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CHAPTER 1

INTRODUCTTION

Servo problems are recoghnized as a special class of problems
in automatic control. The purpose is to follow a given
reference trajectory. A specigl type of servo problem is the
start—up problem. The objective is then to take the process
from one working point to another. Heating up a furnace in a
metallurgical industry is an example of a start-up problem.
Heating milk on a hot-plate without burning it is an example

from every day life.

The start-up problem has been studied with great success
using the theory of optimal control. Large computers have
been of special signiFicancg in obtaining numerical
splutions to many difficult problems. In spite of the
progress in theory and numericss the practical results are
modest. The primary problem is the discrepancy between the
model used and reality for which there are three main
reasons. The first one is the necessity of making
simplifying approximations of the physical laws describing
the process. The second one is the lack of knowledge about
the physical process. The third one is that there are
changes in the physical process from time to time. In the
problem of heating milk on an hot-plate the milk content can

vary from time to time.

The problem of uncertainty in modelling a process is

basically solved in two different ways. In robust controls
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the effect of the uncertainty is often wminimized» by use of

advanced forms of feedback control with high gain.

The other approach is to increase knowledge about the
process on-line during the control: and use it to gradually
improve the control. BSuch control is often called adaptive
control (Astroms 1781) or self-organizing control (Saridiss
19702, A common type of adhptive contrel assumes that the
process can be described by a model belonging to a general
class of modelss e.g. ARMA-models. The difference between
process and wmodel is assumeh to be of statistical nature.
The control algorithm assumes that the process is described
by the model most closely related to the process in some
sense. Howevers the process—-model discrepancy iss in
essences due to wodelling ervors. Even if the control
algorithm takes into consideration the uncertainty deseribed
by a statistical wethods serious mistakes are made
especially in a start—up problems in assuming the

applicability of a given model to the process.

An alternative approach is to let the control algorithm at
each sampling instant consider a get_of_ _models as possible
descriptions of the process and control with respect to the
worst case. To develops studys and discuss such a method in
the case of start-up control is the topic of the present
work. The work is guided by the idea that the wmethod is to
include as much a priori knowledge as the control engineer
wante to use. Furthers the information gained during control
has to be absorbed in an effective way. This means that it

is not the method itselfs but the computer capacitys that

limits the amount of usable information. This imoliess
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furthers that the proposed method should encourage the
engineer to seek more information about the process which is
to be presented in the common language of physics and not in
a special language for control engineers. Such an approach
would also stimulate others around the control engineer to

use and increase khowledge about the process.

The proposed method of édaptive control is especially
suitable for start—-up problems. The time-sequence is limited
whichs among other thingss implies that it is possible to
store the whole course of e;ents during the start-up. This
permits computers to apply advanced control schemes without
the use of recursive algorithms. Adaptive control used to
start-up problems is herein called adaptive start-up

control.

Synopsis

An introduction to adaptive start—-up comtrol is given in
Chapter 2 as is also an outline of the thesis. In Chapter 3»
concepts of the proposed method are defined. For a certain
class of adaptive start-up problems the optimal control is
given in Chapter 4. Here alsoc dynamic programming is shown
to be applicable in seeking an optimal control law to
adaptive start-up problems. A discussion of the concepts
defined in Chapter 3 is undertaken in Chapter S. 1In
Chapter 63 the PD-controller is analysed as an adaptive
start-up controller. The results of Chapter 5 are used in
Chapter 7 when designing an adaptive start—up controller for
a real process. Finallys a discussion about the proposed

controller and some suggestions are given in Chapter &.
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CHAPTER &

PRELIMINARIES TO

ADAPTIVE START-UP CONTROL

Three examples of start-up control problems will be given.
The specific properties are discussed. Based on the
exampless a basic start-up problem is defined. The thesis is

i

outlined in Section 2.4 together with a proposal of a method
of start-up control.

2.1 EXAMPLES OF START-UP PRUOBLEMS

Examples will be presented to illustrate the use of adaptive

start—-up control.

Metallurgical industry uses many kinds of furnaces which can
be divided into two groups:? the bateh type and the
cantinuous type. The batch type is useds for instances when
giving cutting alloys the necessary heat treatment. Cutting
alloys are wmade out of small chunks of pressed powder of
iron and alloying materials. The chunks are given special
temperature treatment by being placed on stacked trays into
a furnace. The control problem is to heat the furnace so
that the chunks of pressed powder follow a prescribed
temperature  prograim. In this process two wmain problems
arise: the time lag is too long for conventional
PiD-controllers and the weight of the batch may vary from

time to time.
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A continuaus furnaces in theorys does not have more than one
start-up. In practices howevers the situation is different.
A reheating furnace in a hot-strip wmill is a good example.
The furnace heats up slabs to enable them to roll. The slabs
are often larges:s approx. 1xZx0.3 m and are pushed into the

furnace from one side and taken out from the other. The

Furnace itself canm be very impressivet! the walking beam
furnace at SS5AR in Oxeldsund: bweden’ for instances is 40 m
longs 8 m wide and about S m high. When a stop occurs in the
rolling mills to change the rolls for examples an
interesting control problem asﬁears. The stream of heated
slabs must be stopped and thus the power of the furnace is
lowered. When the rolling mill is in function agein the
stream of heated slabs must go on. During such a pauses the
time of restarting the rolling mill cam often be estimated
in advance with good precision. It is tempting to reduce the
poweyr as much as possible at the:begiﬂning of the pauses and
at a8 suitable time to raise the temperature so that the
stream of slabs can continue with minimal disruption. Such a
control would save a lot of energys» and reduce the oxidation
of iron. Oxidated iron must be descaled: the material lost
of this can be one to two per cent of the total weight which
indicates that the financial benefit of better temperature

control would be considerable.

With the increasing cost of energy it has become more and
more interesting to heat houses according to need. This
meanss for instances a difference in day and night
temperatures. Though this is in no way news it is only’

recently that constant indoor temperature has become
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standard in Sweden. Before the use of o©il and electricitys

woods coals or coke were used. Thermostats were rnot in use

and during the night with no one tending its the fire died
out only to be lighted again in the early morning. Nowadays

the trend is to use & timer to obtain the desired

temperature changes. 0One of the problems is thus to

determine when to start the heating in the morning.

»

When heating assembly halls like officess schoolss gymnasias
churches etc. the control problem is more accentuated. Heres
automatic control is D;tEH necessarnry because the
consequences of choosing a wrong starting-time are more
seriocus than with the case of ordinary houses. It is often
much harder to obtain immediate change when it is discovered
that the temperature is too low! the heating capacity of the
heating plant is often small in relation to the size of the
building. From this it is also easier to motivate investment

in a8 more expensive heating system.

In the introductions the example of heating wmilk on a
hot~plate was mentioned. A common but less dramatic start-up
problem is heating water on a hot-plate. Ordinarily the
heating of water is hardly considered a control problem
since boiling water is often desired. Boiling water is easy
to get and wmaintain if no attention is paid to energy
consumption. There ares howevers situations in which water
should not boil but rather have a temperature of about 95°C»
for example when something in the water is cooking. For
instances fish can be spoiled if cooked in boiling water.

Marny more reasons are given in Gyllenskdld (1977).
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o o CHARACTERISTIC FEATURES OF GTART-UP PROBLEMS

The above examples of start-up problems not only vary
greatlys they are also of very different character because

of physical and economical reasons.

A furnace used to heat up cutting alloys is very expensivea
which might motivate work towards guality models. Therefores

accurate and extensive measurements can be motivated. If it

is assumed: for instances tha; the weight of the load is
knowns it might be possible to describe the furnace by a
fFixed model. The problem of such a start-up control is
therefore reduced to a problem of calculating @ suitable
control  for a fixed model. Dhserve that the discrepancy

between model and reality still has to be considered.

The example of the hot-plate shows a completely different
picture. Exact modelling here is out of the question. The
actusl model depends on which kettle is useds if it is used

with or without a lids and on the amount of water in the
kettle. To mount sensors in this case is not economical. The

uncertainty of the model has to be accepted.

From a pursly technical view paints the problem of heating
houses isy 1in 8 way» jike the furnace problem if it is
disregarded that the controller cannot know how the waather
will be. The way to solve this problem is thus to make a
good temperature model of the houses install temperature

sensorss humidity sensorss suUn radiation meterss wind meters
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etc.. The disadvantage with such a solution is that it iss
todays too expensive. Therefore a controller has to rely on
very few sensors. Furthers the wmodels cannot be tailor-made
for individual houses wusing standard methods. There ares
thusy similarities with the hot-plate casei; howevers there
is one significant difference. Every start-up of the
hot-plate is a new start-up because the amount of water

>

varies from time to time. With houses there ares howevers

many parameters which are constant from time to time but
unknown from the beginning,vln such a case the controller
should remember the procedure of previous start-upss or at
least gather information about the unknown parameters. In a
ways the controller could function as does an installation
engineer. Presently the routine when installing a heat plant
controller in a building (not small houses) is that an
engineer has to trim the controller. This takes from a
couple of hours to a couple ;F days. Even after two day’s
work it is a matter of chance partly because the weather is
seasonal. A smart adaptive controller could thus cut the

costs of installation.

2.3 THE EBABSIC START-UP PROELEM

The start-up problems presented in Section 2.1 are of
various forms. In order to make the presentation concrete
both here and in the rest of the thesiss a basic start—-up

problem is formulated.
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Problem formulations "Ihe basic_start—-up praoblem!. Regard a

dynamic system with input u and output y. The basic start—up
problem is to raise the output y to a reference value yreF
in minimum time without a too big overshoot.

a]
This problem may seen to be an oversimplification of the
start—up problems presented im the examples. Howevers it is
in fact complex enough to give inspiration to and

jllustration of new concepts and theory believed to be

useful when doing adaptive start—up control.

2.4 OUTLINE OF THE THESIS

The main topic of the thesis is to solve the basic start-up
problem. The concepts and definitions introduced in
Chapter 3 arer howevers such that they can be used fors OT
extended tos mOre general start-up problems. On the other
hand» the results given by the theorems deal only with the

basic start—-up probleim.

A laboratory set up of a kettle of water on a not—-plate (see
Figure 2.1 and Appendix Al together with appropriate
mathematical models (see Appendix Bl is used to illustrate

the thesis.

The idea o©of the proposed method is to use 8 sets Es of
models of the process. At least one of the models is
supposed to describe the process: but not necessarily
exactly. It is assumed that the measured output differs From

the output of the describing model  withs at mosts a certain
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Ry g b

Fig. Z.1: The laboratory set-up of the hot-plate process.
(1) Temperature bridges. (27 Constant current
source used when measuring the plate temperature.
(3) Voltage source used as a trigging signal to
the computer. (4} Power control of the hot-plate.
(5 2 litre aluminum kettle. (&) A/D converterss
12 bitss 10 V., (7) D/A converterss 12 bitss
10 V. For more detailed informations see
Appendix A.

quantity e€s which has to be given by the user. During
controls all models which differ with more than the quantity
€ from the measurementss are rejected as being impossible
descriptions of the process. Figure 2.2 shows what is meant

by a possible model and an impossible one.

The control ult) has to be such thats independently of which
possible model that describes the processs the overshoot
will not be too large. Observe that the set of possible

models will diminish with time.
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Fig. 2.2¢ The exemplification of a possible and an

impossible model.

