC STABILITY

Assume that there is an autonomous system

S :
dx
dt
� f (x), x ∈ IRn (2.3)

with an equilibrium xe. The equilibrium xe is asymptotically stable if it is
stable and if, in addition,

lim
t→∞fx(t) − xef � 0 (2.4)

An equivalent definition of asymptotic stability can be formulated by say-
ing that an equilibrium is asymptotically stable if it is both stable and
attractive.

THEOREM 2.1—LYAPUNOV STABILITY THEOREM [LYAPUNOV, 1892]
Let x � 0 be an equilibrium point for ẋ � f (x) and let V : D → IR be a
continuously differentiable scalar function on a neighborhood D of x � 0
such that

V (0) � 0 and V (x) > 0 in D − {0} (2.5)
V̇ (x) ≤ 0 in D (2.6)

Then, x � 0 is stable. Moreover, if

V̇ (x) < 0 in D (2.7)

then x � 0 is asymptotically stable in D.

The growth rate of a nonlinear function is an important characterization
in analysis.

19



Chapter 2. Nonlinear Feedback Control

DEFINITION 2.4—LIPSCHITZ

A vector valued nonlinearity f : IRn� IRm� IR → IRn is said to be globally
Lipschitz with respect to x with a Lipschitz constant γ if for all x1, x2 ∈ IRn,
all u ∈ IRm, and uniformly in t—i. e., independently of the initial value t0

e f (x2, u, t) − f (x1, u, t)e ≤ γ ex2 − x1e (2.8)

The global property is, however, restrictive and many nonlinearities can
be regarded as locally Lipschitz in some bounded, often physically well-
motivated, region of the state-space.

The following two function classes are often used as lower or upper bounds
on growth condition of Lyapunov function candidates and their deriva-
tives.

DEFINITION 2.5—CLASS K FUNCTIONS [KHALIL, 1996]
A continuous function α : [0, a) → IR+ is said to belong to class K if it is
strictly increasing and α (0) � 0. It is said to belong to class K∞ if a � ∞
and lim

r→∞α (r) � ∞.

DEFINITION 2.6—CLASS K L FUNCTIONS [KHALIL, 1996]
A continuous function β : [0, a)� IR+ → IR+ is said to belong to class K L
if for each fixed s the mapping β (r, s) is a class K function with respect
to r, and for each fixed r the mapping β (r, s) is decreasing with respect to
s and lim

s→∞β (r, s) � 0. The function β (⋅, ⋅) is said to belong to class K L∞
if for each fixed s, β (r, s) belongs to class K∞ with respect to r.

For time-invariant systems, the LaSalle invariance theorem is one of the
main tools for convergence analysis [LaSalle, 1967; Khalil, 1996]. For
time-varying systems the following extension is useful.

LEMMA 2.1—LASALLE-YOSHIZAWA

Consider the time-varying system

ẋ � f (x, t); x ∈ IRn, t ∈ IR (2.9)

Let x � 0 be an equilibrium point of (2.9) and suppose that f is locally
Lipschitz in x, uniformly in t. Let V : IRn � IR+ → R+ be a continuously
differentiable function such that ∀t ≥ 0, ∀x ∈ IRn

α 1(fxf) ≤ V (x, t) ≤ α 2(fxf) (2.10)
V̇ � ∂ V

∂ t
+ ∂ V

∂ x
f (x, t) ≤ W(x) ≤ 0 (2.11)
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2.2 Stability Theory

where α 1 and α 2 are class K∞ functions and W is a continuous function.
Then, all solutions to 2.9 are globally uniformly bounded and satisfy

lim
t→∞ W(x(t)) � 0.

In addition, if W(x) is positive definite, then the equilibrium x � 0 is
globally uniformly asymptotically stable.

Passivity

Passivity theory is a very powerful branch of system theory that con-
tains many intuitively appealing results regarding physical systems, but
also stretches far beyond that [Aizerman and Gantmacher, 1964; Willems,
1972; Hill and Moylan, 1976; Sepulchre et al , 1997]. One of the main con-
cepts is the dissipation of power.

In contrast to the Lyapunov theory, where state variables are considered,
passivity theory is based on the input-output properties of a system. Many
results in passivity theory originate from circuit theory and several basic
concepts are generalizations from that context. For instance, the storage
function S(⋅) corresponds to the energy in the system, the supply rate
w(⋅, ⋅) corresponds to the input power, and the available storage Sa(⋅)
corresponds to the largest amount of energy that can be extracted from
the system for a certain initial condition.

DEFINITION 2.7—DISSIPATIVITY

Consider a dynamical system Σ with equal input and output dimensions

Σ :

{
ẋ � f (x, u), x ∈ IRn, u ∈ IRp

y � h(x, u), y ∈ IRp (2.12)

If there exist a function w(u, y), the supply rate, and a positive function
S(x) ≥ 0, the storage function, such that

S(x(t))︸ ︷︷ ︸
storage fcn

−S(x(0)) ≤
∫ t

0
w(u(τ ), y(τ ))︸ ︷︷ ︸

supply rate

dτ

for all admissible inputs u and all t ≥ 0, then the system is called dissi-
pative.
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DEFINITION 2.8—PASSIVITY AND INPUT-OUTPUT PASSIVITY

A system Σ is said to be passive if it is dissipative and the supply rate
w(u, y) � uT y. The system (2.12) is passive if

w(u, y) ≥ 0.

The system (2.12) is input strictly passive (ISP) if ∃ε > 0 such that
w(u, y) ≥ ε f u f2. The system (2.12) is output strictly passive (OSP) if
∃ε > 0 such that w(u, y) ≥ ε f y f2.

Whereas input strictly passive systems allow a certain amount of feed-
forward and still preserve the passivity, output strictly passive systems
allow a certain amount of feedback and still preserve the passivity [Hill
and Moylan, 1976].
The following theorem states the important interconnection property for
passive systems.

THEOREM 2.2—PASSIVE INTERCONNECTION [POPOV, 1961; POPOV, 1973]
Assume that Σ1 and Σ2 are passive, then the well-posed feedback inter-
connections in Figure 2.2 are also passive from r to y.

r u+
−

Σ1

Σ2

y

r

Σ1

Σ2

+
y

Figure 2.2 Passive interconnections of passive sub-systems.

Stability investigations using passivity theory require that the system be
dissipative with w � yT u and S(0) � 0 and

S(x) − S(x0) ≤
∫ t

0
y(τ )T u(τ )dτ

such that

• S is decreasing if u � 0;

• S is decreasing if y � 0 implies stable zero dynamics.
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2.2 Stability Theory

There are several results on systems rendered passive via feedback with
several extensions of passivity, feedback equivalence and global stabiliza-
tion of minimum-phase nonlinear systems [Byrnes et al , 1991; Kokotović
and Sussmann, 1989].

EXAMPLE 2.1—PASSIVITY IN ROBOTICS [TAKEGAKI AND ARIMOTO, 1981]
The rigid robot manipulator described by the equations

M(q)q̈+ C (q, q̇)q̇+ G(q) � τ (2.13)

has a passive mapping from the input torque τ to the angular velocity q̇.

To verify this, we want to show that there exist a β such that∫ t

0
τ T q̇ds ≥ −β , ∀t > 0 (2.14)

Consider the total mechanical energy described by the Hamiltonian

H(q, q̇) � 1
2

q̇T M(q)q̇+U(q).

U(q) is the potential energy due to gravity and ∂U/∂ q � G(q).

dH
dt

� q̇T M(q)q̈+ 1
2

q̇T Ṁ(q)q̇+ ∂ V
∂ q

T

q̇

� (M(q)q̈+ C (q, q̇)q̇+ G(q))T q̇

� τ T q̇

(2.15)

where we used the property that Ṁ(q) − 2C is a skew-symmetric matrix
[Craig, 1988]. This implies that∫ t

0
τ T q̇ds � H(q(t), q̇(t)) − H(q(0), q̇(0)) ≥ −H(q(0), q̇(0))

which fulfills the dissipativity condition of Eq. (2.14).
This passivity property has been extensively used for control of robot ma-
nipulators and general Euler-Lagrange systems [Takegaki and Arimoto,
1981; Berghuis, 1993; Loría, 1996; Battilotti et al , 1997; Ortega et al ,
1998].

Stability and Positive Real Transfer Functions

The existence of Lyapunov functions as well as storage functions of dissi-
pative systems relies upon the Positive Real lemma:

23



Chapter 2. Nonlinear Feedback Control

LEMMA 2.3—POSITIVE REAL LEMMA (YAKUBOVICH-KALMAN-POPOV)
Let G(s) � C (sI − A)−1 B + D be a p� p transfer function matrix, where
A is Hurwitz, (A, B) is controllable, and (A, C ) is observable. Then G is
strictly positive real if and only if there exist a symmetric positive definite
matrix P, matrices L, R and a positive constant ε satisfying

PA+ AT P � −LLT − ε P

PB − C T � −LRT

D + DT � RRT

(2.16)

Moylan (1974) relates the input-output property of passivity for square,
i. e., the dimension of the control inputs equals the dimension of the out-
puts, nonlinear systems, affine in the control, with state dependent equa-
tions, which can be viewed as a generalization or a nonlinear extension
of the Positive Real lemma. In this context, the passivity notion does
not postulate an internal storage function as in [Willems, 1970; Moylan,
1974; Hill and Moylan, 1976].

THEOREM 2.2—[HILL AND MOYLAN, 1976]
Let

ẋ � f (x) + G(x)u
y � h(x) + J(x)u (2.17)

A necessary and sufficient condition for the system of Eq. (2.17) to be
passive is that there exist real functions V (⋅), l(⋅), and W(⋅), where V (x)
is continuous and

V (x) ≥ 0, ∀x ∈ IRn, V (0) � 0 (2.18)

such that

∇′V (x) f (x) � −l′(x)l(x)
1
2

G′(x)∇′V (x) � h(x) − W ′(x)l(x)
J(x) + J ′(x) � W ′(x)W(x)

(2.19)

Dissipativity and zero-state detectability of the system in Eq.(2.17) imply
Lyapunov stability.
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Input-to-State Stability (ISS)

The input-to-state stability concept by Sontag takes into account the ef-
fects from initial conditions x(0) as well as from input signals for non-
linear systems [Sontag, 1988]. From the superposition property it follows
that initial values do not affect the stability for linear systems whereas
such effects may be crucial for the stability of nonlinear systems. A good
overview to input-to-state stability is given in [Sontag, 1995].
DEFINITION 2.9—INPUT-TO-STATE STABILITY (ISS) [SONTAG, 1988]
A system

ẋ � f (x, u)
is said to be Input-to-State Stable (ISS) with respect to an input signal u
if for any initial condition x(0) and any u(⋅) continuous and bounded on
[0,∞) the solution exists for all t ≥ 0 and satisfies

ex(t)e ≤ β (ex(0)e, 0) + γ ( sup
0≤τ ≤t

eu(τ )e), ∀t ≥ 0

where β (r, t) is a class K L function and γ (t) is a class K function.

Applications of input-to-state-stability to observer-based control have been
reported in [Tsinias, 1993]. In cases where exact feedback linearization
does not apply, a variety of extensions have been reported—e.g., par-
tially linearizable systems with application to underactuated mechanical
systems [Spong and Praly, 1996], and approximate linearization [Krener
et al , 1988; Hauser et al , 1992a].
DEFINITION 2.10—COMPLETE CONTROLLABILITY [NIJMEIJER AND VAN DER

SCHAFT, 1990]
A system is completely controllable if for every two finite states there
exists an admissible control which drives the system from the one to the
other in finite time.

2.3 Obstacles and Complexity Issues

In this section we will study some phenomena and obstacles which have
to be considered for control as well as for observer design.

Peaking Nonminimum phase systems are inherently difficult to control
and it is well known that right-half plane zeros put an upper bound on the
achievable bandwidth [Freudenberg and Looze, 1985; Åström, 1997; Good-
win and Seron, 1997]. However, the peaking phenomenon may have far
worse consequences and may amount to finite-escape phenomena [Suss-
mann and Kokotović, 1991].
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Figure 2.3 Step responses for the system in Eq. (2.20), ω o � 1, 2, and 5. Faster
poles gives shorter settling times, but the transients grow significantly in amplitude,
so called peaking.

EXAMPLE 2.2
Consider a controllable second order linear system with a zero in the
right half-plane at s � 1. By state-feedback the closed-loop poles can be
made arbitrarily fast, while the zero is fixed under the assumption that no
unstable pole-zero cancellation takes place. The closed-loop system with
both poles placed at s � −ω o < 0 will be

Gcl(s) � (−s+ 1)ω 2
o

s2 + 2ω os+ω 2
o

(2.20)

A step response will reveal a transient which grows in amplitude for faster
closed loop poles (Fig.2.3).

For linear systems large overshoots in states or outputs may be devastat-
ing for the performance, but it does not effect the overall stability of the
system, while for nonlinear systems transients may drive a system out
of a stable region, with trajectories possibly escaping to infinity in finite
time.

In [Mita, 1977] the effect of peaking was studied for linear systems with
observers and [Francis and Glover, 1978] studied trajectory boundedness
with respect to linear quadratic cost criteria. In [Sussmann and Kokotović,
1989; Sussmann and Kokotović, 1991] the problem of globally stabilizing
a cascade of one linear and one nonlinear subsystems, as in Fig. 2.4, is ad-
dressed. This class of cascaded systems can be interpreted as that of par-
tially feedback linearizable systems, with applications to under-actuated
mechanical systems [Spong and Praly, 1996]. The system can be written
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Σ ΣL NL

u ξ x

Figure 2.4 Cascade of a linear and a nonlinear subsystem.

in the following form:

ẋ � f0(x) +
∑

i

ξ i fi(x, ξ )

ξ̇ � Aξ + Bu
(2.21)

The structure and properties of the coupling-terms fi(x, ξ ), consisting of
the “driving” linear states, ξ , and the “driven” nonlinear states, x, play a
crucial role for the risk of peaking and the possibility of stabilizing the
cascade [Sepulchre et al , 1997]. The stabilization of a cascaded system has
received a lot of attention and has become a widespread and powerful tool
in many designs [Mazenc and Praly, 1996; Sepulchre et al , 1997; Panteley
and Loría, 1998a; Gronard et al , 1999].

Relative degree Relative degree is a complexity measure which an-
swers the question: “How many times do you have to take the time deriva-
tive of the output before the input appears explicitly?” For single-input
single-output linear systems it coincides with the difference between the
number of poles and the number of zeros. The relative-degree notion has
become a means to characterize the complexity of a control problem. Fur-
thermore, it is a system property which is invariant under coordinate
changes. For a nonlinear system with relative degree d

ẋ � f (x) + k(x)u
y � h(x) (2.22)
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we have

ẏ � d
dt

h(x) � ∂ h(x)
∂ x

ẋ � ∂ h
∂ x

f (x) + ∂ h
∂ x
k(x)u

� Lf h(x) + Lkh(x)︸ ︷︷ ︸
�0 i f d>1

u

...

y(k) � Lk
f h(x) if k < d (2.23)

...

y(d) � Ld
f h(x) + LkL(d−1)

f h(x)u

Using the same kind of coordinate transformations as for the feedback
linearizable systems above, we can introduce new state space variables,
ξ , where the first d coordinates are chosen as


ξ 1 � h(x)
ξ 2 � Lf h(x)
...

ξ d � L(d−1)
f h(x)

(2.24)

Under some conditions on involutivity, the Frobenius theorem guarantees
the existence of another (n − d) functions to provide a local state trans-
formation of full rank [Nijmeijer and van der Schaft, 1990; Isidori, 1995].
Such a coordinate change transforms the system to the normal form

ξ̇ 1 � ξ 2

...

ξ̇ d−1 � ξ d

ξ̇ d � Ld
f h(ξ , z) + LkLd−1

f h(ξ , z)u
ż �ψ (ξ , z)
y � ξ 1

(2.25)

where ż �ψ (ξ , z) represent the zero dynamics [Byrnes and Isidori, 1991].
Note that the relative degree is not a robust property in the sense that it
may change as a result of very small parametric variations in the system
equation.
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EXAMPLE 2.3—SLIDING BEAD ON ROD [HAUSER et al , 1992B]
Consider a sliding bead on a rod. Lagrangian mechanics provide the equa-
tions of motion

0 � ( Jb

R2 + M)r̈ + Mk sin(θ ) − Mrθ̇ 2

τ � (Mr2 + J + Jb)θ̈ + 2Mrṙθ̇ + Mkr cos(θ )

Reformulation to state-space form and normalization gives
ẋ1

ẋ2

ẋ3

ẋ4

 �


x2

k(x1x2
4 − k sin(x3))

x4

0

+


0

0

0

1

 u

y � x1

where  x1 x2 x3 x4

T
�

 r ṙ θ θ̇
T

Differentiate until the input appears

ẏ � x2

...

y(3) � kx2x2
4 − kkx4 cos(x3)︸ ︷︷ ︸

L3
f h

+ 2kx1x4︸ ︷︷ ︸
LkL2

f h

u

In this case we see that LkL2
f h will vanish when x1 � r � 0 or x4 � θ̇ � 0.

The relative degree is thus not uniquely defined for this system.

Zero dynamics For the case of exact linearization of the system in
Eq. (2.25), a new input signal v will be chosen as

v � Ld
f h(ξ , z) + LkLd−1

f h(ξ , z)u (2.26)

The resulting dynamics will be a chain of integrators of length d from the
new input v to the output y. For linear systems the transformation and
the change of input corresponds to a pole placement where d poles are
placed at s � 0 and the remaining n−d poles align with the system zeros,
i. e., cancellation of all the zeros in the transfer function. The dynamics
we get if we try to keep the output identically zero

ż �ψ (0, z) (2.27)
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is called the zero dynamics of the system [Byrnes and Isidori, 1991].
A system is called minimum phase if the zero dynamics ż � ψ (0, z) are
asymptotically stable. The converse is called a non-minimum phase sys-
tem. This property can not be affected by feedback, as is familiar from
linear systems where feedback does not affect the zeros. To find the zero
dynamics, there is, however, no need to transform the system to normal
form, which the next example will illustrate.

EXAMPLE 2.4—ZERO DYNAMICS FOR LINEAR SYSTEMS

Consider the linear system

y � s− 1
s2 + 2s+ 1

u (2.28)

with the following state-space description
ẋ1 � −2x1 + x2 +u

ẋ2 � −x1 −u

y � x1

(2.29)

To find the zero-dynamics, we assign y � 0.

; x1 � 0 ; ẋ1 � 0 ; x2 + u � 0

; ẋ2 � −u � x2
(2.30)

The remaining dynamics is an unstable system corresponding to the zero
s � 1 in the transfer function (2.28).
A general conclusion is that feedback linearization can be interpreted
as a nonlinear version of pole-zero cancellations which not can be used
if the zero-dynamics are unstable, i. e., for nonminimum-phase system.
In algebraic terms, we are faced with a model inversion problem or an
operator inversion problem.

Obstacles for output-feedback control A fundamental difference be-
tween linear and nonlinear systems is the effect of bounded disturbances
over a finite time horizon. Consider a linear system and assume that we
have a stabilizing state-feedback law. If we instead base the feedback
law on estimated states, the closed loop system will still be stable under
the assumption that the observer error converges to zero. For nonlinear
systems this is not the case even if we have exponential convergence in
the observer. The obstacle is the problem with finite escape time. Separa-
tions principles for nonlinear systems will be discussed in more detail in
Chapter 4.
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In [Mazenc et al , 1994] it is shown that global complete observability and
global stabilizability are not sufficient to guarantee global stabilizabil-
ity by dynamic output feedback, i. e., no observer based design, whatever
convergence properties for the observer, will solve the general global sta-
bilization problem. The class of systems with dynamics of the form

ż � H(z, x1, . . . , xr)
ẋ1 � x2

...

ẋr−1 � xr

ẋr � xk
r + F(z, x) + G(z, x)u

y � x1

(2.31)

is not globally asymptotically stabilizable by continuous dynamic output
feedback and does not satisfy the “unboundedness observability property”
if k ≥ r/(r− 1) [Mazenc et al , 1994]. The following conjecture was formu-
lated: “This shows that for global asymptotic stabilization by output feed-
back, we cannot go very far beyond linearity for relative degrees r > 2.”

2.4 Control and Stabilization

Lyapunov stability theory as well as passivity can be used as instruments
for stabilization:

Feedback Passivation

From Sec. 2.2 we know that passive systems are intrinsically easy to
stabilize. Without any aspects of performance so far, negative feedback
from the passive output to the input will do the job. One route to use
this concept in design is first to look for an output function and a feed-
back transformation to render the system passive. This is the concept of
feedback passivation, originating from results in [Molander and Willems,
1980; Kokotović and Sussmann, 1989; Byrnes et al , 1991].
One important question to be ask is “When can a nonlinear system be
rendered passive via feedback?”

THEOREM 2.3—FEEDBACK PASSIVATION [KOKOTOVIĆ AND SUSSMANN, 1989]
Consider the affine nonlinear system

ẋ � f (x) + k(x)u
y � h(x) (2.32)
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The input affine nonlinear system of Eq. (2.32) is feedback passifiable if
and only if it has relative degree one and the zero dynamics are weakly
nonminimum phase.

Departing from purely linear systems the first extension is a feedback
connection of a linear system and a static nonlinear function.

As for nonlinear electro-mechanical systems, the passivity-based approach
strives to exploit the specific structure in Euler-Lagrange systems and, in
particular, its inherent passivity properties.

LEMMA 2.4—LAGRANGIAN MECHANICS

An Euler-Lagrange system has a stable equilibrium where its potential
function has a minimum.

Proof See [Goldstein, 1980].
Based on this fundamental lemma, Takegaki and Arimoto (1981) proposed
a control-law for mechanical manipulators which reshapes the potential
function to have a minimum at the desired set-point, so called energy shap-
ing. Asymptotic stability is achieved by damping injection [Takegaki and
Arimoto, 1981]. The controller is basically a PD-controller with gravity
compensation. If position measurements only are available, the question
of stability from a certainty equivalence point occurs naturally when the
estimated velocity is to be used in the derivative part of the controller.
Local results for the flexible robot was reported in [Nicosia and Tomei,
1990]. These kind of “derivative filtering” controllers have the benefit that
they are easy to implement as they do not require any calculation or inver-
sion of the inertia matrix [Paden and Panja, 1988; Lefeber and Nijmeijer,
1997].
As for the regulation or set-point control, the LaSalle theorem is instru-
mental for proving asymptotic stability [LaSalle, 1960; Khalil, 1996]. One
reason for this is that when choosing the energy of a system as a Lya-
punov function candidate, it often turns out that its time derivative along
the equations of dynamics is negative semi-definite only. For the tracking
problem the LaSalle-Yoshizawa lemma (Lemma 2.1) or the Matrosov the-
orem have to be used instead due to the time-varying dynamics imposed
by the reference trajectory [Hahn, 1967, p.263].

Lyapunov analysis and design

In control theory various aspects of stability are used; Lyapunov stability
and input-output stability. Here we will mainly consider the Lyapunov
stability concept which has played a fundamental role in system theory.
It was introduced as a method for stability analysis in the seminal work
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by A. M. Lyapunov over a century ago and has evolved through many im-
portant contributions into a very powerful tool for analysis as well as for
synthesis and design [Lyapunov, 1892]. It is now the foundation for many
design methods for stability and control. A common approach starts with
some chosen positive valued function, a Lyapunov function candidate, of-
ten to be interpreted as a generalized energy function. A control law is
sought for which would render the function to decrease along all trajecto-
ries of the system, implying stability around a desired motion or around
an equilibrium. The main obstacle for both the analysis and the synthesis
problem is the lack of general methods for finding a suitable Lyapunov
function, or a way of proving that there does indeed not exist any. Nev-
ertheless, for some classes of systems with imposed structural properties
there exist efficient methods to numerically find Lyapunov functions or to
analytically derive them.

The problem of stabilization can be approached using the concept of con-
trol Lyapunov functions (CLF).

DEFINITION 2.11—CONTROL LYAPUNOV FUNCTIONS (CLF) [ARTSTEIN, 1983]
A smooth positive definite and radially unbounded function V : IRn → IR+
is called a control Lyapunov function (CLF) for the time-invariant system

ẋ � f (x) + k(x)u, x ∈ IRn, u ∈ IR, f (0) � 0 (2.33)

if

inf
u∈R

{
∂ V
∂ x
(x) ⋅ [ f (x) + k(x)u]

}
< 0, ∀x �� 0.

Artstein’s results about CLFs generalized the results in [Jurdjevič and
Quinn, 1978; Jacobson, 1977] and showed the equivalence of asymptotic
stabilizability and the necessary and sufficient condition for the existence
of a control Lyapunov function [Artstein, 1983].

THEOREM 2.5—[ARTSTEIN, 1983]
The existence of a control Lyapunov function for a system is equivalent
to global asymptotic stabilizability.

Given a CLF V (x), a stabilizing controller is provided by the Sontag for-
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mula

us(x) �


−

∂ V
∂ x

f +
√
(∂ V

∂ x
)2 + (∂ V

∂ x
k)4

∂ V
∂ x
k

,
∂ V
∂ x
k �� 0;

0,
∂ V
∂ x
k � 0

(2.34)

The stabilizing control law us(x) for system (2.33), derived by the Sontag
formula, is continuous at x � 0 if V (x) satisfies the small control property.

DEFINITION 2.12—SMALL CONTROL PROPERTY

The control Lyapunov function V (x) satisfies the small control property
if for each ε > 0, there exists a δ (ε ) > 0 such that for all states
fxf < δ , x �� 0 the inequality

∂ V
∂ x
[ f (x) + k(x)u(x)] < 0 (2.35)

is satisfied with control action fu(x)f < ε .

Still, the general construction of an appropriate CLF is usually a very
hard problem, as in a sense it is equivalent to the stabilizability prob-
lem. If successful, the CLF construction provides a sufficient condition
for stability. For some subclasses of nonlinear systems the backstepping
procedure offers a constructive methodology for these problems.

State Feedback and Exact Feedback Linearization

Under certain conditions a nonlinear system may have a linear repre-
sentation via a nonlinear change of coordinates and the cancellation or
inversion of remaining nonlinear terms. Exact linearization can be seen
as a strive for reusing the design methods for linear systems by making
the design in the converted coordinates. The basic idea can be described
by the following example.

EXAMPLE 2.5—EXACT LINEARIZATION

Consider the nonlinear first-order system

ẋ1 � f (x1) + k(x1)u (2.36)

By using the linearizing control law

u � (v − f (x1))/k(x1)
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2.4 Control and Stabilization

the system is converted to the linear system

ẋ1 � v

where v is a new input signal.

Problems of stabilization associate with exact cancellation of the nonlinear
state dependent term f (⋅) and the inversion of k(⋅). It may sometimes
be unrealistic to think that exact cancellation of nonlinearities can be
performed to give a linear system. All imperfections such as parameter
uncertainties, state-estimation errors, etc., will contribute to errors which
will show up as disturbances in the feedback-linearized equations

ẋ1 � x2

...

ẋn−1 � xn

ẋn � f (x) + k(x)u � v

(2.37)

where u � k(x)−1(v − f (x)) is the original control signal. An important
observation which can be made is that for the system in Eq. (2.37) dis-
turbance terms due to inexact cancellation enter at the same place as
the control signal, that is, they satisfy the so-called matching condition
[Khalil, 1996, p.548].

+

r v u y
Σu � β −1(⋅)

−L
x

z

x � T(z)

Figure 2.5 Inner feedback linearization and outer linear feedback control

For general nonlinear systems feedback linearization comprises

• state transformation

• inversion of nonlinearities
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• linear feedback

with no approximations involved (Fig. 2.5). Feedback linearization is said
to be exact in the case where the state transformation and the inversion
are valid. Conditions for feedback linearization can be found in [Isidori,
1995; Nijmeijer and van der Schaft, 1990].
For systems which do not admit exact feedback linearization, approxi-
mate linearization techniques have been proposed [Krener and Isidori,
1984; Krener et al , 1988; Hauser et al , 1992a]. One of the drawbacks with
feedback linearization, as pointed out in the section above, is that exact
cancellation of nonlinear terms may not be possible due to e. g., parameter
uncertainties. A suggested solution to this problem is a two-step proce-
dure where the first step regards stabilization via feedback linearization
around a nominal model. Considering known bounds on the uncertainties,
the second step, so called Lyapunov redesign, will provide an additional
term for stabilization, taking into account the effects of the disturbances
[Khalil, 1996].
Even if a system is feedback linearizable, some of its nonlinear terms may
act in a stabilizing way and thus be beneficial to keep for the purpose of
regulation, whereas it may be desirable to compensate for them in the
tracking problem.

The method of exact linearization described above, linearizes the state
equations, which does not necessarily imply a linear input-output map-
ping. For the purpose of output tracking, input-output linearization may
be considered.

Backstepping

The problem of finding a Lyapunov function has a simple solution in the
control-affine one-dimensional case. Integrator backstepping provides a
systematic method to stabilization of nonlinear systems which are trans-
formable into strict feedback form. The main idea is to start out with
the stabilization problem for a first-order subsystem and step-by-step in-
crease the order of the subsystem considered. The method is constructive
for generating Lyapunov functions [Kanellakopoulos et al , 1992; Krstić
et al , 1995]. Backstepping can also be used to relax the matching con-
dition on where disturbances may enter the system equations—see the
discussion on the Lyapunov-redesign method in the previous section.

EXAMPLE 2.6—BACKSTEPPING

Consider the one-dimensional system with input u1

ẋ1 � f1(x1) + u1 (2.38)
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where f is a known functions and f (0) � 0. In this case it is easy to find a
control Lyapunov function, and any positive quadratic function V1(x1) �
c1x2

1/2, c1 > 0, will do. We want to choose u1 � u1(x1) such that V1 has a
negative derivative along the solutions of Eq. (2.38):

V̇1 � ∂ V1

∂ x1
[ f1(x1) + u1] � c1x1 [ f1(x1) + u1]

� −c1x2
1 ≤ 0, for u1

*� −x1 − f1(x1)
(2.39)

Extending the system with an integrator at the input

ẋ1 � f1(x1) + x2

ẋ2 � u
(2.40)

the same approach as above can be used, if we first consider x2 as a
virtual control signal. If we could choose x2 � −x1 − f1(x1), then the
first state would be stabilized. To this purpose, introduce the error state
z2 � x2−(−x1− f1(x1)) � x2+ x1+ f1(x1). Consider the Lyapunov function
candidate

V2 � V1 + c2

2
z2

2 (2.41)

whose derivative is

dV2

dt
� −c1x2

1 + c1x1z2 + z2[ẋ2 − ẋ1]
� −c1x2

1 + z2[u+ x1 − z1 + c1x1]
� −c1x2

1 − c2z2
2 < 0, (x1, z2) �� (0, 0)

(2.42)

if u is chosen as u � −x1 + z1 − c1x1 − c2z2. Transformation back to the
original coordinates (x1, x2) does not effect the stability.

Backstepping provides a systematic methodology to stabilize systems in
strict feedback form:

ẋ1 � f1(x1) + x2

ẋ2 � f2(x1, x2) + x3

...

ẋn−1 � fn−1(x1, x2, . . . , xn−1) + xn

ẋn � fn(x1, x2, . . . , xn) + u

(2.43)
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For the geometric conditions under which nonlinear systems can be trans-
formed into strict feedback form, see [Krstić et al , 1995].

In the backstepping procedure, properties of nonlinear terms may be
utilized to avoid cancellations of stabilizing terms, possibly reducing the
control effort and avoiding the introduction of “unnecessary” high-gain
control. Note, however, that by imposing the Lyapunov function derivative
to the “standard quadratic choice” of

dV
dt

� −
∑

i

ciz2
i , ci > 0 (2.44)

a lot of the freedom is lost. The backstepping procedure in this case can be
interpreted as an exact linearization of dV/dt since all the nonlinearities
in the derivative will be cancelled [Krener, 1999].

Output Feedback

In many applications only a part of the state vector is possible to mea-
sure. This restricts the use of state feedback methods. The output feedback
problem is well motivated to consider, from practical aspects as well as
from the large number of theoretical questions which still remain unan-
swered in this area. For the output feedback problem, the introduction of
extra dynamics in the control law may be necessary for stabilization. In
many cases the extra dynamics have the interpretation of observer dy-
namics. The shortcomings of static output feedback is illustrated in the
following example on global stabilization of a double integrator.

EXAMPLE 2.7—[SONTAG, 1990, EX.6.2.1]
Consider the system

ẋ1 � x2

ẋ2 � u

y � x1.
(2.45)

The system is easily shown to be both controllable and observable, but
there does not exist any continuous function u � k(y) which stabilizes the
system in the sense that the trajectories from all possible initial points
converge to the origin, (x1, x2) � (0, 0).
Suppose such a k(⋅) would exist. Then consider the function

H(x1, x2) � x2
2 −

∫ x1

0
k(s)ds (2.46)
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As Ḣ � 0 along the trajectories of the system, which by the assumption
all converge to the origin, it implies that H would be constant and equal
to H(0, 0) � 0. As H(0, 1) � 1 is a contradiction, there does not exist such
a k(⋅).