The ultimate goal of the control is to make the start-up in
minimum time. The prohibition of too-large overshoots
applies to every start-up. Statistical wmodels are therefore
not useful. Furthermores the main part of the error iss in
most casess not of statistical nature. For instances
repeated experiments of the hot—plate process give nhearly

the same output provided the quantity of water is not

s - s T T | e P T RGN T I TRV ] whd A




17

accurately describes the process seemss howevers to be
impossible. Consequentlys the difference between the outputs
from the describing model and the process is nearly the same
from experiment to experiment. The error will depend on the
input but also on the model. This means that it is
advantageous to calculate the gquantity of water during

control. This is discussed in Chapter 5.

The posed problem requires a way to compare different

control laws and the establishment of a criterion of

optimality. Due to the possibility of an error in the
description of the processs the definition of optimality
given in Section 3.2 is gquite involved. In most cases it is
very difficult to find an optimal control law., In
Section 3.3s it is shown that all information of old outputs
necessary for optimal control can be condensed to the set of
models remaining after model rejection. For & special class
of adaptive start-up problems it is possible to find an
optimal control law. This is shown in Theorem 4.1. In
Chapter 4y it is also shown that Theorem 4.1 can be applied
for a special case of the basic start—~up problem of the
hot~plate process. The optimal control lew is also found. In
a general casey dynamic programming can be used at least in

principle. This is discussed in the end of Chapter 4.

Even if the wmain purpose is to present a new way of controls
it is of interest to examine the possibility of using
PID-controllers. In Section 6.1s it is proved that a
high—gain PD-controller with controller saturation is

optimal in a special case. Furthermore: the hot-plate




the high gain controller may work well. Even if the high
gain PD-controller works well in a certain case it is argued
in Bection &.3 that in a cese of more practical interest

several difficult problems would be sxperienced.

in Chapter 7 the proposed method is applied to the hot-plate
process in  the case for which it is known that no 1lid is
used and that the plate‘ temperature starts at room
temperature. The only uncertainties are the gquantity of
water and the amount of 1055§§n The computer used is so slow
that the rejection of impossible models does not  keep up
with real time. Howevers by the use of concurrent
programmings the control is done properly even if the lag in
the rejection of impossible models makes the start—~up time
considerably longer than necessary. rFurthermores the
short—-comings in speed and memory of the computer under use
prevents application to C;EEE whevre the high gain
PD-controller would have beem unsuitable. For the present

case the PD-controller is better.

Lasts in Chapter 8 a discussion is undertaken about the

proposed method.
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CHAPTER 3

THEODRETICAL FRAMEWORK

FOR START-UP CONTROL

in this chapter the start-up problem is formulated and
involved concepts are defined. By using these concepts
pptimality of a control law can be defined. This is done in
two steps. In Section 3J.1s ‘accurate wodels are  assumeds
simplifying the definition a grest deal. The concepts of
Section 3.1 are extended in 8Bection 3.2 to the case of
inaccurate models.

The definition of optimality-applied to the basic start—-up

problem implies that there are optimal control laws which in
a certain way are insensitive to small perturbations in the

[ —

output. It is also shown in Section 3.3 how this is used
whern a control law compress the output history into a set of
possible models.

3.1 FORMULATION WITH ACCURATE MODELS

This section deals with the ideal case when an accurate

model of the system is possible to formulate. The following
concepts  are defined: description maps learnings control

aobjectivess and optimality.

The input-output function for a discrete time dynamical
system will be described by map H. The time unit chosen is

to be the sampling period if nothing else is stated.
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Definition J.13 A seguence 8 is a sequence of real

——————————————— [Ost3
numbers
SEOst] = [5(0)s S€1)3 woww- 3 s(EI1.
S denotes the set of sequences S . 8 denotes all
t LOst]
sequences for all t. If t (02 SEC 3 is defined as the empty
. )9
sequence. 9 denotes the set of sequences of infinite

length.
o
Definition 3.2: A description map H (often called model) is

a function from B to S» such that

(id  H(u 1 ES
[Ost] t+1
(ii» H(u 1¢pd = H(u 1Cr) 0 £ r £ min(ssti+l
[Oss] [Ost]
where H may be restricted to a:subset of 8.

u}

1n order to illustrate the concept regard a process defined

by
wlt+1d = a=x(t) + beultd
y{t? = pex(t) (3.12
#w(Q) = X
0

All variables and parvameters are real numbers. When as bs ©
and KO are givens the process (3.1) defines a description
map. By varying as bs o and XO the process (3.1) defines a
whole family of description maps. Notice that the initial

rondition is regarded as just another parameter.
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Definition 3.3: A process with some unknown parameters

defines a set of description maps» denoted by Ea

{a = accurate).

ja]
The hot-plate described in Bection 2.4 defines a process. A
priori knowledges such as knowing that water is used with
the water content m satisfying me[O.S, 2.01 kg limits the

w :
number of description maps defined by the process.

During the start—-up of a prdEESSa additional information is
gained about the process. This learning can be expressed by
using the subset of description maps H that can describe the

experienced input—output behaviour.

Definition 3.4: The subset E- of 87 is defined byt
tasusy
5 = {H3 HEX" and H(u )(si=y(s) for OSsftl.
tausy LOst—11

The dependence of u and y may be suppressed in order to get

a shorter notation.

Definition_of_loss_ function and ceontrol law

The basic start-up problem can be formulated in a more
rigorous way than earlier in Section 2.3. Figure 3.1

illustrates the following definitions

Definition_3.5: The basic start—-up problem is to find u

which raises y in minimum time t » such that
m




Y
Yrof . }Eref
re / N € ref
0 —
0 tm t

Fig. 3.1% Illustration of the definition of loss as minimum

time t in the case of the basic start—up problem.
m

(k) 2 - & t 2t

Y yreF ref m
subject to the constraints

(L) £ + €

Y yrEF ref
for all t 2 O (3.2)
uCt? € Oy u ]
nax

where is given b = Hdu )
Y 9 Y y[ostj [Ost—11

and H belongs to Ea.

8]
In the basic start—up problem the loss is given by tm. In
generals for adaptive start-up problemss both the loss
function and the constraints can be more complicated. In the
case of furnaces for instances the temperature gradients can

be limited and the energy consumption can be included in the

loss.
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The control of a process is based on available knowledges
i.e. on old inputs and outputs and the set Ka of description
maps H. A natural definition of a contrel law with a

corresponding loss is the followings:

Definition_3J.46: A control laws denoted by Fs is a sequence

of functions
{f§ 3 s defined by
t 0

S ®* 8 3

(u vy } e > uft) € R t20.
t-1 t LOst—-11 " [Ost]

The lossy i.e. the minimum time tm in Definition 3.5
obtained when using a control law F on 8 system described by

H is denoted by J°(FsH).

a
In adaptive start—up problems there are constraints on u and
y. This means that admissible control laws F are of

interest.

Definition 3.78¢ A control law F is admissible (with respect

to %)y if for every HEE®

ult) = £ (u 3 where vy =

3y H{u )
[Ost—13  [Ostd [Ost1d [Ost-11

gives u and y fulfilling constraints (3.2).
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The set of admissible control laws is denoted by @a. Subsets

of @a are defined by

L4 = {Fe$¢ & ul(r) = £ (u vy T 0frft-1l.
tausy r [Ospr=11 " [Osyr]

y
A control law F will be considered optimal if it gives the

lowest loss Ja(FaH) for the worst possible H at each time t.
The precise meaning of optimality is given by the following

definition:

Definition _3.8: An admissible control law F is called

optimal if for all t20s uESt 1, yest, and Ge@as

FsG € &
LUy

implies that

sup JR(F.H) £ sup J (GsHI.

Hex” Heg?

tsusy tasusy

1f the ineqguality can be strengthened to

JF ) € J%(BsHY  For all HER®

F is said to be completely optimal.

&
This is a worst case definition®: Howevers some form of
averaging technique is often used in it’s steads for

instances




n
Jemy = ZﬂJ(FqH.) mCH Y % = {H veuaoH }s
i:1 i i 1 n

where m is a semi-positive functional and Ea is supposed to
be finite. By using measure theory it may be possible to
extend this idea to infinite sets Ea. The techrnigque of using
a functional to compare different control laws is common in
stochastic controls where m(gi) is the probability density.
J is often called Bayes cost (See eg. Sworder 17646). Such

cost functions ares howevenr:s not appropriate  for the

start-up problems.

Discussion

Notice the necessity that some HEEa actually can describe an
obtained output in exact terms. This means that it is very
difficult to characterize the set Ea. Trying to 1list all
relevant aspects of a practicai system is not realistic. For

instance: in the hot-plate case it would mean that the salt

concentration of the water should be included as well as the

frequency and the voltage of the AC power-net. Even if it is
assumed that Ea is knowns it woulds in most practical cases
be impossible to solve the problem. The models would be too

complex.

Approximate models is the solution to such problems. They
requires: howevers a modification of the conecepts introduced

in this section.
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3.2 FORMULATION WITH INACCURATE MODELS

The concepts of learnings admissible caontrol  laws and

optimality will be defined in the case of inaccurate models.

Description of processes

Let E be defined as a set of description mapss H:5+8: which

»

approximates Ea. E is chosen by the control engineers thus

the functions HEE are s11 known.

Exanple 3.1:¢ The set x° of maps describing the hot-plate

process can be approximated by Model (E.1) in which all
parameters are known apart from m and T . Assume the
] po

values of m and T to be discretized so that the resulting
W pa

set E consists of all models of type (B.1) with

s = [0.5 kgs 0.6 KO3 wtwocoeeses 1.5 kgs 2.0 kgl
w
T = [20°Cys J0°Cs vuwwasaas 290°Cy I00°CT.

po

Assume also no  losses (=0 W/°C) and the sampling interval
h=10 s. The application of the formulation of learning in
Definition 3.4 willy howevers not be relevant. The knowledge
of y(1) and yv(2) would normally be enough to determine m

w
and T . Following thiss ordinary optimal control could have

[s]
been papplied. This iss: howevers no solution to the real
problems not even a good approximation. Consider for
instance the case of a small sample interval. In Figure 3.2
pulse responses are shown for the hot-plate process and the
models. If an attempt to choose a model is made after two
samples the natural choice is 8 m = 2.0 kg and T = 20°C

w po

instead of the correct m =1 kg and T = 20°C.
W Do




T, [°C]

Measured

Fig. 3.2% Pulse responses for the hot-plate. The pulse was
200 seconds long and the amplitude was 1350 W.

Dots are measured data with m = 1 ko and
W
T €0y = 20°C., Full lines are simulations of
P

Model (B.1) for different values of mw and Tpo'




The drawback of the method of choosing model in Example 3.1
ig that it restricts the model class too SO00N.
Definition 3.4 suggests how to avoid the problems the
essential idea being not to decide on the best model as socon
as possible but to rejgect the impossible ones as soon as

possible. For instances in the example above (see
Al

Figure 3.2) it can be stated with some confidence that after
300 seconds m is not greater than 1.9 kg if it is assumed
w

that T = 20°C. One way is to reject models if the measured
po ”
output is too far from the model output. Definition I.4 can

then be modified to describe learning.

Definition 3.9 & is defined as a subset of E for
tsusy
which
bX3 = {H? HER and |H(u ) o—- oy I £ e Oirit}
tiusy EOsr-11 [Osr]1 &

r

where e=g(ssu sHY  is  a sequence of positive real
[0sg—1]
numbers. The subscript on u is sometimes suppressed. The
dependence on the norm and on & for Et is suppressed in
sUsy
the notation. The same is often done with u and y. The set
E is defined by
@iy
g 2 N | .
@allsy t=1 tsusy

a]
Remark 3.1: In Bection 2.4 it wes mentioned that the model

error will depend upon both the input and the approximating

model. This is elaborated in Chapter 5.
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Observe that Definition 3.7 is such that Et is always
decreasing. This is in line with the common notion of
learning. The norm is of course crucial for the set Et. For

the basic start-up problem the seminorm

hy =zl = Jy(td - z(t)]
St

v
is often sufficient. In other cases it can for instance be

of interest to consider also the derivative y’ (i) or the

difference y(t+hi—-y(td.