Whereas some simple examples and classes of systems, which constitute
important counter-examples for global stabilizability by means of output
feedback have been presented in [Mazenc et al , 1994], Teel and Praly
have shown that global stabilizability and observability imply semi-global
stabilizability by output feedback [Teel and Praly, 1994].

2.5 New Results on Output Feedback Stabilization

In this section we present two contributions on feedback stabilization and
tracking control with relevance to observer-based feedback control. Firstly,
a new interpretation of the Yakubovich-Kalman-Popov matrix equation is
given [Johansson and Robertsson, 1999]. Secondly, results on tracking
control of systems in chained form are presented [Lefeber et al , 1999a;
Lefeber et al , 2000].

The Yakubovich-Kalman-Popov (YKP) Lemma and Observer
Feedback

This important lemma supports results of stability theory of nonlinear
feedback (circle criterion; Popov criterion) and adaptive system theory
and for extensions of Lyapunov theory such as passivity theory [Khalil,
1996; Ortega et al , 1995a]. Although the lemma is very powerful in its pre-
dictions, the strictly positive real (SPR) conditions imposed on the transfer
function are, unfortunately, rather restrictive for application. The mini-
mality requirement also preclude application to stabilization of observer-
based feedback. As the Lyapunov functions generated by backstepping
techniques apparently cannot be designed using the YKP lemma, there
might exist other relevant classes of non-SPR systems for which extended
regions of stability might exist. Relevant such problem classes to investi-
gate include non-SPR transfer functions and dynamic output feedback or
observer-based design violating the controllability condition of the YKP
lemma.

A key observation is that the YKP matrix equation may then be formu-
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lated as

−Q �
(

PA+ AT P PB − C T

BT P − C −(D + DT)
)

�
(

P 0

0 Im

) (
A B

−C −D

)
+

(
A B

−C −D

)T (
P 0

0 Im

)
(2.47)

which is recognized as a special Lyapunov equation

PoA +A TPo � −Q (2.48)

Using this observation, the YKP matrix equation may be used as a means
to generate CLFs suitable for observer-supported output feedback.

Paper C presents theory for extension of the Yakubovich-Kalman-Popov
lemma for stability analysis relevant for observer-based feedback control
systems. We show that minimality is not necessary for existence of Lur’e-
Lyapunov functions. Relaxation of the controllability and observability
conditions imposed in the YKP lemma can be made for a class of non-
linear systems described by a linear time-invariant system (LTI) with
a feedback-connected cone-bounded nonlinear element. Implications for
positivity, factorization and passivity are given in Paper C. A number of
interpretations may also be relevant:

Negative integral output feedback: Let the linear system(
ẋ

y

)
�

(
A B

C D

) (
x

u

)
, x ∈ IRn, u ∈ IRm, y ∈ IRp (2.49)

be controlled with the negative integral output feedback control law

u̇ � −(y− r), r ∈ IRp (2.50)

A state vector for the feedback-connected system is provided by

X �
(

x

u

)
(2.51)

with the derivative

Ẋ �
(

ẋ

u̇

)
�

(
A B

−C −D

) (
x

u

)
+

(
0

r

)
(2.52)
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or

Ẋ �A X +
(

0

r

)
(2.53)

Thus, the stability condition for the feedback interconnected system is
precisely that the eigenvalues of A be in the open left half plane.
Then, the autonomous system Ẋ �A X is stable with a Lyapunov function
V (X) � XTP X for the feedback-interconnected system where P solves the
Lyapunov equation PA +A TP � −Q for Q � Q T > 0 .
Thus, the class of systems satisfying the property of eigenvalues of A in
the open left half plane is that of output feedback systems stable under
negative integral output feedback. It is well known from passivity theory
that stable feedback interconnection can be made of one strictly passive
subsystem Σ1 and of another passive but not necessarily strictly passive
subsystem Σ2 [Popov, 1973], [Krstić et al , 1995, p.508]. As an integrator
is an example of a passive subsystem, it follows from this result that
there is stable feedback connection of a strictly passive subsystem with
an integrator subsystem. Obviously, the class of linear systems with stable
A includes the class of linear strictly passive systems.

Secondly, from the construction of the YKP equation and the associated
Lyapunov function, it follows that the class of SPR systems are stable
under negative integral feedback.

Thirdly, another class of systems is that of feedback positive real (FPR)
systems where there is an L such that the transfer function Z(s) �
C (sI − A + B L)−1 B is positive real and A − B L is stable [Kokotović
and Sussmann, 1989].
Molander and Willems (1980) made a characterization of the conditions
for stability of feedback systems with a high gain margin

ẋ � Ax+ Bu, z � Lx, u � − f (Lx, t) (2.54)

with f (⋅) enclosed in a sector [K1, K2], see [Molander and Willems, 1980].
These authors suggested the following procedure to find a state-feedback
vector L such that the closed-loop system will tolerate any f (⋅) enclosed in
a sector [K1, K2]. Synthesis of a state-feedback vector L with a robustness
sector [K1,∞) follows from their Theorem 3:

• Pick a matrix Q � QT > 0 such that (A, Q) is observable;

• Solve Riccati equation PA+ AT P − 2K1PB BT P + Q � 0;

• Take L � BT P.
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The Molander-Willems equations may be summarized as a YKP matrix
equation(

P 0

0 Im

) (
A− K1 B L B

−L 0

)
+

(
A− K1 B L B

−L 0

)T (
P 0

0 Im

)
+

(
Q 0

0 0

)
� 0

which can be recognized as an FPR condition—i.e., the stability condition
will be that of an SPR condition on L(sI − A+ K1 B L)−1 B .

In the special case when K1 � 0, the Riccati equation among the Molander-
Willems equations will specialize to a Lyapunov equation and the stability
condition for f (⋅) anywhere in the first and third quadrants will be that
of an SPR condition on L(sI − A)−1 B .

The YKP procedure suggests a constructive means to provide a positive
real transfer function. The method includes one state feedback transfor-
mation and one transformation which provides an output variable from
linear combinations of the outputs to render the system transfer function
positive real. To that purpose, a required but not measured state may
be replaced by a reconstructed state provided that appropriate observer
dynamics are included.

Tracking Control of Systems in Chained Form

In recent years the control, and in particular the stabilization, of nonholo-
nomic dynamic systems have received considerable attention. Typically,
nonholonomic constraints arise from physical laws as the Newton law of
conservation of momentum, showing up as constraints on accelerations
rather than (holonomic) constraints on positions. These types of second
order nonholonomic constraints are present in for example the control of
under-actuated mechanical manipulators. The trailer with a cart, Fig. 2.6,
is subject to nonholonomic velocity constraints, where the tires are rolling
along the surface without slipping. For these systems it should be noted
that there does not exist any smooth stabilizing static state-feedback con-
trol law, since the Brockett necessary condition for smooth stabilization
is not met [Brockett, 1983]. For an overview of nonholonomic systems
we refer to the survey paper [Kolmanovsky and McClamroch, 1995] and
references cited therein.

Although the stabilization problem for nonholonomic control systems is
now well understood, the tracking control problem has received less at-
tention. In fact, it is unclear how the stabilization techniques available
can be extended directly to tracking problems for nonholonomic systems.

In Paper A and B we study the output tracking problem for the class of
nonholonomic systems in chained form with two input signals [Micaelli
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Figure 2.6 Car with a trailer, see [Micaelli and Samson, 1993].

and Samson, 1993]
ẋ1 � u1

ẋ2 � u2

ẋ3 � u1x2

...

ẋn � u1xn−1

(2.55)

with the first and the last state as our output signals

y �
 y1

y2

 �
 x1

xn

 (2.56)

It is well known that many mechanical systems with nonholonomic con-
straints can be locally or globally converted, under coordinate change and
state feedback, into the chained form or into a generalization of it [Murray
and Sastry, 1993; Tilbury et al , 1995].
The purpose is to develop simple tracking controllers for this class of
systems. Based on a result for (time-varying) cascaded systems [Panteley
and Loría, 1998b] we divide the tracking error dynamics into a cascade
of two linear sub-systems which we can stabilize independently of each
other with linear time-varying controllers. Using the same approach we
also consider the tracking problem for chained form systems by means of
dynamic output-feedback.

Furthermore, we partially deal with the tracking control problem under
input constraints. The only results on saturated tracking control of non-
holonomic systems that we are aware of are [Jiang et al , 1998] which
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deals with this problem for a mobile robot with two degrees of freedom,
and [Jiang and Nijmeijer, 1999] that deals with general chained form
systems.
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3

Observers

3.1 Introduction

Filtering and reconstruction of signals are used in numerous different
types of applications and play a fundamental role in modern signal pro-
cessing, telecommunications, and control theory. Diagnosis and supervi-
sion of critical processes are of major importance for reliability and safety
in industry today. The application of observers in fault detection and iso-
lation provide one means to these problems [Alcorta Garcia and Frank,
1997; Hammouri et al , 1999].
The evaluation of estimation techniques can be traced via the least-squares
methods of Gauss, Fischer’s maximum likelihood approach, the semi-
nal work on optimal filtering by Kolmogorov and Wiener, and the im-
portant results on recursive filtering by Kalman and Bucy [Kolmogorov,
1939; Wiener, 1949; Kalman and Bucy, 1961]. In this Section we will
mainly consider non-stochastic methods for nonlinear estimation. Linear
systems constitute an important subclass for which the observer problem
is well known. The class of systems which can be transformed into a linear
part and a nonlinear part depending only on measured states and inputs
was characterized in [Krener and Isidori, 1983; Bestle and Zeitz, 1983].
This class of systems allows for linear error dynamics via output injection.
New methods in nonlinear system theory have been applied not only to
the control problem, but also to the observer design problem. An overview
of some different methods on observer design can be found in [Misawa
and Hedrick, 1989; Besançon, 1996; Nijmeijer and Fossen, 1999].
The observability problem can be stated as: “For a given dynamical sys-
tem, when and how is it possible to reconstruct the internal states from
output measurements of the system?”. Usually we have unknown initial
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conditions, but the measurements and the system equations are supposed
to be known, possibly disturbed by some noise or structured disturbances.
A similar problem appears for synchronization of dynamical systems [Ni-
jmeijer and Mareels, 1997].
For linear systems the observability and detectability properties are closely
connected to the existence of observers with strong properties, such as for
instance exponential convergence of the errors. Known statistical prop-
erties of measurement and process noise allow us to find an optimal ob-
server, the Kalman Filter [Kalman and Bucy, 1961].

The Kalman Filter

The linear system

ẋ � Ax+ v,

y � C x+ e, E {
(

v

e

)
} � 0, E {

(
v

e

) (
v

e

)T

} � Q
(3.1)

has an innovations-form realization

ẋ � Ax+ Kw

y � C x+w
(3.2)

with s > 0 and K fulfilling the Riccati equation(
I K

0 I

) (
S 0

0 R

) (
I K

0 I

)T

�
(

A 0

C I

) (
S 0

0 0

) (
A 0

C I

)T

+ Q (3.3)

Its transfer function

Y(s) � H(s)W(s), H(s) � C (sI − A)−1 K + I (3.4)
H−1(s) � −C (sI − (A− K C ))−1 K + I (3.5)

and its inverse suggest the Kalman filter realization

˙̂x � (A− K C )x̂+ K y

ŷ � C x̂

ε � y− ŷ � −C x̂+ y

(3.6)

That the prediction error ε (t) reconstructs the innovation w(t) is verified
by the transfer function relationship

ε (s) � H−1(s)Y(s) � H−1(s)(H(s)W(s)) � W(s) (3.7)
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EXAMPLE 3.1—KALMAN FILTER & EXACT LINEARIZATION

Consider the feedback-linearized system

ẋ � Ax+ Bu1 + v

y � C x+ Du+ e

u1(x) � β −1(x)(u −α x)
(3.8)

with the innovations model

ẋ � Ax+ Bβ −1(x)(u −α (x)) + Kw

y � C x+ Du+w
(3.9)

or

ẋ � Ax− Bβ −1(x)α (x) + Bβ −1(x)u + Kw

y � C x+ Du+w
(3.10)

The formulation of the Kalman filter is straightforward as

˙̂x � (A− K C )x̂+ (B − K D)u1(x) + K y

ŷ � C x̂+ Du1(x)
ε � y− ŷ � −C x̂− Du1 + y

(3.11)

Since x and thus u1(x) are not available to measurement, the context of
application of such a Kalman filter is very limited. The use of so called
pseudo-linearization, where u1(x̂) is used instead of u1(x), will be dis-
cussed later on.

For linear systems, there is no distinction between local and global sta-
bility results. In the case of nonlinear dynamical systems, however, this
is not the case where rigorous proofs often rely on Lyapunov techniques
with local regions of validity only. Another important difference is that for
general nonlinear systems, the observability properties depend upon the
input signal. Even though the states of a system may be fully observable
for most input signals, some inputs, so called singular inputs, may render
the system unobservable.

EXAMPLE 3.2—SINGULAR INPUTS

Consider the system

ẋ1 � (u− 1) ⋅ x2

ẋ2 � x2

y � x1

(3.12)
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The system in Eq. (3.12) is clearly observable for all u �� 1. The signal
u(t) � 1 is a singular input for the system, for which it loses observability.

In this thesis the main focus will be on the deterministic observer for
the purpose of output-feedback control of nonlinear continuous time sys-
tems. The rest of the Chapter is organized in the following way: First
some preliminaries and definitions are given in Section 3.2. Thereafter an
overview of traditional and recent observer design techniques are given
in Section 3.3, including some new results on observers from Papers A,
B, and E.

3.2 Preliminaries

Observability for linear systems is characterized by the Kalman rank
condition [Kalman et al , 1969]. The linear time-invariant system

dx
dt
� Ax+ Bu, t ≥ 0, x ∈ IRn, u ∈ IRm

y � C x, y ∈ IRp, x(0) � x0

(3.13)

is said to be observable if the observability matrix

Wo �


C

C A
...

C An−1

 (3.14)

has full rank, i. e., rank Wo � n. For linear systems the input signal does
not influence the observability property. Furthermore, observability of the
system ensures the existence of a state observer. Such properties are not
valid for nonlinear systems [Nijmeijer and van der Schaft, 1990; Isidori,
1995; Besançon and Bornard, 1997].
Consider the smooth nonlinear system

ẋ � f (x) +
m∑

j�1

kj(x)uj

yi � hi(x) i ∈ [1 . . . p]
(3.15)

where x ∈ M ⊂ IRn, f , kj and hi are smooth on M.
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DEFINITION 3.1—INDISTINGUISHABLE STATES [NIJMEIJER AND VAN DER SCHAFT,
1990]
Two states x1, x2 ∈ M are said to be indistinguishable, x1Ix2, for the
system (3.15) if for every admissible input function u the output function
t =→ y(t, 0, x1, u), t ≥ 0, of the system for initial state x(0) � x1, and
the output function t =→ y(t, 0, x2, u), t ≥ 0 of the system for initial state
x(0) � x2, are identical on their common domain of definition. The system
is called observable if x1Ix2 ; x1 � x2.

Alternative notation is presented in [Sontag, 1990; Hermann and Krener,
1977].

DEFINITION 3.2—OBSERVATION SPACE [NIJMEIJER AND VAN DER SCHAFT, 1990]
The observation space, O, is the linear space (over IR)

O � span{LX1 LX2 . . . LXk hj eXi ∈ f , k1, . . . , km, j ∈ [1..m], k ∈ N}

REMARK 3.1—[GAUTHIER et al , 1992]
Consider a series expansion of the output of the system of Eq. (3.15)

y(t) �
+∞∑
k�0

Lk
f h(x0)tk/k!

For the linear case this expression is specialized to the standard form

y(t) �
+∞∑
k�0

C (At)kx0/k!

DEFINITION 3.3—LOCAL OBSERVABILITY [NIJMEIJER AND VAN DER SCHAFT, 1990]
The system (3.15) is said to be locally observable at x0 if there exists a
neighborhood W of x0 such that for every neighborhood V ⊂ W of x0 the
relation x0IV x1 implies that x1 � x0. If the system is locally observable
at each x0 then it is called locally observable.

DEFINITION 3.4—WEAK DETECTABILITY

The system (3.15) is said to be weakly detectable if there exists a contin-
uous function

k : IRn � IRp � IRm → IRn, k(0, 0, 0) � 0

and a C 1-function

W : IRn � IRn → IR+
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such that

f (x, u) � k(x, h(x), u) (3.16)
α 1(f x− z f) ≤ W(x, z) ≤ α 2(f x− z f) (3.17)

∂ W
∂ x

f (x, u) + ∂ W
∂ z
k(z, h(x), u) ≤ −α 3(f x− z f) (3.18)

where α i, (i � 1..3), are class K functions.

DEFINITION 3.5—ZERO-STATE DETECTABILITY [ISIDORI, 1999]
The system of Eq. (3.15) is said to be Zero-State Detectable if, for any
initial condition x(0) and zero input u � [u1 . . . up]T � 0, the condition of
identical zero output y � [h1(x) . . . hp(x)] � 0, t ≥ 0 implies that the state
converges to zero, limt→+∞ x(t) → 0.

DEFINITION 3.6—OBSERVER LINEARIZATION PROBLEM [ISIDORI, 1995]
Given the autonomous, nonlinear system described by

ẋ � f (x), x ∈ IRn

y � h(x), y ∈ IR,
x(0) � x0

(3.19)

the solution to the observer linearization problem involves finding

• a neighborhood U0 of x0

• a coordinate transformation z � Φ(x) on U0

• and a mapping k : h(U0) → IRn

such that

ż � Lf Φ(x)ex�Φ−1(z) � Az+ k(C z)
y � h(Φ−1(z)) � C z

(3.20)

where the pair [C , A] is observable.

THEOREM 3.1—[ISIDORI, 1995, THEOREM 4.9.4]
The observer linearization problem is solvable if and only if

(i) dim(span{dh(x0), dLf h(x0), . . . , dLn−1
f h(x0)}) � n

(ii) the unique vector field τ which is the solution of

Lτ h � Lτ Lf h � ⋅ ⋅ ⋅ � Lτ Ln−2
f h � 0

Lτ Ln−1
f h � 1

(3.21)
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satisfies

[τ , adk
f f ] � 0 for k � 1, 3, . . . , 2n− 1. (3.22)

where [⋅, ⋅] denotes the Lie bracket of two vector fields and ad denotes

the repeated Lie bracket adk
f k

*� [ f , adk−1
f k], k ≥ 1, with ad0

fk � k.

DEFINITION 3.7—UNBOUNDEDNESS OBSERVABILITY [MAZENC et al , 1994]
A system

ẋ � f (x, u), x ∈ IRn, u ∈ IRp

y � h(x), y ∈ IRm (3.23)

is said to have the unboundedness observability property if, for any solu-
tion, x(⋅), right maximally defined on [0, T), with T finite, corresponding
to a bounded input function u(⋅) in L∞([0, T); R), we have

lim sup
t→T

eh(x(t))e � +∞,

i. e., all possible finite-escape time phenomena should be observable from
the output.

Saturations in the output mapping h(x), will prevent any possibility to ob-
serve unbounded solutions and restrict systems with respect to the above
defined unboundedness observability property. However, saturations con-
stitute only one obstacle and the case is more general than that, which
the following example, taken from [Mazenc et al , 1994], will illustrate.

EXAMPLE 3.3—[MAZENC et al , 1994]

ẋ1 � x2

ẋ2 � xk
2 + u

y � x1

(3.24)

Suppose that u � 0, and that x2(0) � x20 > 0. For t ∈ [0, T), where
T � 1/((k− 1)xk−1

20 ) we have the solution

x2(t) � x20

(1− xk−1
20 (k− 1)t)1/(k−1)

x1(t) �
{

x1(0) − log(1− x20t), k � 2

x1(0) + x2−k
20

1
k−2 [1− (1− xk−1

20 (k− 1)t)(k−2)/(k−1)], k > 2
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So even though limt→T x2(t) � +∞ we have different behavior of the out-
put y � x1 for k � 2 and k > 2. Whereas for k � 2 the finite escape
phenomenon is observed at the output when the time t → T , this is not
the case for k > 2. In Eq. (3.24) we have a system which is completely
observable, see [Gauthier and Bornard, 1981]. Still, it does not satisfy the
unboundedness observability property. Hence, the hierarchy among differ-
ent definitions regarding the observability problem for nonlinear systems
has to be paid careful attention.

3.3 Observer Structure and Design

For linear systems the observability condition implies existence of expo-
nentially converging observers. For general nonlinear systems the differ-
ent definitions and properties on observability described in the previous
section are fundamental, but the relation to observers and the observer
design is far more complex then for the linear case.

A standard approach to solve the state reconstruction problem is to use a
copy of the observed system and to add some correction terms attenuating
the difference of the outputs, i. e., using a full-state model-based observer
and output injection. The order of the observer can be reduced by just
reconstructing the complementary part of the state vector which is not
directly accessible from the output signal or from some linear or nonlinear
combination of the measurements. This is called a reduced-order observer.

It should be noted that there is an inconsistency in the terminology re-
garding observers, in particular what a Luenberger observer denotes. In
some contexts it is used to distinguish the deterministic observer from the
stochastic Kalman-filter [Luenberger, 1971], whereas in other contexts it
is used to represent a reduced-order observer [Åström and Wittenmark,
1997].

Derivative filters Despite the rapid development of modern control
theory, the PID controller is still the most commonly used control scheme
in industry today [Yamamoto and Hashimoto, 1991]. The introduction of
the derivative part is often very well motivated for stability reasons and
may in electro-mechanical applications often be interpreted as addition-
ally added damping to the system. In most realizations, the derivative
part is implemented as a ”low-pass filtered” derivative,

dx
dt
� p
(pT + 1)n x(t), n ≥ 1 (3.25)
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where p is the differential operator. For frequencies well below 1/T the
filter provides a good approximation of the derivative, while for higher
frequencies it behaves like a constant gain when n � 1 and attenuates
for n > 1. High-frequency noise is often present in measurements and
without roll-off in the filter it will be amplified and corrupt the ’derivative
estimate’ considerably. There is of course a trade-off in the achievable
band-width of the closed loop system and the sensitivity to measurement
noise for the choice of T .

EXAMPLE 3.4—‘DERIVATIVE FILTER’
Consider a linear system with transfer function

Gu→y(s) � 1
s3 + 3s2 − 5s+ 1

(3.26)

and the state space realization

ẋ1 � x2

ẋ2 � x3

ẋ3 � −x1 + 5x2 − 3x3 + u

y � x1

(3.27)

The state feedback u � −8x2+v would stabilize the system with a closed-
loop triple pole in s � −1. From the separation principle for linear systems
we know that choosing u � −8x̂2+v, where x̂2 comes from a linear asymp-
totically stable observer, will give the same closed loop-poles as the state
feedback controller, and the observer poles will be canceled in the transfer
function. The performance and transient behavior will suffer significantly,
but the stability is guaranteed for arbitrarily slow observer poles. This
separation property is however not met using the standard approach of
‘derivative filters’. Let

u(t) � −8
p

(p/a+ 1) y(t) + v(t)

where p is the differential operator. This control law gives the closed loop
transfer function

Gv→y(s) � s+ a
s4 + (a+ 3)s3 + (−5+ 3a)s2 + (3a+ 1)s+ a

which is stable for a > 2.78. The filter matches the “true” derivative for a
larger frequency range with increasing value of a and in the limit we get

lim
a→+∞ Gv→y(s) � s+ a

(s+ a)(s+ 1)3
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which recovers the pole-pattern of the closed loop transfer function as
expected.

Observers for linear systems

Consider the linear system

ẋ � Ax+ Bu

y � C x
(3.28)

Full-order observers Under observability/detectability assumptions
on the pair [A, C ] a full-order observer for the system of Eq. (3.28) is
readily constructed as

˙̂x � Ax̂+ Bu+ K (y− ŷ)
ŷ � C x̂

(3.29)

where the term K (y − ŷ) represents linear output injection. For asymp-
totically stable error dynamics the gain vector K should be chosen such
that (A− K C ) is Hurwitz—i. e., the eigenvalues of (A− K C ) lie strictly
in the left half plane.

Reduced-order observers Full-order observers reconstruct the whole
state vector even though some of the elements in it or combinations of
them are known through the output signals. One of the key observations
in Luenberger’s seminal paper on reduced-order observers was that even
though a state-space transformation does not change the spectrum of the
system matrix A, it can change the spectrum for a sub-matrix of A [Luen-
berger, 1964]. Here we will however use a slightly different point of view
to explain the reduced-order observer, which generalizes to reduced order
observers for nonlinear systems [Kailath, 1980, p.311].
Consider an observable (detectable) linear system. There exists a non-
unique state representation where the system can be written as[

ẋ1

ẋ2

]
�

[
A11 A12

A21 A22

] [
x1

x2

]
+

[
B1

B2

]
u

y � [ I O ]
[

x1

x2

] (3.30)

As x1 can be measured, there is only need to reconstruct x2. As direct
feedback of the output y � x1 does not affect the system matrix A22,
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we will temporarily assume that we have access to the derivative of the
output

ẏ � ẋ1 � A11x1 + A12x2 + B1u (3.31)
An observer of the form

˙̂x2 � A21x1 + A22 x̂2 + B2u+ K ( ẏ− ˙̂y)
� A21x1 + A22 x̂2 + B2u+ K (A12x2 − A12 x̂2)

(3.32)

would give the following dynamics for the estimation error x̃2 � x2 − x̂2

˙̃x2 � (A22 − K A12)x̃2 (3.33)
Note that if the system in Eq. (3.30) is detectable, the pair {A12, A22}
is also detectable. Whereas this observer would allow for exponentially
convergent error dynamics, difficulties remain in implementation. As the
derivative of the output is to be used, the implementation properties are
not clear.
However, Eq. (3.32) can be re-written as

d
dt
(x̂2 − K y) � A21x1 + A22 x̂2 + B2u− K ˙̂y

� A21x1 + A22 x̂2 + B2u− K (A11x1 + A12 x̂2 + B1)u
(3.34)

By introducing the extra state vector z � x̂2 − K y, we have an observer
realizable as

dz
dt
� (A21 − K A11)x1 + (A22 − K A12)x̂2 + (B2 − K B1u)

x̂2 � z+ K y
(3.35)

For stabilization and control via linear state feedback, u � −Lx, it would
suffice to reconstruct a linear combination of the states, û � −Lx̂, rather
than the full state vector or a reduced state vector which together with
the measurements span the whole state space [Fortmann and Williamson,
1972; Sirisena, 1979].
Open-loop observers For some systems it is trivial to design an ob-
server and to achieve a converging state estimate. For asymptotically
stable linear systems, it is enough to make a direct copy of the system
(3.28) without any output injection. The error dynamics will be

˙̃x � Ax̃

which is exponentially stable for A being Hurwitz. There are of course
obvious drawbacks with this approach. There is no freedom in affecting
the convergence rate of the estimates, as it solely depends upon the eigen-
values of A.
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Figure 3.1 The characteristics of the nonlinearity eve/k(v) in the LuGre-friction
model

EXAMPLE 3.5—FRICTION OBSERVER [CANUDAS DE WIT et al , 1993]
The LuGre model for friction can be described by the system

dz
dt
� v −σ 0

eve
k(v) z

F � σ 0z+σ 1(v)dz
dt
+ Fvv

k(v) � α 0 +α 1e−(v/vo)2

(3.36)

where F is the friction force, v is the velocity, and σ 0, α 0, α 1 are positive
parameters [Canudas de Wit et al , 1993; Canudas de Wit et al , 1995;
Olsson, 1996; Gäfvert et al , 1999]. The function eve/k(v) is positive for
non-zero velocities (Fig. 3.1). Since the dynamics in Eq. (3.36) are stable,
it is possible to use

dẑ
dt
� v −σ 0

eve
k(v) ẑ

F̂ � σ 0ẑ+σ 1(v)dẑ
dt
+ Fvv

(3.37)

as a friction observer. The state observation error z̃ � z− ẑ will have the
stable dynamics

˙̃z � −σ 0
eve
k(v) z̃ (3.38)

under the assumption that the velocity v is measurable. Hence, the open-
loop observer above results in a converging friction estimate for non-zero
velocities.
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EXAMPLE 3.6
Consider the position signal from a resolver mounted in a robot servo,
(Fig. 3.2). Resolvers and tracking resolver-to-digital converters are con-
sidered to give very accurate angle measurements. However, amplitude
imbalance and imperfect quadrature of the resolver will cause small dis-
turbances [Hanselman, 1990]. Amplitude imbalance give rise to an ad-
ditive error and the measured angle signal, qmeas, can be approximated
by

qmeas(t) � q(t) +α sin(k ⋅ q(t) + β ) (3.39)
where q(t) is the true motor angle and α , β , and k are constants. Even
though the disturbance can be neglected in the position measurement as
α is very small, Figure 3.2 shows the effect of reconstructing the velocity
by using a derivative filter with and without compensating for the dis-
turbance. Note that the amplitude and the frequency of the disturbance
increase with increased velocity. An approximate inverse of the nonlin-
earity in Eq. (3.39) before the filtering, reduces the disturbance in the
velocity estimate significantly.

0.5 1 1.5 2 2.5 3 3.5
20

30

40

50

60

70

80

90

ve
lo

ci
ty

time [s]

Angular velocity, joint1

0.5 1 1.5 2 2.5 3 3.5

−60

−40

−20

0

20

40

60

80

po
si

tio
n

time [s]

Angular position, joint1

Figure 3.2 Compensated and uncompensated signals from resolver measurements
of a robot joint. The differences in the position measurements are very small but
the effect in the velocity estimates is apparent.
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In [Gauthier et al , 1992] design of an extended Luenberger observer is
discussed with related work in [Zeitz, 1987; Birk and Zeitz, 1988], and
[Tsinias, 1990].

Extended Kalman filters

The extended Kalman filter (EKF) is a commonly used method for esti-
mating the state of a nonlinear system. The method consists of designing
an observer for a linearization of the true system along an estimated tra-
jectory [Gelb, 1974; Ljung, 1979; Cruz and Nijmeijer, 1999]. The state
estimation for the nonlinear system

ẋ � f (x, t) + e(t), e ∼N (0, Q)
y � h(x, t) + v(t), v ∼N (0, R) (3.40)

will be

˙̂x � f (x̂, t) + K (t) (y− h(x̂, t))
ŷ � h(x̂, t) (3.41)

where the gain vector K (t) and the estimation error covariance matrix
are updated with respect to the linearizations

∂ f (x, t)
∂ x

ex�x̂(t) and
∂ h(x, t)

∂ x
ex�x̂(t)

In contrast to the linear Kalman filter where the the gain vector K (t)
can be pre-calculated, the gain for the extended Kalman filter has to be
updated on-line via the solution of a Riccati differential solution. A lin-
earized Kalman filter algorithm where a predefined trajectory should be
followed allows for off-line computations. The extended Kalman filter is
based on a first order Taylor series expansion of the nonlinearities in order
to estimate the covariance matrix. A standard extension is to use more
terms in the Taylor series expansion to estimate higher-order moments.

The observer design along the methods described above may although
being straight-forward from an theoretical point of view, lead to lengthy
and tedious calculations, not the least from numerically motivated imple-
mentation aspects. In the Ph.D. thesis by Sørlie, a computer-aided design
tool for symbolic derivation of extended Kalman filters is presented as a
remedy to the implementation problem [Sørli, 1996].

Observers for Bilinear Systems

Bilinear systems constitute an important subclass of nonlinear systems
and many processes can be described by bilinear models [Mohler and
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Kolodziej, 1980]. In the same way an approximative linearization or an
exact feedback linearization is used to get a ‘linear system’ from a nonlin-
ear one, a possible reduction to a bilinear systems often allows for a richer
tool-box with respect to analysis as well as synthesis. The observer prob-
lem for bilinear systems has been extensively studied [Hara and Furuta,
1976; Funahashi, 1979; Gauthier et al , 1992; Lin and Byrnes, 1994; Lin,
1995]. The observer design in [Funahashi, 1979] considers exponential
convergence of the estimation error irrespective of the input signal, and
extends the results from [Hara and Furuta, 1976]. The sufficient condi-
tions for the existence of an observer, as stated in [Funahashi, 1979], are
expressed as linear matrix inequalities and allows for efficient numerical
computations [Boyd et al , 1994].

Observers for Nonlinear systems

The observer design for linear systems was extended via the notion of
output injection by [Krener and Isidori, 1983] and [Bestle and Zeitz, 1983]
to a class of nonlinear systems of the form

ẋ � Ax+ f (y, u)
y � C x.

(3.42)

As the nonlinearity f only depends on the measurable output and the
known control signal, an observer for the system in Eq. (3.42) can be
realized as

˙̂x � Ax̂+ f (y, u) + K (y− ŷ)
ŷ � C x̂.