In the sequel it is supposed that e(ssusH) is chosen so that

the following assumption holds:

Assumption _3.13 To every member HaGEa there is a member HEE

such that

H? Cu )¢t — Hu ICEY[ £ ety

sHD (3.3
[Ost—11 [Ost~11 [Ost—-13

for all t20 and for any member u of 8 such that wu and

w0

y{E)=H(ud (t) fulfil constraints (3.2).

[a]
Remark 3.2: Observe that the reguirement that u and y fulfil
constraints (3.2) is natural. Without such & reguirement it

would be necessary to specify e(tsusH) in cases having no

interest with respect to the basic start-up problem.




Remark 3.38 In practice it may be necessary to substitute

inequality (3.3) for

g (tsusHd) £ Ha(u Yty —-H 3¢ty € & (tousHI. (3.4
- [ost—11 [Ost—11 +

Such a change of pssumption 3.1 does not change the theory

of Chapter T in any essential way. Therefore the more

convenient form (2.3) is used. € and £ are used in
> +

Chapters 5 and 7.

pefinition 3.7 of admissible control laws has to be
redefined in order to allow for the approximative
description of the process.

m
ngigigigg_;LLQL A control jaw F given by {Ft}o is

admissible if for every HEE it happens that all sequences

nes  fulfilling the condition

fncty — H(u ()] € eCtsu

sH)
[Ost—13 [O)t—11

where u€s is given by

uctt) = £ (u )
t

71
[Ost—11 [O»t]
give an input seguence U and an output sequence ni=y?l
Fulfilling constraints ¢3.2). The set of admissible control
laws is denoted by %. Subsets of ¢ are defined by

= {Ft F€ds ulr) = ¢

[ 2 (u 12| 3e  rEt-13.
teun r [Qsr—11 [Osrl




£
o

The set & is defined by
@Itsy

4

4 = .
1 tsusy

XTI ERY t

o8

juj

Remark 3.4: n is used instead of y to emphasize thats for a

@ a a
given sequence {n(t)}ca there does not have to be a H €E
)

and an input seguence u such that

neE+1) = Ho(ud (t+1d.
[}
Remark 3.5% The domain of definition for a control law F

can be restricted to all pairs of sequences u and y€S such

w

that FeE€é and B is non empty for all t.
tsusy tsusy

0
Example 3.2 : The hot-plate process is studied with B as in

Example 3.1. Let yreF = 40°C. Let F be a control law which
for the first sample periods starts with u=1350 W. After two
samples it determines which HEE has generated the outputs
and it uses u=1350 W exactly the time needed for this model
H to obtain the desired temperature. This control law is
admissible according to Definition 3.7. Howevers in a
practical case there are problems. First of all the measured

output y(12 and y(2) may be such that there is no H€Es such

that

y(1) = H<u Y (1D and y(2) = H(u 12,

[O501 [Os1]

If this is circumvented by wusing the closest H in sone
senses there are still problems as seen from Figure 3.2.

After 20 seconds (two sample intervals) the control law
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would choose m = 2.0 kg and T = zo°r as  the best wmodel.
w po

This would give nearly twice the required amount of enargy

and result in a big overshoot violating comnstraints (3.2y. F
is therefore not admissible. Definition 3,10 takes into
account the possibility of an error in the description.

[u]
It has 2asily been demonstrated that the control law in
Example 3.2 is nhot admiésible. In a gerneral case; however,
the matter is more difficult. Even if % is finite and the
time horizon is Finite, the possibilities of different n can
make it impossible to ljudge in finite times except for

special classes of feedback laws.

The basic view here is that all that isg known about the
process is given by ald input and output valuess the set of
models B and Assumption 3.1, Prediction at time ¢t of the
future output will only rfely upon  input us Et ury and
Uy
Assumption 3.1. The definition of admissible control laws isg
in line with this view., The concept of inaccurate sets of

models will also make it natural to study a special class of

control laws.

Definition_Z.11: A control law F is said to be reduced to =

if the functions £ only depend on u and R [ -
t [Ost—-1] trusy

£«

u Yy o=
t [ost~11"" 10,7 ®

(u 1B b
t [Ost~-11 trugy
where wt is a sequence of functions,
o
In Section 3.3 the significance of Definition 3.11 will bhe

made clearer.




Defining optimality

The meaning of optimality for a control law was discussed

and defined in Definition 3.8. In the case of inaccurate
descriptions the situation is more complicated. It is not
possible to define the loss as in Definition 3.6 by simply
changing £ to E. The reason is the same as why the
admissible control laws could not be defined by

Definition 3.7. Againsy the uncertainty in y{(t) wmust be

considered. The definition is made in two steps.

Definition 3.12: The loss function 3 is defined by

JinsFiHI=t where t fulfils
m it

(ty 2 - € t 2t
n yreF ref m
t —1) « - € t £ 1
n th yreF ref i
and uInN€S s HEER » and FEd .
@ @319y ®3tlany

u]
Remark _3.6: In the basic start-up problem the loss ) can be
expressed as a function of only n. In many other casess the
loss function reqguires the input or the control law as an
argument. In order to give a characterization of possible

n’s through Assumption 3.1 an explicit dependence on HEE

is preferred in the notation jJ(n:FiH).

[w]
Definition 3.13: For t20s UES né€ES » HEE 3 and
L@ t tsusn
Fed there is associated a loss: Jin 1FsH) s defined
tsuin LOstl




JC sFsk) =
nEOet]
sup {J¢EsFiH 28 = s HER FES® Y.
P tacs £Ostd LOsEI I @yUE
EES
[w]
The analogy of Definition 3.8 is given in the next

definition.

v

Definition_ 3,143 An admissible control law Fis called

optimal if for all €204 uES‘t 15 nESt and BE4
Fs:GE®
taun
implies that
sup J(nEO sFsH) £ sup Jin sGaH) .,

st ] [Ost]

HER HEH
tausn tausn

If the inequality above can.be strengthensd to

Jn sFsH) % Jin sGsH) s HEE 3
LOst] [Os%1] trusn

then F is said to be completely optimal.

It is now possible to relate to the dual character of
adaptive optimal control as introduced by Feldbaum (1945).
The ability to conirol so that the output reaches the
desired value reguires a fairly good knowledge of the system
in operation. In current terminology this means that Et must
be rather small before the goal is obtained. In this way it

can be said that the controller tries to meet two

objectives. The first one is making J smalls the second one
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iz  making Et small. The twn objectives are rnormally in
conflict with sach others but not alwayss as will be seen in

Section 4.1.

.3 OPTIMALITY OF REDUCED CONTROL LAWS IN THE CABE OF THE
BASIC START-UP PROEBLEM.

In the case of the basic start-up problems the output given
as yEOstJ seems to be far more precise information than
necessary if the objective is to use an optimal control law
as defined by Definition 3.14. In Theorem 3.2+ it will be
proved that if F is an optimal control law and B is a finite
sety it is possible to change F to F%s such that F% ig
optimal and reduced to E (see Definition 3.11). In the proof
a successive modification of F  is used. Reference outputs n
are chosen one at a time and F :{ds modified for all outputs:
starting close to n. These reference outputs are chosen in
special relation to possible wodels H. The modification for
surh a specific output n is defined in Definition 3.15 and
characterized in Lemma 3.1 and Theorem 3.1. Theorem 3.1
underlines the meaning of Definition 3.11 that the subset E
is the essential concept. The result is interesting in its
own: and not only as a preparation for the proof of

Theorem 3.2.

As  an introduction to Lemme 3.1 and the theoremss the
following discussion is undertaken. Let u and n
[Osz—-11 [Q9ssd

be such that FE$ s and B is non-empty. Let ¢ be
BaU9Y} Sesllel

such that




7]
N

B = K O
rsust raudsrn

i
=
W

Eal
.

(3.5

Equation (3.5) means that for any time instant rel0sgls [{r)
could have been obtained instead of ni(r) when F is used on
n- Nothing is said about the possibility of obtaining § when
using F on £. It may very well happen that F is not defined
on the whole segment C[qu].
If the control 1law F is disregarded for the moments it
follows that the predictions of further outputs y(t)s t)ss

given that (u ) were knowns are the same as if

¥
[Oss—11] r][O'.-E'ﬁl

{u 1 G ) were known. Therefore it should be
[Osgs—11 [0ssl

pessible to alter F so that the contrel signal is the same

on (u as on (u s and that the

ER A J Ryl
[Oss—13 [Oss] [Oss—11] [Ossl
modified F is optimal if F is optimal. The modified F will

be called F* .

When F is changed to F* and a different input is generateds
totally different outputs may be obtained. Therefore F’ has
to be defined for all such outputs { and not only for those

close to the reference output n.

Definition 3.15: Regard a pair uin€S » such that B is
@ @3llsn)

non—-emptys and a control law Fy such that

F € ¢ -
@3UIn

Define F’ by

u? (ra=§F (7 st

y=f
r [Osr-11 “LOsr]

(u? in’
r [OQsr—-1] [Os ]




3%
for all possible outputs §» i.e. E . is non—empty. The
@y’ 9
sequence n’ is obtained by concatenation
n o=« 1 g 3 (3.72
n[o»q] [g+lsw)
using g fulfilling
E . = H M rig
rals yauar
(3.8

b7 * E
g+lsust g+lsusn
For [ not starting close to ny i.e. g=—1s F’ is equal to F.
jal
Remark_3.7: In the definition it is assumed that v is a
possible output when using Fs» so that the right hand side of

(3.6 is defined. In Lemma 3.1 it is proved that this is the

5
rase. Note that UEOsq] = u[O’q]n

8]
Lemma_3.1: The following assertions are true for an
arbitrary n and § such that E - is non—empty:
@y’ 9
(i’ E = B rz0
rsu’ s rau’any’
(3.9)
(iid> F7 is defined rEO
r
(iiid» F’ €
(ivy J(g 2F? sHY £ max [n+l:J0° sFaH)1
[O:nl [Osnl
HExE
nau’ ey’

where n’ su’ and F* are defined in Definition 3.15.




Eroof:
(i) and (iid: For rig (3.9) follows directly from
(3.63 - (3.8). Assume that (3.9) is true for r€t. But L(E+1)

= 17 (t+1) together with the crucial property:

HER &3
t+1su” oL

{HGE & jLit+id—Hu? JCEHL) | Se b+l g 1H)}
tsu’ s g L ] [Os»t]

Qs
imply that

= .
t+lsu’ 90 t+lau? 5l

which is non—empty. Therefore n’ is a possible output
LOst+11]
and FE€® proves that uw?(t+1) and F; . are well defined.
+

Induction in t proves (3.9).

(iiir: But an output may take off from n to L[<(t+1) also
earlier than after t)gs (3.8). Therefore FEd implies that u?
and § fulfil constraints (3.2) for all t=0s and thus F?Eés

since § is arbitrary.

(iv): Now regard
= J( sFTaH) = (3.100
: C[Osn]

sup {J(§15F’5H)=§
€5
El .

= s HEE s F' €3 }
1L0sn] [Osnl mau”gi m!U’!EI
If pdn+ls choose a gis such that

(p—1) ( y - E 3
§1 P ref ref
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for instance a supremal §1 in (3.10)s and consider this as §

in Definition 2.1%. Compare with

Jin? sFaH) =
n[Qsﬂ]
=t (E sFsHIIE =y’ s HEE s FES .
P {J E'Z 2L0snl nEO’HJ @y’ 9 @’ 5§ }
E_€S 2 2

Therefores choose a probably not supremal §Gy such that
= (n’ ’ )
Ei‘ n[O!h] gl[n“('lsm]

when p-1>g. In case p—-1fg chonose an output §2 fulfilling

ety = {nct) t ( p-t

Ty oyt o= pe1
1
but unspecified for *t)p-1. This is possible because p)nt+i.

Therefores because p)n+ls

§2(p—1) = gi(p—i) { yPeF _EPEF énd chzanH) z p
s0 that (iv) is proven.

ju]
To prove optimality of F’s it is first of all necessary to
compare F  and F’? when a deviation C(t+1) from nEOst]
experienced. Unfortunately it is not sufficient to compare
only F and F’. The output §(t+2)s obtained when using F’»s
may be an impossible output when using Fi therefores F° has

to be compared with all possible control laws G as in

Definition 3.14 of optimality.




Theorem S.13 IFf F is optimal then F’ is also optimal.

Proof: Regard any GE€®s €S and u’ €S such that E
I n—1 nau’ sl
is non-empty and F’ .GES . It will be proved that
mau’? o G
= sU J< 1F? 3H) £ su J ¢ GsHY. (3.110
P i ®toana P Stama’t
HeE HeE
nau’ o meu’ o

Define 0" as F? was defined in Definition 3.15 by replacing
F and n with 6 and G- The rcontrol signal u’ is actually

obtained when using G" on n’. because Lemma Z.1 gave

E = B rin
rau’ sny’ reu’ s

and G" is then defined to give what G gives on . It also

means that n’ may be obtained when using G".
[Onl

Assume pYn+l. It then follows from Lemma 3.1 that

=1¥] JLg sF?9H 2 £ su Jin? 2 FaHd .
P [Osn] P n[OH'}J
HEE HER
nau’ s g nsu’ Ny
F optimal gives: since G" can give n’ s that
[Oind .
su Jiry sFsH ) £ su Jiny? sG" s H) .
P [LOsn] P [Qsnd
HER HEE
nsu’ e’ mau’ N’

Further Lemma 3.1 can be modified to characterize G"s s0

that
suUp Jory? »G"sHY £ sup Jeg sGaHY .
[Qsnl <
HeR 1 Hew LOsnl
mau’ 9y’ nsu’ o
Thus if pin+l  then (3.110 is proved. If pin+tl then

Li{p-12 Ly - . Thus (Z.11) is true also in this case.
ref ref
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Remark 3.8% F°' is obtained by redefining F for all t
Fulfilling (3.8) for gz20. When working with control lawss it
can be of interest to not change F for so many outputs .
For instances assume that it is only of interest to change F
up to and including t=s: s fixed. In such a cases it is

possible to change Definition 3.15 by replacing = with s.

Observe that this also means that uin€8 are replaced by

»

U €8 and n €8 . Further (3.8) is replaced with
[O0ss—11 s-1 [Oss3 s
) = R rigis
rsus g ratisn
(3.12)
gi{s 2 E

+ B .
qtlsusl q+lsuan

Changing the definition of F? will not alter Lemma 3.1
Theorem .1 or their proofs. Observe that it is not possible
to change F on an arbitrary subset of all § fulfilling (3.8)
with g20. For instances redeFihing F only for those § that
have g in (3.12) equal to a s for a fixed ss will in general
be impossible because at time t(s it is impossible to know

if g=s even if E =K for rit.
rsuslh  rasusn

ju}

Theorem %.2: If F is optimal and B is finites it is then

* *
possible to change F to F  such that F is optimal and

reduced to E.

=]
Proof: Assume that F is changed to F which is optimal and

such that there is a8 ¢ such that
r

= (p ) Oﬁr‘Sp. (3.13

£ (u [23] b] (u v B
r L[Qsr—11 L[Osrl r L[O0sr-11 vrousm




a4

p
Let €8 be such that F €¢ for some .

v
[O:sp3 p paven

It follows from (3.13) that there are finitely many such

v . Furthers let <M 3" be an enumeration of the powe e
[Ospa i i=1

set of E» where m is finite because = is a finite set. For

each M an n €8 ' is chosens if possibles such that
i i p+

b3} * B v =M 1£5%i-1,
pPrlasvan ptlavar, i
J i

s 1
Define Fp as F’ in the variation of Definition 3.1% given

p

in Remark 3.8 when n s and F=F , (nl

=1} s U =v
[Osp+11 COspl  L[Osp]
is supposed to exist. Otherwise use the least k such that

there is an n such that = is non-empty.)
k rausnk

s 1
Fp is optimal acrording to Theorem 3.1. Repeating this for

p+1
all possible N, gives a control law F which is aoptimal.
i : v

Repeating this procedure far all possible VEC . gives a
)9p

p+1
control law F which is also aptimal and sueh that (3,13
is true when P is changed to p+tl. Observe that the
. p ptl
construction is such that F and F are the same up to and

including t=p, i.e

p ptl1

f (u 47} )} o= f (u 37} ) Ofrip.
r L[Ospr=-11 LOsrd r LOsr-11 LOsr]

* N

Let F  be defined by

*

£ (u i Y= f (u Ry 3 Ofrtp,
r [Osr-1] [Osyr] r [Qar-1] [Osr]

D *
From F' = Fs p=-1s it can be concluded by induction that F

is optimal and reduced to X.
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CHAPTER a

THEORETTICAL ANALYSIS 0 F

SPECIAL START-UP PROBLEMS

The basic start—up problem similar to that of the hot-plate
process is solved. It is proved that the control laws taking
ulty as high as possible at each time s is completely
optimal. Howevers in Sections 4.1 and 4.2 & is assumed to be
constants which is not possible to assume in  a practical
Case.

In Section 4.3 dynamic programming is used to show the
existence of an optimal control law in the general case of
the basic start—up problem. Howevers the use of dynamic
programming to solve practical problems iss in generals not
possible due to the amount of calculations required.

4.1 MONOTONE BETS OF SYBTEMS

it is normally difficult to derive an optimsal solution for
the basic start-up problem. For a class of problems the dual
objectivess obtaining maximal decrease of E and minimal
loss Jy coincide. With respect to the hot—-plate problems it
is natural that the higher the power input the faster the
temperature rise. At the same time it seems natural that it
is pasier to estimate mw when the signals are large. In this
and the next section it will be proved that under special
assumptionss intuition is actually in agreement with
Definition 3.14 of optimality. The method of proving this is

not a straightforward approachs but rather starts off in a

5lightly different direction.
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Definition 4.1 ¥ is called a monotone set if

(i) E can be parametrized with one parameter )

(I is an index set of real numbers)

(ii) all members H € E rcan be described as

[+ 4
y(0) = 0 '
t-1
vt =2 h Ct—i) (i) t 21
i=o
(iiid) h 1) 2 O L

o

{iv) h (t) is increasing in t

™
(v h (t) £ h (@) {( = t 21
& o :
(vi) o« > o« implies that h (t)-h () 2 O
2 1 x2 ol
and increasing in t for all t 2 1. p

a
Remark _4.1: The conditions of a monotone set imply that the
models are stable but contain an integrator. In the case of
the hot-plate no losses can be included.

a
Example 4.1%: Consider Model (B.1) of the hot plate in the
case of no lossess i.e. «=0s and u replaced by y-u. The gain
¥y is the only variable assumed not to be known. Furthers it
is assumed that

T (0 =T 0) =T = Q°C.
w p room




a7

The input—output relation is given by

t
i ~g(t—Tl
T () = J ————— (1 - e 3oy ult) dr
w c +c
(&} W p
1 1.
where a = Al—— + =293 c =m G v c =mC .
c c w W oW R pp
W p

Assume ult) is constant during sampling intervals of length
A (the notion h for the sampling interval is for the moment

not used). The impulse response h(k) is thus given by

A
1 —a(kA—T)
hik) = J ————— (1 - e » oy drt k 2 1. (4.2)
c +c
O w p
It is easy to see that conditions (4.1.i - wvi) are

fulfilleds so E is a monotone set.

[m]
For monotane sets the basic start—up problem (see
Definition Z.5) has an easy solution when € is constant.
This will be proved in Theorem 4.1 below. The following two

lemmas are used in the proof.

Lemna 4,18 If

J

(i) Z wi(il} 2 Q for all 3 £ p
it
i=0

(iin h(i) 2 Q i 20
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(iii)» h is increasing
J
then 2 h{g—itwCi) 2 0 for all 3 £ p.
o
i=0

Propf: The result follows from

J J=1-» k
z h(j-idw(i) = z Lh(g—K)—h(g=k=1)1 z Wid
il wd ot
i=0 k=0 i=0
J
+ h(O) z w(i) 2 Q.-
=]

i=

Lemma_4.2% For a monotone set Es the conditions

iy o« ) «
2 1
t t .
(iid z viiy £ 2 wlid all t £ p
=1 wd
i=Q i=0
imply that
H (u 1(p+1r -~ H (u 1Cp+ld 2
a2 [Ospl al  [L[OQspl
2 (v Yp+ld - H (v 1 {p+ld.
oz  L[Ospl «l  [Ospd
Progf:
H (u Y p+ldy -~ H  (u 1 (p+ir -
a2 L[Ospl ol [Ospl
- {H {v Fip+ld —~ H o (v )(p+1)} =
oz L[Ospl «l  [Qspl



Zq[h (p+1—id-h (p+i-1i23Ludid—v(idl 2 O.
oz ol

wd
i=0

The last inequality follows from (4.1.vi) by Lemma 4.1.
0

Theorem 4.1t For a monotone set E with € constant there

exists a completely optimal control law F  for the basic
start-up problem. F is defined recursively for y such that

" is non—empty. Let u(t)=Ft(u s be the

1y 3
tsusy [Ost—-11 " L[Ost]

supremum of all

u € [0O» u 1 such that Gt € 8 defined by

max
u (8 s ( t 1
[Ost—113
-t
(i3 u (s) = L 5 = t
Q s > t
g > (4.3
fulfils
—t

(ii) H{u 2(s) + € £ vy + € s HEE 4 s20.
ref ref t J

Propof: First of all it will be proved that F is admissible.

According to the assumptions about ys there is an HEE such

that

yCt+1) £ [y(t+1> —~ Htu Y(E+1) | + H(u 1(E+1) £
[Ost3 [Ost]

€ & + H(u 1(t+ly £y + £
[ R ref ref

and it is true for any such HEEt 1:Et. The last inequality
+

follows from the egualitys:



S0

ot

“rosts T Yro,td

Constraints (3.2) are thus fulfilled for any ts and by

Definition 3.10 it follows that F is admissible.

Let F be the proposed optimal control law and G be another
control law. Let u and v represent the inputy and v and =z

represent the output given by the control laws F and Gy i.e.