(3.43)

When the pair [A, C ] is detectable, a proper choice of the K -matrix,
namely that the matrix A − K C is Hurwitz, renders the linear observer
error e � x− x̂ to be (globally) exponentially stable.

Even if a system description is not directly in the form of Eq. (3.42), there
might exist an invertible state transformation χ � S(x) which allows for
a observer design with linear error dynamics in the new variables. The
convergence χ̂ → χ then implies x̂ � S−1(χ̂) → x. In [Krener and Isidori,
1983; Krener and Respondek, 1985; Marino and Tomei, 1991] geometric
conditions characterizing the class of nonlinear systems for which the
transformation is possible are presented, see also [Nijmeijer and van der
Schaft, 1990; Isidori, 1995].

Lipschitz systems Many standard nonlinearities, as for instance the
trigonometric functions in robot kinematics, can be bounded by linear
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functions satisfying a Lipschitz condition.
Consider the system

ẋ � Ax+ f (x, u, t) + φ (y, u, t)
y � C x

(3.44)

where the nonlinearity f (x, u, t) is Lipschitz with respect to the state x.
For the model-based observer

˙̂x � Ax̂+ f (x̂, u, t) + φ (y, u, t) + L(y− ŷ)
ŷ � C x̂

(3.45)

the following theorem can be used for analysis.

THEOREM 3.1—[THAU, 1973]
Given the system in Eq. (3.44) and the corresponding observer in Eq. (3.45)
with the gain matrix L. If the Lyapunov equation

(A− LC )T P + P(A− LC ) � −Q, P � PT > 0, Q � QT > 0 (3.46)

is satisfied with

γ < λ min(Q)
2λ max(P) (3.47)

then the observer error x̃ � x− x̂ is asymptotically stable.

The theorem of Thau assures asymptotical stability of the estimates, but
unfortunately, Eq. (3.45) provides very little insight how the observer gain
L can be found. For any observable system (A, C ) the eigenvalues of the
system matrix (A − LC ) can be placed arbitrarily, but the crucial part
is the relation between these eigenvalues and the spectral radius of the
matrix P. The ratio in Eq. (3.47) can be shown to be maximized for Q � I
[Patel and Toda, 1980].
Raghavan and Hedrick have proposed a procedure how to construct the ob-
server gain L, based on theory for quadratic stabilization of uncertain sys-
tems [Raghavan and Hedrick, 1994]. Rajamani has given a good overview
of the problem relating Eq. (3.46) and Eq. (3.47) and presents an algo-
rithm for computation of the observer gain [Rajamani, 1998]. However,
the structure of the nonlinearities are not fully utilized which makes the
results somewhat conservative as the observer gain, if found, will give an
asymptotically stable observer for all nonlinearities satisfying the Lips-
chitz condition.
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Arcak and Kokotović have recently suggested an observer-based design
for control of systems which include monotonic nonlinearities in the un-
measured states [Arcak and Kokotović, 1999]. An important ingredient in
the control design is the observer design for systems of the form

ẋ � Aox− Gφ (Hx) + γ (y, u)
y � Cox

(3.48)

where Ao and Co are in observer canonical form. The vector φ have the
components

φ i � φ i(Hix) (3.49)
which are all either zero or monotonically increasing nonlinearities. Extra
freedom in the design is introduced by using Gφ (Hx̂+ K (y−Cox̂)) in the
observer instead of Gφ (Hx̂). In short, the observer design decomposes the
error dynamics into a linear system in feedback with a multivariable sec-
tor nonlinearity. Linear matrix inequalities (LMIs) are used to state the
conditions for the existence of stable observer error dynamics with respect
to the imposed observer structure. Efficient numerical solvers for LMIs
can give an answer to the question if feasible solutions exist for a par-
ticular system and if so provide corresponding observer gains [Willems,
1970; Boyd et al , 1994]. Note that this design covers the cases of sector
bounded nonlinearities for systems with global Lipschitz constants and
also incorporates the structure of the nonlinearities which is a shortcom-
ing of the Lipschitz methods in the previous section.

EXAMPLE 3.7—PENDULUM OBSERVER

After an appropriate choice of time scale, the equation of motion for an
inverted pendulum can be written as

ẋ1 � x2

ẋ2 � sin(x1) + u cos(x1)
y � x1

(3.50)

where u is the normalized acceleration of the pivot, x1 the pendulum
angle and x2 the angular velocity. An observer for the pendulum may be
suggested along the ideas presented in [Arcak and Kokotović, 1999]:

˙̂x1 � x̂2 + k1 x̃1

˙̂x2 � sin(x̂1 + l1 x̃1) + u cos(x̂1 + l2 x̃1) + k2 x̃1

ŷ � x̂1

x̃1
*� y− ŷ

(3.51)
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In the sequel we will use l2 � l1 for simplicity.
By using the following standard trigonometric relations

sin(x1) − sin(x̂1 + l1 x̃1) � 2 sin
( (1− l1)x̃1

2

)
⋅ γ 1(t)

γ 1
*� cos

(
x1 + (l1 − 1)x̃1

2

)
, eγ 1e ≤ 1

cos(x1) − cos(x̂1 + l1 x̃1) � 2 sin
( (1− l1)x̃1

2

)
⋅ γ 2(t)

γ 2
*� − sin

(
x1 + (l1 − 1)x̃1

2

)
, eγ 2e ≤ 1

(3.52)

the dynamics for the observation error x̃ � x− x̂ may be expressed as

˙̃x1 � −k1 x̃1 + x̃2

˙̃x2 � −k2 x̃1 + 2 sin
((1− l1)x̃1

2

)
⋅ (γ 1(t) + u ⋅ γ 2(t))

(3.53)

The system in (3.53) can be partitioned into a feedback connection of a
linear system and a sector-bounded time-varying nonlinearity

d
dt

[
x̃1

x̃2

]
�

[−k1 1

−k2 0

] [
x̃1

x̃2

]
+

[
0

1

]
v

z � [ (1− l1) 0 ] x̃
v *� 2 sin( z

2
) ⋅ (γ 1(t) + u ⋅ γ 2(t))

(3.54)

ASSUMPTION 3.2—BOUNDED ACCELERATION

Assume that we have bounded acceleration eue < umax, which implies

eγ 1(t) + u ⋅ γ 2(t)e ≤
√

1+ u2
max

*� β (3.55)

and gives the following bound on the time-varying nonlinearity:

ev(z, t)e ≤ eγ 1(t) + u ⋅ γ 2(t)e ⋅ e2 sin( z
2
)e ≤ β eze (3.56)

The linear part of the system in Eq. (3.54) has the transfer function

Gv→z(s) � 1− l1

s2 + sk1 + k2
(3.57)
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It is obvious that for any given pair of strictly positive constants (k1, k2)
the linear system is stable and furthermore the parameter l1 can be chosen
such that eGv→ze < 1/β which implies stability of the closed loop system
in Eq. (3.54) from the small gain theorem.

In the limit l1 → 1, there is an exact cancellation of the nonlinear term
in the error dynamics, whereas for l � 0 we have the observer proposed
in [Eker and Åström, 1996].
It should be noted that the stability analysis above is made for the deter-
ministic case, without any measurement noise. Simulations show, how-
ever, fairly good behavior also for values of l1 close to 1, see Fig. 3.3. They
also indicate that the main benefit of the additional feedback term l1 x̃1 is
for slow observer poles and low values of k1 and k2, which can be expected.

Observers for systems in chained form The observability property
for the chained-form systems in Eqs. (2.55,2.56) was considered in [Astolfi,
1995]. Under the assumption that the first control signal was chosen as
u1(t) � −c1x1(t), a change of coordinates was proposed which allows for
a locally stable observer.

In Paper A and Paper B we present two observers for the chained-form
system with the first and the last state as outputs. Firstly, we present
a globally exponentially stable observer under an observability condition
which is related to the persistence of excitation with respect to the first
component of the state, x1. In the second observer design a new theorem
for linear time-varying systems is used.

PROPOSITION 3.3
Consider the chained-form system in Eq. (2.55) with outputs (2.56).
Define

w(t, t0) �



1∫ t

t0

u1(τ )dτ(∫ t

t0

u1(τ )dτ
)2

...(∫ t

t0

u1(τ )dτ
)n−2


�



1

x1(t) − x1(t0)

(x1(t) − x1(t0))2
...

(x1(t) − x1(t0))n−2


(3.58)
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Figure 3.3 Simulations of error dynamics for the observer in Example 3.7 for
various values of l1 (0, 0.4, 0.8, 1).
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Assume that there exist δ , ε 1, ε 2 > 0 such that for all t > 0:

ε 1I ≤
∫ t+δ

t
w(t, τ )w(t, τ )T dτ ≤ ε 2I . (3.59)

Then the observer

˙̂x2

˙̂x3

˙̂x4
...
˙̂xn


�



0 . . . . . . . . . 0

u1
. . .

...

0 u1
. . .

...
...

. . .
. . .

. . .
...

0 . . . 0 u1 0





x̂2

x̂3

x̂4
...

x̂n


+



1

0

0
...

0


u2 + H(t)x̃n (3.60)

where x̃n � xn − x̂n and

Mα (t− δ , t) �
∫ t

t−δ
2e4α (τ −t)ΦT(τ , t− δ )C T C Φ(τ , t− δ )dτ

H(t) � [
ΦT(t− δ , t)Mα (t− δ , t)Φ(t− δ , t)]−1

C T (α > 0)
(3.61)

guarantees that the observation error x̃ � x− x̂ converge to zero exponen-
tially.

Proof See Paper A.

THEOREM 3.2
Consider the chained form system in Eq. (2.55) with outputs (2.56).

The estimates [x̂2,e, . . . , x̂n,e]T generated by the observer

˙̂x2,e
˙̂x3,e

...

...
˙̂xn,e


�



−k2 −k3u1,r(t) . . . . . . . . .
u1,r(t) 0 . . . . . . 0

0
. . .

. . .
...

...
. . .

. . .
...

0 . . . 0 u1,r(t) 0





x̂2,e

x̂3,e

...

...

x̂n,e


+

[
. . . l5 ⋅ u1,r(t) l4 l3 ⋅ u1,r(t) l2

]T
(xn,e − x̂n,e)

(3.62)

converge uniformly asymptotically stable (K -exponential stability) to-
wards the true states of the system in Eq. (2.55) provided that ki, li

65



Chapter 3. Observers

(i � 2, . . . , n) are such that the polynomials

λ n−1 + k2λ n−2 + ⋅ ⋅ ⋅+ kn−1λ + kn (3.63)
λ n−1 + l2λ n−2 + ⋅ ⋅ ⋅+ ln−1λ + ln (3.64)

are Hurwitz and u1,r satisfies the conditions of Assumption (B.6) in Pa-
per B.

Proof See Paper B.

Remark: The conditions on the reference trajectory u1,r(t) in Assump-
tion (B.6) concerns amongst others differentiability and boundedness of
u1,r. Furthermore, singular inputs, like for instance u � u1,r � 0, for
which the chained form system is no longer controllable or observable,
are excluded.

The dynamic-output control of chained form systems will be considered
in Chapter 4 for which we will use the estimated states from the above
proposed model-based observers.

Observers for Interconnected Systems The theory for interconnected
systems can be used for analysis as well as synthesis of observers [Be-
sançon and Hammouri, 1998; Besançon, 1999]. In general, however, the
combination of asymptotically stable observers for separate subsystems,
does not guarantee stable state estimation of the full interconnected sys-
tem.

One the main concepts for the observer designs in Papers B and A is the
decoupling of the error dynamics into a cascaded form. We use similar
ideas in the following example which treats the velocity reconstruction
problem for an inverted pendulum application.

EXAMPLE 3.8—ROBOT PENDULUM

Consider the configuration of a rotational pendulum held in a robot grip-
per, see Fig 3.4. Different strategies for balancing the pendulum can be
considered by controlling one or more robot joints. By moving the base
joint of the robot, joint 1, the whole manipulator will rotate in the horizon-
tal plane and by neglecting the rotational effects in the Furuta pendulum
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model, we get the following normalized model:

ẋ1 � x2

ẋ2 � sin(x1) + L(−D x4 + τ ) ⋅ cos(x1)
ẋ3 � x4

ẋ4 � −D x4 + τ[
y1

y2

]
�

[
1 0 0 0

0 0 1 0

]
x

(3.65)

where L is the distance from the rotational axis of joint 1 to the pendulum
pivot and Dx4 is damping in the robot servo. The variables x1 and x2 are
the pendulum angle and velocity, respectively. The control signal τ is the
torque applied to the robot joint, x3 is the joint angle, and x4 the joint
velocity, the term L(−Dx4 + τ ) being the acceleration of the pivot. The
system in Eq. (3.65) can be viewed as a cascade of two systems—the
pendulum and the robot—with the connection term −LDx4 cos(x1). As
for the observer design, two separate observers can be designed where we
re-use the observer from Example 3.7 for the pendulum and assign an
ordinary linear observer for the linear robot joint dynamics:

˙̂x3 � −k3 x̃3 + x4

˙̂x4 � −k4 x̃3 − Dx̂4 + τ
(3.66)

For the stability analysis, we use similar ideas as presented in Paper A
and Paper B, by decoupling the observer error dynamics into two systems
in cascade with a time-varying coupling term—see also [Besançon, 1999]
for observer design of interconnected systems. With the choice l2 � 1 in
Eq. (3.51), we get the error dynamics

Σ1 :


˙̃x1 � −k1 x̃1 + x̃2

˙̃x2 � −k2 x̃1 + 2 sin
((1− l1)x̃1

2

)
⋅ γ 1(t) − LD cos(x1)x̃4

Σ2 :

{
˙̃x3 � −k3 x̃3 + x̃4

˙̃x4 � −k4 x̃3 − Dx̃4

(3.67)

where γ 1 is defined in Eq. (3.52). In contrast to the results presented
in Paper B, the coupling term −LD cos(x1(t))x̃4 does not depend on the
states (x̃1, x̃2) in Σ1 which permits simplified stability analysis. System
Σ2 can be exponentially stabilized for appropriate values of (k3, k4), which
implies that the coupling term is exponentially vanishing. As the small
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gain analysis in Example 3.7 assures input-to-state stability for the Σ1

system, stability for the error dynamics in Eq. (3.67) is concluded.

Figure 3.4 shows a sequence from an experiment of swing-up and bal-
ancing of an inverted pendulum. The arrows in the pictures indicate the
rotation of the pendulum. Figure 3.5 shows the control signal and the
estimated states. The swing-up strategy is the energy-based method pro-
posed in [Wiklund et al , 1993]. After the swing-up there is a switch to a
linear controller for keeping the pendulum in the up-right position. The
observer presented above is used for the velocity estimation. The con-
troller scheme is implemented in the real-time system PÅLSJÖ connected
to the Open Robot Control System in the Robotics Lab of the Department
of Automatic Control, Lund [Eker, 1997; Blomdell, 1997; Nilsson, 1996].

Backstepping designs of observers Song et al have recently pro-
posed a backstepping approach for design of reduced-order nonlinear ob-
servers [Song et al , 1997]. A backstepping-like method is used to find a
coordinate transformation between two canonical state-space representa-
tions. A different approach is taken in [Kang and Krener, 1998] where a
locally convergent nonlinear observer is designed using backstepping.

In Paper E we present an observer for ship dynamics where the design
makes use of Lyapunov theory in a recursive way. The structure of the
problem allows for an approach similar to backstepping, where the output
injection gains and some parameters in the Lyapunov function candidate
are used to “linearize” the Lyapunov candidate derivative, leaving only
negative quadratic terms left. The design extends the results from [Fossen
and Grøvlen, 1998] to cover systems with unstable sway-yaw dynamics.

For the velocity estimation problem of robot manipulators in Section 3.4
we use similar ideas as outlined above and additional design freedom is
introduced by a state-space transformation [Slotine and Li, 1987; Johans-
son, 1990].

Passivity-based observers The ideas for passivity-based control in
robotics has been used also for observer design and observer-based con-
trol [Ailon and Ortega, 1993; Berghuis, 1993; Berghuis and Nijmeijer,
1993b; Battilotti et al , 1997]. For the Lyapunov-based observer design in
[Fossen and Grøvlen, 1998; Robertsson and Johansson, 1998a] global sta-
bility results were achieved. However, it should be noted that a simplified
model for the ship dynamics was used. In real applications of ship posi-
tioning, disturbances from waves, currents, winds, etc., are needed to be
taken care of. From a practical point of view it makes sense to compen-
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3.3 Observer Structure and Design

Figure 3.4 Successful energy-based swing-up and balancing of an inverted pen-
dulum with velocity observer from Example 3.7. The arrows edited into the figures
indicate the direction of motion of the pendulum. The total length of the sequence
shown is about 6 seconds. The input signal, i. e., the torque to joint 1 and the esti-
mated signals are found in Figure 3.5.
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Figure 3.5 Control signal and estimated states for the swing-up and balancing of
the pendulum in (Fig. 3.4). The observer from Example 3.7 is used for the velocity
estimation. The sensor for the pendulum angle is a potentiometer which has a
discontinuity at the angle marked with the dashed line in the second diagram.
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sate for the slowly varying disturbances like drift and currents, while the
faster oscillations caused by waves, often appearing within the controller
bandwidth, should be filtered out and not tried to be compensated for.
In [Fossen and Strand, 1999], a passivity based observer for the ship dy-
namics, including estimation of low frequency drift terms and the wave
dynamics, is presented.

3.4 Velocity-Observers for Robot Manipulators

In many motion controllers for electro-mechanical systems the full state
vector is assumed to be available for feedback. In reality very few indus-
trial robots are equipped with tachometers for velocity measurements of
the links or velocity measurements in the drives. PD and PID controllers
have for long been known to perform well in the control of mechanical
manipulators in industry, but it was only recently a theoretical proof for
stability of the controlled system was presented [Arimoto and Miyazaki,
1986; Spong, 1987; Craig, 1989]. The derivative part in the PD controller
implies that velocity measurements are important in the cause of stabi-
lization. Another way of viewing it is via the use of a computed torque-
based controller, from which it is obvious that the velocity feedback plays
the role of damping in the system.

In AC-drives and induction machines the speed and flux estimates can
greatly enhance the control performance without increasing the costs for
additional sensors; in particular this is true for low-power machines where
accurate speed sensors could cost in same same range as the motors
themselves [Nicklasson, 1996]. Although position measurements often are
of high quality, today’s velocity measurements—e. g., from tachometers—
still contain a lot of noise.

For flexible-joint manipulators, there is a difference in angles and angu-
lar velocities between the actuator and the link side. The most common
configuration with the sensor on the same side as the actuator is called co-
located measurements. If the sensor measures the angle on the link-side it
is said to be non-co-located [Craig, 1989, p.289]. In the absence of measure-
ment devices on both sides of a flexible joint, observers are necessary for
assessment of the added dynamics. In the literature, most observer-based
control designs for flexible links have considered measurements on the
link-side, and a few from an application point of view the more motivated
problem of co-located sensors [Janković, 1995; Ailon and Ortega, 1993]. An
obvious attempt to cope with the problem of lacking speed measurements
is to numerically differentiate the accurate position signal or using some
derivate-filter with ‘roll-off’ for high frequencies. This method, also known
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as ‘dirty derivatives’ is conceptually very simple and has been used exten-
sively in applications. In spite of its simplicity, the stability properties for
the set-points and tracking following problem was only recently shown in
the robotics setting [Arimoto and Miyazaki, 1986; Kelly, 1993; Berghuis
and Nijmeijer, 1993a; Kelly et al , 1994; Loría, 1996]. However, for very
low and very high frequencies this approach may not be adequate from
a performance perspective [Belanger, 1992]. This motivates us to have a
look at alternative methods.

Observers for Robot Manipulators

In this section we propose two velocity observers for robot manipulators,
one reduced-order observer and one full-order observer for which semi-
global stability results are shown.

PROPERTY 3.1—RIGID ROBOTS

Consider the n-linked rigid robot manipulator with revolute joints which
can be described by the equations of motion

M(q)q̈+ C (q, q̇)q̇+ G(q) � τ
q, q̇ ∈ IRn (3.68)

where q is the vector of joint angles, M is the mass inertia matrix, C
represents the centrifugal and Coriolis forces, G consists of the gravity
dependent terms, and τ is the vector of input torques. The matrices oc-
curring in Eq. (3.68) have some important properties, useful for control
and observer design [Craig, 1988]:
(M1) M(q) � M(q)T > 0, ∀q ∈ IRn.

(M2) 0 < Mm <f M(q) f< MM , where Mm and MM are positive constants.

(C1) C (q, q̇)q̇ is uniquely determined, but C can be decomposed in many
ways. Here we define C using the Christoffel symbols. C (q, q̇) then
can be written as

C (q, q̇) �


q̇T C1(q)

...

q̇T Cn(q)


where Ci(q) � Ci(q)T ∈ Rn�n and bounded.

(C2) C (q, q̇1)q̇2 � C (q, q̇2)q̇1, ∀q, q̇1, q̇2 ∈ IRn.

(C3) f C (q, q̇) f< CM f q̇ f, ∀q, q̇ ∈ IRn, where CM is a positive
constant.
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The vector norm and the matrix norm are the ordinary Euclidean norm
and the matrix-two-norm, respectively:

f qf � f qf2 �
√

qT q, q ∈ IRm

f Af � f Af2 �
√

ρ (AT A), A ∈ IRm�m
(3.69)

where ρ (A) is the spectral radius of A.

ASSUMPTION 3.4—BOUNDED VELOCITY

The angular velocity of the robot, q̇, is bounded by a known constant ω max

such that

f q̇(t)f ≤ ω max, ∀t ∈ IR (3.70)

Introduce the joint angles and joint velocities as the Lagrangian coordi-
nates

x �
 q̇

q

 �
 x1

x2

 (3.71)

The Lagrangian state space representation is

ẋ �
 q̈

q̇

 �
 M−1u

q̇


�

 0 0

I 0

  q̇

q

+
 M−1

0

 u

u *� τ − G(q) − C (q, q̇)q̇

(3.72)

where we introduced u for a more compact notation.

Reduced-order robot observer

Consider a reduced-order observer for estimating the angular velocity,
q̇ � x1, when the angle q is measurable:

˙̂x1 � M−1[τ − C (q, x̂1)x̂1 − G(q)] + K (x1 − x̂1) (3.73)

The dynamics for the observation error, x̃1 � x1 − x̂1, will be

˙̃x1 � M−1[−C (q, x1)x1 + C (q, x̂1)x̂1] − K (x1 − x̂1)
� M−1[−2C (q, x1)x̃1 + C (q, x̃1)x̃1] − K x̃1

(3.74)
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where we used the following property

C (q, x̂1)x̂1 � C (q, x1 − x̃1)(x1 − x̃1)
� C (q, x1)x1 − 2C (q, x1)x̃1 + C (q, x̃1)x̃1

(3.75)

following from (C2).
Consider the quadratic Lyapunov function candidate

V (x̃1) � 1
2

x̃T
1 x̃1 (3.76)

which is positive definite and decrescent.
The time derivative of V along the solutions of Eq. (3.74) is

dV
dt

� x̃T
1

˙̃x1 � x̃T
1 M−1[−2C (q, x1)x̃1 + C (q, x̃1)x̃1] − x̃T

1 K x̃1

≤
( CM

Mm
(2f x̃1f +ω max) ⋅ I − K

)
f x̃1f2

(3.77)

where we have used Assumption (3.4) and the properties from (3.1).
From Eq. (3.77) we can conclude that if

0 < f x1f < (K Mm/CM −ω max ⋅ I)/2 (3.78)

then there exists a constant α > 0 such that

V̇ < −α
2
f x̃1f2 � −α V , ∀x̃1 �� 0 (3.79)

For any given bound on the velocity ω max, we are free to choose the ob-
server gain K such that we can guarantee exponential convergence for
all initial values satisfying Eq. (3.78). As this region can be arbitrarily
increased by the gain, we have semi-global exponential stability.

In particular starting with zero initial conditions for the velocity estimate
Assumption (3.4) assures that f x̃1(0)f ≤ ω max and the observer with
K > 3CMω max/Mm will give exponential stability.

REMARK 3.2
The observer in Eq. (3.73) can not be implemented directly as the un-
measurable term K x1 appears in the differential equation. This may be
overcome in standard way by introducing the variable

z � x̂1 − K q
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The observer in Eq. (3.73) can then be implemented as

d
dt
(x̂1 − K q) � ż � M−1[τ − C (q, x̂1)x̂1 − G(q)] − K x̂1

x̂1 � z+ K q
(3.80)

A Lyapunov Approach to Velocity Observer Design for Robotic
Systems

The following full-order model based observer for system (3.72) is pro-
posed

˙̂x �
 0 0

I 0

 x̂+
 M−1

0

 (û+ v) +
 K1

K2

 (q− Hx̂)

H *�
 0 I

 , Ĉ *� C (q, ˙̂q)

û *� û( ˙̂q, q) � τ − G(q) − C (q, ˙̂q) ˙̂q � τ − G − Ĉ ˙̂q

(3.81)

for some observer gains K1 and K2 and a term v which is to be defined
later on. The dynamics for the estimation error x̃ � x̂− x are

˙̃x �
(  0 0

I 0

− K H
)

x̃+
 M−1

0

 (û− u+ v)

�
 0 −K1

I −K2

︸ ︷︷ ︸
AL

x̃+
 M−1

0

 (ũ+ v) (3.82)

where

ũ � û− u � −Ĉ ˙̂q+ C q̇ � −C ˙̃q+ (C − Ĉ ) ˙̂q
� −C ˙̃q− C̃ ˙̂q � −

 C 0
︸ ︷︷ ︸

F

x̃−
 C̃ 0

︸ ︷︷ ︸
F̃

x̂ (3.83)

As a Lyapunov function candidate we propose V (x̃, t) defined as

V (x̃, t) � 1
2
(T x̃)T P(T x̃)

P �
 M(q(t)) 0

0 I

 , T �
 I T1

0 T2

 (3.84)
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For any nonsingular matrix T2, V is positive definite and decrescent, by
Property (M2):

Mm

2
f x̃f2 ≤ V (x̃, t) ≤ MM

2
f x̃f2 (3.85)

The time derivate of V is

dV
dt

� 1
2

˙̃xT TT PT x̃+ 1
2

x̃T TT PT ˙̃x+ 1
2

x̃T TT ṖT x̃

� 1
2

x̃T TT
(

AT P + PA+
 Ṁ − C − C T C T1T−1

2

T−T
2 TT

1 C T 0

)
T x̃

+ 1
2
(x̃T TT

 I

0

 v − x̃T TT

 C̃ 0

0 0

 x̂)︸ ︷︷ ︸
φ

+φ T

A *� T ALT−1

(3.86)

Having defined C as the Christoffel symbols, we now use the skew-symmetric
property (C2) of the robot equations to get

dV
dt

� 1
2

x̃T TT
(

AT P + PA

+
 Ṁ − ( 1

2 Ṁ − N) − ( 1
2 Ṁ − N)T C T1T−1

2

T−T
2 TT

1 C T 0

)
T x̃+ φ + φ T

� 1
2

x̃T TT
(
(AT P + PA) +

 0 2C T1T−1
2

0 0

)
T x̃

+ x̃T TT

 v − C̃ ⋅ x̂1

0


(3.87)

To take care of the term C ⋅ x̂1 we use the freedom in v

v � −C (x2, x̂1)T1 x̃2 � −C (x2, x1)T1 x̃2 − C (x2, x̃1)T1 x̃2

� −C ⋅ T1 x̃2 − C̃ ⋅ T1 x̃2
(3.88)

The last term of Eq. (3.87) can then be written

v − C̃ ⋅ x̂1 � v − C̃ ⋅ (x1 + x̃1)
� v − C ⋅ x̃1 − C̃ ⋅ x̃1 � −C ⋅ (x̃1 + T1 x̃2) − C̃ ⋅ (x̃1 + T1 x̃2)

�
−C − C̃ 0

0 0

 T1 x̃

(3.89)
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which gives us the symmetric Lyapunov candidate derivative

V̇ � 1
2

x̃T TT QT x̃ (3.90)

where1

Q *�
 MT1 + TT

1 M − C − C̃ −M(K1 + T2
1 + T1 K2)T−1

2 + TT
2 + C T1T−1

2

∗ −T2(T1 + K2)T−1
2 − T−T

2 (T1 + K2)T TT
2


Due to the quadratic velocity dependence in the Coriolis and centrifugal

terms, we have introduced third order terms in the Lyapunov derivative.
This is a well-known obstacle for global stability of the stand-alone ob-
server [Berghuis and Nijmeijer, 1993b]. However, using Assumption (3.4),
we can achieve local stability results. To finish the stability analysis, we
make the following choices of the design parameters.

Element (2, 2): For stability it is necessary to have

−T2(T1 + K2)T−1
2 − T−T

2 (T1 + K2)T TT
2 < 0

Take any Q22 � QT
22 > 0 and let

K2
*� −T1 + T−1

2 Q22T2 (3.91)

Element (1, 2): Cancel the off-diagonal elements which do not de-
pend on the velocity by choosing

K1
*� −T2

1 − T1 K2 + M−1TT
2 T2 (3.92)

and for simplicity

T2
*� T1 (3.93)

Element (1, 1): It is necessary to have MT1 + TT
1 M < 0.

This is satisfied if we choose T1 � TT
1 < 0, in particular we can take

T1 � −κ 1I , κ 1 > 0.

This gives us

Q �
−2κ 1M − C − C̃ C

C T −2Q22


1Q is symmetric and ‘∗’ marks the transpose of the (1, 2)-element.
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For Q to be negative definite, we use the property of Q22 > 0 which implies
the following condition on the Schur complement

− 2κ 1M − C − C̃ + 1
2

C Q−1
22 C T

≤ −2κ 1Mm + CM(f x1f + f x̃1f) + C 2
M

2
f x1f2fQ−1

22 f

≤ −2κ 1Mm + CM(f x̃1f +ω max) + C 2
Mω 2

max

2
fQ−1

22 f < 0

(3.94)

For a choice of κ 1 as

κ 1 > (CM(f x̃1f +ω max) + C 2
M

2
ω 2

maxfQ−1
22 f)/2Mm (3.95)

Q is negative. Furthermore f x̃1f < fT−1f ⋅ f zf, so for a κ 1 satisfying
Eq. (3.95) the observer will converge exponentially for all initial values
x̃1 such that

f x̃1f ≤ (2κ 1Mm − C 2
Mω 2

max

2
fQ−1

22 f)/CM −ω max (3.96)

Furthermore, for all initial conditions f x̃1(0)f satisfying Eq. (3.96) there
exist a positive constant α < fQf/MM such that

dV
dt

� −(T x̃)T QT x̃ ≤ −α (T x̃)T MmT x̃ ≤ −α V

As T is a static, nonsingular matrix,

lim
t→+∞T x̃(t) � 0 �; lim

t→+∞ x̃(t) � 0

For any given bound on the velocity ω max, we are free to choose observer
gains such that we can guarantee exponential convergence for all initial
values satisfying Eq. (3.96). As this region can be increased arbitrar-
ily much for large enough value of κ 1, we have semi-global exponential
stability. Without any restrictions in the analysis above, we can choose
K1 � diak(k1i) > 0, i � 1 . . . n, where κ 1 � max(k1i). The resulting
observer will be

˙̂x �
 0 0

I 0

 x̂+
 M−1

0

 (û− C (q, x̂1)T1q̃) +
 K1

K2

 (q− q̂)

û *� û( ˙̂q, q) � τ − G(q) − C (q, ˙̂q) ˙̂q
(3.97)
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Figure 3.6 Furuta pendulum, Department of Automatic Control, Lund.

The quadratic dependence on the velocity terms C (q, q̇)q̇ could not be
globally bounded in the Lyapunov derivative but the semi-global result
assures that given any bounded region for the robot angles and velocities,
which always will be the case in an application, observer gains can be
found to assure exponentially converging estimates.

The similarities between the resulting observer above and the observer
presented in [Berghuis and Nijmeijer, 1993b] are obvious, but the Lyapunov-
- based design method above relates closer to the method used in [Roberts-
son and Johansson, 1998a] than to the passivity based design.

Simulation study The model-based velocity observer from Section 3.4
has been simulated with application to the Furuta pendulum, (Fig. 3.6).
The control signal is the torque τ applied to the arm turning in the hori-
zontal plane. The rotational angle of the arm is denoted φ . The pendulum
is attached to the end of the arm and its angle measured from the vertical
stand-up position is denoted θ . The angles but not the angular velocities
are measured.