FEd and GE¢ for all t. Let r be arbitrarily chosen
trusy tavez
and assume that GE¢ and H €8 « If there is a z
ritsy 20 rayusy
such that

“tosrs Loy

H € B tz0 4.4
«Q tavsz

(ysFiH ) £ 3(zsGiH 4.5>
Ity 0 O
then F is completely optimal according to Definition 3.14.
It will be shown that

z o=
LOsr] yEOer

z(t) = H Ity + 4.6

(v
0  L[Ogt-11

+ yE) = H ¢ ICkD tyr

U

«0 [Ost—-11

is such a z. If y(t)2z(t)s the time to reach the final limit
in the basic start-up problem (Definition 3.5) would be
shorter for y than for z, i.e. (4.5). This would follow From

condition




=1
t—1 £=1
z vii) € z ulio for all t 2 1 4.7
e et
i=0 i=0

using Lemma 4.1 and

1CE) - ¢ (D
Mo Yross1’ ¢t HaoVreose1’ F
, -1
N = z hit—-1)CuCirSveiay 2 0 t £ s+l.
N ]
i=0

Condition (4.7) will be proved by induction in time together
with condition (4.8)5s
Y c B for all t = 0. (4.8
tausy tavez

Assume (4.7) and (4.8) are true for tiIps pZmax(Osrd. When

p=max{0.r) it follows immediately that 4.7) and (4.8) are

. P
true. First it is observed that H(u Y{(s)s HEHEs is increasing

in s and bounded. This means that restriction (4.3.1i) can

be simplified to

B P
Yim Z his—ilu(i) = hiel Z u(id £ y + € -
Sdw L ot ref ref
i=0 i=
4.9
H € E a
psusy

Similarly Gs being an admissible control laws implies that



P
hiw) z vii) £ y + E - €
= ref ref
i=0 (4.10)
H€eR .
Psvaz

If the inequality <4.9) is not the bhounding factor for uiply

then udipy = y « Thiss vip) £ y 3 and
nax > max
p—-1 p—1
- a
Z viiy = z uiin
=i wd
i=0 i=0

imply that (4.7) is true for t=p+l in the case ulp) = y B
na x

If the inequality in (4.9) is the bounding factor on ulpls

then it follows from (4.91s (4.1025 and the inclusion

= c
Prusy psvyz
that
p p
Z Vi :fZ ucin
i et
i=0 i=0

because ulp) is chosen as large as possibly over the smaller

set of restricting hie)~-values,

Now turn to 4.8 for t=p+y, Regard an arbitrary H such

that

H € & 4.11>
prlsusy




=
[ T

or equivalently

(i) H ¢ H

pasudsy
(4.122
(iid Htu 1iprldy ~- (p+id}) £ g,
I [Ospl [Osp+i] !
To prove (4.3) is equivalent to prove that
(i H &€ E
psvaz
4.13)
€ii)d fHOY Pip+ldy —~ = (p+id] £ g
[Ospl [Osp+l]

The condition (4.13%.i) follows from (4.8) for t=p. To prove
(4.1%.ii7s introduce « as the parameter of the H chosen in

(4.11). Furthers introduce

A=H (v 1lp+ly - H O (v 1{p+ly
o [Ospd oo [Ospl

BE=H (u Fp+id — y{p+l)
an  LOspd

C=H (u Yp+ld - yilpeld.

o L[Ospl

Firsts observe that the left hand side of (4.13.1ii) can be

rewritten using the definition (4.6) of zs as

H (v Yy (p+ly — = (p+1) = A + Bs
o L[Qs:pl FOsp+1i]
and from H €K and H €E it follows that
a0l ptlsusy o prlsusy
B £ = and ICI £ g.

Now sssume that o a0. It then follows from the monotony of
% that A 2 0. Furthers (4.7) for t=p+tl gives that A+B-CiLO-

using Lemnmas 4.2. Hences




b
4+
W
I
|
m

and A+ B

I
0
29
m

s0 that (4.13.i1) follows. The case «{(un is proved in the
same way. This completes the proof of (4.7) and <¢4.8) for

tfp+ls and induction gives the theoren.

Remark 4.2: If B is a monotone set with

then the completely Dptim;l control law gives u(t)i=0 for all
t. The controller does not dare to use a positive u because
of the risk of an overshoot already in the very first step.

[n]
In the proof of Theorem 4.1 it is taken only that condition
(4.1.vid> in Definition 4.1 is satisfied up to

t = sup Jn sFsH) .
Hew £EQs—11

Corpllary 4.1: Let F be the control law defined in

Theorem 4.13 and let E be a monotone set excepting that

condition (4.1.vi) is only fulfilled up to

t = sup J(n[

JstH).
HEER

g
Then F is completely optimal.

The use of Corollary 4.1 reguires an estimate of




o
o

sup J(n 1]1F5H).

O._
HER Lo

This can be obtained by simulations letting the output z be

z(t) = H(v 1ty + E.
[Ost-11

in such a rase it is extremely difficult to regect H €E for
> X
large «. This makes it necessary to use a low input v. The

result is

(z:F3H) = J¢ sFaH) .
ArEt No,-11
This is proved in Theorem 4.2. Thus: by making simulations

For all H € E»

sup Jn 1FsH)
0_
HER [0s—-1]

can be determined.

Theorem_4.2: Consider the basic start—up problem. Let F be
the control law defined in Theorem 4.1. Let E be a monotone
set except that condition (4.1.vi) is only fulfilled up to

t = 3(zsFiH)» where z is given by

2(t) = H(v e + &
[Ost—11
and v is such that FEd s £ 2 0. Then
3VaeZE
Jin FasH) = 3(zsFiH).

[Os—11

-



Proof: For some aos H=H OEE. Let n and u be such that
o
HEE and FEP .
trun tausn
It will be proved that for all t ({ j3(zsFiHls
t-1 t-1 1
(i) 2‘ vis) £ z u(s?
wd =4
5=0 s=0 N r (4.14)
(iid> H € E
I+ trum
+ H €& “
[+ tivsz
x 2o«
¢] J
For t=0 (4.14) is true. Assume (4.14) is true for tép.
(4.14.i) is proved for t=p+l similarly to how (4.7) was
proved in the proof of Theorem 4.1.
Assume H €E for az2a . It then follows from (4.1.vi)
o PasUsT) p
that
z(p+ldy - H (v I (p+1r £ z(p+l) - H(v Yip+ld = g,
P o [Ospld P =P [Ospl P
Furthers Lemma 4.2 gives that
H (v I (p+idi-zi(p+l) = H (v Yy (p+1)—H{(v I (p+ir-g £
o« [Ospl o« [Ospl Qspl
£ H (u Pprli-—nlp+idranip+lr-H(u I (p+id-e £ .
« L[OQspl LOsp]

Thus (4.14.ii) is true for t=p+l

Let s be the least number such t

H{v J(s) 2 y —€
[0ss—1] ref ref

<+

hat

€.
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Then

nis) 2 —-e+H(u 1) 2 —s+Hlv I(s) 2y —g
[Dss—11 [Oss—11 ref ref

where the second ineguality follows from Lemma 4.1 and

(4.14.i). Thus s is the least upper limit of J(n[ ) sFaH) .
-

ju]

The condition ¢4.1.vi) in Definition 4.1 is essential. This

will be shown in the following.example where E is fulfilling

all reguirements in Definition 4.1 except (vi). It is shown

that it is not optimal to take u(t) as large as possible at

each time t.

Example: 4.2: Set’

hit) = { j -
h )
5 o 0O o0 o o o o o o oh3
(o]
x X X X X X X X X xhz
@ @ @ @ e @ @ @ L] 0h1
x
0 T T T T T T T T T T o=
0 1 2 3 & S5 6 7 8 9 10 t

Fig. 4.1 The three impulse responses defining Hlu H and

qu when 6 = 1/4 and q = 5/2.




z 2
h (£) = h(tdy = 8-5ct)
h,(t) = h(t)
h_(t) = g-h(t)
>

where 8 fulfils O ( & % 1/4. The basic start—up problem with

1 2 3
t—-1
where H{u )y = z h (k—=irucid J = 1. 24 3
[Ost—13 wt 3
i=0
is studied for a given € ¥ 0. The parameters qs vy F, and
re
& are chosen such that (4.15) below is fulfilled.
re
Let X =y + & - E.
ref ref
(1) q ) z
1 i
(iid O%CL = == ( Ze ¢ Ox(1l - ——=) (4.15)
2q 4q
(iiid O ( 4<(e = &) { Bax,
ref

From 8 £ 1/4 and (4.15.i+i1) it follows that

2e ¢ oxc1 - -y ¢ Xo¢q o1y, (4.16)

4q 2 q

This inequality will be used later.

Observe that 6 is such that = fulfils all requirements in
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Definition 4.1 except for (vil. U«ax is assumed to be so
{

large that it does not 1limit u. The control law F in

Theovrem 4.1 i.e. taking u(t) as large as possible at each

time ts will be examined. It is assumed that the process is

described by Hl. Thus

u(0) = x/h_(=) = x/(2q)

and

[h. (12 — kh (123 ud0) 2 [h (1) — Kk (121 udQ) =

P}

= 2{g-1ix/2q ) 2

where the last inequality follows from (4.163. H7 can thus
-

always be rejected at time t=1: but not always H » since
z

fFrom (4.15 i and 1ii)

Th (12 = h (1)1u(0) = 9:2ut0) = 0 2 ¢ ze.
The control law may therefore give

ull) = x/hi=a) — uCQ) = x/2 - »/{2q).

The difference between the outputs from H_ and H1 is

1) ~ H (

H (u u o 1CE) £ BLUCO) + 2ucidl =
2 LOst—11 1 [0st~-11

==X+ x -5 = oxar - =1y ¢ ze,
Zq q 2q

As long as H2 cannot be rejecteds u(t)=0s t2Zs which proves

the first inequality. The last inequality follows from
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(A, 15.112. From

H (u 1(E) £ h () [u(Od+u(ldl =
1 [Qst—11] i

]

[2=@F /2 = X — Q-x/2 (Y + & - g — 2(€ —-g) =
ref ref ref

=y - g + &
ref raf

it follows that

sup J(n[O OJanH ) = wa
HER ’

Another control law G is defined by choosing u(0) as x/Ca4g?
and at tzl the input wiltl) is chosen as large as possible.
Also with the control law G it will always be possible to

reject H3 at t=1 because

[h (13 — h €121 uQy 2 [h (1) — Kk (123 woy =
3 i 3 2

= 2(g-11%/4q ) Z2€

according to (4.16). So u(1l) can at least be chosen as
ull) = x/hi=) — ull) = x/2 - w/ (4

which gives that

H (u. 1(Zy ~ H (u 32y = fLu(0) + 2011l =
2 [0s1] 1 [0.13

= @Lx/(4q) + 2(x/2 - x/¢agrl = @=-xil - 1/¢4g11 Y 2.

Thus it is possible to reject H2 at t=2. Therefore ul2) can

be chosen so that the output y(t) is larger than vy —-g
ref ref

when tzd. If Hq generates the system: Hv is still always

g




&1
rejected at t=1y and the risk of H1 imposes no restriction
on the choice of u. Neither H1 or H2 impose any restrictions
when H3 generates the system. It follows that J(n[OB_ 1GsH)

is finite for all HEE. The control law F  in Theorem 4.1 is

thus not optimal.

4.2 AN EXAMPLE OF ADAPTIVE START-UP CONTROL

The start-up problem mentiﬁned in the introduction of

Section 4.1 will be solved in a special case.

Example 4.3f The hot-plate process is studied once more

where the unknown parameter is m instead of y as in
w
Example 4.1. To get simple notations the guantity of water

will be measured by ¢ = m C .'Let & be the set of models
W Wow

given by (B.1) with paranmeter values as

T (O) = T (0) =T = Q°C
W P rOOm
c = [2000s 2500y 30003 .uvewoaaas .9 110003 [Ws/*°C1]
W .
o = 500 Ws/°C
=
o = O W/ G
€ L[Qs u 3 u = §000 W
max max
A= 50 g

Regard the basic start-up problem with

wref ref
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Let o in Definition 4.1 of monotone sets be 1/c¢
W

It is seen

straightforwanrd that E fulfils all conditions in

Definition 4.1 except (4.1.vid.

Consider

ah k) “ahck)
h (k) — h (k) = I ————— da = —J ————— do
®2 ol Ao dec
ol o w
wl
where the derivative
A
ahik) 1 ~a{(kA~-T) AlkA-T2 -2 (kA-r)
e TR | e e (1-e ) e e e ydrt
ac 2 2
W (c +o ) (c +c ) ©
w p w p
is obtained from (4.2) in Example 4.1. According to

Definition (4.1 of monotone setss adh(k)/3x20

should be

increasing in k or 8h(k)/dc 20 and decreasing in k. Observe

w
first that
(k+114
Ah(k+1y 3hk) 3 I d { Aanct/Aal } at
ac ac dt ac :
w W w
From
A
d { ahit/a) } a (=AaCt—-T) + A
e d e ot e e i i i = o | o e e e v v et e o e e i s s s s
dt 8c 2 2
w (c +o ) (¢ +C ) ©
5 p W P oW W

and from
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a A max
_____ o m—— e
c +c 2 2
BowW oo o
w w
c
w
where t = e 2 1000 s
Mmax A

it follows that (4.1.vi) is fulfilled for tft -
max

>

The estimate from Theorem 4.2 is given in Figure 4.2. From
Corollary 4.1 it follows thet Fs given in Theorem 4.1y is

completely optimal.

Two different start-ups are shown in Figures 4.3 and 4.4 and
the figures illustrate how Et evolves with time. The
Tw—curves shaow the output of different members of E. The
curve of a model is discontinued when the model no longer

belongs to the set Zt. The measured output is assumed to be

close to the model H with 1/a=c =8500 Ws/°C in both
o w

start—-ups. In the first start—up (Figure 4.3)

JIs] A
1000 —
500 Lo
0 T T T T T T T T T T -
0 5000 10000 C,,[ws/°C]
Fig. 4.2¢ Upper estimate of J(n{o _lijaH) as a function of

HEE parametrized with c .
w
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0 200 400 600 800 tls]

ulwl

1000

500

[]

0 +— T T 1 - g

0 200 400 600 800 t[s]

Fig. 4.3% The input and outputs from the models in E when
the optimal control law is used.




Ty [°C1 ]

-

-

0 200 400 600 800 t[s]

Ul

<

<
1

0 - T T T Gz

0 200 400 600 800 t[s]

Fig. 4.4% As Figure 4.3 but with another output.
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y(t) = H (u
cw LOst—13d

and in the second one (Figure 4.3

y(t) = max (OsH ¢ 1Ly — 1)
[y

u
w [Ost-11

1n the start-up shown in F}gure 4.4, all wmodels with
Cw ( 8500 Ws/kg are rejected almost at onces since yie) is
on the es-limit of Ha after appraximately 70 5. The models
with Cw y 8500 We/kg do not limit u any more than H“ doess
so the start-up is made as if E had contained only H«. The
start—up shown in Figure 4.3 shows a completely different

character. Here the input u is l1imited by wmodels with

e { 8500 Ws/kg which are not yet rejected.
]

4.3 ADAPTIVE_START—QE_DDNTRDL AND_DYNAMIC PROGRAMMING

Examples 4.2 shows that for the basic start—up problem it is
not always optimal to choose the input "ag large as
possible”. 1t is of interest to find @ systematic way to
determine the optimal control law. This will be done by
using dynamie programming (DPY». The essential idea of DP
will be presented here for discrete time. The loss J is

assumed to be a sum of contributions in each time step:t

@

Jixtt Yaurt ) = 2 J (x(trsulkdratd
Q Q t

_____ b omd 1 im  a positive
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real-valued function. Let V(x(t)st) be the optimal loss when

starting in x(t) at time t i.e.

L]

Vix(trstd) = min z J x{s)sui(slsl,
-
Yitye) S°F

The idea of DP is to choose u(f) such that

VIixCtlat) = min {V{x(t+129t+1) + Jt(x(t),u(t>yt)}. 4.17)
uctd

The precise meaning of the state x(t) and the function 3
requiras explaining. For known systems (i.e. in the

non—adaptive case)s the input sequence could be

u
[Ost—-11

chosen as the state x(t). Often it iss of courses possible

to find a lower dimensional state representations but

u is sufficient. In the adaptive cases information
LOst—-11 :

from the output segment has to be included to give a state.

Thus a state could be given by

®(t) = (u N Y.
[Ost—11 [Ost1]

The next state x(t+1) given x(t) and udt) is not unique. It
is only known that n(t+1) is such that E is
t+isuan
non—-empty. One can denote the set of possible x(t+1) by
ECtixCtlrsuctd). The worst case should be considereds i.e.

the x(t+1) in E(tix(tlsudtd) that results in the largest

loss. (4.17) can thus be rewritten as
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Vix{ed)st) = min max AVOCE+1dat+1) + 3 (xTEIsultdIsb) .
utt)  xC(E+I2€ECLIN(EI sl

The criterion in the besic start—up problem is minimum times

and the loss function J is thus the time to reach the band

Ly —~E 1y +E 1 and remain there. Introduce the set
ref ref ref ref

LO as the set of all those states that already have reached

the band and can stay theve. i.e.

LO = {x(tds Vixltdst) = O},

The incremental loss function Jt is thus

0 x(t) €L
]
3, (CEdsuced sty =

1 otherwise.

It is matural to characterize the functions VIix(tist) by the

sets L,
i
Li = {xd(trs Vixdtdst) = i},

The ideas presented above will now be formalized by the use

of the concepts in Chapter 3.

Definition 4.28 For the basic start up problem define L s

i20: as the set of segment pairs

(u 31) 2
[Ost—-11 [Ost]

such that



(i B is non—-empty
LSRR ]
(iid inf sup J(n aFaH) = t+i. 4.18>
[Ost]
Fed HEE
tsusn t

o

Remark 4.3: The range of J is the positive integers so that

there is an F’E@t such that the infimum in (4.18.11) is
sl

>

assumed 1if 1 is Finite.

Theorem 4,32 1f there is a G €% such that

for the basic start up problems then there also exists an

optimal control law F.

Pronfs F is defined recursively. Assume (4.19) is true for

a segment pair (u 5 )
e P [0st~17 L0421

(il u(s) = § (u 11} )

s [Oss—13] [Ossl
4.192

(ii)  (u n

3 y € L
[Ost—11 LOst] i

Then (4.17.ii) and Remark 4.3 imply that there is a control

law F'€¢ satisfying
tsun

SUp J(nco t]gF’aH) =t
HER !

tiusn

Set wdlt)= § (u M 1=§F (u 1] )
t [O0st—-13 [Ost1d t [Ost—11s [Ostd
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Let n(t+1) be such that E is non-empty.
t+lsuan

It then follows that

sup J(n sF? sH) £ sup J(n iF? HY = t+i.
+
HER LOst+11 eR LOst]d

t+1 t

F* is best for the "worst" nd(t+1) but there may be better
laws if an ‘“easier" ni(t+1)  were obtained. This impliess

according to Definition 4.2+ that

(u i Y EL s g £ max(0si-1). 4.20)
[Ost] L[Ost+11] J -
From :
inf sup J(n sGsH) £ sup J(n 13” sH) {( @
) -
Ges HER LOsQ] HER [Os=11]
Qsuan Q (o)
it follows that
( €L s some ke finite.

u N ?
[Os~-11 [0s0] K

By induction in t it Followshthat F is well defined (see

Remark 3.5).

It remains to be proved that F is optimal.

If for all i20s (u th| ) € L. and FEg
[Ost-13 [Ost3] trusn
imply that
= t+i iz 1
sup J(n aF s H) { (4.21)
EOstd £t i = 0O,
HGEt

then it follows from Definition 4.2 that F is optimal.
(4.19) implies (4.20) so (4.21) is true when i=0. Assume

that (4.20) is true when ifp. Assume
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(u N y € L 3
[Ost—11 [Ostl pt+i

Fee : and K are non—empty. (4.19) implies
t+isumnm t+lsuan

(4.20) s0

(u IRy Y E L
[Ost]3 T[Ost+1] J

Hence (4.21) is true for ifp+1.

o]
The theorem does not say that it is possible to construct an
optimal control law in finite time. Howevers by making

restrictions on the problem the situation is alterved.

Corollarys With assumptions as in Theorem 4.3s E being a
finite sets finite time horizons and the input range of u
containing only a finite number of valuess, it follows that

an optimal contrel law rcan be' constructed using a finite

number of operations.

Proof: From Theorems 4.3 and 3.2 it follows that there is
an  optimal control law which is reduced to E. The
assumptions allow only a finite number of control laws which
are reduced to E.

1
To use dynamic programming to find an optimal control
problem wills in most casess lead to a vast amount of

segment pairs ( Y. Whether modern computers

U N
[Ost—-13 L[Ost]

have ample capacity to handle this is a relevant problem.

The difficulties will be demonstrated in the following

example. The adaptive start-up problem in the example is

quite trivial. The disecretization of the problem is done as
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far as possible without reducing the problem to a matter of
certainty.

Example 4.4: The basic start-up problem is studied in the

case of a pure integration when y = 1.0 s g = 0.07 and E
ref ref

is given by

Y = a-z

u € [0.0s 0.27.

The set E consists of two memberss H1 (a=1.0) and H
2

P

(a=1.2%). All systems HaEEa are such that the output

y{t) = H ¢u ) satisfies
[OsE—11

JH¢ ICEY - ylEd] (& = 0.06

u
LOst~11

for H = H1 or HE'

The sampling period is supposed to be one time unit and the

input is discretized:
o= [0s 0.1y 0.2].

In Figure 4.5 the segment pairs are grouped together so that

e2ach ellipse represents a set of segment pairs for which
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“pry ajdwex
3 ur Joeafb
[UT 8y 10 dn-juaels syl s
moys ydeab =
yy oy By
T4

sz1°01 =D
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t
il uli) are egual (given by the column in the graph?

Q

Iy

il
e e
i

(iid B are egual (given by the raow in the graphl.
tauan

The minimum and maxilmum value of y(t) is marked in each

ellipse. Observe rhat t does not need to be the same for

different seguent pairs belonging to the same ellipse. The

future behaviour only depends on the sum given in (12 and

the set B . This means that segment pairs belonging to

taum
the same ellipse belong to the same set L . Which set L a
i i
ellipse belongs tao is marked. Possible transitions are
marked with arrows. An optimal control law (im this case

unigque) is given by u=0.2 until E5={a=1n0} or Ed={a=1n25}.

After that u=0.

The optimal control law is marked in Figure 4.5 by fat
arrows. Dynamic programming applied to ordinary (not
adaptive) start-up problems often produces so large a graph
that it is impossible to handle’it even in a large computer.
Dyhamic programming in the case of the adaptive start—up

problem iss: of COUrse WOrse.
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CHAPTER o

MODEL BAGSED CONTROL

A method for start-up contrel has been given in Chapters 3
and 4 for special processes. Here it will be stated in

general. Prohlems of choosing B gy and € P are discussed
re

and illustrated by the start—-up problem for the hot-plate
process. It is argued in Section 5.2 that E should consist
of physical wmodels. Different methods of generating e are
discussed in Section 5.3. In Section S.4 the dependence
between the discretization of the set E and the needed € is
discussed.

Instead of discretizing Es it can be regarded as a set of
subsets. Such a method is discussed in Section 5.5. Finally
a suitable control strategy based on the result of Theorem
4.1 is elaborated in Section S.6.