The following equations of motion and the identified physical parameters
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for the process in Fig. (3.6) are taken from [Gäfvert, 1998]:

M(q)q̈+ C (q, q̇)q̇+ G(q) �
[

0

1

]
τ , q �

[φ
θ

]
(3.98)

where

M �
(α + β sin2 θ γ cosθ

γ cosθ β

)
C (φ ,θ , φ̇ , θ̇ ) �

( β cosθ sinθθ̇ β cosθ sinθφ̇ − γ sinθθ̇
−β cosθ sinθφ̇ 0

)
G(φ ,θ ) �

(
0

−δ sinθ

) (3.99)

For the simulation we use the physical parameter values

α � 0.00335 [kg⋅m2],
β � 0.00389 [kg⋅m2],
γ � 0.00249 [kg⋅m2],
δ � 0.0976 [kg2⋅m2/s2]. ’

For the observer gains we use

T1 �
[−5 0

0 −5

]
, T2�

[−5 0

0 −5

]
, Q22 �

[−20 0

0 −20

]
, (3.100)

and the corresponding gain matrices from Eqs. (3.91–3.93) in the observer
of Eq. (3.97). Simulation results are found in Figures 3.7 and 3.8.
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φ (—) and φ̂ (– –) [rad]

0 1 2 3 4
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θ (—) and θ̂ (– –) [rad]

Figure 3.7 Real and estimated angles: a) (φ , φ̂ ), b) (θ , θ̂ ). The start values for
the angles in the estimator are (0,0), which gives the initial observer errors (1,1)
[rad]. The first 2 seconds of the simulation are noise free to study the transient
behavior and after time t � 2 seconds, noise with variance ( π

180 )2 is added to the
measurements.
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Figure 3.8 Real and estimated velocities for the arm and the pendulum : a) (φ̇ , ˙̂φ ),
b) (θ̇ , ˙̂θ ). After time t � 2 seconds, noise with variance ( π

180 )2 is added to the
measurements.
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4

Observer-Based Control

4.1 Introduction

The output feedback problem for nonlinear systems has received a lot
of attention during the last decades and a rich variety of solutions has
been proposed [Krener and Isidori, 1983; Cebuhar et al , 1991; Marino
and Tomei, 1991; Praly, 1992; Esfandiari and Khalil, 1992; Krstić et al ,
1993; Busawon et al , 1993; Pomet et al , 1993; Lin and Byrnes, 1994;
Mazenc et al , 1994; Teel and Praly, 1994; Nicosia and Tomei, 1995; Loría,
1996; Battilotti, 1996; Isidori, 1998]. The output control problem generally
implies a restriction in the possibility to use all the states directly for feed-
back. For linear systems the well known separation principle allows the
problem to be split into two sub-problems which can be solved indepen-
dently: the design of a state-feedback controller and the design of a state
observer, see e. g., [Åström, 1970; Kwakernaak and Sivan, 1972]. The sep-
aration principle does not apply for nonlinear system in general. However,
for some particular classes of systems, such as bilinear systems, or sys-
tems with certain structural interconnection properties, separation princi-
ples have been reported in the literature [Gauthier and Kupka, 1992; Lin,
1995; Lefeber et al , 1999a; Loría et al , 1999].
Extensions of the linear separation principle and an overview of classes
of systems for which the separation principle holds are described in the
next section. The rest of the chapter discusses the topic of control with
respect to estimated states, when a ‘certainty equivalence methodology’
does not apply.

Nonlinear separation principle

A fundamental difference in properties of linear and nonlinear systems
is found in the effects of bounded disturbances over a finite time horizon.
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Consider some linear system for which there is a stabilizing state-feedback
law. If instead the feedback law is provided by estimated states only, then
the closed loop system will still be stable under the assumption that the
observer errors converge to zero. For nonlinear systems this may not be
the case even if we have exponential convergence in the observer. The
obstacle is the problem with finite escape time, which allows solutions to
grow unbounded before the estimated states have converged.

Conditions for a nonlinear separation principle is discussed in [Safonov
and Athans, 1978; Vidyasagar, 1980; Glad, 1987b; Tsinias, 1993] where
the combination of a stabilizing state-feedback controller and a converging
state estimator is considered. Observability as a prerequisite to observer
convergence has been extended to nonlinear systems using the notion of
weak state detectability [Tsinias, 1993]. In that context, Vidyasagar and
Tsinias consider nonlinear systems of the form

ẋ � f (x, u), x ∈ IRn, u ∈ U ⊂ IRm

y � h(x), y ∈ IRp (4.1)

To the purpose of observer convergence, it is necessary that the system
of Eq. (4.1) be weakly detectable, see Def. (3.4). Teel and Praly showed
in their seminal paper that “Global stabilizability and observability imply
semi-global stabilizability by output feedback” [Teel and Praly, 1994].
For nonlinear systems, affine in the control signal, Sontag showed that
global asymptotical stabilizability via continuous state feedback implies
global input-to-state stabilizability with respect to actuator disturbances
[Sontag, 1988]. There are however fundamental differences how actuator
and sensor disturbances affect the stabilizability property. Even though
some classes of systems have been shown to be input-to-state stabiliz-
able with respect to sensor noise [Freeman and Kokotović, 1993], Free-
man (1995) presented a counter example which shows that the analogous
statement to Sontag’s theorem for sensor disturbances in general is false
[Freeman, 1995]. One consequence of the counter example presented, is
that there is no global “separation principle” for nonlinear systems, as the
sensor disturbances can be interpreted as transients in converging state
estimates. It should be noted that the controllers considered above are
restricted to memoryless state feedback controllers.

For the output feedback control of nonlinear systems, Freeman (1995)
stated and discussed the following different questions regarding observer
and controller separation:

a) (Separation) Given an observer and a stabilizing state feedback con-
trol law u(x), will the “certainty equivalence” feedback u � u(x̂)
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provide global asymptotic stability?

b) (Observer separation) Given an observer, does there exist a stabi-
lizing state feedback control law u(x), such that u � u(x̂) provide
global asymptotic stability?

c) (Controller separation)Given a stabilizing controller u(x), does there
exist an observer, such that u � u(x̂) provide global asymptotic sta-
bility?

d) (No separation) Do there exist an observer and a stabilizing con-
troller u(x), such that u � u(x̂) provide global asymptotic stability?

It is widely known that the answer to question a) is false for general non-
linear systems, see Example 4.1. Freeman showed that the answer to b)
also is false in the general case. It should be noted though, that the an-
swer to question b) does not give an answer to question c). The sensitivity
of feedback control to observer errors is relevant in the context of robot
control using position measurement only [Nicosia and Tomei, 1995]. The
same paper provides a discussion of the separation principle in robotics.

+

+

v

w

x

y

u
P

C

Figure 4.1 Actuator disturbances v and sensor disturbances w in the feedback
connection of the plant P and the controller C [Freeman, 1995].

In [Mazenc et al , 1994], it is shown that global complete observability and
global stabilizability are not sufficient to guarantee global stabilizability
by dynamic output feedback—i. e., no observer based design, whatever
convergence properties for the observer, will solve the general global sta-
bilization problem.
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The following class of systems with dynamics of the form

ż � H(z, x1, . . . , xr)
ẋ1 � x2

...

ẋr−1 � xr

ẋr � xk
r + F(z, x) + G(z, x)u

y � x1

(4.2)

is not globally asymptotically stabilizable by continuous dynamic output
feedback and does not satisfy the “unboundedness observability property”
if k ≥ r/(r − 1). Other problems and aspects of systems that are globally
asymptotically stabilizable by continuous dynamic output feedback are to
be found in [Byrnes and Isidori, 1991] and [Angeli and Sontag, 1999]. As
for counter examples to stabilization, the following example demonstrates
a finite escape phenomenon despite exponential estimation convergence
[Krstić et al , 1995, p. 285].

EXAMPLE 4.1—FINITE ESCAPE TIME [KRSTIĆ et al , 1995]
Consider the system

ẋ � −x+ x4 + x2ξ

ξ̇ � −kξ + u, k > 0
(4.3)

By using backstepping and introducing the “error state” z � ξ + x2, a
stabilizing state feedback law u(x, ξ ) can be found:

u � −c(ξ + x2) − x3 + kξ − 2x(−x+ x2(ξ + x2)), c > 0 (4.4)
The asymptotically stable closed-loop dynamics expressed in the (x, z)
variables will be

ẋ � −x+ x2z

ż � −cz− x3
(4.5)

For the case of only x being measured, ξ can be estimated by the observer

˙̂ξ � −kξ̂ + u (4.6)

The estimation error, ξ̃ � ξ − ξ̂ , converges exponentially to zero:

˙̃ξ � −kξ̃ ; ξ̃ (t) � ξ̃ (0)e−kt
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By using the estimated state ξ̂ in the control law (4.4)we get the dynamics

ẋ � −x+ x2z+ x2ξ̃

ż � −cz− x3 + 2x3ξ̃
˙̃ξ � −kξ̃

(4.7)

Although we have exponential convergence of ξ̃ to zero, the presence of
the “disturbance terms” x2ξ̃ and 2x3ξ̃ will cause unbounded solutions in
finite time for certain initial conditions. To see this, consider the case of
z � 0:

ẋ � −x+ x2ξ̃
ξ̃ (t) � ξ̃ (0)e−kt

(4.8)

which has the solution

x(t) � x(0)(1 + k)
[1+ k− ξ̃ (0)x(0)]et + ξ̃ (0)x(0)e−kt

(4.9)

The state x will grow to infinity in finite time for all initial conditions
ξ̃ (0)x(0) > 1+ k. For further details, see [Krstić et al , 1995].

4.2 Classes of Systems with a Separation Property

The use of state detection as a means to accomplish local stabilizability
was treated in [Vidyasagar, 1980; Tsinias, 1991]. Some restricted classes of
systems admit a global separation principle between controller and state
estimator design. Below follows a survey of some continuous-time systems
regarding this property.

Linear systems

Considering a linear time-invariant system

ẋ � Ax+ Bu

y � C x+ Du
(4.10)

which is controllable and observable. For such a system it is straightfor-
ward to show that the separation principle apply for both full order and
reduced order observers. The lack of finite escape-time phenomena allows
for large transients without jeopardizing the stability.
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The solution to the Linear Quadratic Gaussian (LQG) optimization prob-
lem consists of the combination of the state-feedback controller which is
the optimal solution to the LQ-problem and the separately designed opti-
mal Kalman-filter. As was shown in the famous paper by Doyle (1978), it
is, however, interesting to note that even for the linear case the classical
separation principle does not preserve any robustness from the LQ-design
and do not guarantee any gain or phase margins whatsoever [Doyle, 1978].
Various suggestions to improve the robustness can be found in [Doyle and
Stein, 1979; Petersen and McFarlane, 1994].

Infinite dimensional LTI systems For the case of infinite-dimensional
systems, the strong stabilizability results in [Bounit and Hammouri, 1997]
show a global separation principle based on state-estimates from a full-
order model-based observer structure.

Bilinear systems

The controllability and observability properties for bilinear systems have
been studied in [Hara and Furuta, 1976; Gauthier and Kupka, 1994]. For
bilinear systems with a dissipative drift term, a separation principle has
been stated in [Gauthier and Kupka, 1992] and further generalized in
[Lin, 1995] to systems of the form

ẋ � Σk
i�0 fi(x)ui.

This generalization is important in the sense that it can be viewed as a
kth order Taylor expansion of any nonlinear system, not necessarily affine
in the control signal u. Lin’s results have been generalized to multi-input
systems in [Ghulchak and Shirjaev, 1995].

Nonlinear Systems

In [Busawon et al , 1993], systems which are uniformly observable, i. e.,
observable for every input signal, are studied. In [Gauthier and Bornard,
1981], it is shown that these systems can be written in a canonical form
consisting of a chain of integrators plus a nonlinear term acting on the
first state derivative, via a state transformation. Similar results have
been shown for multivariable systems [Bornard and Hammouri, 1991].
Under a Lipschitz condition of the nonlinearity, a high-gain observer is
suggested which used together with a stabilizing state-feedback control
scheme in a certainty equivalence sense guarantees the stability of the
output feedback controlled system.

The Input-to-State Stability (ISS) is a strong property for nonlinear sys-
tems. Whenever this property can be assured for disturbances entering
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additively to the states in a stabilizing state feedback law, estimates from
a converging state observer can be used in a certainty equivalence ap-
proach [Tsinias, 1993]. Similar ideas can be considered in the context of
stabilization of cascaded systems. Given a stabilizing state feedback law
and an asymptotically stable state observer, the observer error dynamics
converging to zero could be interpreted as the “driving connection” be-
tween two systems in cascade. As remarked in Chapter 2, the structure
and growth order of the interconnection terms are crucial for the stability
of the cascade. For systems where the unmeasured states appear affine
in the dynamics, the global regulation problem has been considered in
[Battilotti, 1996].

Nonholonomic systems in chained form In Paper A and Paper B
contributions to the output feedback tracking problem for the class of
nonholonomic systems in chained form are presented. The overall con-
trol law uses a certainty equivalence combination of a linear time-varying
state-feedback controller and a separately designed state observer. One
of the key observations in the design is the possibility to decouple the
system into a cascaded form, where the order of the cross terms is of
major importance in the analysis. In contrast to the regulation problem,
the tracking problem requires results on time-varying cascaded systems
[Panteley and Loría, 1998b]. The resulting closed loop system is globally
K -exponentially stable, which implies global uniform asymptotic stability.

Adaptive Control Adaptive control for systems with unknown con-
stant parameters, θ , can also be put in the observer framework, by in-
creasing the state-space with the equations

dθ
dt
� 0

Structured uncertainties and unknown parameter in models of mechan-
ical manipulators allow for a unified approach in state and parameter
estimation [Craig, 1988; Nicosia and Tornambè, 1989].
Adaptive schemes which allow a separation of the controller and the
parameter update law—i. e., the controller/update law modularity—are
discussed in [Middleton and Goodwin, 1988; Krstić and Kokotović, 1995;
Krstić et al , 1995; de Querioz et al , 1999].
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4.3 Observer-Based Control

‘‘Dirty derivatives’’ The use of a derivative filter has recently regained
large interest and been used instrumentally in a passivity framework for
stabilizing control of, e. g., robots and rotating machines [Berghuis, 1993;
Berghuis and Nijmeijer, 1993a; Kelly et al , 1994; Loría et al , 1997; Ortega
et al , 1998]. In many of these applications, only the positions coordinates
are measured, while the velocities, needed for damping injection, are not.
The interconnection properties of passive systems is an important tool for
the stability analysis and is also used in a constructive way in the syn-
thesis, see Theorem (2.2). An attempt to illustrate the idea is found in
Figure 4.2. The derivative filters are in most cases equivalent to the stan-
dard implementation of the derivative part in an ordinary PID-controller
with bounded high-frequency gain, dy/dt � p/(p+ a)y(t). An important

Σ 1
s

s
sT+1

Σ

1
sT+1

Figure 4.2 Stabilization with derivative filter. (Σ is assumed to be a passive op-
erator).

class of nonlinear systems to which a lot of electro-mechanical systems
belong is the class of Euler-Lagrange systems, i. e., system whose dynam-
ics are derived from the Euler-Lagrange equations [Goldstein, 1980]. The
interconnection properties of the Euler-Lagrange systems have been used
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for controller design [Ortega et al , 1995b; Loría, 1996]. The controllers
used, are themselves chosen to have Euler-Lagrange properties which are
preserved for the closed-loop interconnection. An extensive overview for
the passivity-based control of Euler-Lagrange system is given in [Ortega
et al , 1998].

Exact linearization

The concept of feedback linearization, also known as exact linearization,
has a long tradition in robotics control under the name of computed torque
methods or dynamic inverse methods. When combining model-based ob-
servers and feedback linearization methods there are two main alternative
routes to follow. Either the observer is based on the original (nonlinear)
model or it tries to reconstruct the states of the resulting linear system
after the coordinate transformation.

Feedback linearization with observer In order to achieve a feed-
back linearized system, access to the full state-vector is often necessary
for the coordinate transformations [Isidori, 1995; Nijmeijer and van der
Schaft, 1990]. For the output feedback case this is in general not possible
and methods based on pseudo-linearization and Taylor expansions of non-
linearities have been proposed [Krener and Isidori, 1983; Nicosia et al ,
1986; Wang and Rugh, 1989]. The certainty equivalence approach using
estimates from an observer in the linearizing feedback law as well as in
the linear controller has been studied in [Etchechoury et al , 1996]. Under
(local) Lipschitz conditions on the nonlinearities in the state transforma-
tions, (local) stability results have been stated.

In [Berghuis, 1993] a passivity-based observer for control of robot dynam-
ics is used. An interesting property is shown in the fact that using a
computed torque controller, the model-based observer dynamics are ren-
dered linear through the control law’s feedback linearizing property, see
also [Song et al , 1996]. It is instructive to take the example in [Glad,
1987b] and compare various extensions with respect to the properties of
exact linearization and observer dynamics:

EXAMPLE 4.1—CONTROL AND STABLE OBSERVER [GLAD, 1987B, EX. 1]
The system

ẋ � x3 + u (4.11)

with the nominal control law

u � −x3 − x (4.12)
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gives rise to the globally asymptotically stable system

ẋ � −x (4.13)
With any estimate x̂ which converges exponentially towards x the result-
ing closed loop system will be

ẋ � −x3 + (−x̂3 − x̂) � 3x2 x̃− 3xx̃2 + 3x̃3 − (x− x̃)
˙̃x � −α x̃, α > 0

(4.14)

where x̃ � x − x̂ denotes the observer error. That only local asymptotical
stability can be obtained is seen from the dynamics of the quantity z � xx̃

ż � (3z− 3x̃2 − 1−α )︸ ︷︷ ︸ z+ x̃4 + x̃2 (4.15)

No matter how fast the dynamics for the estimator can be made, and no
matter how small a non-zero initial observer error is chosen, an initial
value of

z(0) > (1+α )/3+ x̃2

will cause instability.

The system in the example above can not be globally output feedback
linearized via the estimated state x̂. It should be noted that high values
of the observer gain α increase the region of attraction, but the influence
of measurement noise is also increased. In the following two examples
we consider a second order system to illustrate what can be achieved for
reduced versus full-order observers.

EXAMPLE 4.2—REDUCED-ORDER OBSERVER

Consider the system

ẋ1 � x2

ẋ2 � x3
1 + u

y � x1

(4.16)

with the state feedback law

u � −a1x1 − a2x2 − x3
1 (4.17)

which for any positive values of (a1, a2), will result in the exponentially
stable linear system

ẋ1 � x2

ẋ2 � −a1x1 − a2x2

y � x1

(4.18)
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For simplicity, we choose a1 � 1, a2 � 1.

A reduced-order observer for the (feedback linearized) system of Eq. (4.18)
can be written as

x̂2 � z+ K x1

ż � −x1 + (−1− K )x̂2
(4.19)

which will give an exponentially convergent estimate of x2 for any K > 0.
Using the estimated state x̂2 in the control law (4.17), the closed loop
system will be

ẋ1 � x2

ẋ2 � −x1 − x− x̃2

˙̃x2 � (−1− K )x̃2

(4.20)

where x̃2 � x2− x̂2 denotes the observation error. Due to exact cancellation
of the nonlinear term, the closed loop system will be globally exponentially
stable as we can use the separation principle from linear systems. How-
ever, there will be no robustness against measurement noise.

EXAMPLE 4.3—FULL-ORDER OBSERVER

A full-order observer for the system of Eq. (4.18) may be written as[ ˙̂x1

˙̂x2

]
�

[
0 1

−1 −1

] [
x̂1

x̂2

]
+

[
k1

k2

]
(y− ŷ). (4.21)

The characteristic equation for the error dynamics will be

s2 + (k1 + 1)s+ (k2 + 1)
An appropriate choice of (k1, k2), can make the estimation errors converge
to zero arbitrarily fast. The closed loop dynamics can be written as

ẋ1 � x2

ẋ2 � x3
1 − x̂1 − x̂2 − x̂3

1

� 3x2
1 x̃1 − 3x1 x̃2

1 + x̃3
1 − (x1 − x̃1) − (x2 − x̃2)[ ˙̃x1

˙̃x2

]
�

[ −k1 1

−k2 − 1 −1

] [
x̃1

x̃2

] (4.22)

The same type of quadratic destabilizing term as in Example 4.1 show
up in Eq. (4.22), namely 3x2

1 x̃1. This term is an obstacle for global stabil-
ity. The properties of the high-gain observer design, in combination with
bounded state feedback control, will be discussed in the next section.
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A third alternative, to the examples above, is to implement the full or-
der observer, but only use some of the estimated states in combination
with the direct measurements. Similar ideas were used in [Berghuis et al ,
1992] with a linear observer for the regulation problem of robot manipu-
lators.

Bounded control and high-gain designs

As the discussion and the examples in the introduction show, peaking and
finite escape time phenomena are major obstacles for the stabilization
problem. When using a control law based on a stabilizing state feedback
controller in combination with a stable observer, instability may occur
due to initial errors and transients in the state estimates, causing the
system to evolve outside the region of convergence. Due to the peaking
phenomenon, observer design with solely faster convergence rates for the
estimation errors is not a systematic solution to the problem.

In system theory limited control action has often been considered as a
major obstacle to achievable performance. In particular during the last
decade, another aspect of saturated control action has gained large in-
terest, namely that of using bounded control as a means of stabilization.
Among the pioneers in this area, Teel with his work on nested saturated
control should be mentioned [Teel, 1992; Teel and Praly, 1995].
In [Esfandiari and Khalil, 1992], the combination of a high-gain observers
and a globally bounded state-feedback controller was introduced to over-
come the above mentioned stability problem. This technique has been
extensively used in many contexts. In high-gain design, a common tool
for stability analysis is the singular perturbation approach with general-
izations of the Tichonov theorem [Kokotović et al , 1986; Esfandiari and
Khalil, 1992].
Recently Atassi and Khalil presented a separation principle for stabi-
lization based on high-gain observers and saturated control [Atassi and
Khalil, 1997; Atassi and Khalil, 1999]. For (very) high observer gains,
not only the region of attraction is shown to be recovered, but also the
performance and the trajectories of the system under state feedback.
Their results relate to the following class of input-output linearizable sys-
tems

ẋ � Ax+ B( f (x, z) + G(x, z)u)
ż �ψ (x, z, u)
y � C x

ζ � q(x, z)

(4.23)

and the following assumptions are made:
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Assumption 4.1 The functions f , ψ , and G are locally Lipschitz in their
argument. f (0, 0) � ψ (0, 0, 0) � 0 and G is nonsingular over the domain
of interest.

Assumption 4.2 There exists a stabilizing state feedback controller
u � φ (x, ζ ) which satisfies

(i) φ is locally Lipschitz over the domain of interest, and φ (0, 0) � 0.

(ii) φ is a globally bounded function of x.

(iii) The origin is an asymptotically stable equilibrium of the closed loop
system with u � φ (x, ζ ).

Under Assumptions 4:1–2 it can be shown that the output feedback con-
troller u � φ (x̂, ζ ) recovers the performance of the state feedback con-
troller u � φ (x, ζ ) locally, where the state estimates x̂ are obtained using
the high-gain observer

˙̂x � Ax̂+ B [ f (x̂, ζ ) + G(x̂, ζ )ψ (x̂, ζ , u)] + H(y− C x̂) (4.24)
where

H �


α 1/ε
α 2/ε 2

...

α n/ε n

 , H0 �



−α 1 −α 2 . . . −α n−1 −α n

1 0 . . . 0 0

0 1 . . . 0 0
...

...
...

0 0 . . . 1 0


with the positive constants {α i} chosen such that H0 be Hurwitz.

Thus, control based on the high-gain observer of Eq. (4.24) can be used
to provide semi-global stabilization.

EXAMPLE 4.4—HIGH-GAIN OBSERVER [ATASSI AND KHALIL, 1997]
Consider the system

ẋ1 � x2

ẋ2 � x3
1 + u

y � x1

(4.25)

In the notation above we have

A �
[

0 1

0 0

]
, B �

[
0

1

]
, f (x) � x3

1,

C � [ 1 0 ] , G � 1, ψ � u
(4.26)
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A high-gain observer designed with respect to the stable characteristic
polynomial (s+ k)2, k > 0, will be

˙̂x1 � x̂2 + 2k
ε
(y− x̂1)

˙̂x2 � x̂3
1 + u+ k2

ε 2 (y− x̂1)
ŷ � x̂1

(4.27)

with the corresponding observer error x̃ � x− x̂

˙̃x1 � −2k
ε

x̃1 + x̃2

˙̃x2 � −k2

ε 2 x̃1 + x1
3 − x̂3

1

(4.28)

Introducing β � k/ε we see that we get the same observer and error
equations as if we directly would have designed the model based observer
with respect to the characteristic polynomial (s+β )2, that is, with observer
poles becoming infinitely fast as ε → 0+ .

In [Janković, 1997], a combination of high-gain observers and adaptive
backstepping is used to achieve output feedback tracking. As high-gain
observers are sensitive to measurement noise, Janković use a reduced
order high-gain observer to estimate those states only, which enter the
dynamics in a nonlinear fashion. The tracking controller is a hybrid of
state-feedback control and observer-based feedback control. Similar to the
method described in [Krstić et al , 1993], states not available to measure-
ment are estimated by means of adaptive backstepping.

Lyapunov-based Methods and Passivity-based Output Feedback

Systems linear in the non-measurable states Nonlinear systems
which are linear with respect to the non-measurable states are considered
for the regulation problem in [Cebuhar et al , 1991; Praly, 1992; Pomet
et al , 1993; Battilotti, 1996] and for tracking in [Freeman and Kokotović,
1996]. The methods assume knowledge of a stabilizing state feedback con-
troller and in most of the cases a relating Lyapunov function. In [Freeman
and Kokotović, 1996] single-input-single-output systems in extended strict
feedback form are considered. This class of systems can be decomposed
into three subsystems, where the dynamics for the unmeasured states η
constitute one subsystem. The states of the ζ subsystem are the tracking
variables subsystems of the following structure, see also Fig (4.3).
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ξ̇1 � ξ2 + φ1(ζ ,ξ1) ⋅ η
ξ̇2 � ξ3 + φ2(ζ ,ξ1 , ξ2) ⋅ η

.

.

.

ξ̇ n � φ0(ζ ,ξ ) + φ n(ζ ,ξ ) ⋅ η

ζ̇ � f (ζ ) + k(ζ ) ⋅ ξ 1

z � h(ζ ) + k(ζ ) ⋅ ξ 1

η̇ � F(ζ ,ξ 1) ⋅ η
+G(ζ ,ξ 1)

ξ 1

y1 � ξ

y2 � ζ

ζη

u

Figure 4.3 System in extended strict feedback form where η is the vector of un-
measured states [Freeman and Kokotović, 1996].

Ση : η̇ � F(ζ ,ξ )η + G(ζ ,ξ )

Σζ :
{ ζ̇ � f (ζ ) + k(ζ )ξ 1

z � h(ζ ) + k(ζ )ξ 1

Σξ :


ξ̇ 1 � ξ 2 + φ 1(ζ ,ξ 1)η
ξ̇ 2 � ξ 3 + φ 2(ζ ,ξ 1, ξ 2)η

...

ξ̇ n � φ 0(ζ ,ξ ) + φ n(ζ ,ξ )η + φ u(ζ ,ξ )u

y �
[ζ

ξ

]
(4.29)

Note that the unmeasured variables, η , do not enter the Σζ -system and
enters the Σξ -system linearly. Another restriction is that the Ση -system
is stable in the sense of Lyapunov for all values of ξ and ζ . The solution
can be interpreted as a state-feedback controller in combination with a
reduced order observer for the Ση -system.

For systems where the unmeasured states enter linearly, Battilotti has
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also proposed a solution to the global output feedback stabilization prob-
lem [Battilotti, 1996]. The method allows the solution to be divided into
two separate subproblems considering stabilization via full-state feedback
(SF) and the output injection problem (OI) respectively. This can be in-
terpreted as a separation principle for this class of nonlinear systems,
although the final controller consist of a nontrivial combination of the
controllers and the Lyapunov functions for the subproblems.

Consider the system

ẋ � f (xm)x+ k(xm)u, x �
[

xm

xu

]
∈ IRn, u ∈ IRm

y � xm, y ∈ IRp
(4.30)

where xm is the vector of the direct measurable states and xu is the vector
of unmeasured states not available for state feedback. The two subprob-
lems are

SF Stabilize the system (4.30) in (xm, xu) � (0, 0) with a state feedback
law

u � uSF(xm, xu), uSF(0, 0) � 0

OI Stabilize the system

ẋm � f1(xm)x+ k1(xm)uOI1(xm)
ẋu � f2(xm)x+ k2(xm)uOI2(xm)
y � xm

(4.31)

with output injection

uOI(xm) �
[

uOI1(xm)
uOI2(xm)

]
, uOI(0) �

[
0

0

]
where fi and ki, (i�1,2), are the corresponding components of f (xm)
and k(xm) in Eq. (4.30).

If one to each of the two subproblems can assign a smooth Lyapunov
function of the form

VSF � 1
2

xT
u Pxu + xT

u ζ (xm) + ξ (xm) > 0, ∀(xm, xu) �� 0

VOI � 1
2

xT
u Pxu + xT

u ζ (xm) + ξ (xm) > 0, ∀(xm, xu) �� 0
(4.32)

where P and P are positive, symmetric matrices, then Theorem 3 in [Bat-
tilotti, 1996] guarantees the existence of a Lyapunov function for the out-
put feedback problem and suggests a procedure to derive the correspond-
ing control law.
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EXAMPLE 4.5—DYNAMIC SHIP POSITIONING

Consider the ship dynamics from [Fossen and Grøvlen, 1998]

η̇ � J(η )ν
ν̇ � A1η + A2ν + Bτ
y � η

(4.33)

where

J(η ) �
 cos(ψ ) −sin(ψ ) 0

sin(ψ ) cos(ψ ) 0

0 0 1


J−1(η ) � JT(η ), det {J(η )} � 1, ∀η

(4.34)

For the notation and the matrices appearing in Eq. (4.33) we refer to
Paper E. The state feedback problem (SF) can be solved with exact lin-
earization. Using

η̈ � J̇(η )ν + J(η )ν̇ (4.35)

the dynamics in Eq. (4.33) can be rewritten as

JT(η )η̈ − JT(η )J̇(η )JT (η )η̇ � A1η + A2JT(η )η̇ + Bτ (4.36)

which is globally stabilized by the control law

uSF � Bτ SF � −A1η − A2ν − JT(η )J̇(η )ν − JT(η ) (ΛDη̇ + ΛKη ) (4.37)

resulting in the asymptotically stable dynamics

η̈ + ΛDη̇ + ΛKη � 0 (4.38)

for some positive matrices ΛD and ΛK . A corresponding Lyapunov function
is

VSF � [ η̇ T η T ]
[

P11 P12

PT
12 P22

]
︸ ︷︷ ︸

P

[ η̇
η

]
(4.39)

where P satisfies the linear matrix inequality[
P11 P12

PT
12 P22

] [−ΛD −ΛK

I 0

]
+

[−ΛT
D I

−ΛT
K 0

] [
P11 P12

PT
12 P22

]
< 0 (4.40)

99



Chapter 4. Observer-Based Control

In order to utilize the results in [Battilotti, 1996], however, we need to
have a quadratic term in the unmeasured states, ν , with a positive con-
stant weighting matrix. The freedom in ΛD and ΛK allows for the choice
P11 � pI, where p is a positive constant. Via the state transformation[ η̇

η

]
�

[
J(η ) 0

0 I

] [ν
η

]
(4.41)

the Lyapunov function VSF can be rewritten as

VSF � [ν T η T ]
[

JT(η ) 0

0 I

] [
pI P12

PT
12 P22

] [
J(η ) 0

0 I

] [ν
η

]
� [ν T η T ]

[
pI JT(η )P12

PT
12J(η ) P22

] [ν
η

]
� pν Tν + 2ν T JT(η )P12η +η T P22η

(4.42)

The output injection problem is solved by the design of the globally conver-
gent observer in Paper E where the weighting matrix P in the Lyapunov
function V OI is constant.

The solutions to the two subproblems satisfy the conditions for Theorem 3
and an output feedback controller can thus be designed following the
guidelines in [Battilotti, 1996].

Observer-based backstepping The main idea behind observer-based
backstepping , or observer backstepping for short, is to apply the backstep-
ping procedure to the error between the estimated states and the desired
trajectory, instead of to the error between the true states and the desired
trajectory [Kanellakopoulos et al , 1992]. First we show by an example that
the observer-backstepping technique applied to a linear control object and
combined with linear control system design gives rise to a non-standard
composition of the control object, the observer, and the controller. The
resultant system is characterized by a full-order observer and a reduced-
order control system design which in its complexity does not go beyond
the relative degree of the control object.