In Chapter 7 references are frequently made to this chapter
when presenting a controller for the hot-plate process.

5.1 A PROPOSAL FOR A METHOD OF START-UP CONTROL

According to Chapters 3 and 4 one method of start-up control
is to choose a set of models E and a set of model error
Functions e(tiusH) Ffulfilling Assumption 3.1. HModels are
rejected as the outputs are receiveds which is formulated by
the set of currently possible modelss Et. From Theorem 3.2

it follows that it is sensible to let the control be based

on old inputs and on the subsets Et. Choosing u according to
the worst case is considered by requiring that the control
ims admissible. In Section 5.6 the implementation of the

control law is further discussed.

The choices of Zs gy and & £ are strongly dependent on each
re

other. € c will more or less be given by the problem.
re
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Observe that near the goal

necessary € can result in
ref

suitable models Ffulfilling

examples of Chapter 4 show

critically on the relation

Example 4.2 it was esven proved

& there were cases when the
ref

for the reasonable control law

Even if the choice of € is

ref
g and E.

with the choice of

g {e g3 & smaller then

9
ref

an unnecessary work

to Find

Assumption 3.1. Further the

that the control depends

and € . In

ref
that if & was close encugh to

hetwesn 5

output never reached the goal
of Theorem 4.1.
important it is easy compared

These choices are completely

dependent on each other as seen by Assumption 3.1.

5.2 £ GIVEN BY PHYSICAL MODELS

H of

In principles the functions E can be regarded as a
large table giving an output segment to every input
sequence. Howevers the method of expressing H is of utmost

significance. The

model type determines the

possibility of

using the results of the science of wmaterial physicss.
thermodynamics etec.. As an examples consider the use of
Model (B.1) and the use of ARMA-models (see Ex. S.1). Models

of the type (B.1) will be

definition will be given.

The main reason for using ARMA~-

called physical models.

No strict

models in adaptive control is

the ease of computation and the advantage of generality. The

ease of computation is dus to the least square method of
identification (see Goodwin and Paynes 1977). For the
proposed method the idea is: howevers to reject impossible
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modelss not to choose what seemns for the moment to be the

best one. The generality of the ARMA-process is certainly of
great advantage when it comes to selling cenned controllers.
The control preoblems addressed in  the present work as
exemplified in Section Z.1» are howevers such that the use
af much a priori information seems to be of great advantage.
As  an example consider the pulse-response shown in
Figure 3.2. The use of a low D;dEP ARMA-model should require
a very long sampling interval in order to avoid a completely
wrong identification in +the beginning. A high order
ARMA-model woulds on  the D£hEV hands be difficult to
start-up. Add to this the difficulties in handling
non-linearities. The difficulties of eupressing physical

quantities in ARMA-models will be illustrated by an example.

Example S5.1: Assume that the second order model (B.1) is

transformed to a second order ARMA~model @
y(E) + a y(t=1) + a y(t-2) = b utt-1) + b utt~-2., (5.1)
i 2 i 2

Not all sets of parameter values {alv azs bis b ¥ will
2z

describe & hot—-plate process. Modelling errors can give

parameter estimates that are inconsistent with the physical

process. To avoid thiss constraints on the parameters are

introduced. Assume that the water quantity m is the only
w

A\

free parameter with 0.5 kg $m £
w

p~parameters will depend on the paramater m in the
w

KQga The a— and

following way?®

R




1 —h/T)
a, = e
-h/t
a, = e
c (== by
~-h/T
b = S 1 - LA - @ 3
1 o +e Ale +c )
w p L w p
c o b/
-h/<
b = B 1 + (h ~ L. 1 - e
2 o +e Al +e )
w o p i w p
W p
where ¢ =mC i c =ml 3§ T2 ===
w wow o} pp Ale + ¢ )
w p

h is the sampling period.

The constraints on als azs b and b2 are complicated and the
advantage of easy computation when using ARMA-models is thus
lost .

[u]
Furthers the use of physical models is D? great importance

when s(tsusH) is to be given., This is discussed in the next

two sections.

in the rest of this section some general problems of

approximating the set Ea with a set B will be discussed.

(1) The structure of the members of Ea is only partly known.
The process is not necessarily a "black box"s but rather
"gray"s in the sense that some structural parts are known
while others may be considered completely unknown. In the
hot-plate examwple the heat capacity of the plate and the

water are known. The heat distribution in the kettle is
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known in a gualitative way. The hydro-dynamics of the water

is considered to be a black box.

(21 The structure is known but some parameters are unknowr.
The heat—transfer between the plate and the kettle is
described by the heat-transfer ratioc A. The structure is

known or prescribeds but the value is not known.

>

(3} Unknown functions in members of 72,

Physical models often contain algebraic functions which are
unknown. Consider Model (B.i).oF the hot-plate process when
«nTw is replaced with w(Tw). Assume that the loss function ¢
is unknown. Even if it is known to be positives increasings
and convex: it is not trivial to parameterize it. In

principles a correct parameterization would

5.3 MODELLING ERROR £

Formallys the error e(tsusH) is defined by Assumption 3.1,
or in other wordss the relation between the error £(tsusH)
and the model H wmust fulfil Assumption 3.1. In practical
cases Ea is not known except through the real processys and
consequently it is not possible to calculate a maximal
modelling error e(tsusH). It has to be an estimated upper
bound of the real modelling error. For the case of
Example 3.1 it follows that s(tsusH) would be at least 3°C.
If & were constant the result would be a large EraF"

Howevers when the process is in stationarity it seems

possible to use an € lower than 3°C. This implies that =
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should depend on u. Certainly the model error depends on the

model H which is easily imagined in the hot-plate example.

A simple way to determine e(tsu:H) seems to be to run a lot
of experiments for different cases. Consider the hot-plate
process when E is given by Model (B.1) with o«T replaced

W
with (T ». But (tsusH) should depend on u and H resulting
w

in the need for many experiments. For each experiment the
output is compared with the output from the wodel in E with
parameter values corresponding to those in the experiment.
Whereas m is certainly knowns @ and A are much the

. w
opposite.

When determining suitable e(tsusH) it is of great advantage
if the models in B are physical models. This wmakes it easier
to use the knowledge of science. Even then it can be very
difficult to give a good éstimate of (tsusH). As an
examples the water temperature of the hot-plate process is
studied. In Model (B.1) the temperature is assumed to be
homogeneous in space. The error caused by such an assumption
is wvery difficult to estimate if the circulation of the
water should be taking into full consideration. On the other
hand the simple approach of considering water not in
circulation leads to results of no practical value. Due to
the low value of heat conductivity of waters 0.346 W/mKs the
difference between the top and bottom temperaturess would be

more than 100°C during an ordinary start-up.

A systematic way of determining e(tsusH) is hard to give. It

has to be developed with respect to the actual process. In

i P T e o e gy mdl b o e e vion T e e £ v o BT
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Normallys e(tsusH)  has to be generated on-line due to the

dependence of u as shown in Example 5.2.

Example 5.2: When modelling the hot-plate process the value
of the heat transfer rate is critical. Assume that A is to
be considered fixed and that Ea is given by Model (E.1> for
some ALl .S 21 W/K. Assume further that &x=0 and
mWEEO.S, 21 kg. Let E be given by (B.1) when A=2Z.W/°Cs
x=0 W/°C and meEOHSa 23 kg. The modelling error e(tsusH) is

easy to generate. Howevers this has to be done far each

model HEE. = will be generated in the case when w =1 kg.
w

Let H_ p denote Model (B.1) with m =1 kgs A=1.5 W/°C and
in w
denote the states of that model by Y and Y . The states of
w p
model H (m =1 kgs A=2 W/°C) are denoted by T and T . It
W W p

follows that with A=2 W/°C and AA=-0.5 W/°C.

e T =-ACT =T
W oW w p
eT = AT -T ) +u
PP w P
(= ; = —(A+AAI(Y - Y )
wow w p
[ ; = CA+AAICLY = Y ) + u
pp w P
T (0) = T Q) =Y (0) =Y (0) = 0°C.
w p w P
With 2 =T -Y and Z =T - Y the eguations above
W w w P ) p
give
C 7 = -ACZ =7 + MY - Y
W oW w p w p
c 2 = AZ -~ Z )Y — AACY = V¥V )
pp w P w p

7 (0) = 7 (0) = 0°C.
w P
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u is always positives so Yy -Y is negative.
W P
c
2=--21
W c p
w
3 Z 2 O. }
o w ¥
“ w '
ap 7 = —ZAjLe——{Z F SAACY  — Y 3
w W c w w p
p

From the above it fFollows that the outputs from the members
of Ea with m =1 kg will be lower or equal to T and greater
W w

or equal to Y Thus £(tsu-H) is given by
w .

g =0°C and e (byusH) = T (£ ~ Y 22
- w w
where € and g were defined in Remark %.%., In Figure 5.1 a
e —

start—-up is showh. Observe how & decreases to zero for

large t.

a
5.4 THE RESOLVING POWER OF E AND THE PARAMETER RESOLUTION
The modelling ervor € depends both on arrors in model

structure and errors in parameter—values. The error caused
by the structural ervor will give a patural limit of how
Fine the resolution in parameters has to be. For instances
in the hot—plate case it is of no use to specify the
quantity of water mw for each gram (0.001 kg) for a second
order model. The change in the output caused by a change of
w by one gram is negligible compared with the error caused

w
by structural errors. 1+ is matural to say that £ has a

|
|
i
‘!

resnlving power which sets a limit on the needed resolution
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Fig. S.1: Estimation of & as the difference between the

output from the models H and H e The input u is
in

also shown.

in the parameters. A proposal for a definition of the

resolving power of E is given in Appendix C.

Assume that a Ffamily of models is to be chosen in the
hot-plate case. It is assumed that Model (B.1) is used to
generate the members of E. The only uncertainties are the
quantity of water and the loss from the water. It is assumed

that

m = [0.69 21 kg « = [1s 101 W/°C
W

for the real process.
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in order to keep the administration and computing time down
it is desirable to have few memnbers in 2. Few members mean
that the resolution in m and in &« is low. Good control

w

requiress on the other hands good resolution in m and in «.
w
A compromise has to be made. This compromise and its

relation to & will be discussed here.

First the resplution in m iz examined. Assume that E
w

consists of the models obtained for

mw = [0,y OuB1 awsssnoas 2,01 kg « = 4 W/°C.
For the purposes of this presentations it is enough to study
the two members which have mw = 1.0 and 1.2 kg. By combining
a pulse and a step a good start—up of the system is obtained
(sepe Figure S5.2)s where the outputs are given. It is
observed that the outputs are converging on each other. This
Follows from the fact that the loss w(TW)=m(T -T Y ois an

W fdwinti{}

increasing function of T . T =0°C in this Example.
w rOOM

Assumption 3.1 must also be true when mw= 1.1 kg which gives
a large error £ during the transient. In /stationaritys
howevers the error caused by an error in the mw—value is
emall. From Figure 5.2 it is also clear that the best chance
+o decide on the parameter m with good precision is during

w
the transient.

Second the resolution in the loss =T will be examined.
w

Assume that B consists of the models obtained for

o = [1s 21 aencansssssas 101 W/C m = 1 kg-
1)
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Fig. S.2%¢ The response from the system given by the second
order model is shown for two cases of mw2 1.0
and 1.2 kg.