EXAMPLE 4.6—[ROBERTSSON AND JOHANSSON, 1998C]
Consider a third order linear system with relative degree two, where the
zero lies strictly in the left half plane. The state-space realization in ob-
server canonical form is

ẋ � Ax+ Bu �
−a1 1 0

−a2 0 1

−a3 0 0

 x+
 0

b2

b3

 u

y � C x � [ 1 0 0 ] x

(4.43)
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For reconstruction of the states we use a full order observer

˙̂x � Ax̂+ Bu+ K (y− ŷ)
ŷ � C x̂

(4.44)

To the purpose of tracking error analysis, introduce

zr �
[

yr

ẏr

]
, ẑ�

[
ŷ
˙̂y

]
, z � ẑ− zr, ỹ� y− ŷ (4.45)

where yr(t) is a given, twice differentiable reference trajectory. By the
relative degree properties and standard model matching arguments, it
can be justified that

ŷ � C x̂
˙̂y � C ˙̂x � C Ax̂+ C B︸︷︷︸

0

u+ C K C x̃

¨̂y � C A ˙̂x+ C K C ˙̃x

� C A2 x̂+ C AB︸ ︷︷ ︸
��0

u+ C AK ỹ+ C K C (A− K C )x̃

(4.46)

The tracking error dynamics will be

ż1 � z2

ż2 � C A2 x̂+ u+ C AK ỹ+ C K C (A− K C )x̃− ÿr
(4.47)

Applying observer backstepping, we first introduce the error coordinates

ζ �
[ζ 1

ζ 2

]
�

[
z1

ẑ2 −α 2

]
(4.48)

where α 2 will be defined below.

Step 1. Let

V1 � 1
2

ζ 2
1

V̇1 � ζ 1ζ̇ 1 � ζ 1(ẑ2 − ẏr)
� ζ 1(ζ 2 +α 2(ζ 1, zr) − ẏr)
� −c1ζ 1

2 + ζ 2ζ 1

(4.49)
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where

α 2 � −c1ζ 1 + ẏr

ζ̇ 1 � −c1ζ 1 + ζ 2
(4.50)

Step 2. Let

V2 � V1 + 1
2

ζ 2
2

V̇2 � −c1ζ 1
2 + ζ 2

[
ζ 1 + ζ̇ 2

]
� −c1ζ 2

1 − c2ζ 2
2 + ζ 2C K C (A− K C )x̃

(4.51)

where we choose

C ABu � −ζ 1 − c2ζ 2 − C A2 x̂− C AK ỹ+ ÿr + c1(−c1ζ 1 + ζ 2) (4.52)

Note that there is a remaining cross-term in the derivative of V2. For
any linear observer design which provides asymptotically converging state
estimates, there exist positive definite, symmetric matrices Po and Qo

satisfying the Lyapunov equation

(A− K C )T Po + Po(A− K C ) � −Qo (4.53)

The estimation error will be exponentially stable with the Lyapunov func-
tion properties

Vo(x̃) � x̃T Pox̃ > 0, fx̃f �� 0
d
dt

Vo � −x̃T Qox̃ < 0, fx̃f �� 0
(4.54)

Let V be a Lyapunov function candidate for the error system {x̃, ζ }:

V � V2 + β x̃T Pox̃, β > 0 (4.55)
V̇ � −c1ζ 2

1 − c2ζ 2
2 − β x̃T Qox̃+ ζ 2C K C (A− K C )x̃

�
[ζ

x̃

]T


(−c1 0

0 −c2

) (
0
1
2

)
C K C(A− K C)

( (
0
1
2

)
C K C(A− K C)

)T
−β Qo


[ζ

x̃

]

By the Schur complement of the weighting matrix in Eq. (4.55), we see
that V̇ can be negative definite for large enough β . As this parameter can
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be chosen independently of the design of the controller and the observer,
we have the regular separation principle for linear systems. The closed-
loop error dynamics then fulfill

[ ˙̃x

ż

]
�

[
A− K C 0

Ax̃z Az

] [
x̃

z

]
(4.56)

Stability properties are determined by the subsystem stability properties
associated with the matrices A−K C and Az without any critical influence
with respect to stability from the matrix Ax̃z describing the interaction. In
addition, the stable eigenvalues of Az depend on the choice of the positive
parameters c1 and c2. So far we have only considered stable zero-dynamics
for the reason of analysis described above. The closed loop error dynamics
for the full system will be

 ˙̃x

ż

η̇

 �
 A− K C 0 0

Ax̃z Az 0

Ax̃η Azη Aη

  x̃

z

η

 observer error

tracking error

zero-dynamics

(4.57)

and the stability of the full system is determined by the matrices A−K C ,
Az, and Aη , while the cross-terms affect the transients and the tracking
property.

The resultant system structure is interesting in that it provides the con-
verse to the case of state feedback control supported by reduced-order
observers. Whereas such feedback control object is based on a full-order
representation of the control object and a reduced-order observer, we here
find a full-order observer and a reduced-order model for the control ob-
ject.

The observer backstepping approach above is applicable to minimum-
phase systems, which for the linear case implies that the zeros of the
transfer function lie strictly in the left half-plane. The following sec-
tion will consider nonlinear system which has linear but unstable zero-
dynamics. Typical examples where this may be relevant is in the control
of flexible structures such as weak robot arms or systems with weak cou-
plings between rotating masses [Dewey and Devasia, 1996].
The following example will point out some problems when naively apply-
ing the backstepping procedure to a linear system with a zero in the right
half-plane.
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EXAMPLE 4.7—PAPER D [ROBERTSSON AND JOHANSSON, 1999]
Consider the linear system

Y(s) � s− 1
s4 U(s) (4.58)

which has a zero in the right half plane. The state-space realization in
output-feedback form is for linear systems also known as the observer
canonical form [Kailath, 1980]:

ẋ � A1 x+ B1 u �


0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0

 x+


0

0

1

−1

 u

y � C1 x � [ 1 0 0 0 ] x

(4.59)

The system is in strict feedback form, and applying the backstepping
design, we will reach the control input u after three steps. Any stabilizing
linear controller for the first three states will have the form

u3 � −l1x1 − l2x2 − l3x3, li > 0, i � 1 . . . 3

However, the state x4, which represents the zero-dynamics, will be un-
stable and we can not neglect it in the design as we could have done
if the zero-dynamics were stable. Even worse, it is not even possible to
re-use our “stabilizing” control law u3 and extend it with additional feed-
back from the state in the zero-dynamics to stabilize the whole system,
as shown below.

Using
u(x) � u3(x1, x2, x3) − l4x4

the closed loop system has the characteristic polynomial

λ (s) � s4 + (−l4 + l3 ) s3 + (l2 − l3 ) s2 + (−l2 + l1 ) s− l1

which is clearly unstable.

Thus, Example 4.7 shows that the straight-forward, and in this case naive,
use of the backstepping method will fail to stabilize such a nonminimum-
phase system. This will of course also be the case for observer-based back-
stepping, under the assumption that only the first state x1 is measurable.

In Paper D, we discuss the topic of observer-based backstepping for a class
of nonlinear systems with linear, unstable zero dynamics. Extensions of
the observer backstepping method are made and a design algorithm for
this class of nonminimum-phase systems is presented.
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4.3 Observer-Based Control

EXAMPLE 4.8—FLEXIBLE ROBOT ARM

This example aims at illustrating the notation and the transformations
used in Paper D.

Consider the model for a flexible one-link robot arm [Marino and Tomei,
1995]. The dynamics are given by

χ̇1 � χ2

χ̇2 � −M1 sin(χ1) − K1(χ1 − χ3)
χ̇3 � χ4

χ̇4 � −B1χ4 + K2(χ1 − χ3) + τ
y � h(χ) � χ3

(4.60)

where χ1 is the angle of the arm, χ2 is the angular velocity of the arm,
χ3 is the angle on the motor side, and χ4 is the angular velocity on the
motor side. The angle measurement is co-located, i. e., measuring on the
motor side. The input signal τ is the driving torque from the motor and
it is easy to see that it enters the equation for the second derivative of
the output, which implies that the system has relative degree two. The
constants M1, B1, K1, and K2 are all positive.

For observer-design it is natural to consider the transformation used in
[Sanchis and Nijmeijer, 1998]:

x � Tχ, T �


h(χ)

Lf h(χ)
L2

f h(χ)
L3

f h(χ)




x1

x2

x3

x4

 �


0 0 1 0

0 0 0 1

K2 0 −K2 −B1

−K2 B1 K2 K2 B1 B2
1 − K2




χ1

χ2

χ3

χ4


(4.61)
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The dynamics expressed in the x-coordinates are

ẋ �


0 1 0 0

0 0 1 0

0 0 0 1

0 −B1 K1 −(K1 + K2) −B1


︸ ︷︷ ︸

Ax

x+


0

0

0

ψ 4(x)


︸ ︷︷ ︸

ψ (x)

+


0

1

−B1

B2
1 − K2


︸ ︷︷ ︸

Bx

τ

y � [ 1 0 0 0 ] x
ψ 4(x) *� −M1 K2 sin( x3 + B1x2 + K2x1

K2
)

(4.62)

Both the χ -system of Eq. (4.60) and the x-system of Eq. (4.62) are in
strict-feedback form. The structure of Eq. (4.62) is similar to the output-
feedback form referred to in Paper D, except that the nonlinearity ψ 4 also
depends on unmeasured states. This obstacle will be dealt with in the
observer design below. It is also evident from the signs in the Bx-vector
that the linearization of Eq. (4.62) will not have asymptotically stable
zero-dynamics.

Observer design

In [Sanchis and Nijmeijer, 1998] a sliding-mode observer for the the sys-
tem in Eq. (4.62) was derived. Here we propose an observer along the
ideas presented in [Arcak and Kokotović, 1999]. System (4.62) can be
written as

ẋ � Axx+ Bxu+ Gψ (Hx)
y � Cxx

G *� [ 0 0 0 1 ]T , H *� 1
K2
[ K2 B1 1 0 ]

(4.63)

Following the same outline as for the pendulum observer in Example 3.7,
we propose the observer

˙̂x � Axx̂+ Bxu+ Gψ (Hx̂+ L2(y− Cxx̂)) + L1(y− Cxx̂)
ŷ � Cxx̂

(4.64)

where x̃ � x− x̂ denotes the observer error. By rewriting the difference of
the nonlinearities as

sin(Hx) − sin(Hx̂+ L2Cxx̃) � 2 sin
((H − L2Cx)x̃

2

)
⋅ γ (t)

γ *� cos
(

H(x + x̂) + L2Cxx̃
2

)
, eγ e ≤ 1

(4.65)
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the error dynamics can be decomposed into a feedback connection of a
linear system Σ and a sector-bounded time-varying nonlinearity, (Fig. 4.4):

Σ :

 ˙̃x � (Ax − L1Cx)x̃+ Gv

yx
*� (H − L2Cx)x̃

2

v *� −2M1 K2 γ (t) ⋅ sin (yx)
(4.66)

Furthermore, we can use the (restrictive) sector bound

−(H − L2Cx)x̃ ≤ 2 sin
((H − L2Cx)x̃

2

)
≤ (H − L2Cx)x̃

to specify a sector condition, see Fig. 4.4. For the parameters used in

vv
ΣΣ

yxyx
−−−

κ

κ
−

Figure 4.4 Left: Partitioning of the observer error dynamics into a linear system
and a time-varying sector bounded nonlinearity. Right: Loop transfer of the system.

[Sanchis and Nijmeijer, 1998] observer gains L1 and L2 can be found
which asymptotically stabilizes the error dynamics in Eq.( 4.66).
Control design

Given the state estimates from the observer (4.64) and the transforma-
tion in Eq. (4.61) relating the x and the χ -coordinates, observer-based
backstepping can be performed for the system in Eq. (4.60) along the al-
gorithm proposed in Paper D.
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5

Concluding Remarks

In this thesis, the problem of observer design and observer-based con-
trol for nonlinear systems is addressed. The deterministic continuous-
time systems have been in focus. The observer-based control strategies
presented include separation results where the combination of indepen-
dently designed observers and state-feedback controllers assures stabil-
ity. In addition, the new results provide a generalization to the observer-
backstepping method where the controller is designed with respect to es-
timated states, taking into account the effects of the estimation errors.

Results

The results in the thesis can be summarized as follows:

• New time-varying state feedback controllers and observers for the
tracking problem of nonholonomic systems in chained form are pre-
sented. Furthermore, global stability results for the output tracking
problem are shown, using the certainty-equivalence combination of
the state controllers and the observers. A solution to the control
problem under input saturation is also presented;

• Relaxation of the minimality conditions in the Yakubovich-Kalman-
Popov lemma, with relevance to observer-based feedback control;

• The design method known as observer-based backstepping is ex-
tended to cover a class of nonlinear systems in output-feedback form,
accommodating also linear unstable zero-dynamics.
An observer-based control algorithm is provided;
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Open Issues and Future Work

• For the purpose of output-feedback control of Euler-Lagrange sys-
tems, a Lyapunov-based observer design is presented. In application
to ship dynamics, a globally exponentially stable observer design ex-
tends previous results with application to ships with unstable sway-
yaw dynamics. The similarity between the equations of motion for
the ship model and more general mechanical manipulators allows
for an extension to semi-global exponential stability results for the
velocity estimation in rigid robot manipulators.

Open Issues and Future Work

The state-estimation problem is relevant also in many disciplines other
than nonlinear control theory in the narrow sense. Combinations of dif-
ferent sensors for measuring the same or related quantities, e. g., the
use of redundant sensor arrays, result in correlated measurements and
raise the need for systematic methods to handle these signals in an op-
timal way. For linear systems the Kalman filter is a solution to the sen-
sor fusion problem, but for nonlinear systems only partial answers are
given. Furthermore, with increased process complexity and the use of
safe-critical systems, the need for reliable diagnosis and supervision is
obvious. Observer-based fault-detection and isolation are instrumental in
such a context. Opportunities of state-estimation application are numer-
ous.

Output feedback control is a challenging area and observer-based feedback
control is one means to solve this problem. In the area of stochastic con-
trol and estimation for nonlinear systems, comparatively few results are
reported are in the literature. Systematic observer design for nonlinear
systems is still an open issue and there is also a lack of general methods
for using observers in output feedback control schemes. For some im-
portant classes of systems such as Euler-Lagrange systems—e. g., robot
manipulators and rotating machines—many important results regarding
regulation and tracking have been presented during the last decades. Still,
it is obvious that much remains to be done.
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Krstić, M., I. Kanellakopoulos, and P. Kokotović (1995): Nonlinear and
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Linear Controllers for Tracking
Chained-Form Systems

E. Lefeber, A. Robertsson, and H. Nijmeijer

Abstract

In this paper we study the tracking problem for the class of non-
holonomic systems in chained-form. In particular, with the first and
the last state component of the chained-form as measurable output
signals, we suggest a solution for the tracking problem using output
feedback by combining a time-varying state feedback controller with
an observer for the chained-form system. For the stability analysis
of the “certainty equivalence type” of controller, we use a cascaded
systems approach. The resulting closed loop system is globally K -
exponentially stable.

Reproduced from
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1. Introduction

In recent years a lot of interest has been devoted to (mainly) stabilization
and tracking of nonholonomic dynamic systems, see e. g. [1; 5; 7; 15; 17].
One of the reasons for the attention is the lack of a continuous static
state feedback control since Brockett’s necessary condition for smooth sta-
bilization is not met, see [3]. The proposed solutions to this problem follow
mainly two routes, namely discontinuous and/or time-varying control. For
a good overview, see the survey paper [11] and the references therein.

It is well known that the kinematic model of several nonholonomic
systems can be transformed into a chained-form system. The global track-
ing problem for chained-form systems has recently been addressed in
[14; 5; 6; 7; 17; 20]. In this paper we consider the tracking problem for
chained form systems by means of output feedback, where we consider
as output the first and last state component of the chained-form. To our
knowledge, this problem has only been addressed in [8] where a backstep-
ping approach is used. Our results are based on the construction of a linear
time varying state feedback controller in combination with an observer.
However, the stability analysis and design are based on results for (time-
varying) cascaded systems [18]. In the design we divide the chained-form
into a cascade of two sub-systems which we can stabilize independently of
each other, and furthermore a similar partition into cascaded systems can
be done for the controller-observer combination, where the same stability
results apply. Regarding the latter part, similar ideas were recently pre-
sented for the combination of high-gain controllers and high-gain observer
for a class of triangular nonlinear systems [2], see also [12].

The organization of the paper is as follows. Section 2 contains some
definitions, preliminary results and the problem formulation. Section 3 ad-
dresses the tracking problem based on time-varying state feedback and in
section 4 we design an exponentially convergent observer for the chained-
form system. In section 5 we combine the control law from section 3 with
the observer from section 4 in a “certainty equivalence” sense. This yields
a globally K -exponentially stable closed loop system under the condition
of persistently exciting reference trajectories. Finally, section 6 concludes
the paper.

2. Preliminaries and Problem Formulation

In this section we introduce the definitions and theorems used in the
remainder of this paper and formulate the problem under consideration.
We start with some basic stability concepts in 2, present a result for
cascaded systems in 2 and recall some basic results from linear systems
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2. Preliminaries and Problem Formulation

theory in 2. We conclude this section with the problem formulation in 2.

Stability

To start with, we recall some basic concepts (see e. g. [10; 23]).
DEFINITION A.1
A continuous function α : [0, a) → [0,∞) is said to belong to class K if it
is strictly increasing and α (0) � 0.

DEFINITION A.2
A continuous function β : [0, a) � [0,∞) → [0,∞) is said to belong to
class K L if, for each fixed s, the mapping β (r, s) belongs to class K with
respect to r and, for each fixed r, the mapping β (r, s) is decreasing with
respect to s and β (r, s) → 0 as s →∞.

Consider the system

ẋ � f (t, x), f (t, 0) � 0 ∀t ≥ 0 (1)
with x ∈ IRn and f (t, x) piecewise continuous in t and locally Lipschitz in
x.

DEFINITION A.3
The system (1) is uniformly stable if for each ε > 0 there is δ � δ (ε ) > 0,
independent of t0, such that

fx(t0)f < δ ; fx(t)f < ε , ∀t ≥ t0 ≥ 0. (2)

DEFINITION A.4
The system (1) is globally uniformly asymptotically stable
(GUAS) if it is uniformly stable and globally attractive, that is, there
exists a class K L function β (⋅, ⋅) such that for every initial state x(t0):

fx(t)f ≤ β (fx(t0)f, t− t0), ∀t ≥ t0 ≥ 0 (3)

DEFINITION A.5
The system (1) is globally exponentially stable (GES) if there exist k > 0
and γ > 0 such that for any initial state

fx(t)f ≤ fx(t0)fk exp[−γ (t− t0)]. (4)

A slightly weaker notion of exponential stability is the following

3
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DEFINITION A.6—CF. [22]
We call the system (1) globally K -exponentially stable if there exist γ > 0
and a class K function κ (⋅) such that

fx(t)f ≤ κ (fx(t0)f) exp[−γ (t− t0)] (5)

DEFINITION A.7
We call the (locally integrable) vector-valued function

w(t) � [w1(t), . . . , wn(t)]T

persistently exciting if there exist δ , ε 1, ε 2 > 0 such that for all t > 0:

ε 1I ≤
∫ t+δ

t
w(τ )w(τ )T dτ ≤ ε 2I (6)

Cascaded systems

Consider the system{
ż1 � f1(t, z1) + k(t, z1, z2)z2

ż2 � f2(t, z2)
(7)

where z1 ∈ IRn, z2 ∈ IRm, f1(t, z1) is continuously differentiable in (t, z1)
and f2(t, z2), k(t, z1, z2) are continuous in their arguments, and locally
Lipschitz in z2 and (z1, z2) respectively.

We can view the system (7) as the system

Σ1 : ż1 � f1(t, z1) (8)

that is perturbed by the state of the system

Σ2 : ż2 � f2(t, z2). (9)

When Σ2 is asymptotically stable, we have that z2 tends to zero, which
means that the z1 dynamics in (7) asymptotically reduces to Σ1. Therefore,
we can hope that asymptotic stability of both Σ1 and Σ2 implies asymptotic
stability of (7).

Unfortunately, this is not true in general. However, from the proof
presented in [18] it can be concluded that:

4
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THEOREM A.1—BASED ON [18]
The cascaded system (7) is GUAS if the following three assumptions hold:

• assumption on Σ1: the system ż1 � f1(t, z1) is GUAS and there exists
a continuously differentiable function V (t, z1) : IR+ � IRn → IR that
satisfies

W(z1) ≤ V (t, z1), (10)
∂ V
∂ t

+ ∂ V
∂ z1

⋅ f1(t, z1) ≤ 0, ∀fz1f ≥ η , (11)∥∥∥∥ ∂ V
∂ z1

∥∥∥∥ fz1f ≤ cV (t, z1), ∀fz1f ≥ η , (12)

where W(z1) is a positive definite proper function and c > 0 and
η > 0 are constants,

• assumption on the interconnection: the function k(t, z1, z2) satisfies
for all t ≥ t0:

fk(t, z1, z2)f ≤ θ 1(fz2f) + θ 2(fz2f)fz1f, (13)

where θ 1, θ 2 : IR+ → IR+ are continuous functions,

• assumption on Σ2: the system ż2 � f2(t, z2) is GUAS and for all
t0 ≥ 0: ∫ ∞

t0

fz2(t0, t, z2(t0))fdt ≤ κ (fz2(t0)f), (14)

where the function κ (⋅) is a class K function,

REMARK A.1
Notice that the assumption on Σ1 is slightly weaker than the one pre-
sented in [18]. However, under the assumption mentioned above the re-
sult can still be shown to be true by (almost) exactly copying the proof
presented in [18].

LEMMA A.1—SEE [17]
If in addition to the assumptions in Theorem A.1 both ż1 � f1(t, z1) and
ż2 � f2(t, z2) are globally K -exponentially stable, then the cascaded sys-
tem (7) is globally K -exponentially stable.

5
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Linear time-varying systems

Consider the linear time-varying system

ẋ(t) � A(t)x(t) + Bu(t)
y(t) � C x(t) (15)

and let Φ(t, t0) denote the state-transition matrix for the system

ẋ � A(t)x
We recall some results from linear control theory (cf. [9; 19]).
DEFINITION A.8
The pair (A(t), B) is said to be uniformly controllable if there exist
δ , ε 1, ε 2 > 0 such that for all t > 0:

ε 1I ≤
∫ t+δ

t
Φ(t, τ )B BT ΦT(t, τ )dτ ≤ ε 2I (16)

DEFINITION A.9
The pair (A(t), C ) is said to be uniformly observable if there exist
δ , ε 1, ε 2 > 0 such that for all t > 0:

ε 1I ≤
∫ t

t−δ
ΦT(τ , t− δ )C T C Φ(τ , t− δ )dτ ≤ ε 2I (17)

From linear systems theory several methods are available to exponentially
stabilize the linear time-varying system (15) via state or output feedback,
in case the pairs (A(t), B) and (A(t), C ) are uniformly controllable and
observable respectively (cf. [19]):
THEOREM A.2
Suppose that the system (15) is uniformly controllable and define for
α > 0

Wα (t, t+ δ ) �
∫ t+δ

t
2e4α (t−τ )Φ(t, τ )B BT ΦT(t, τ )dτ (18)

Then given any constant α the state feedback u(t) � Kα (t)x(t) where

Kα (t) � −BT W−1
α (t, t+ δ ) (19)

is such that the resulting closed-loop state equation is uniformly exponen-
tially stable with rate α .

6
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THEOREM A.3
Suppose that the system (15) is uniformly controllable and uniformly
observable and define for α > 0

Mα (t− δ , t) �
∫ t

t−δ
2e4α (τ −t)ΦT(τ , t− δ )C T C Φ(τ , t− δ )dτ (20)

Then given α > 0, for any η > 0 the linear dynamic output feedback

u(t) � Kα+η (t)x̂(t) (21)
˙̂x(t) � A(t)x̂(t) + Bu(t) + Hα+η (t)[y(t) − ŷ(t)], x̂(t0) � x̂0 (22)
ŷ(t) � C x̂(t) (23)

with feedback and observer gains

Kα+η (t) � −BT W−1
α+η (t, t+ δ ) (24)

Hα+η (t) � [
ΦT(t− δ , t)Mα+η (t− δ , t)Φ(t− δ , t)]−1

C T (25)

is such that the closed-loop state equation is uniformly exponentially sta-
ble with rate α .

Problem formulation

The class of chained-form nonholonomic systems we study in this paper
is given by the following equations

ẋ1 � u1

ẋ2 � u2

ẋ3 � x2u1 (26)
...

ẋn � xn−1u1

where x � (x1, . . . , xn) is the state, u1 and u2 are control inputs.
Consider the problem of tracking a reference trajectory (xr, ur)

generated by the chained-form system:

ẋ1,r � u1,r

ẋ2,r � u2,r

ẋ3,r � x2,ru1,r (27)
...

ẋn,r � xn−1,ru1,r

7
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where we assume u1,r(t) to u2,r(t) be continuous functions of time. This
reference trajectory can be generated by any of the motion planning tech-
niques available from the literature.

When we define the tracking error xe � x − xr we obtain as tracking
error dynamics

ẋ1,e � u1 − u1,r � u1 − u1,r

ẋ2,e � u2 − u2,r � u2 − u2,r

ẋ3,e � x2u1 − x2,ru1,r � x2,eu1,r + x2(u1 − u1,r)
...

...

ẋn,e � xn−1u1 − xn−1,ru1,r � xn−1,eu1,r + xn−1(u1 − u1,r)

(28)

The state feedback tracking control problem then can be formulated
as

PROBLEM A.1—STATE FEEDBACK TRACKING CONTROL PROBLEM

Find appropriate state feedback laws u1 and u2 of the form

u1 � u1(t, x, xr, ur) and u2 � u2(t, x, xr, ur) (29)
such that the closed-loop trajectories of (28,29) are globally uniformly
asymptotically stable.

Consider the system (26) with output

y �
[

x1

xn

]
(30)

then it is easy to show (see e. g. [1]) that the system (26) with output
(30) is locally observable at any x ∈ IRn. Clearly, this is the minimal
number of state components we need to know for solving the output-
feedback tracking problem.

Now we can formulate the output feedback tracking problem as

PROBLEM A.2—OUTPUT FEEDBACK TRACKING CONTROL PROBLEM

Find appropriate control laws u1 and u2 of the form

u1 � u1(t, x̂, y, xr, ur) and u2 � u2(t, x̂, y, xr, ur) (31)
where x̂ is generated from an observer

˙̂x � f (t, x̂, y, xr, ur) (32)
such that the closed-loop trajectories of (28,31,32) are globally uniformly
asymptotically stable.

8
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3. The State Feedback Problem

The approach we use to solve our problem is based on the recently de-
veloped studies on cascaded systems [4; 13; 16; 18; 21], and that of Theo-
rem A.1 in particular, since it deals with time-varying systems.

We search for a subsystem which, with a stabilizing control law, can
be written in the form ż2 � f2(t, z2) that is asymptotically stable. In the
remaining dynamics we can then replace the appearance of z2 by 0, lead-
ing to the system ż1 � f1(t, z1). If this system is asymptotically stable we
might be able to conclude asymptotic stability of the overall system using
Theorem A.1.

Consider the tracking error dynamics (28). We can stabilize the x1,e
dynamics by using the linear controller

u1 � u1,r − c1x1,e (33)

which yields GES for x1,e, provided c1 > 0.
If we now set x1,e equal to 0 in (28) we obtain

ẋ2,e � u2 − u2,r

ẋ3,e � x2,eu1,r (34)
...

ẋn,e � xn−1,eu1,r

where we used (33).
Notice that the system (34) is a linear time-varying system:



ẋ2,e

ẋ3,e

ẋ4,e
...

ẋn,e


�



0 . . . . . . . . . 0

u1,r(t)
. . .

...

0 u1,r(t)
. . .

...
...

. . .
. . .

. . .
...

0 . . . 0 u1,r(t) 0


︸ ︷︷ ︸

A(t)



x2,e

x3,e

x4,e
...

xn,e


+



1

0

0
...

0


︸ ︷︷ ︸

B

(u2 − u2,r)

(35)

that can be made exponentially stable by means of the controller u(t) �
K (t)x(t) provided the system (35) is uniformly controllable (cf. Theo-
rem A.2).

This observation leads to the following

9
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PROPOSITION A.2
Assume that the reference trajectory (xr, ur) satisfying (27) to be tracked
by our chained form system is given. Define

wr(t, t0) �



1∫ t

t0

u1,r(τ )dτ(∫ t

t0

u1,r(τ )dτ
)2

...(∫ t

t0

u1,r(τ )dτ
)n−2


�



1

x1,r(t) − x1,r(t0)

(x1,r(t) − x1,r(t0))2
...

(x1,r(t) − x1,r(t0))n−2


(36)

and assume that there exist δ , ε 1, ε 2 > 0 such that for all t > 0:

ε 1I ≤
∫ t+δ

t
wr(t, τ )wr(t, τ )T dτ ≤ ε 2I . (37)

Consider the system (28) in closed-loop with the linear controller

u1 � u1,r − c1x1,e

u2 � u2,r + K (t)


x2,e

...

xn,e

 (38)

where c1 > 0 and K (t) is given by

K (t) � −[1 0 0 . . . 0]
[∫ t+δ

t
2e4α (t−τ )wr(t, τ )wr(t, τ )T dτ

]−1

(39)

with α > 0. If x2,r(t), . . . , xn−1,r(t) are bounded then the closed-loop system
(28,38) is globally K -exponentially stable.

Proof We can see the closed-loop system (28,38) as a system of the form
(7) where

z1 � [x2,e, . . . , xn,e]T (40)
z2 � x1,e (41)

f1(t, z1) � (A(t) − B K (t))z1 (42)
f2(t, z2) � −c1z2 (43)

k(t, z1, z2) � −c1[0, x2, x3, . . . , xn−1]T (44)

10
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with

A(t) �



0 . . . . . . . . . 0

u1,r(t) . . .
...

0
. . .

. . .
...

...
. . .

. . .
. . .

...

0 . . . 0 u1,r(t) 0


B �



1

0
...
...

0


(45)

To be able to apply Theorem A.1 we need to verify the three assumptions:

• assumption on Σ1: Due to the assumption (37) on u1,r(t) we have that
the system (35) is uniformly controllable (cf. Remark A.3). There-
fore, from Theorem A.2 we know that ż1 � f1(t, z1) is GES and
therefore GUAS. From converse Lyapunov theory (see e. g. [10]) the
existence of a suitable V is guaranteed.

• assumption on connecting term: Since x2,r, . . . , xn−1,r are bounded,
we have

fk(t, z1, z2)f ≤ c1

f


0

x2,r
...

xn−1,r

 f + f


0

x2,e
...

xn−1,e

 f
 (46)

≤ c1M + c1fxf (47)

• assumption on Σ2: Follows from GES of ẋ2 � −c1x2.

Therefore, we can conclude GUAS from Theorem A.1. Since both Σ1 and
Σ2 are GES, Lemma A.1 gives the desired result.

REMARK A.2
Notice that since

u1(t) � u1,r(t) − c1x1,e(t0) exp(−c1(t− t0)) (48)

the condition (37) on u1,r(t) is satisfied if and only if a similar condition
on u1(t) is satisfied (i.e. in which the r is omitted).

11
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Therefore, we can also see the closed-loop system (28,38) as a system
of the form (7) where

z1 � [x2,e, . . . , xn,e]T (49)
z2 � x1,e (50)

f1(t, z1) � (A(t) − B K (t))z1 (51)
f2(t, z2) � −c1z2 (52)

k(t, z1, z2) � −c1[0, x2,r, x3,r, . . . , xn−1,r]T (53)
with

A(t) �



0 . . . . . . . . . 0

u1(t) . . .
...

0
. . .

. . .
...

...
. . .

. . .
. . .

...

0 . . . 0 u1(t) 0


B �



1

0
...
...

0


(54)

Notice that we redefined A(t) and that correspondingly the connecting
term k(t, z1, z2) changed. When we modify our controller accordingly, i.e.
redefine K (t) in (38) as

K (t) � −[1 0 0 . . . 0]
[∫ t+δ

t
2e4α (t−τ )w(t, τ )w(t, τ )T dτ

]−1

(55)

with α > 0, where

w(t, t0) �



1∫ t

t0

u1(τ )dτ(∫ t

t0

u1(τ )dτ
)2

...(∫ t

t0

u1(τ )dτ
)n−2


�



1

x1(t) − x1(t0)

(x1(t) − x1(t0))2
...

(x1(t) − x1(t0))n−2


(56)

we can copy the proof.
Moreover, since the connecting term k(t, z1, z2) now can be bounded by

a constant, we can claim not only global K -exponential stability, but even
GES. However, the disadvantage of (55) in comparison to (39) is that it
depends on the state and therefore can not be determined a priori for a
known reference trajectory in contrast to (39).

12
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REMARK A.3
Notice that in general it is not easy to compute Φ(t, t0). However, for the
system (35) this turns out not to be too difficult, due to the nice and simple
structure of the matrix A(t). We find:

Φ(t, t0) �


f0(t, t0) 0 . . . 0

f1(t, t0) f0(t, t0) . . .
...

...
. . .

. . . 0

fn−2(t, t0) . . . f1(t, t0) f0(t, t0)

 (57)

where

fk(t, t0) � 1
k!

[∫ t

t0

u1,r(σ )dσ
]k

� 1
k!
[x1,r(t) − x1,r(t0)]k (58)

From this it is also straightforward to see that uniform controllability of
the system (35) can also be rephrased as persistency of excitation of the
vector 

f0(t, t0)
f1(t, t0)

...

fn−2(t, t0)

 (59)

REMARK A.4
Notice that the persistency of excitation condition (37) is obviously met
in case lim inf t→∞ u1,r(t) � ε > 0, so that the results of [5; 6; 7; 17] are
included in this result.

4. An Observer

The observability property for chained-form systems was considered in
[1], in which a (local) observer was proposed in case u1(t) � −c1x1(t). In
this section we propose a globally exponentially stable observer for the
chained system under an observability condition which is related to the
persistence of excitation with respect to the first component of the state.

13
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PROPOSITION A.3
Consider the chained-form system (26) with output (30). Define

w(t, t0) �



1∫ t

t0

u1(τ )dτ(∫ t

t0

u1(τ )dτ
)2

...(∫ t

t0

u1(τ )dτ
)n−2


�



1

x1(t) − x1(t0)

(x1(t) − x1(t0))2
...

(x1(t) − x1(t0))n−2


(60)

Assume that there exist δ , ε 1, ε 2 > 0 such that for all t > 0:

ε 1I ≤
∫ t+δ

t
w(t, τ )w(t, τ )T dτ ≤ ε 2I . (61)

Then the observer

˙̂x2

˙̂x3

˙̂x4
...
˙̂xn


�



0 . . . . . . . . . 0

u1
. . .

...

0 u1
. . .

...
...

. . .
. . .

. . .
...

0 . . . 0 u1 0





x̂2

x̂3

x̂4
...

x̂n


+



1

0

0
...

0


u2 + H(t)x̃n (62)

where x̃n � xn − x̂n and

H(t) � [
ΦT(t− δ , t)Mα (t− δ , t)Φ(t− δ , t)]−1

C T (α > 0) (63)
guarantees that the observation error x̃ � x − x̂ converges to zero expo-
nentially.

Proof Because of the assumption on u1(t), we have a uniformly observ-
able linear time-varying system. The result follows readily from standard
linear theory (see e. g. [19]).

5. The Output Feedback Problem

In section 3 we derived a state feedback controller for tracking a desired
trajectory, whereas in section 4 we derived an observer for a system in
chained-form. We can also combine these two results in a “certainty equiv-
alence” sense:
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PROPOSITION A.4
For the reference trajectory (xr, ur) satisfying (27) define

wr(t, t0) �



1∫ t

t0

u1,r(τ )dτ(∫ t

t0

u1,r(τ )dτ
)2

...(∫ t

t0

u1,r(τ )dτ
)n−2


�



1

x1,r(t) − x1,r(t0)

(x1,r(t) − x1,r(t0))2
...

(x1,r(t) − x1,r(t0))n−2


(64)

and assume that there exist δ , ε 1, ε 2 > 0 such that for all t > 0:

ε 1I ≤
∫ t+δ

t
wr(t, τ )wr(t, τ )T dτ ≤ ε 2I . (65)

Consider the system (28) in closed-loop with the linear controller-observer-
combination

u1 � u1,r − c1x1,e

u2 � u2,r + K (t)


x̂2,e
...

x̂n,e




˙̂x2,e

˙̂x3,e

˙̂x4,e
...

˙̂xn,e


�



0 . . . . . . . . . 0

u1,r
. . .

...

0 u1,r
. . .

...
...

. . .
. . .

. . .
...

0 . . . 0 u1,r 0





x̂2,e

x̂3,e

x̂4,e
...

x̂n,e


+



1

0

0
...

0


u2 + H(t)x̃n

(66)

where x̃n � xn − x̂n, c1 > 0 and K (t) and H(t) are given by

K (t) � −[1 0 0 . . . 0]
[∫ t+δ

t
2e4α (t−τ )wr(t, τ )wr(t, τ )T dτ

]−1

H(t) �
[
2e4α (τ −t)wr(τ , t− δ )wr(τ , t− δ )T dτ Φ(t− δ , t)

]−1
wr(t, t− δ )

with α > 0. If x2,r, . . . , xn−1,r are bounded then the closed-loop system
(28,66) is globally K -exponentially stable.
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Proof Similar to that of Proposition A.2. Note that due to the assumption
on u1,r we have both uniform controllability and uniform controllability.
From Theorem A.3 we then know that the system

[
ż1

˙̂z1

]
�

[
A(t) −B K (t)

A(t) + H(t)C −B K (t) − H(t)C

][
z1

ẑ1

]
(67)

is globally exponentially stable.
Since we can write the closed-loop system (28,66) as

[
ż1

˙̂z1

]
�

[
A(t) −B K (t)

A(t) + H(t)C −B K (t) − H(t)C

][
z1

ẑ1

]

+

 k(t,
[

z1

ẑ1

]
, z2)

0

 z2

ż2 � −c1z2

where

z1 � [x2,e, . . . , xn,e]T
z2 � x1,e

k(t,
[

z1

ẑ1

]
, z2) � −c1[0, x2, x3, . . . , xn−1]T

The proof can be completed similar to that of Proposition A.2.

6. Conclusions

In this paper we considered the tracking problem for nonholonomic sys-
tems in chained-form by means of output feedback. We combined a time-
varying state feedback controller with an observer for the chained-form
in a “certainty equivalence” way. The stability of the closed loop system
is shown using results from time-varying cascaded systems. Under a con-
dition of persistence of excitation, we have shown globally K -exponential
stability of the closed loop system.
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Paper B

Linear Controllers for Exponential
Tracking of Systems in Chained Form

E. Lefeber, A. Robertsson, and H. Nijmeijer

Abstract

In this paper we address the tracking problem for a class of nonholo-
nomic chained form control systems. We present a simple solution for
both the state feedback and the dynamic output feedback problem.
The proposed controllers are linear and render the tracking error dy-
namics globally K -exponentially stable. We also deal with both control
problems under input saturation.

Reproduced from

Lefeber, E., A. Robertsson, and H. Nijmeijer (2000): “Linear controllers for
exponential tracking of systems in chained form.” International Journal of
Robust and Nonlinear Control: Special issue on Control of Underactuated
Nonlinear Systems, 10:4. In press. c&1999 John Wiley & Sons, Ltd.
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1. Introduction

In recent years the control, and in particular the stabilization, of nonholo-
nomic dynamic systems has received considerable attention. One of the
reasons for this is that no smooth stabilizing static state-feedback con-
trol law exists for these systems, since Brockett’s necessary condition for
smooth stabilization is not met [3]. For an overview we refer to the survey
paper [21] and references cited therein.

Although the stabilization problem for nonholonomic control systems
is now well understood, the tracking control problem has received less
attention. In fact, it is unclear how the stabilization techniques available
can be extended directly to tracking problems for nonholonomic systems.

In [7; 8; 17; 27; 28; 29] tracking control schemes have been proposed
based on the linearization of the corresponding error model. All these pa-
pers solve the local tracking problem for some classes of nonholonomic
systems. To our knowledge, the first global tracking control law was pro-
posed in [36] for a two-wheel driven mobile car. Other global results can
be found in [6; 12; 13; 15; 25; 31].

In this paper we study the tracking problem for the class of nonholo-
nomic systems in chained form [27]. It is well known that many mechani-
cal systems with nonholonomic constraints can be locally, or globally, con-
verted to the chained form under coordinate change and state feedback.

A disadvantage of most of the aforementioned tracking controllers is
their lack of a clear interpretation. Complicated changes of coordinates
and difficult Lyapunov analysis are needed to show that the proposed
control laws yield asymptotic stability of the tracking error dynamics.

The purpose of this paper is to develop simple tracking controllers for
the class of nonholonomic systems in chained form. Based on a result
for (time-varying) cascaded systems [32] we divide the tracking error dy-
namics into a cascade of two linear sub-systems which we can stabilize
independently of each other with simple (i. e., linear) controllers.

Using the same approach we also consider the tracking problem for
chained form systems by means of dynamic output-feedback. To our knowl-
edge, the only papers that addressed the dynamic output-feedback prob-
lem are [1; 2] that concern the stabilization problem and [12; 24] dealing
with the tracking problem.

Last, we partially deal with the tracking control problem under input
constraints. The only results on saturated tracking control of nonholo-
nomic systems that we are aware of, are [12] which deals with this prob-
lem for a mobile robot with two degrees of freedom, and [14] that deals
with general chained form systems.

The organization of the paper is as follows: In Section 2 we present
the class of systems and state the problem formulation. Based on the
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2. Preliminaries and Problem Formulation

theory from Section 2, section 3 deals with the design of simple tracking-
controllers, for both the state-feedback case and for the output-feedback
case. Also both control problems under input saturation are studies in this
section. Section 4 illustrates the presented design methods with simula-
tions of an articulated vehicle and comparisons with other recent design
methods are made. Finally, Section 5 concludes the paper.

2. Preliminaries and Problem Formulation

In this section we introduce definitions and theorems used in the remain-
der of this paper and formulate the problem under consideration. We start
with some basic stability concepts in 2, present a result for cascaded sys-
tems in 2 and recall present in 2 some results from linear systems theory
we use. We conclude this section with the problem formulation in 2.

Stability

To start with, we recall some basic concepts (see e. g. [19; 42]).

DEFINITION B.1
A continuous function α : [0, a) → [0,∞) is said to belong to class K if it
is strictly increasing and α (0) � 0.

DEFINITION B.2
A continuous function β : [0, a) � [0,∞) → [0,∞) is said to belong to
class K L if, for each fixed s, the mapping β (r, s) belongs to class K with
respect to r and, for each fixed r, the mapping β (r, s) is decreasing with
respect to s and β (r, s) → 0 as s →∞.

Consider the system

ẋ � f (t, x), f (t, 0) � 0, ∀t ≥ 0 (1)

with x ∈ IRn and f (t, x) piecewise continuous in t and locally Lipschitz in
x.

DEFINITION B.3
The system (1) is uniformly stable if for each ε > 0 there is δ � δ (ε ) > 0,
independent of t0, such that

fx(t0)f < δ ; fx(t)f < ε , ∀t ≥ t0 ≥ 0. (2)

3
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DEFINITION B.4
The system (1) is globally uniformly asymptotically stable (GUAS) if it is
uniformly stable and globally attractive, that is, there exists a class K L
function β (⋅, ⋅) such that for every initial state x(t0):

fx(t)f ≤ β (fx(t0)f, t− t0), ∀t ≥ t0 ≥ 0 (3)

DEFINITION B.5
The system (1) is globally exponentially stable (GES) if there exist k > 0
and γ > 0 such that for any initial state x(t0):

fx(t)f ≤ fx(t0)fk exp[−γ (t− t0)]. (4)

A slightly weaker notion of exponential stability is the following

DEFINITION B.6—CF. [37]
We call the system (1) globally K -exponentially stable if there exist γ > 0
and a class K function κ (⋅) such that

fx(t)f ≤ κ (fx(t0)f) exp[−γ (t− t0)] (5)

Cascaded systems

Consider the system{
ż1 � f1(t, z1) + k(t, z1, z2)z2

ż2 � f2(t, z2)
(6)

where z1 ∈ IRn, z2 ∈ IRm, f1(t, z1) is continuously differentiable in (t, z1)
and f2(t, z2), k(t, z1, z2) are continuous in their arguments, and locally
Lipschitz in z2 and (z1, z2) respectively.

We can view the system (6) as the system

Σ1 : ż1 � f1(t, z1) (7)

that is perturbed by the state of the system

Σ2 : ż2 � f2(t, z2). (8)
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When Σ2 is asymptotically stable, we have that z2 tends to zero, which
means that the z1 dynamics in (6) asymptotically reduces to Σ1. Therefore,
we can hope that asymptotic stability of both Σ1 and Σ2 implies asymptotic
stability of (6).

Unfortunately, this is not true in general. However, from the proof
presented in [32] it can be concluded that:

THEOREM B.1—BASED ON [32]
The cascaded system (6) is GUAS if the following three assumptions hold:

• assumption on Σ1: the system ż1 � f1(t, z1) is GUAS and there exists
a continuously differentiable function V (t, z1) : IR+ � IRn → IR that
satisfies

W1(z1) ≤ V (t, z1) ≤ W2(z1), ∀t ≥ 0, ∀z1 ∈ IRn, (9)
∂ V
∂ t

+ ∂ V
∂ z1

⋅ f1(t, z1) ≤ 0, ∀fz1f ≥ η , (10)∥∥∥∥ ∂ V
∂ z1

∥∥∥∥ fz1f ≤ cV (t, z1), ∀fz1f ≥ η , (11)

where W1(z1) and W2(z1) are positive definite proper function and
c > 0 and η > 0 are constants,

• assumption on the interconnection: the function k(t, z1, z2) satisfies
for all t ≥ t0:

fk(t, z1, z2)f ≤ θ 1(fz2f) + θ 2(fz2f)fz1f, (12)
where θ 1, θ 2 : IR+ → IR+ are continuous functions,

• assumption on Σ2: the system ż2 � f2(t, z2) is GUAS and for all
t0 ≥ 0: ∫ ∞

t0

fz2(t0, t, z2(t0))fdt ≤ κ (fz2(t0)f), (13)

where the function κ (⋅) is a class K function.

REMARK B.1
Notice the assumption on Σ1 is slightly weaker than the one presented
in [32]. However, under the assumption mentioned above the result can
still be shown to be true by (almost) exactly copying the proof presented
in [32].
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LEMMA B.5—SEE [31]
If in addition to the assumptions in Theorem B.1 both ż1 � f1(t, z1) and
ż2 � f2(t, z2) are globally K -exponentially stable, then the cascaded sys-
tem (6) is globally K -exponentially stable.

Linear time-varying systems

Consider the linear time-varying system

ż �



0 . . . . . . . . . 0

ψ (t) 0 . . . . . . 0

0
. . .

. . .
...

...
. . .

. . .
. . .

...

0 . . . 0 ψ (t) 0


︸ ︷︷ ︸

A(t)

z+



1

0
...
...

0


︸ ︷︷ ︸

B(t)

u

y �
[

0 . . . . . . 0 1
]

︸ ︷︷ ︸
C (t)

z

(14)

where z ∈ IRm and let Φ(t, t0) denote the state-transition matrix for the
system ż � A(t)z. We recall two definitions from linear control theory (cf.
[16; 34]).
DEFINITION B.7
The pair (A(t), B(t)) is uniformly completely controllable (UCC) if there
exist δ , ε 1, ε 2 > 0 such that for all t > 0:

ε 1I ≤
∫ t+δ

t
Φ(t, τ )B(τ )B(τ )T ΦT(t, τ )dτ ≤ ε 2I (15)

DEFINITION B.8
The pair (A(t), C (t)) is uniformly completely observable (UCO) if there
exist δ , ε 1, ε 2 > 0 such that for all t > 0:

ε 1I ≤
∫ t

t−δ
ΦT(τ , t− δ )C (τ )T C (τ )Φ(τ , t− δ )dτ ≤ ε 2I (16)

From linear systems theory several methods are available to exponen-
tially stabilize the linear time-varying system (14) via state or dynamic
output-feedback, in case the pairs (A(t), B(t)) and (A(t), C (t)) are uni-
formly completely controllable and observable respectively.
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ASSUMPTION B.6
We assume that ψ (t) : [0,∞) → IR is a bounded continuously differen-
tiable Lipschitz function that does not converge to zero. More precise, we
assume that

• there exists a constant M such that for all t: eψ (t)e ≤ M,

• ψ (t) is a continuously differentiable function with respect to t,

• there exists a constant L such that for all t1, t2 ∈ [0,∞): eψ (t1) −
ψ (t2)e ≤ Let1 − t2e,

• there exist δ > 0 and ε > 0 such that for all t ≥ 0 there exists an
s ∈ [t, t+ δ ] such that eψ (s)e ≥ ε .

PROPOSITION B.7
Assume ψ (t) satisfies the conditions of Assumption B.6. Then the sys-
tem (14) is uniformly completely controllable and uniformly completely
observable.

Proof This is a direct consequence of Theorem 2 in [18].

THEOREM B.2
Consider the system (14) in closed-loop with the controller

u � −k1z1 − k2ψ (t)z2 − k3z3 − k4ψ (t)z4 − . . . (17)
where ki (i � 1, . . . , m) are such that the polynomial

λ m + k1λ m−1 + ⋅ ⋅ ⋅+ km−1λ + km (18)
is Hurwitz (i. e., has its roots in the left half of the open complex plane). If
ψ (t) meets Assumption B.6, then the closed-loop system (14,17) is GES.

Proof See Appendix.

REMARK B.2
Notice we use a linear controller of the form u � K (t)x with a special
choice of the gain K (t). Clearly, several other choices can be made. One
possibility is to use the gain as known from ‘standard linear control theory’
[34] as we used in [24], or a gain as proposed in [5] (c.f. [25]), based on
pole-placement [41; 40] or based on any robust design method for LTV
systems.
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THEOREM B.3
Consider the system (14) in closed-loop with the controller

u � −k1ẑ1 − k2ψ (t)ẑ2 − k3ẑ3 − k4ψ (t)ẑ4 − . . . (19)

where ẑ is generated from the observer

˙̂z �



0 . . . . . . . . . 0

ψ (t) 0 . . . . . . 0

0
. . .

. . .
...

...
. . .

. . .
. . .

...

0 . . . 0 ψ (t) 0


ẑ+



1

0
...
...

0


u+



...

l4ψ (t)
l3

l2ψ (t)
l1


(y− ŷ)

ŷ �
[

0 . . . . . . 0 1
]

ẑ

(20)

and ki, li (i � 1, . . . , m) are such that the polynomials

λ m + k1λ m−1 + ⋅ ⋅ ⋅+ km−1λ + km

λ m + l1λ m−1 + ⋅ ⋅ ⋅+ lm−1λ + lm
(21)

are Hurwitz (i. e., have their roots in the left half of the open complex
plane). If ψ (t) meets Assumption B.6, then the closed-loop system
(14,19,20) is GES.

Proof See Appendix.

Problem formulation

The class of chained-form nonholonomic systems we study in this paper
is given by the following equations

ẋ1 � u1

ẋ2 � u2

ẋ3 � x2u1 (22)
...

ẋn � xn−1u1

where x � (x1, . . . , xn) is the state, u1 and u2 are control inputs.
Consider the problem of tracking a reference trajectory (xr, ur) generated

8
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by the chained-form system:

ẋ1,r � u1,r

ẋ2,r � u2,r

ẋ3,r � x2,ru1,r (23)
...

ẋn,r � xn−1,ru1,r

where we assume u1,r(t) and u2,r(t) to be continuous functions of time.
This reference trajectory can be generated by any of the motion planning
techniques available from the literature.

When we define the tracking error xe � x − xr we obtain as tracking
error dynamics

ẋ1,e � u1 − u1,r � u1 − u1,r

ẋ2,e � u2 − u2,r � u2 − u2,r

ẋ3,e � x2u1 − x2,ru1,r � x2,eu1,r + x2(u1 − u1,r)
...

...

ẋn,e � xn−1u1 − xn−1,ru1,r � xn−1,eu1,r + xn−1(u1 − u1,r)

(24)

The state-feedback tracking control problem then can be formulated as

PROBLEM B.3—STATE-FEEDBACK TRACKING CONTROL PROBLEM

Find appropriate state feedback laws u1 and u2 of the form

u1 � u1(t, x, xr, ur) and u2 � u2(t, x, xr, ur) (25)

such that the closed-loop trajectories of (24,25) are globally uniformly
asymptotically stable.

Consider the system (22) with output

y �
[

x1

xn

]
(26)

then it is easy to show (see e. g. [1]) that the system (22) with output (26)
is locally observable at any x ∈ IRn.

Now we can formulate the dynamic output-feedback tracking problem
as

9
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PROBLEM B.4—DYNAMIC OUTPUT-FEEDBACK TRACKING CONTROL PROBLEM

Find appropriate control laws u1 and u2 of the form

u1 � u1(t, x̂, y, xr, ur) and u2 � u2(t, x̂, y, xr, ur) (27)

where x̂ is generated from an observer

˙̂x � f (t, x̂, y, xr, ur) (28)

such that the closed-loop trajectories of (24,27,28) are globally uniformly
asymptotically stable.

3. Controller Design

As mentioned in the introduction, our goal is to find simple controllers
that globally stabilize the tracking error dynamics (24). The approach
used in [15] is based on the integrator backstepping idea [4; 20; 22; 39]
which consists of searching a stabilizing function for a subsystem of (24),
assuming the remaining variables to be controls. Then, new variables are
defined, describing the difference between the desired dynamics and the
true dynamics. Subsequently a stabilizing controller for this ‘new system’
is looked for.

This approach has the advantage that it can lead to globally stabilizing
controllers for systems in chained form. A disadvantage, however, is that
the controller is also expressed in these ‘new coordinates’. When written
in the ‘original’ chained form coordinates, usually complex expressions are
obtained. Especially since a change of coordinates is required to bring the
dynamics (24) in a triangular form suitable for applying the integrator
backstepping technique.

To arrive at simple controllers, our approach is different. We use the
ideas of cascaded systems [11; 26; 30] and in particular the result for time-
varying systems as presented in [32]. With the result of Theorem B.1 in
mind, we try to look for a subsystem which, with a stabilizing control law,
can be written in the form ż2 � f2(t, z2) and is asymptotically stable. In
the remaining dynamics we can then replace the appearance of z2 by 0,
leading to the system ż1 � f1(t, z1). As a result we can write the system
in the form (6). If both the subsystems ż1 � f1(t, z1) and ż2 � f2(t, z2) are
asymptotically stable we might be able to conclude asymptotic stability of
the overall system by means of Theorem B.1.

One could remark that for arriving at the chained form, usually com-
plex changes of coordinates and state feedback are needed. Therefore, a

10
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simple controller in chained form coordinates is no guarantee for a sim-
ple controller in the coordinates of the original model. However, using the
same idea simple controllers in the original coordinates can also be found,
as was shown in [31] for a two-wheel driven mobile car.

Consider the tracking error dynamics

ẋ1,e � u1 − u1,r

ẋ2,e � u2 − u2,r

ẋ3,e � x2,eu1,r + x2(u1 − u1,r)
...

ẋn,e � xn−1,eu1,r + xn−1(u1 − u1,r)

(29)

It is very easy to stabilize only the x1,e dynamics, for example by using

u1 � u1,r − kx1,e k > 0 (30)

Clearly, other choices can be made as well.
Once the x1,e dynamics are asymptotically stable, we have determined

a subsystem of the form ż2 � f2(t, z2). In order to arrive at the ż1 � f1(t, z1)
dynamics, we can assume we already have stabilized the ẋ1,e dynamics,
i. e., we assume x1,e(t) � 0. As a result also u1(t) − u1,r(t) � 0. Then the
remaining dynamics become

ẋ2,e � u2 − u2,r

ẋ3,e � x2,eu1,r
...

ẋn,e � xn−1,eu1,r

(31)

which is equivalent to

ẋ2,e

ẋ3,e
...
...

ẋn,e


︸ ︷︷ ︸

ż1

�



0 . . . . . . . . . 0

u1,r(t) 0 . . . . . . 0

0
. . .

. . .
...

...
. . .

. . .
...

0 . . . 0 u1,r(t) 0


︸ ︷︷ ︸

A(t)



x2,e

x3,e
...
...

xn,e


︸ ︷︷ ︸

z1

+



1

0
...
...

0


︸ ︷︷ ︸

B

(u2 − u2,r)

(32)

11
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Now we only have to make sure that the system (32) in closed-loop with
a suitably chosen feedback controller for u2 is asymptotically stable, and
hope that Theorem B.1 enables us to conclude asymptotic stability of the
tracking error dynamics (29).

As a result, we have reduced the tracking control problem to the prob-
lem of finding a control law for u1 that stabilizes the linear system

ẋ1,e � u1 − u1,r (33)

and finding a control law for u2 that stabilizes the LTV system (32).

State-feedback

In order to solve the state-feedback tracking control problem (Problem B.3)
we stabilize the systems (32) and (33). For stabilizing (32) we use the re-
sult of Theorem B.2 and for stabilizing (33) we use (30). As a result we
get

THEOREM B.4
Consider the tracking error dynamics (29). Assume that u1,r(t) satisfies
Assumption B.6 and that x2,r, . . . , xn−1,r are bounded.

Then the control law

u1 � u1,r − k1x1,e

u2 � u2,r − k2x2,e − k3u1,r(t)x3,e − k4x4,e − k5u1,r(t)x5,e . . .
(34)

results in closed-loop dynamics that are globally K -exponentially stable,
provided k1 > 0 and ki (i � 2, . . . , n) are such that the polynomial

λ n−1 + k2λ n−2 + ⋅ ⋅ ⋅+ kn−1λ + kn (35)

is Hurwitz (i. e., has its roots in the left half of the open complex plane).

Proof We can see the closed-loop system (29,34) as a system of the form
(6) where

z1 � [x2,e, . . . , xn,e]T (36)
z2 � x1,e (37)

f1(t, z1) � (A(t) − B K (t))z1 (38)
f2(t, z2) � −k1z2 (39)

k(t, z1, z2) � −k1[0, x2, x3, . . . , xn−1]T (40)

12
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with

A(t) �



0 . . . . . . . . . 0

u1,r(t) . . .
...

0
. . .

. . .
...

...
. . .

. . .
. . .

...

0 . . . 0 u1,r(t) 0


, B �



1

0
...
...

0


,

K (t) � [ k2 k3 ⋅ u1,r(t) k4 k5 ⋅ u1,r(t) . . . ]

(41)

To be able to apply Theorem B.1 we need to verify the three assumptions:

• assumption on Σ1: Due to the assumption on u1,r(t) we have from
Theorem B.2 that ż1 � f1(t, z1) is GES (and therefore GUAS). From
converse Lyapunov theory (see e. g. [19]) the existence of a suitable
V is guaranteed.

• assumption on connecting term: Since x2,r, . . . , xn−1,r are bounded,
we have

fk(t, z1, z2)f ≤ k1

f


0

x2,r
...

xn−1,r

 f + f


0

x2,e
...

xn−1,e

 f
 (42)

≤ k1M + k1fz1f (43)

• assumption on Σ2: Follows from GES of ż2 � −k1z2.

Therefore, we conclude GUAS from Theorem B.1. Since both Σ1 and Σ2

are GES, Lemma B.5 gives the desired result.

Dynamic output-feedback
In order to solve the dynamic output-feedback tracking control problem

13
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(Problem B.4) we stabilize the systems

ẋ2,e

ẋ3,e
...
...

ẋn,e


�



0 . . . . . . . . . 0

u1,r(t) 0 . . . . . . 0

0
. . .

. . .
...

...
. . .

. . .
...

0 . . . 0 u1,r(t) 0





x2,e

x3,e
...
...

xn,e


+



1

0
...
...

0


(u2 − u2,r)

y1 � xn,e

(44)

and

ẋ1,e � u1 − u1,r

y2 � x1,e
(45)

For stabilizing (44) we use the result of Theorem B.3 and for stabilizing
(33) we use again (30). As a result we obtain

THEOREM B.5
Consider the tracking error dynamics (29). Assume that u1,r(t) satisfies
Assumption B.6 and that x2,r, . . . , xn−1,r are bounded.

Then the control law

u1 � u1,r − k1x1,e

u2 � u2,r − k2 x̂2,e − k3u1,r(t)x̂3,e − k4 x̂4,e − k5u1,r(t)x̂5,e . . .
(46)

where [x̂2,e, . . . , x̂n,e]T is generated by the observer

˙̂x2,e

˙̂x3,e

...

...
˙̂xn,e


�



−k2 −k3u1,r(t) . . . . . . . . .
u1,r(t) 0 . . . . . . 0

0
. . .

. . .
...

...
. . .

. . .
...

0 . . . 0 u1,r(t) 0





x̂2,e

x̂3,e

...

...

x̂n,e



+



...

l5u1,r(t)
l4

l3u1,r(t)
l2


(xn,e − x̂n,e)

(47)
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results in closed-loop dynamics that are globally K -exponentially stable,
provided that k1 > 0 and ki, li (i � 2, . . . , n) are such that the polynomials

λ n−1 + k2λ n−2 + ⋅ ⋅ ⋅+ kn−1λ + kn (48)
λ n−1 + l2λ n−2 + ⋅ ⋅ ⋅+ ln−1λ + ln (49)

are Hurwitz (i. e., have their roots in the left half of the open complex
plane).
Proof We can see the closed-loop system (29,34) as a system of the form
(6) where

z1 � [x2,e, . . . , xn,e, x̃2,e, . . . , x̃n,e]T (50)
z2 � x1,e (51)

f1(t, z1) �
[

A(t) − B K (t) −B K (t)
0 A(t) − L(t)C

]
z1 (52)

f2(t, z2) � −k1z2 (53)
k(t, z1, z2) � −k1[0, x2, x3, . . . , xn−1, 0, . . . , 0︸ ︷︷ ︸

n−1

]T (54)

and x̃i,e � xi,e− x̂i,e (i � 2, . . . , n). To be able to apply Theorem B.1 we need
to verify the three assumptions:

• assumption on Σ1: Due to the assumption on u1,r(t), we have from
Theorem B.3 that ż1 � f1(t, z1) is GES (and therefore GUAS). From
converse Lyapunov theory (see e. g. [19]) the existence of a suitable
V is guaranteed.

• assumption on connecting term: Since x2,r, . . . , xn−1,r are bounded,
we have again

fk(t, z1, z2)f ≤ k1M + k1fz1f (55)

• assumption on Σ2: Follows from GES of ż2 � −k1z2.

Therefore, we conclude GUAS from Theorem B.1. Since both Σ1 and Σ2

are GES, Lemma B.5 gives the desired result.

Saturated control

As in [14] we can consider the Problems B.3 and B.4 under the additional
design constraint that

eu1(t)e ≤ u1,max ∀t ≥ 0 (56)
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where u1,max is a constant such that sup
t
eu1,r(t)e < u1,max.

It is obvious that if we replace the expression u1 � u1,r − k1x1,e with

u1 � u1,r −σ (x1,e) (57)

where σ (⋅) is any differentiable function that satisfies

• xσ (x) > 0 for all x �� 0,

• sup
s
eσ (s)e ≤ u1,max − sup

t
eu1,r(t)e,

•
dσ
dx
(0) > 0,

the results of Theorems B.4 and B.5 still hold.
More interesting is the case where we not only assume the design

constraint (56) on u1, but also a design constraint on u2:

eu2(t)e ≤ u2,max ∀t ≥ 0 (58)

where u2,max is a constant such that supt eu2,r(t)e < u2,max. To our knowl-
edge, no saturated controller for stabilizing the general LTV system (14)
has been derived in the literature yet. However, for the case that u1,r is
constant for all t, the system (14) reduces to a time-invariant linear sys-
tem. In that case the results of [38] can be used to solve the problem for
both the state and dynamic output-feedback problem.

4. Simulations: Car with Trailer

In this section we apply the proposed state- and output-feedback designs
for the tracking control of a well-known benchmark problem; a towing car
with a single trailer, see e. g. [15; 27; 35].

The state configuration of the articulated vehicle consists of the posi-
tion of the car, (xc , yc), the steering angle φ , and the angles, (θ 0, θ 1),
of the car and the trailer with respect to the x-axis, see Fig. 1. The rear
wheels of the car and the trailer are aligned with the chassis and are not
allowed to slip sideways. The two input signals are the driving velocity of
the front wheels, ν , and the steering velocity, ω . The kinematic equations

16
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d1

θ 1

θ 0yc

xc

��
��
��

��
��
��

x

y

l

φ

Figure 1. Car with a trailer, see [27].

of motion for the vehicle can be described by (c.f. [27]):
ẋc � ν cosθ 0

ẏc � ν sinθ 0

φ̇ � ω (59)
θ̇ 0 � 1

l
tanφ

θ̇ 1 � 1
d1

ν sin(θ 0 − θ 1)

Via a (local) change of coordinates the system can be transformed to the
following system in chained form.

ẋ1 � u1

ẋ2 � u2

ẋ3 � u1x2 (60)
ẋ4 � u1x3

ẋ5 � u1x4

(61)
We refer to [15] for explicit expressions of the transformation.

For the simulations, we have considered tracking of a reference model
(23) moving along a straight line,

u1,r � 1, u2,r � 0,

17
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with the initial conditions

xir(0) � 0.0, i � 1, . . . , 5

x1(0) � 1.0, x2(0) � x3(0) � x4(0) � x5(0) � 0.5.

The state-feedback (SF) and the output feedback controller (OF) used
in the simulations are

u1,SF � u1,r − k1x1,e (62)
u2,SF � u2,r − k2x2,e − k3u1,r x3,e − k4x4,e − k5u1,rx5,e (63)
u1,O F � u1,r − k1x1,e (64)
u2,O F � u2,r − k2 x̂2,e − k3u1,r x̂3,e − k4 x̂4,e − k5u1,r x̂5,e (65)

where the ‘controller polynomial’ (48) has all the roots in λ � −2 and the
‘observer polynomial’ (49) has its roots in λ � −3.

In Figure 2 the behavior of the closed-loop system for the state-feedback
controller (SF) and the output-feedback controller (OF) are compared to
a recently presented state-feedback controller, J&N(106-7), based on a
backstepping design [15].

u2,J N � −k4z4 − 2k4z2 − u1r(3z3 + z1) (66)
u1,J N � u1r − k5z5 − [k4z4 + 2k4z2 + u1r(3z3 + z1)] ⋅ (67)[

z1 + z3 − 5
2

z2z5 − z4z5 + (2z1 + z3)z2
5

6

]
(68)

where

z1 � x5 − x4x1,e + 1
2

x3x2
1,e −

1
6

x2x3
1,e

z2 � x4 − x3x1,e + 1
2

x2x2
1,e

z3 � x3 − x2x1,e (69)
z4 � x2

z5 � x1,e

For the case of constant u1,r we can apply the ideas from [38] for
bounded control also on u2. Figure 3 and 4 show the tracking error in
the y-direction using bounded control of u2 for the state-feedback and the
output-feedback case. The saturated state-feedback controller [38] has the
structure

u1,sat � u1,r −σ 1(x1,e) (70)

u2,sat � u2,r −
4∑

j�1

ε iσ 2(yi) (71)
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SF
J&N (106−7)
OF

SF
J&N (106−7)
OF

Figure 2. The tracking errors xce and yce for the state-feedback controller (SF),
the output-feedback controller (OF) and the state-feedback controller in [15]. Note
that xce is identical for SF and OF.

where
y1

y2

y3

y4

 �


1 0 0 0

1 ε 0 0

1 ε 2 + ε ε 3 0

1 ε 3 + ε 2 + ε ε 5 + ε 4 + ε 3 ε 6




x2,e

x3,e

x4,e

x5,e

 (72)

and the saturated output-feedback controller uses the state estimations
from the observer (47) in a certainty equivalence sense.

5. Concluding Remarks

In this paper we addressed the problem of designing simple global track-
ing controllers for nonholonomic systems in chained form under both state
and dynamic output feedback.

We divided the (nonlinear) tracking control problem into two simpler
and ‘independent’ linear control problems. We showed by means of cas-
caded system theory that the two linear controllers that solve the two
linear control problems also solve the tracking problem.

The state and dynamic output feedback tracking problem under input
saturation were globally solved in case we have input saturation only on

19



Paper B. Linear Controllers for Exponential ...
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Figure 3. State feedback control with and without saturated u2.

u1. In case of input saturation on u1 and u2 both problems were solved
for constant u1,r.

We illustrated our results by means of a simulation of a car with a
trailer.

Challenging questions that remain open are the tracking problem un-
der input saturation on u1 and u2 for arbitrary u1,r and the study for
robustness of the proposed schemes.

Appendix: Proofs of Theorems B.2 and B.3

To start with, we consider the stability of the differential equation

dm

dtm y(t) + a1
dm−1

dtm−1 y(t) + ⋅ ⋅ ⋅+ am−1
d
dt

y(t) + am y(t) � 0 (73)
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Figure 4. Output feedback control with and without saturated u2.

For this system we can define the Hurwitz-determinants

∆i �

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1 a3 a5 . . . a2i−1

1 a2 a4 . . . a2i−2

0 a1 a3 . . . a2i−3

0 1 a2 . . . a2i−4
...

...
...

...
...

0 0 0 . . . ai

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(i � 1, . . . , m) (74)

where if an element aj appears in ∆i with j > i it is assumed to be zero.
It is well known [9] that the system (73) is asymptotically stable, if and
only if the determinants ∆i are all positive. Less known is a proof of this
result by means of the second method of Lyapunov. If we define

b1 � ∆1, b2 � ∆2

∆1
, b3 � ∆3

∆1∆2
, . . . , bi � ∆i−3∆i

∆i−2∆i−1
(i � 4, . . . , m)

(75)
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it was shown in [33] that the system (73) can also be represented as

ẇ �



−b1 −b2 0 . . . 0

1 0
. . .

. . .
...

0
. . .

. . .
. . . 0

...
. . .

. . .
. . . −bm

0 . . . 0 1 0


w (76)

Differentiating the Lyapunov function candidate

V � b1w2
1 + b1b2w2

2 + ⋅ ⋅ ⋅+ b1b2 ⋅ ⋅ ⋅ bm−1w2
m−1 + b1b2 ⋅ ⋅ ⋅ bmw2

m (77)

(which is positive definite if and only if the determinants ∆i are all posi-
tive) along solutions of (76) results in

V̇ � −b2
1w2

1 (78)

Asymptotic stability then can be shown by invoking LaSalle’s theorem
[23].

Inspired by the result of [33]we look for a state-transformation z � Sw,
that transforms the system (76) into

ż �



−a1 −a2 . . . . . . −am

1 0 . . . . . . 0

0
. . .

. . .
...

...
. . .

. . .
. . .

...

0 . . . 0 1 0


z (79)

To start with, we define

zm � wm (80)

Since ẇm � wm−1 and we would like żm � zm−1 we define

zm−1 � wm−1 (81)

Since ẇm−1 � wm−2 − bmwm and we would like żm−1 � zm−2 we define

zm−2 � wm−2 − bmwm (82)
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Proceeding similarly we define all zk and obtain an expression that look
like

zk � wk + sk,k+2 ⋅ wk+2 + sk,k+4 ⋅ wk+4 + . . . (83)

By this construction of the state-transformation, we are guaranteed to
meet the m − 1 final equations of (79). The only thing that remains to
be verified is if the equation for ż1 holds. From the structure displayed in
(83) we know the matrix S is nonsingular, so therefore we can write

ż1 � −α 1z1 −α 2z2 − ⋅ ⋅ ⋅−α nzn, α i ∈ IR, (i � 1, . . . , m). (84)

The characteristic polynomial of the transformed system then becomes

λ m +α 1λ m−1 + ⋅ ⋅ ⋅+α m−1λ +α m (85)

Since a state-transformation does not change the characteristic polyno-
mial and we know from [33] that the characteristic polynomial of (76)
equals

λ m + a1λ m−1 + ⋅ ⋅ ⋅+ am−1λ + am (86)

clearly α i � ai (i � 1, . . . , m).
Before we can prove Theorems B.2 and B.3 we need to remark one

thing about this transformation. When we define T � S−1, we know that

w1 � z1 + t1,3z3 + t1,5z5 + . . . (87)
w2 � z2 + t2,4z4 + t2,6z6 + . . . (88)

But also ẇ1 � −a1w1 − b2w2 (notice that b1 � a1). Therefore,

ẇ1 � ż1 + t1,3ż3 + t1,5 ż5 + . . . (89)
� (−a1z1 − a2z2 − ⋅ ⋅ ⋅− anzn) + t1,3z2 + t1,5z4 + . . . (90)
� [−a1z1 − a3z3 − . . . ] + [(t1,3 − a2)z2 + (t1,5 − a4)z4 + . . . ] (91)

So obviously

w1 � z1 + a3

a1
z3 + a5

a1
z5 + . . . (92)

Knowing this state-transformation and (92) we can start proving Theo-
rems B.2 and B.3.
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Proof of Theorem B.2 The closed-loop system (14,17) is given by

ż �



−a1 −a2u1,r(t) −a3 −a4u1,r(t) . . .
u1,r(t) 0 . . . . . . 0

0
. . .

. . .
...

...
. . .

. . .
. . .

...

0 . . . 0 u1,r(t) 0


z (93)

This can we rewritten as

ż � u1,r(t)



−a1 −a2 . . . . . . −am

1 0 . . . . . . 0

0
. . .

. . .
...

...
. . .

. . .
. . .

...

0 . . . 0 1 0


z

+ (u1,r(t) − 1)



a1z1 + a3z3 + . . .
0
...
...

0



(94)

When we apply the change of coordinates z � Sw as defined before, we
obtain

ẇ � u1,r(t)



−b1 −b2 0 . . . 0

1 0
. . .

. . .
...

0
. . .

. . .
. . . 0

...
. . .

. . .
. . . −bm

0 . . . 0 1 0


w

+ (u1,r(t) − 1)


1 ∗ . . . ∗

0
. . .

. . .
...

...
. . .

. . . ∗
0 . . . 0 1





a1w1

0
...
...

0



(95)
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which (using a1 � b1) can we rewritten as

ẇ �



−b1 −b2u1,r(t) 0 . . . 0

u1,r(t) 0
. . .

. . .
...

0
. . .

. . .
. . . 0

...
. . .

. . .
. . . −bmu1,r(t)

0 . . . 0 u1,r(t) 0


w (96)

Consider the Lyapunov function candidate

V � b1w2
1 + b1b2w2

2 + ⋅ ⋅ ⋅+ b1b2 ⋅ ⋅ ⋅ bm−1w2
m−1 + b1b2 ⋅ ⋅ ⋅ bmw2

m (97)

which is positive definite if and only if

λ m + a1λ m−1 + ⋅ ⋅ ⋅+ am−1λ + am (98)

is a Hurwitz-polynomial. Differentiating (97) along solutions of (96) re-
sults in

V̇ � −b2
1w2

1 (99)

It is well known [19] that the origin of the system (96) is GES if the pair



−b1 −b2u1,r(t) 0 . . . 0

u1,r(t) 0
. . .

. . .
...

0
. . .

. . .
. . . 0

...
. . .

. . .
. . . −bmu1,r(t)

0 . . . 0 u1,r(t) 0


, [b1, 0, . . . , 0]


(100)

is uniformly completely observable (UCO).
If u1,r(t) satisfies Assumption B.6 it follows immediately from Theorem

2 in [18] that the pair (100) is UCO, which completes the proof.
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Proof of Theorem B.3 We can write the closed-loop system (14,19,20)
as [

ż
˙̃z

]
�

[
A(t) − B K (t) −B K (t)

0 A(t) − L(t)C

][
z

z̃

]
(101)

where z̃ � z− ẑ.
Since u1,r(t) satisfies Assumption B.6 and ki, li are such that the poly-

nomials (21) are Hurwitz, we know from Theorem B.2 that the systems
ż � [A(t) − B K (t)]z and ˙̃z � [A(t) − L(t)C ]z̃ are GES.

Then the result follows immediately from Theorem B.1, (since K (t) is
bounded), and the fact that a LTV system which is GUAS also is GES
[10; 19].
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1. Introduction

There are at least three contexts in which the Yakubovich-Kalman-Popov
(YKP) lemma turns out to be instrumental for a solution: the absolute sta-
bility problem of nonlinear feedback control; cf. [8], [13], [23], [5]; [2]; and
adaptive control based on output error feedback; [18]; and the covariance-
matrix factorization of realization theory; [1];. We quote the lemma deriv-
ing from Yakubovich (1962), Kalman (1963), and Popov (1961)

YKP Lemma: Let G0(s) � C (sI−A)−1 B+D be a p�p transfer function
where A is Hurwitzian, (A, B) is controllable and (A, C ) is observable.
Then, G0(s) is strictly positive real if and only if there exist a positive
symmetric matrix P, matrices L, R, and a positive constant ε such that

PA+ AT P � −LLT − ε P

PB − C T � −LRT (1)
D + DT � RRT

2

This important lemma supports results of stability theory of nonlinear
feedback (circle criterion; Popov criterion) and adaptive system theory and
for extensions of Lyapunov theory such as passivity theory; [5], [17]. Al-
though the lemma is very powerful in its predictions, the strictly positive
real (SPR) conditions imposed on the transfer function are, unfortunately,
rather restrictive for application. As for the absolute stability problem of
nonlinear feedback systems, the starting point is the Lur’e problem of [10]
with a linear system and nonlinear feedback of cone-bounded nonlinear
variation described by the function ψ (⋅)

ẋ � Ax+ Bu � Ax− Bψ (z) (2)
z � C x (3)
u � −ψ (z), ψ T(z)(ψ (z) − K z) ≤ 0 (4)

A Lyapunov function candidate is the Lur’e-Lyapunov function

V (x, z) � xT Px+α
∫ z

0
ψ T(ζ )K dζ , (5)

P � PT > 0, α > 0 (6)

which satisfies requirements on ‘positivity’, ‘radial growth’, ‘continuity’
and ‘differentiation’. As guaranteed by the YKP lemma, the stability con-
dition V̇ ≤ 0 holds under fairly restrictive SPR conditions. The circle

2



2. Problem Formulation

theorem for SPR systems deals with the time-varying case under the as-
sumption that ψ (⋅, t) belongs to the cone [0,∞] and that infω Re G(jω ) > 0
for which the Lur’e system is L 2−stable; [5]. As the Lyapunov functions
generated by backstepping techniques apparently cannot be designed us-
ing the YKP lemma, there might exist other relevant classes of non-SPR
systems for which extended regions of stability might exist; [7]. In our
results, we extend stability theory to include non-SPR transfer functions
and dynamic output feedback or observer-based design violating the con-
trollability condition of the YKP lemma. A constructive method to provide
quadratic Lyapunov functions and Lur’e-Lyapunov function for nonlinear
output feedback of non-SPR transfer functions is given.

2. Problem Formulation

We will consider a class of problems which include observer-based feed-
back control and other classes of dynamic output feedback described by
the state-space system

dx0

dt
� A0x0 + B0u (7)

dξ
dt

� Aξ ξ + Bξ u+ Kξ C0x0 (8)

z � (C0 Cξ )
(

x0

ξ

)
+ ( D0 + Dξ )u (9)

u � −ψ (z) (10)
where {A0, B0, C0, D0} and the state x0 represent the original system—
i.e., the control object—whereas {Aξ , Bξ , Cξ , Dξ , Kξ } and ξ represent the
observer dynamics added to the system description. As all observer states
without restriction may be assumed available to measurement, the matrix
Cξ may be chosen freely, say, as motivated by calculated output feedback
parameters. This class of systems includes systems which violate the con-
trollability assumption of the YKP lemma. In shorter notation, we have

dx
dt

� Ax+ Bu, x �
(

x0

ξ

)
∈ IRn, (11)

z � C x+ Du, z ∈ IRm, u ∈ IRm (12)
u � −ψ (z) (13)

and for the Lur’e-Lyapunov function

V (x) � 1
2

xT Px+α
∫ z

0
ψ T(ζ )K dζ (14)

3
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A Lyapunov Equation

Let Q � Q T ≥ 0 be given. The standard YKP matrix equation may then
be formulated as

−Q �
(

PA+ AT P PB − C T

BT P − C −(D + DT )
)

�
(

P 0

0 Im

) (
A B

−C −D

)
+

(
A B

−C −D

)T (
P 0

0 Im

)
(15)

Let

A �
(

A B

−C −D

)
∈ IR(n+m)�(n+m), (16)

Po �
(

P 0

0 Im

)
∈ IR(n+m)�(n+m) (17)

Then, the YKP matrix equation (15)may be reformulated as the Lyapunov
equation

PoA +A TPo � −Q (18)
Conversely, a matrix triple {A ,Q ,P } resulting from such a Lyapunov
equation may provide a Lyapunov function or a Lur’e-Lyapunov function
relevant for stability analysis. This observation is pursued throughout the
paper. We will show that the Lyapunov equation (18) may contribute to
stability theory for non-SPR systems.

3. Results and Extensions

LEMMA C.1—YKP LYAPUNOV EQUATION

Given a linear system Σ(A, B , C , D) with the system matrix

A �
(

A B

−C −D

)
∈ IR(n+m)�(n+m) (19)

and a matrix Q ∈ IR(n+m)�(n+m), Q � Q T > 0, there is solution P � P T > 0
to the Lyapunov equation

−Q � PA +A TP (20)
P �

(P11 P12

P T
12 P22

)
∈ IR(n+m)�(n+m) (21)

4
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if and only if all eigenvalues {λ k}n+m
k�1 of A have negative real part. More-

over, every positive definite solution P � P T > 0 to the Lyapunov equation
(20) provides a solution P ∈ IRn�n to the YKP matrix equation

−Q �
(

PA+ AT P PB − C T

BT P − C −(D + DT )
)

(22)

as

P � P11 −P12P −1
22 P T

12, P � PT > 0 (23)

under the feedback transformation

T �
(

In 0

−P −1
22 P T

12 P −1/2
22

)
(24)

The transfer function of the system matrix obtained from the feedback
transformation T −1AT is stable and positive real.

Proof By the correspondence of Eq. (18) and Eq. (15), it is clear that
the YKP matrix equation can be reformulated as Lyapunov equation. The
converse is not obvious as the Lyapunov equation (18) resulting from
Eq. (15) requires the solution P to be block diagonal. To that end, consider
any matrix solution P � P T > 0 with decomposition

P �
(P11 P12

P T
12 P22

)
(25)

If P is of full rank, then P22 is invertible and there always exists the
similarity transformation matrix of Eq. (24) which renders

Po � T TPT �
(P11 −P12P −1

22 P T
12 0

0 Im

)
> 0

Left multiplication of the Lyapunov equation by T T and right multipli-
cation by T preserves the Lyapunov equation structure but renders the
solution T TPT on the block-diagonal form of Eq. (17) with a resultant
similarity transformation T −1AT .

REMARK C.1
The appropriate block-diagonal form can be obtained via feedback design—
e.g., as suggested by T . In order to accomplish positive realness, the right
multiplication implicitly suggests a state feedback control law to stabilize

5
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the system whereas the left multiplication suggests an observer structure.
Also, by choice of Q such that

Q � T −TQ 0T −1 (26)

the Lyapunov equation may have a solution on the block-diagonal form
for Q 0 given.

Example Consider the state-space system

ẋ � x(t) − 2u(t) (27)
y(t) � −2x(t) + 2u(t) (28)

and G0(s) � 2(s+ 1)/(s− 1). Although the system is unstable, the pa-
rameter matrix

A �
(

A B

−C −D

)
�

(
1 −2

2 −2

)
, (29)

has eigenvalues with negative real part. The feedback transformation ma-
trix

T �
(

1 0

1 1

)
(30)

gives the transformed system matrix. For

AT � T −1AT �
(−1 −2

1 0

)
, GT (s) �

2
s+ 1

Q �
(

1 0

0 0

)
, Po � P T

o �
(

0.5 0

0 1

)
> 0, (31)

there is a solution to the Lyapunov equation PoAT +A T
T Po � −Q . Note

that the AT resulting from the feedback transformation of the unstable
system provides a block-diagonal solution P � P T > 0 and thus P � PT �
0.5 > 0.

LEMMA C.2—POSITIVITY AND FACTORIZATION

Let {A, B , C , D} be a LTI state-space system and

A �
(

A B

−C −D

)
(32)

6



4. Observers and Nonlinear Feedback

If (A ,Q 1/2) is observable and if all eigenvalues of A are in the open left-
half plane, then the Lyapunov equation

PA +A TP � −Q T/2Q 1/2 � −Q (33)
provide a unique positive definite solution P � PT > 0 to the YKP matrix
equation. Moreover, there exist rational functions G(s) � C (sI−A)−1 B+
D and

Γ(s) � ( Γ1(s) Γ2(s) ) (34)
� (Q 1 Q 1(sI − A)−1 B +Q 2 ) (35)

with Q 1,Q 2 matrices satisfying

Ω � ΓT(−s)Γ(s)
�

(−(PA+ AT P) G12(s)
GT

12(−s) G(s) + GT(−s)
)

(36)

0 ≤ ΓT
1 (−iω )Γ1(iω ) � G(iω ) + GT(−iω ) (37)

Proof See Appendix.

4. Observers and Nonlinear Feedback

Consider the nonlinear feedback stabilization problem of Eqs. (7)–(10)
and assume that {A0, B0, C0, D0} be given and that the observer {Aξ , Bξ ,
Cξ , Dξ , Kξ } be chosen appropriately. Nonlinear feedback stabilization by
means of observer design and SPR design of loop transfer function can be
approached by:

Algorithm: Lur’e-Lyapunov function design

1. Find state-space matrices A0, B0, C0, D0;
2. Introduce augmented system dynamics and state-space system matrices
Aξ , Bξ , Cξ , Dξ , Kξ and arrange the aggregate system matrix

A �
(

A B

−C −D

)
(38)

If necessary, modify the augmented system dynamics {Aξ , Bξ , Cξ , Dξ , Kξ }
so that the eigenvalues of A have negative real part.

7
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3. Choose Q � Q T/2Q 1/2 ≥ 0 such that (A ,Q 1/2) is observable and solve
the Lyapunov equation

PA +A TP � −Q , Q ,P ∈ IR(n+m)�(n+m) (39)

4. Find the positive definite solution P with block decomposition

P �
(P11 P12

P T
12 P22

)
, P11 ∈ IRn�n (40)

5. Find Schur complement matrix P and the feedback transformation
matrix

T �
(

In 0

−P −1
22 P T

12 P −1/2
22

)
(41)

P � P11 −P12P −1
22 P T

12, (42)

6. Assign Lyapunov function candidate or Lur’e-Lyapunov function

V (x) � xT Px+α
∫ z

0
ψ T(s)K ds (43)

Example ([21])

Consider the state-space system

dx0

dt
�

−31 −259 −229

1 0 0

0 1 0

 x0 +
 1

0

0

 u

z0 � ( 0 0 458 ) x0 (44)

with the transfer function

G0(s) � 2
s+ 1

⋅
229

s2 + 30s+ 229
(45)

By the relative degree 3, the conditions of the YKP lemma are violated
and the Popov criterion predicts a finite gain margin for output feedback.
For

A �
(

A0 03�3

Kξ C0 Aξ

)
, Kξ �

−1

0

1

 , Q � I6

8



5. Discussion
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1
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Figure 1. Nyquist diagram of original system (dashed line) and transformed sys-
tem (solid line).

we have a solution P � PT > 0 to the Lyapunov equation PA+AT P � −Q
found from P by the Schur-complement formula and with all eigenvalues
of A possessing negative real part. An observer-transformed positive real
loop-transfer function can be obtained as

G(s) � (12s+ 14)(s+ 2)2(s2 + 30s+ 263)
(s+ 1)(s+ 2)3(s2 + 30s+ 229)

with Nyquist diagram with the positive real property (Fig. 1); Popov dia-
gram of the transformed system suggesting high gain-margin; stable sys-
tem transients and Lyapunov function transients of system under feed-
back control (Fig. 2). Simulation of simple negative feedback connection of
the loop-transfer function 40G0(s) via a nonlinearity ψ (⋅) within the cone
[0,∞) provides a limit cycle (Fig. 2). As predicted by the theory presented,
the observer-compensated system eliminates the limit cycle and provides
asymptotically stable behavior with Lyapunov function V (x)—see Fig. 2.

5. Discussion

We have provided an interpretation of the YKP matrix equation as a Lya-
punov equation and have shown that this equation might provide Lya-
punov functions for stability analysis (asymptotic stability and absolute

9
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stability) also for a class of systems without SPR properties. In partic-
ular, we have shown that Lyapunov functions may be provided also for
observer-based feedback systems with possible pole-zeros cancellations in-
troduced purposely. Such systems are not covered by regular formulations
of the YKP lemma due the violation of minimality, controllability and ob-
servability. Actually, the minimality condition appears to be crucial only
for the necessity part of the proof for the YKP lemma; cf. [5]. As pointed
out by several authors—e.g., [13], [14], [20]—there may exist P � PT ≥ 0
without any controllability assumption satisfied.

The nonstandard evaluation of the eigenvalues of A makes sense in
that the eigenvalues are invariant under the similarity transformation
of state-space transformation. As for eigenvalue assignment for A , it is
relevant to evaluate other matrix operations on A such as left and right
multiplication by

L �
(

In K

0 Im

)
, and R �

(
In 0

−L Im

)
(46)

with the resultant matrix A ′ � LAR . Such matrix multiplications relate
to feedback transformations of observer design and state-feedback control
stability, respectively, as found by [6]. In fact, the similarity transforma-
tion provided by the algorithm implicitly suggest both a stabilizing state
feedback control law (the right multiplication) and a linear combination of
states and output to provide an SPR transfer function. By adding dynam-
ics (integrators) up to the complexity of a full-order observer, it is possible
to accomplish the SPR property needed for subsequent application of con-
trol algorithms of nonlinear control, adaptive control or realization theory;
cf. [12], [3].

6. Conclusions

We have shown that there are solutions to the Yakubovich-Kalman-Popov
equation in the form of nonminimal positive real systems. Thus, the very
restrictive conditions of strict positive realness relevant to observer-based
feedback control systems can be significantly relaxed. Important applica-
tions of such systems can be found in nonlinear stability theory, observer
design and design of feedback stabilization—e.g., by means of the Popov
criterion or circle criterion. A method for construction of Lur’e-Lyapunov
functions for systems with observer-based feedback control is given.
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Appendix—Proof of Lemma 2

Proof We make the following constructive proof of positive realness: Let

E �
(

In 0n�m

0m�n 0m

)
(47)

L(s) �
(

In 0

C (sIn − A)−1 Im

)
(48)

R(s) �
(

In −(sIn − A)−1 B

0 Im

)
(49)

First, the transmission zeros of the system {A, B , C , D} are found from

sE −A �
(

sIn − A −B

C D

)
(50)

� L(s)
(

sIn − A 0

0 G(s)
)

R(s) (51)

Let Q 1/2 denote a matrix factor so that

Q � Q T/2Q 1/2 �
(Q T

1

Q T
2

)
(Q 1 Q 2 ) (52)
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Assume that for (A ,Q 1/2) observable and eigenvalues of A with negative
real part, the Lyapunov equations

PA +A TP � −Q (53)
PA+ AT P � −Q T

1Q 1
def� −Q 11 (54)

have provided the positive definite solutions P and P and that the solu-
tion obtained has been brought to block-diagonal form of Eq. (17). Then,
expand the Lyapunov equation

Q � P (sE −A ) + (−sE −A T)P (55)

By Eq. (50), it follows that

P (sE −A ) �
(

P(sIn − A) 0

C G(s)
)

R(s)

Thus, for Γ(s) � Q 1/2R−1(s) and

Γ(s) � (Q 1 Q 1(sI − A)−1 B +Q 2 )
G12(s) � C T + (−sIn − AT)P(sIn − A)−1 B

� Q 11(sIn − A)−1 B + C T − PB (56)

one finds that

Ω � ΓT(−s)Γ(s) � R−T(−s)Q TQ R−1(s)
� R−T(P (sE −A ) + (−sE −A T)P )R−1

�
(−(PA+ AT P) G12(s)

GT
12(−s) G(s) + GT(−s)

)
(57)

with rank deficit only at the transmission zeros of {A, B , C , D}. By the
matrix equations (15, 57), the simultaneous transfer-function positivity
and the positive definite Lyapunov equation properties follow from the
diagonal matrix equation blocks of ΓT(−s)Γ(s) that

−(PA+ AT P) � ΓT
1 (−s)Γ1(s) � Q T

1Q 1

G(s) + G(−s) � ΓT
2 (−s)Γ2(s) (58)

As for s � iω , it follows that the ‘positive-real’ condition be fulfilled.
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Observer Backstepping for a Class of
Nonminimum-Phase Systems
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Abstract

In this paper the stabilization of nonlinear nonminimum-phase sys-
tems is considered. In particular the observer backstepping design of
Krstić et al. [14] is extended to stabilization of a class of nonlinear
systems in output-feedback form with linear unstable zero-dynamics.

Keywords: Backstepping, Output feedback, Observers, Non-minimum-
phase systems
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1. Introduction

The backstepping design [11; 14; 18] is a systematic design method for
systems in strict feedback form assuming full state information. In [14]
the output-feedback tracking problem is considered and the observer back-
stepping procedure is proposed for systems which are (weakly) minimum
phase, i.e., systems with stable zero-dynamics. The observer-backstepping
procedure is roughly described as a backstepping design with respect to
estimated states rather than to measured ones and it takes care of the
disturbances the estimation errors may cause. Fossen and Grøvlen gen-
eralized the method to vectorial observer backstepping in [4], see also
[19]. In [12; 20] a different approach is taken in that the backstepping
procedure is used for nonlinear observer design.

In this paper, we consider the output-feedback problem and suggest a
method how to use the observer backstepping design for a class of non-
linear systems with linear, unstable zero-dynamics. For other results on
output feedback control of nonminimum-phase systems, see [8; 7; 3; 16; 5]
and the references therein.

The outline of the paper is as follows: First, we provide an example that
demonstrates the problem of stabilization of nonminimum-phase system
by means of ordinary observer-backstepping. Secondly, we introduce a
state-space transformation and an algorithm that extends the application
of observer-backstepping and stabilization to a class of systems with non-
minimum-phase properties.

2. Preliminaries and Problem Formulation

The observer backstepping methodology described in [14] provides a sys-
tematic design procedure for nonlinear systems with relative degree r �
n−m in the output-feedback form of

ẋ1 � x2 + ϕ1(y)
ẋ2 � x3 + ϕ2(y)

...

ẋr � xr+1 + β (y)u+ ϕ r(y)
ẋr+1 � xr+2 + b1β (y)u+ ϕ r+1(y)

...

ẋn−1 � xn + bm−1β (y)u+ ϕn−1(y)
ẋn � bmβ (y)u+ ϕn(y)

(1)

2



2. Preliminaries and Problem Formulation

where the nonlinearities {ϕ i }n
1 only depend on the measured output

y � x1

The system can be stabilized and output tracking can be achieved under
the following two assumptions:

Assumption 1 (A1): β (y) �� 0 for all y ∈ IR. 2

Assumption 2 (A2): The m-dimensional linear zero-dynamics are asymp-
totically stable—i.e., the roots of the polynomial

sm + b1sm−1 + . . .+ bm

lie strictly in the left half plane. 2

To illustrate the problem of direct application to non-minimum phase sys-
tems, violating the assumption (A2), we will (naively) use backstepping
in the following simple example.

EXAMPLE D.1
Consider the linear system

Y(s) � s− 1
s4 U(s) (2)

which has a zero in the right half plane. The state-space realization in
output-feedback form is for linear systems also known as the observer
canonical form [10].

ẋ � A1 x+ B1 u �


0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0

 x+


0

0

1

−1

 u

y � C1 x � [ 1 0 0 0 ] x

(3)

The system is in strict feedback form, and applying the backstepping
design, we will reach the control input u after three steps. Any stabilizing
linear controller for the first three states will have the form

u3 � −l1x1 − l2x2 − l3x3, li > 0, i � 1 . . . 3

However, the state x4, which represents the zero-dynamics, will be un-
stable and we can not neglect it in the design as we could have done

3
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if the zero-dynamics were stable. Even worse, it is not even possible to
re-use our “stabilizing” control law u3 and extend it with additional feed-
back from the state in the zero-dynamics to stabilize the whole system,
as shown below.

Using
u(x) � u3(x1, x2, x3) − l4x4

the closed loop system has the characteristic polynomial

λ (s) � s4 + (−l4 + l3 ) s3 + (l2 − l3 ) s2 + (−l2 + l1 ) s− l1

which is clearly unstable. Thus, the example shows that the observer-
backstepping method will fail to stabilize such a nonminimum-phase sys-
tem.

An alternative realization to system (2) is in output-feedback canonical
form

ẋ � A2 x+ B2 u �


1 1 0 0

0 0 1 0

0 0 0 1

−1 −1 −1 −1

 x+


0

0

0

1

 u

y � C2 x � [ 0 1 0 0 ] x

(4)

which also is in strict-feedback form. The integrator chain between the
first state and the input has the same length as the order of the system,
and therefore (state feedback) backstepping will stabilize the system.

The change of variables

x �


x4

x1

x2

x3

 �

−1 −1 −1 −1

1 0 0 0

0 1 0 0

0 0 1 0




x1

x2

x3

x4

 (5)

relates the states for the different realizations and consists of a permuta-
tion of the states {x1 . . . xr} and a transformation for the state representing
the zero-dynamics.

3. Output-Feedback Stabilization

In this section we will use a state-transformation as indicated in the ex-
ample above to stabilize nonlinear systems in output-feedback form with
unstable zero-dynamics.
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One-dimensional zero-dynamics

Here we consider systems with one-dimensional zero-dynamics of the form

ẋ1 � x2 + ϕ1(y)
ẋ2 � x3 + ϕ2(y)

...

ẋr � xr+1 + β (y)u+ ϕ r(y)
ẋr+1 � b1β (y)u+ ϕ r+1(y)

y � x1

(6)

where n � r + 1.

Assumption 3 (A3): The linear decomposition of Eq. (6) is stabilizable—
e. g. there is no unstable pole-zero cancellation due to linear terms in
{ϕ i}n

1. 2

THEOREM D.1
Given a nonlinear system described by

ẋ1 � x2 + ϕ1(y)
ẋ2 � x3 + ϕ2(y)

...

ẋr � xn + β (y)u+ ϕ r(y)
ẋn � b1β (y)u+ ϕn(y)
y � x1

(7)

Under the assumptions (A1) and (A3), the nonlinear system of Eq. (7)
with linear, one-dimensional unstable zero-dynamics, can be stabilized by
output-feedback control using observer backstepping.

Proof The system on output-feedback form (7) is via a state-transformation
equivalent to

ẋ1 � x2 + ϕ1(y)
ẋ2 � x3 + ϕ2(y)

...

ẋr � LT [x1, . . . , xn]T + β (y)u+ ϕ r(y)
ẋn � x1 − b1xn + ϕ n(y)
y � x1

(8)
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in output-feedback canonical form [6]. The first r � n − 1 states of the
systems in Eq. (7) and Eq. (8) are identical and L ∈ IRn, is given by the
state space transformation. The vector ϕ n(y) is a linear combination of
the nonlinearities {ϕ i(y)}n

1 .
For clarity, we introduce the variables, χ , and renumber the output non-
linearities accordingly

χ �


χ1

χ2

...

χ n

 �


xn

x1

...

xr

 , φ �


φ 1

φ 2

...

φ n

 �


ϕ n

ϕ1

...

ϕ r

 (9)

This is merely a permutation of the states. The system of Eq. (7) then
transforms to

χ̇1 � −b1χ1 + χ2 + φ 1(y)
χ̇2 � χ3 + φ 2(y)

...

χ̇ n � LT χ + β (y)u+ φ n(y)
y � χ2

(10)

which is in strict feedback form. An exponentially stable observer for sys-
tem (10) is readily constructed as

˙̂χ � Aχ̂ + K (y− ŷ) + φ (y) + Bβ (y)u
ŷ � C χ̂

(11)

where K is chosen such that A− K C is Hurwitz. The matrices A, B , C ,
and φ refer to the matrices appearing in Eq. (10) written in vector form.
A Lyapunov function for the estimation error will be

Vobs � χ̃ T Poχ̃
V̇obs � −χ̃ T Qoχ̃

(12)

where Po � PT
o > 0 satisfies the Lyapunov equation

(A− K C )T Po + Po(A− K C ) � −Qo

Qo � QT
o > 0

(13)

After the transformation of Eq. (9) we have the system in strict feedback
form, but direct application of the observer backstepping design procedure

6



3. Output-Feedback Stabilization

as proposed in [14] is not feasible. A problem is the fact that the first
state in the integrator chain of Eq. (10) is not measured but estimated
only. Similarly to what is done in regular observer backstepping, extra
damping, usually referred to as nonlinear damping [11], is introduced
with respect to the observer dynamics in the first state, corresponding to
the zero-dynamics.

Backstepping design, step 1

Consider the first row in the system of Eq. (10)

χ̇1 � −b1χ1 + χ2 + φ 1(y)
� −b1χ̂1 + χ̂2 + φ 1(y) − b1χ̃1 + χ̃2

where χ̂2 is the exponentially converging estimate for the state χ2 and

χ̃2(t) ≤ χ̃2(0) ⋅ e−k2t, t ≥ 0, k2 > 0

is the estimation error χ2 − χ̂2. Using the state estimates as virtual con-
trols, we also need to modify the first step in the standard observer back-
stepping design to handle the estimation error for χ1. Introducing the
error variable

z2 � χ̂2 −α 1(χ̂1, y) (14)

rather than z2 � χ2 − α 1(χ1) as χ1 is not measurable, we choose the
stabilizing function

α 1(χ̂1, y) � (b1 − c1)χ̂1 − φ 1(y) − (d11 + d12)χ̂1

c1 > 0, d11 > 0, d12 > 0
(15)

The damping term −(d11 + d12)χ̂1 is introduced to compensate for the
estimation errors in χ1 and χ2.

The positive definite function (k1 > 0, k2 > 0)

V1(χ1, χ̃1, χ̃2) � 1
2

χ 2
1 +

1
2d12k2

χ̃ 2
2 +

f1

2k1
χ̃ 2

1

7
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has the derivative

V̇1 � χ1 (−b1χ1 + z2 + φ 1 +α 1 + χ̃2) − 1
d12

χ̃ 2
2 − f1χ̃ 2

1

≤ −c1χ 2
1 + χ1z2 +

(−d11χ 2
1 + (−b1 + c1 + d11 + d12)χ1χ̃1 − f1χ̃ 2

1

)
+ (−d12χ 2

1 + χ1χ̃2 − 1
d12

χ̃ 2
2)

≤ −c1χ 2
1 + χ1z2 − d11

[
(χ1 − κ 1χ̃1)2 + ( f1

d11
− κ 2

1)χ̃ 2
1

]
− d12

[
(χ1 − 1

2d12
χ̃2)2 + 3

4d2
12

χ̃ 2
2

]
≤ −c1χ 2

1 + χ1z2 − d11( f1

d11
− κ 2

1)χ̃ 2
1 −

3
4d12

χ̃ 2
2

where

κ 1 � (−b1 + c1 + d11 + d12

2d11
) > 0,

f1 > κ 2
1 d11.

Step 2

For the next step in the design, we choose the Lyapunov function candi-
date (k3 > 0)

V2 � V1 + 1
2

z2
2 +

f21

2k1
χ̃ 2

1 +
f23

2k3
χ̃ 2

3

V̇2 � V̇1 + z2( ˙̂χ 2 − α̇ 1) − f21χ̃ 2
1 − f23χ̃ 2

3

(16)

where

˙̂χ 2 � χ̂3 + φ 2(y) + K2(y− ŷ)
� z3 +α 2 + φ 2(y) + K2(y− ŷ). (17)

Now

V̇2 ≤ −c1χ 2
1 − d11( f1

d11
− κ 2

1)χ̃ 2
1 −

3
4d12

χ̃ 2
2 − f21χ̃ 2

1 − f23χ̃ 2
3

+ z2[χ̂1 + χ̃1 + z3 +α 2(χ̂1, z2) + φ 2(y)
− ∂α 1

∂ y
⋅ (χ̂3 + χ̃3 + φ 2(y)) − ∂α 1

∂ χ̂1
⋅ ˙̂χ 1]

(18)

8



3. Output-Feedback Stabilization

and by choosing

α 2 � α 2(χ̂1, z2, y) � −χ̂1 − c2z2 − φ 2(y) − K2(y− ŷ)
+ ∂α 1

∂ y
⋅ (χ̂3 + φ 2(y)) + ∂α 1

∂ χ̂1

˙̂χ 1 − d21z2 − d23(∂α 1

∂ y
)2z2

(19)

we get

V̇2 ≤ −c1χ 2
1 − c2z2

2 − d11( f1

d11
− κ 2

1)χ̃ 2
1 −

3
4d12

χ̃ 2
2

− d21(z2 − 1
2d21

χ̃1)2 − ( f21 − 1
4d2

21
)χ̃ 2

1

− d23(∂α 1

∂ y
)2(z2 − 1

2d23
∂α 1
∂ y

χ̃3)2

−
(

f23 − 1
(2d23

∂α 1
∂ y )2

)
χ̃ 2

3 + z2z3

(20)

where f21 and f23 are chosen such that

f21 > 1/(2 d21)2 > 0

f23 > 1/(2 d23
∂α 1

∂ y
)2 > 0

(21)

Similarly to the ordinary observer backstepping design, the estimation er-
rors will show up and have to be compensated for with additional damping
in each step of the design. For each step in the recursion the derivative
of the Lyapunov candidate contains a negative definite part plus the in-
definite cross-term zizi+1, which will be compensated for in the last step.

9



Paper D. Observer Backstepping for a Class of...

Step n

Introducing the error vector

Zn−1 �



z1

...

zn−1

χ̃1

...

χ̃ n−1


∈ IR2(n−1) (22)

we can write the derivative of Vn−1 as

V̇n−1 � −ZT
n−1Qn−1Zn−1 + zn−1zn, Qn−1 > 0 (23)

Now define the last Lyapunov function candidate

Vn � Vn−1 + 1
2

z2
n +

fn3

2k3
χ̃ 2

3 (24)

where the dynamics for the nth observer state is

˙̂χ n � LT χ̂ + Kn(y− ŷ) + β (y)u+ φ n(y)
zn � χ̂ n −α n−1

(25)

The time derivative of Vn will be

V̇n � V̇n−1 + znżn + fn3

k3
χ̃3 ˙̃χ3

� −ZT
n−1Qn−1Zn−1 + zn

[
zn−1 + ˙̂χ n − α̇ n−1

]
− fn3χ̃ 2

3

≤ −ZT
n−1Qn−1Zn−1 + zn[zn−1 + LT χ̂ + Kn(y− ŷ)

+ β (y)u+ φ n(y) − α̇ n−1] − fn3χ̃ 2
3

(26)

α̇ n−1 � ∂α n−1

∂ y
[χ̂3 + χ̃3 + φ 2(y)]

+
n−1∑
j�1

∂α n−1

∂ χ̂ j
[χ̂ j+1 + Kj(y− ŷ) + φ j(y)]

(27)

10



3. Output-Feedback Stabilization

Finally, by choosing the control law

u � 1
β (y)α n (28)

with

α n � −cnzn − LT χ̂ − φ n(y) − Kn(y− ŷ) + ∂α n−1

∂ y
⋅ (χ̂3 + φ 2(y))

+
n−1∑
j�1

∂α n−1

∂ χ̂ j

˙̂χ j − dn3(∂α n−1

∂ y
)2zn

(29)

we have that the derivative of Vn is negative definite:

V̇n ≤ −ZT
n−1Qn−1Zn−1 − cnz2

n

− dn3(∂α n−1

∂ y
)2(zn − 1

2dn3
∂α n−1

∂ y

χ̃3)2

−

 fn3 − 1

(2dn3
∂α n−1

∂ y
)2

 χ̃ 2
3 < 0

(30)

where fn3 is chosen such that

fn3 > 1/(2 dn3
∂α n−1

∂ y
)2 > 0 (31)

To show stability of the closed loop system, we take as a Lyapunov function
the combination of “error states” and estimation errors

V � Vn(Z) + Vobs(χ̃) > 0, Z �� 0, χ̃ �� 0 (32)

where Vobs is defined in Eq. (12). Since V is positive definite, decrescent
and radially unbounded with time derivative

V̇ ≤− ZT
n QnZn − χ̃ T Qoχ̃ < 0, Z �� 0, χ̃ �� 0 (33)

we conclude global asymptotic stability for the closed loop system.

The complete algorithm for deriving the control law will be summarized
in the next Section, see Eq. (52). For the stabilization problem χ1d(t) � 0
should be used.

11
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Higher-order zero-dynamics

We introduce the following notation:

Ji �


0 1 0

. . .
. . .
. . . 1

0 0

 ∈ IRi�i

bi �


b1

b2

...

bi

 , fi �


1

0
...

0

 , ei �


0
...

0

1

 ∈ IRi

(34)

A i(bi) � Ji − bif
T
i �


−b1 1

... 0
. . .

...
...

. . . 1

−bi 0 . . . 0

 ∈ IRi�i

x(i: j) �


xi

xi+1

...

xj

 ∈ IRj−i+1, L(i: j) �


li

li+1

...

lj

 ∈ IRj−i+1

Systems in output-feedback form may then be written as ẋ(1: r)

ẋ(r+1: n)

 �
 Jr 0

0 Jn−r

  x(1: r)

x(r+1: n)

+
 er

bm

β (y)u

+
 ϕ (1: r)(y)

ϕ (m: n)(y)


y � x1

(35)

Even when {ϕ i(y)}n
1 are merely linear functions of the output y, we have

natural restrictions on stabilizability, namely that there should not be any
unstable pole-zero cancellations, which motivates the following assump-
tion.

12



3. Output-Feedback Stabilization

Assumption 4 (A4):
The linear decomposition of Eq. (35) is stabilizable—i. e., there is no un-
stable pole-zero cancellation due to linear terms in {ϕ i}n

1. 2

The state space transformation from the original x-coordinates to the χ -
coordinates has the structure of[ χ (1; m)

χ (m+1: n)

]
�

[
T2 T1

Ir 0r�m

] [
x(r+1: n)
x(1: r)

]
(36)

where T1 ∈ IRm�m is invertible and T2 ∈ IRm�r.

Furthermore, the condition for preserving the strict feedback form in the
transformed coordinates χ will be fulfilled under the following assump-
tion.

Assumption 5 (A5):

σ m(k)T
(
T1ϕ (m: n)(y) + T2ϕ (1: r)(y)

) � 0, k � 1, . . . , m− 1 (A5)

where
σ m(k) � [ 0 . . . 0 1 0 . . . 0 ]T ∈ IRm

has a one in the kth position. 2

REMARK D.2
Assumption (A5) contains m − 1 constraints and allows for an output
nonlinearity ϕ n(y) to enter in the equation of χ̇ m. This assumption needs
thus not to be considered in the case of one-dimensional zero-dynamics.
(A5) may also be relaxed to allow for linear terms, b̄χ m+1 in the first m
states as long as the subsystem [Am(bm), em + b̄] is stabilizable.

THEOREM D.2
Under assumptions (A1), (A4), and (A5) the nonlinear system in output-
feedback form of ẋ(1: r)

ẋ(r+1: n)

 �
 Jr 0

0 Jn−r

 x(1: r)

x(r+1: n)

+
 er

bm

β (y)u

+
 ϕ (1: r)(y)

ϕ (m: n)(y)


y � x1

(37)

13
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with linear, m-dimensional unstable zero-dynamics, is output feedback
stabilizable using observer backstepping.

Proof The system in Eq. (37) can be transformed into the output feedback
canonical form of ẋ(1: r)

ẋ(r+1: n)

 �
 Jr + er L

T
(1: r) er L

T
(r+1: n)

emfT
r Am(bm)


 x(1: r)

x(r+1: n)



+
 er

0m

β (y)u+
 ϕ (1: r)(y)

em ϕ n(y)


y � x1

(38)

and via the permutation

χ �
 x(r+1: n)

x(1: r)

 �
 χ (1; m)

χ (m+1: n)

 (39)

written in the strict feedback-form

χ̇ �

Am(bm) emfT
r

er LT
(1: m) Jr + er LT

(m+1: n)

 χ

+
 0

er

β (y)u+
 em ϕ n(y)

ϕ (1: r)(y)


y � χ m+1

(40)

As the (unstable) linear subsystem [Am(bm), em] is completely control-
lable, we can use χ m+1 as a virtual control to stabilize the subsystem
using block backstepping [14], see also the notion of vectorial observer
backstepping in [4].

Consider the subsystem

χ̇ (1:m) �Am(bm)χ (1:m) + em(χ m+1 + ϕ n)
�Am(bm)χ (1:m) + em(χ̂ m+1 + χ̃ m+1 + ϕ n)

(41)

where χ̃ m+1 is the exponentially converging estimate for the state χ m+1.
Introduce the error variable

14



3. Output-Feedback Stabilization

zm+1 � χ̂ m+1 −α (1:m)(y, χ̂1, . . . , χ̂ m)

For stabilization, we can use ordinary pole-placement to find

α (1:m) � −[c(1 : m) + d(1:m)]χ̂ (1:m) − ϕ n

� −Cmχ̂ (1:m) − ϕ n, C T
m ∈ IRm (42)

such that the matrix

AC �A (bm) − emCm (43)

is Hurwitz. This implies the existence of symmetric, positive definite ma-
trices PC and QC such that the Lyapunov equation

A T
C PC + PC AC � −QC − 2Im (44)

is fulfilled. Here −QC represents the effect of the “ordinary” stabiliza-
tion and the two identity matrices, −2Im, represent the effect of the ex-
tra damping to take care of the estimation errors χ̃ (1:m) and χ̃ m+1. This
could be compared with the role of the terms c1 and (d11, d12) in the
one-dimensional case in the previous section.

By Eq. (11) and the deterministic Kalman filter properties the estima-
tion errors χ̃ (1:m) and χ̃ m+1 converge exponentially,

χ̃ (1:m)(t) ≤ χ̃ (1:m)(0) ⋅ e−Λkt

χ̃ m+1(t) ≤ χ̃ m+1(0) ⋅ e−km+1 t
(45)

for some diagonal Λk > 0 and some km+1 > 0.
The positive definite function

V(1:m) � χ T
(1:m)PC χ (1:m) +

fm+1 χ̃ 2
m+1

2km+1
+ χ̃ T

(1:m)Λ f Λ−1
k χ̃ (1:m) (46)

where

Λ f > 1
2
(PC emCm)T(PC emCm), Λ f diagonal

fm+1 > eT
mPT

C PC em

(47)

15
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has the derivative

V̇(1:m) � 2χ T
(1:m)[PC A (bm)χ (1:m)
+ em(zm+1 +α (1:m)(y, χ̂ (1:m)) + χ̃ m+1 + ϕ n)]
− fm+1χ̃ 2

m+1 − 2χ̃ T
(1:m)Λ f χ̃ (1:m)

� χ T
(1:m)

[
A T

C PC + PC AC
]︸ ︷︷ ︸

−QC−Im−Im

χ (1:m)

+ 2χ T
(1:m)PC emCmχ̃ (1:m) + 2χ T

(1:m)PC emχ̃ m+1

− fm+1χ̃ 2
m+1 − 2χ̃ T

(1:m)Λ f χ̃ (1:m) + 2χ T
(1:m)PC emzm+1

(48)

Completing the squares gives

V̇(1:m) � −χ T
(1:m)QC χ (1:m)

− (
χ (1:m)−PC emCmχ̃ (1:m)

)T (
χ (1:m)−PC emCmχ̃ (1:m)

)
− χ̃ T

(1:m)
[
2Λ f − (PC emCm)T (PC emCm)

]
χ̃ (1:m)

− (
χ (1:m) − PC emχ̃ m+1

)T (
χ (1:m) − PC emχ̃ m+1

)
− [

fm+1 − eT
mPT

C PC em
]

χ̃ 2
(1:m)

+ 2χ T
(1:m)PC emzm+1

≤ −χ T
(1:m)QC χ (1:m) − χ̃ T

(1:m)ΛF χ̃ (1:m)

− Fm+1χ̃ 2
m+1 + 2χ T

(1:m)PC emzm+1

(49)

where

ΛF � 2Λ f − (PC emCm)T(PC emCm) > 0

Fm+1 � fm+1 − eT
mPT

C PC em > 0
(50)

After the initial step where the linear m�m-subsystem is stabilized, we
proceed with the ordinary observer backstepping, where each step adds
one additional error state, zi. Should some of the nonlinearities ϕ i(y), i ≥
m, consecutively be absent, we can use block-stabilization again. The rest
of the proof follows the same outline as the proof of Theorem D.1.

Output tracking

Via ordinary observer backstepping the tracking error

y(t) − yd(t) → 0

16



3. Output-Feedback Stabilization

as t →∞, where y(t) � x1 and yd(t) is the desired output trajectory. For
our system this would correspond to

lim
t→∞[χ1(t) − χ1d(t)] � 0

and not to the output y � x1 � χ m+1. The control law for regulation of
the tracking error is

u � 1
β (y) [α n − χ (n)1d ] (51)

where α n will be derived through the recursive design below. Except for
the extra added nonlinear damping, the following algorithm aligns with
the one described in Theorem 7.1 of [14] for nonminimum-phase systems:

z1 � χ1 − χ1d

zi � χ̂ i −α i−1(χ̂1, . . . , χ̂ i−1, χ1d, . . . , χ (i−2)
1d )

− χ (i−1)
1d , i � 2 . . . n

α 1 � (b1 − c1 − d11 − d12)z1

α i � −cizi − di1χ̂1 − di2(∂α i−1

∂ χ̂1
)2zi

− Ki(y− ŷ) − ϕ i(y) + ∂α i−1

∂ χ̂1
χ2

+
i−1∑
j�1

∂α i−1

∂ χ̂ j
[χ̂ j+1 + Kj(y− ŷ) + ϕ j(y)]

+
i−2∑
j�1

∂α i−1

∂ χ (j)1d

χ (j+1)
1d , i � 2 . . . n− 1

(52)

α n � −cnzn − LT
(1:n)χ̂ (1:n) − dn1χ̂1 − dn2(∂α n−1

∂ χ̂1
)2zn

− Kn(y− ŷ) − ϕn(y) + ∂α n−1

∂ χ̂1
χ2

+
n−1∑
j�1

∂α n−1

∂ χ̂ j
[χ̂ j+1 + Kj(y− ŷ) + ϕ j(y)]

+
n−2∑
j�1

∂α n−1

∂ χ (j)1d

χ (j+1)
1d

17
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where

ci > 0, dij > 0, i � 1 . . . n

bi � 0, i > m

ϕ i(y) � 0, i ≤ m

(53)

χ1d is a consistent state reference trajectory with respect to the desired
reference output yd. For a discussion on the reference trajectory genera-
tion problem for nonminimum-phase systems, see for instance [1; 2; 16; 3].

4. Discussion

Recently Tan et al. [22] presented an observer–based controller design for
nonlinear systems in the “extended” output-feedback form

ẋ1 � x2 + ϕ0,1(x1)
ẋ2 � x3 + ϕ0,2(x1) + ϕ1,2(x1)x2

...

ẋr � xr+1 + β (y)u+ ϕ0,r(x1) + ϕ1,r(x1)x2

ẋr+1 � xr+2 + b1β (y)u+ ϕ0,r+1(x1)
+ ϕ1,r+1(x1)x2

...

ẋn � bmβ (y)u+ ϕ0,n(x1) + ϕ1,n(x1)x2

y � x1

(54)

where additional terms linear in the output derivative are allowed. Using
a nonlinear transformation depending on the output y, the dynamics of
the unmeasured states can be linearized and an exponentially convergent
observer for the states may be designed.

Using the proposed observer in [22], the assumption that the numer-
ator polynomial

B(s) � sm + b1sm−1 + . . .+ bm

is Hurwitz, can be relaxed under assumptions (A1), (A4), and under an
additional restriction on (A5), namely

T1(ϕ (0,m: n) + ϕ (1,m: n)x2)
+ T2(ϕ (0,1: r) + ϕ (1,1: r)x2) � em ϕ n(y)

(55)
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where ϕ n(y) is an arbitrary nonlinear function of y.
Note that in contrast to the use of vectorial backstepping in [4], where

it was an elegant way of reducing the number of steps in the backstepping
procedure, it is here an important part of the proof technique, as the ordi-
nary observer backstepping procedure would not be applicable to systems
with unstable higher-order zero-dynamics without completing the proof
with results from cascaded designs such as [9; 17; 15]. The reason for this
is that although the system in Eq. (40) is in strict feedback form, the
change of variables χ̂ i → zi would introduce the (linear) correction terms,
ki(y− ŷ) � ki(y− χ̂ m+1), from the observer dynamics into the expression
for żi. This would violate the strict feedback form for the first m− 1 error
variables.

By first adding an output nonlinearity to the control input u, affecting
the last m + 1 states, we introduce an additional degree of freedom for
assumption A5.

5. Conclusions

In this paper the output feedback problem for a class of nonlinear non-
minimum-phase systems is considered. Our main contribution is extend-
ing the existing observer backstepping method [14] to cover a class of
nonlinear systems in output-feedback form with linear unstable zero-
dynamics and to provide a recursive algorithm for an observer-based
controller. The design achieves global stabilization and allows reference
tracking. In the case of higher-order zero-dynamics, the main restriction
is assumption A5, which is a condition for preserving strict-feedback form
in the state transformation used for the backstepping design.
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Paper E

Comments on ‘‘Nonlinear Output
Feedback Control of Dynamically
Positioned Ships Using Vectorial

Observer Backstepping’’

A. Robertsson and R. Johansson

Abstract

The decomposition of nonlinear output feedback control into an
observer and a state feedback control is an open problem. A solution
for dynamic positioning of ships has been proposed in the papers by
Fossen and Grøvlen, and by Grøvlen and Fossen, where an observer-
based backstepping method is used.

This note points out that the observer design in the papers men-
tioned above does not cover unstable ship dynamics and suggests a
remedy for an extended class of ships. The proof for the nonlinear
observer used in the design in the above-mentioned papers only ap-
plies to ships with stable sway-yaw dynamics. In the above-mentioned
papers an example concerning thruster assisted mooring of a tanker
is given, which does not fulfill the needed stability properties, so an
extension to this case is highly motivated. We propose a method to
extend the results, under a detectability condition. This condition im-
plies stable surge dynamics, which is a natural assumption for ships.

Keywords: Marine systems, nonlinear systems, observer design, stability,
state estimation
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Paper E. Comments on “Nonlinear Output ...

1. Introduction

We are using the problem formulation and notation from [1] motivated
by the application to ship model dynamics. We propose an extension of
the results in [1], which covers the case of unstable sway-yaw dynamics,
which are prevalent among e. g. large tankers.

Kinematics & Dynamics

An earth-fixed frame is used for the ship position (x, y) and the yaw angle
ψ while the surge, sway, and yaw velocities (u, v, r) refer to a body-fixed
frame. With η � [ x, y,ψ ]T and ν � [u, v, r ]T we have

η̇ � J(η )ν , J(η ) �
 cos(ψ ) −sin(ψ ) 0

sin(ψ ) cos(ψ ) 0

0 0 1

 (1)

with the resulting system model

η̇ � J(η )ν
ν̇ � A1η + A2ν + Bτ

(2)

where

M �
 m11 0 0

0 m22 m23

0 m32 m33

 > 0, D �
 d11 0 0

0 d22 d23

0 d32 d33

 > 0

A1 � −M−1 K , A2 � −M−1 D, B � M−1,

(3)

are all constant matrices.1

The matrix K represents the mooring forces and τ is the control vector
of forces from the thruster system. For a more complete model description,
see [1], [2], and the references therein.

2. Observer Design and Analysis

In this section we first look at the observer structure proposed in [1], [2]
and then extend the design procedure for the observer gains when the
system matrix A2 is non-Hurwitz. A detectability condition is stated.

1Note: The positive definiteness of M and D does not imply that A2 is Hurwitz.
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2. Observer Design and Analysis

Nonlinear Observer

The design proposed in [1] is based on the assumption that only η is
available for measurements and includes the observer structure

˙̂η � J(η )ν̂ + K1η̃
˙̂ν � A1η̂ + A2ν̂ + Bτ + K2η̃

(4)

with the resulting error dynamics

˙̃η � −K1η̃ + J(η )ν̃
˙̃ν � (A1 − K2)η̃ + A2ν̃ � −K 2η̃ + A2ν̃

(5)

where η̃ � η − η̂ and ν̃ � ν − ν̂ denote the error estimates for the posi-
tion and velocity respectively. For notational simplicity K 2 � K2 − A1 is
introduced.

A Problem of Stability

Whereas the Lyapunov-based proof in [1] uses equation (18)
1
2
(P2 A2 + AT

2 P2) � −Q2 [1], Eq. (18)

with the claim that both Q2 and P2 should be positive definite symmetric
matrices, this stability argument does not hold if A2 is not Hurwitz.

Observer Design

We will now relax the Hurwitz condition on A2, and show how a globally
exponentially stable observer still can be found.

Consider the Lyapunov function candidate Vobs � x̃T Px̃ where

P �
[

P1 P12

PT
12 P2

]
� PT > 0, x̃ �

[ η̃
ν̃

]
. (6)

For a constant P, we have

V̇obs � ˙̃xT Px̃+ x̃T P ˙̃x � x̃T
[

Q1 Q12

QT
12 Q2

]
x̃ (7)

where

Q1 � −P1 K1 − K T
1 P1 − P12 K 2 − K

T
2 PT

12

Q12 � −K T
1 P12 − K

T
2 P2 + P1J + P12 A2

Q2 � PT
12J + JT P12 + P2 A2 + AT

2 P2

(8)
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To show that Q is negative definite, we will show that we can find K1

and K 2 such that Q2 < 0, Q12 � 0 and finally Q1 < 0.2

By introducing the cross-term P12 � kC T
2 C2, where C2 � [ 0 0 1 ], the

condition Q2 < 0 is equivalent to the linear matrix inequality

PT
12J + JT P12 + P2 A2 + AT

2 P2 � 2kC T
2 C2 + AT

2 P2 + P2 A2 < 0 (9)
A subproblem is to find, if there exist, a scalar k and
a matrix P2 � PT

2 > 0, such that

2kC T
2 C2 + AT

2 P2 + P2 A2 < 0.

This inequality can be written as

(A2 + kP−1
2 C T

2 C2)T P2 + P2(A2 + kP−1
2 C T

2 C2) < 0,

which has a solution if

A2 + kP−1
2 C T

2 C2 � A2 + k(P−1
2 )(:,3)C2 (10)

is Hurwitz, where (P−1
2 )(:,3) denotes the last column in P−1

2 ,
i. e., the pair (C2, A2) should be detectable.

Note 1: We can always choose (P−1
2 )(3,3) > 0 since we have freedom in k to

change sign.
Positive definiteness of P2 can be achieved as we only have con-
straints on its last column through (10). Furthermore, we choose
the same block structure for P2 as in A2 (see Eq. (3)), which sim-
plifies the analysis below.

Note 2: As there is no coupling between the surge and the sway-yaw system
in the ship model dynamics, the detectability condition constrains
us to the model class with stable surge dynamics, but this is not any
restriction for ships due to the dissipative forces of the water.

Now consider

Q12 � −kK T
1 C T

2 C2 − K
T
2 P2 + P1J(η ) + kC T

2 C2 A2. (11)

We can always choose K 2 � K 2(η ) such that Q12 vanishes. We are left
with the condition Q1 < 0. Since

Q1 � −P1 K1 − K T
1 P1 − k(C T

2 C2 K 2 + K
T
2 C T

2 C2), (12)
2It is sufficient that Q2 < 0 and (the Schur-complement) Q1 − Q12Q−1

2 QT
12 < 0, but we

choose Q12 � 0 for simplicity.
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2. Observer Design and Analysis

we have a coupling between (11) and (12) as our choice of K 2 depends on
P1 and K1.

Let P1 � diag(pii), K1 � diag(kii) ;
kK T

2 C T
2 C2 � k(−K T

1 P12 + P1J(η ) + P12 A2)P−1
2 C T

2 C2 �

�
 0 0 f1(p11,η )

0 0 f2(p22,η )
0 0 f3(p33, k33)


where fi(⋅, ⋅), i � 1..3, are linear functions in the elements of P1 and K1

indicated above.

Q1 �


−2p11k11 0 − f1(p11,η )
0 −2p22k22 − f2(p22,η )
− f1(p11,η ) − f2(p22,η ) −2(p33k33 + f3(p33, k33))

 Q(2)
1

Q(3)
1

with submatrices as indicated. The structure of Q1 lets us conclude, by
an iterative procedure,

∃k33 such that Q(3)
1 < 0 , ∀p33 > 0,

∃k22 such that Q(2)
1 < 0 , ∀p22 > 0,

∃k11 such that Q1 < 0 , ∀p11 > 0.

(13)

Finally, as we have freedom to choose the coefficients in P1, we can always
choose them so that the Schur-complement P1 − P12P−1

2 PT
12 > 0, which

together with P2 > 0 implies P > 0.

We have shown that Vobs is a global Lyapunov function for the observer
error dynamics (5). In contrast to the results in [1], our Q1 � Q1(η ) is
not constant. However, when solving for the elements of K1(η ), we can
design with respect to a constant matrix which constitutes an upper bound
for Q1. By subtracting any constant, negative definite, diagonal matrix,
say Q1C , there still always exists k33, k22(η ), and k11(η ) such that the
conditions in Eq. (13) (now for Q1 − Q1C ) can be fulfilled. Finally, as
Q1(η ) − Q1C < 0 :; Q1(η ) < Q1C (< 0), we get Q1C as an upper bound.
By choosing K1(η ) and K 2(η ) as indicated above, we have a constant
P > 0 and Q(η ) < 0, upper bounded by a constant, negative definite
matrix, which implies global exponential stability for the observer.

Note : If A2 is Hurwitz, we can choose k � 0 which will give the Lyapunov
function and the observer gains proposed in [1], [2].

5



Paper E. Comments on “Nonlinear Output ...

3. A Comment on the Observer Backstepping Procedure

In the observer backstepping procedure of [1] a constant observer gain
matrix K1 was used. It shows up in the term K1η̃ and is handled as a
disturbance and compensated for by adding damping in the backstepping
procedure, see e. g. [3], [4]. For a non-Hurwitz A2, the proposed observer
design above will give a nonlinear observer-gain matrix K1(η ), but as the
nonlinear elements in K1(η ) (sinusoidal functions) are upper bounded,
this does not cause any problem in the subsequent design or analysis.

4. Conclusions

The nonlinear output feedback problem stated in [1], [2] was not com-
pletely solved. A remedy to the case of a non-Hurwitz system matrix
A2 has been presented under the condition of ([ 0 0 1 ] , A2) being de-
tectable. Still, also with the remedy proposed, it is not possible to handle
models with unstable surge dynamics, due to the structure of decoupling
in the system. The observer design presented will coincide with that of [1],
[2] for the Hurwitz case. The observer backstepping procedure proposed
in [1] still holds for our choice of gain matrices, which renders a globally
exponentially stable nonlinear control law.
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