Ty (°CH |
W
/d: LwleC
20 A
\\
A =5w/°C
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0 | | | m—
0 1000 2000 3000 tls]

Fig. S.3: For the input signal showed in Figure 5.1 the
responses of systems are shown for the two cases
when « = 4 and S W/°C.
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By the same reason as for the case aboves only the two
members with « = 4 and § W/°C will be studied. With the same
input as aboves good start-ups are obtained for both
members. The outputs are shown in Figure £.3. In this case
the curves are diverging and the situations with regard to

gy is reversed in time compared with the m —case.
w

-

Hences if the temperature must be predicted with good
precision during the transients then the resolution in mw
has to be good and consequent}y £ must be small in order to
estimate mw. If the temperature has to be known with good
precision in stationarity then it is sufficient with a good
resolution in «s and &€ has to be small in stationarity to

estimate o.

The discussion will be concluded by assuming that E consists

of all members given by Model (B.1) and all ‘combinations of

m € [0.469 C.8s ... 2,03 kg and « € [1s 29 ... 101 W/°C,
W

In the beginning of a start-up the tempervrature iss in a
senses uninteresting. Its value is of importance when the
temperature is close to the reference temperature. In the
beginning it is important to know rnw with good resolution in
order to achieve a fast start-up. Thus it is desirable to
have a good resolution in m but necessary to have it in «.

w
Thus a B with

m= 2,0 kg end o € [i1s Zs ...s 101 W/°C
w
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is possible to use but not a E with

@ € [0.Ay 085 ...32.01 kg and « fixed.
W

To achieve a good estimate of mw a small £ is required
during the transient. BSuch a small & requires a high order
model. In the steady state € must be small. BSuch an =
requires only a good estimate’of the static gain: therefore
it rould be sensible to have an & which is small only in
stationarity. This would allow a good estimate of « and good
precision in the kanledge'DF the temperature when in
stationarity. DFf courses the estimate of m will be poor.

w
This means that the control will be cautious in the

beginning. So the use of a low order model is paid for in

longer start-up times.

5.5 REGARDING E A5 A SET OF SUBSETS

By regarding the set E as a set of subsets the means of
estimating ectrusH) is simplified compared with the case in
which Z is discretized. Even the handling of B is
simplified. The method will be discussed in this section but

will not be used in the sequel.

Let E be generated by Model (B.1) where m €[0.5; 21 kg and
w
a=0 W/°C. Divide & into disjoint subsets and let the subset

Mi contain the models where

. £ m % om .
isl w iss
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Let H and H €E be the models with m =m and m - It
isl iss w  isgl issg

is masy to see that

H Cur (k) £ Hlud(td £ H fuddtr,
iss isl

Denote the estimate of the error caused by the structure

error with e (tsu) and let it be the same for M and
struc isl
H . The whole subset M car now be rejected at time + if
iss i
yity) (H - or H + g { yetd,
isl struc isg struc

The difficulties of using subsets instead of parametrizing E
may seem to be linguistic rather than practical. Howevers
the idea applied to the third problem in Section 5.%s where
«*T in (B.1) is replaced by a 1loss function w(Tw) gives

w
another result. How to discretize in such a case is not

obvious. Certainly there are countably dense sets of
functions among the loss functions @w. A suitable norm is
given by the supremum norm. But which enumeration of the
loss functions ¢ should be taken and how should it  be
administered? Here the idea of subsets can. be of great
value. Lets in this cases & be generated by (B.1) where
mw=1 kg and u-Tw is replaced by m(Tw) and where ¢ is known

to have the following properties:

pCT >y = 0 W
room
dp dzm
== 3 0 ——— 3} 0 P7I°CY { 400 W,
dT 2

dT
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The loss curve must remain inside the shadowed region in
Figure S.4. The set of possible curves can be diveded into
different groups. 0One group may be the group G1 with
@(B0°C)Y » 20 W. This group will have a smallest and a
greatest members which are depicted in Figure $5.5. The
complement of Gis here called BL, has also a smallest and a
greatest member. These have also been depicted in the figure

by dashed lines. 1In principles it is easy to make the

classification with finer resolution but there is no

O] |
|
o ] P

Fig. S.4:

P(T)w]
400

0 To 50 100 TIoC]

Fig. .5 The figure shows two classes 51 and G of loss
2

function. The supremum and the infimum of the
classes are marked.



0 1 £ G T FIER 32 R Gk R ;,;:
0 To 50 . 100 TI°C]
Fig. S.63 The class G_ which is shown im Figure 5.5 is

divided in two groups G ' and 6§ . The supremum
2 22

s

and the infimum of the subclasses are marked.

assurance of a greatest or lowest wenberi yet upper and
lower extremes can be given. With fine resolutions the upper

and lower extremes of esach class are close to each other. In

Figure S.4 the 1loss curves in Gm have been divided in two
N

groups.

The choice of the subsets should be made on—line in order to

he efficient. For instances if a start-up is made up to 70°C
and it goes fasts then interest should be conecentrated on
temperatures around 70°C when dividing % into 'subsets. On
the other hand: if the start—up is slows it is natural to

consider lower temperatures when dividing E into subsets.

5.6 CONTROL STRATEGY

The only presented wethod of finding an optiwmal control law
in a general case is with the use of DP. Howevers DP will

normally require so much calculations that it is impossible
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to find an optimal contrpl law to a start-up problem of
practical interast. In such a case the choice of the control
law has to rely on reasoning. In order to illustrate the
choice of a control law and how to implement its consider
the hot—plate process. Here & is not constants so the result
of Theorem 4.1 is not applicable. On the other hands the

control law (4.3) of Theorem 4.1 seems to be reasonable even

if £ iz not constant. The implementation of it will here be

discussed in the case when € 1is constant but & =g (tsusH).
+ -

1f the model set B were generated by Model (B.1) when a=0s
it would be easy to find the largest possible uty» for a
certain model. The water temperature is increasing and the

1imit is given by

lim T (£) = —————=- z Ler .
w o + =)

tm w p r=0

1f 30 in Model (B.1D there is no such easy formula. One

solution is to use an iterative method. For pach t and in

principle sach HGEt the following iterative procedure is
sy '

made: The control signal is chosen as

Q s} ta

The wmodel output T (£)=H{ul(t? is calculated until a maximal
w

T (t)» can be distinguished. If it is not close enough to
w

+E -g another attempt is made with a new U s iF
wref ref test
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the input constraints allow. Using such an iterative method
it iz rather easy to find the highest possible utt). For the
implementation described in Chapter 7s the number of
iterations never exceeds eight. The wmodel output Tw will of
course reach T s and if the model describes the process

wref
wells so will the process output.

»

The losses will give a stationary point T »y T for
wref rOofM

u=uO y 0. In generals high order models of the hot—-plate
will give sampled versions whichs linearized around the
stationary points has a zeroc outside the unit circle (see
Astréms Haganders Sternbys 19203 . For instances for a fourth
order model (the model in Example 4.4 with a loss that is
linear in Tw) and the sampling periocd h=10 s: one zero was
Found near z=3.4. Above it was said that the maximum of Tw

should if possible be 'close enough” to T +g -g. If
wref ref

"plose enough" is altered to "exactly equal to" the proposed

control law becomes an output dead beat controllers which

means that the closed system will be locally unstable when
the model has & =zero outside the wuwnit cirele. In the
hot-plate case such instability is guite harmless. The input
signal will oscillates but the limits on u will prevent high
amplitudes. In the worst case an energy pulse of about
1350 Ws is inserted to the hot-plate. The process is 30 slow
that it will take several hundred seconds before such a
pulse of energy has reached the water. At that time the
losses have removed mpst of the energy. If the losses are
smalls u0 is smalls which implies that the amplitude will be

limited by u_and not by u ~t .
] max Q
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If the control is not acceptable there are many possible

things to do. For instance when T is near T s the
W wref

control law can be changed to a state feedback controller in

order to get a stable system.







CHAPTEHR &

SO0DLVING

START U P PROBLEMS

WITH PD-RELATED CONTROLLERS

In Chapter 4 it was argued that in realistic cases it is
usually not possible to find the optimal control to an
adaptive start—up problem. In this chapter a discussion will
bhe undertaken on how well a PD-controller solves certain
start-up problems.

Iin industrys start-up control is usually associated with
starting processes in paper millss o0il refinery and power
plants etc.. In such cases the start is usually made in
small steps or the reference value is ramped slowly. In the
case of small steps a new one is not taken before the last
step has reached stationarity. During a step the process is
usually controlled by a PID-controller or by a simple on—off
controller.

In this chapter the change in reference value is supposed to
be done in one step. It is shown that a high gain
PD-controller is optimal in some cases and gives good
control  for some other adaptive start-up problems. The
I-part does not play the same fundamental roll as the P- and
D-parts.

In Section 6.2 it is shown that a PD-controller solves the
start—up problem for the hot-plete process in a certain
case. In fact the controller is nearly optimal. Howevers in
order to succeeds some ad hoc features have to be added. In
Section 4.3 it is argued that a PD-controller for the
hot-plate process woulds in a practical cases require
further ad hoc features. The general conclusion is that it
may be possible to solve start-up problems based on such a
simple controller as & PD-controller. Howevers:s in order to
solve practical start—-up problems ad hoc features have to be
used. They rely on specific knowledge about the actual
process but the knowledge is not used in an efficient or
systematic way.




4.1 GENERAL ASPECTS OF PD-CONTROLLERS

In automatic control PID-controllers dominate the scene
nearly totally. The advent of the computer has not changed
this picture for several reasons. Firsts it is easy and
cheap to make PID-controllers in analog technique. Not only
electrical implementations but also mechanicals pneumatics
and hydraulic implememtatinﬁ; are possible. Second: it is
easy to understand and use them. An ordinary PID-controller
has four knobs to adjust (the fourth knob gives the filter
constant)s and it is easy to learn how to use them. Thirds
PID~controllers usually work very well. There are drawbacks
toos like integral wind-up. The preoblem iss howevers

sometimes easy to circumvents when the regulator is

implemented digitally.

The advent of the digital computer on a chip has accelerated
the trend of adding ad hoc features to the PID-controller.
It is worth noting that computers are mainly replacing
analog PID-controllers with digital ones. There are few
installations of digital controllers that rely on control
principles which do not go back to the principles of the
PID~-controller. Considering the level of modern control
theory and modern computer technologys it can be said that

the PID-controller is doing well.

One reason for the continued use of the PlD-controller is

that other controllers are difficult te design. Even for
what =eems to be a simple adaptive start—up problems it can
be very difficult to produce an optimal controller as has

heernn shown i1ihn Chapter 4. Another reason is that the
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PD-controller comes close to the optimal solution of some
common basic start—up problems. The optimality in the cases
discussed here critically depends on the saturation of the
input uct? and on the form of the terminal condition on the

output y(tr., Four examples will be given.

Example 4&.1%: Consider the basic start-up problem with the

»

models of E given by pure integrators:

u a Yy
S -
where O £ u £ 1 and a € [0y & 1. 4] saturated
max
P-controller would give
u = satlK(i-y21 (&0 10
where sati{x) = miniQsmax(xs1)1. This control is actually

optimal for high gain K and short sampling interval hs if

€ c is large enough. A formulation along the lines of
re

Chapter 3 will be given. All outputs y(t) are assumed to

satisfy Assumption 3.1:%

jytty — Hdu L1} £ g (6.2)
LOst—h3
where g is constant. Assume moderate & F—requirements:
re
[ > de

ref
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]

That +the control (6.1) is admissible follows from the

special structure of the system. Assume

+2e £ t) | + & - ZE.
yreF Y yreF ref

Thens from (&6.22 and Hud{(si2HWI(t) when s)ts it follows

that y(sizy for s2ts so that u(s)=0y sZts and
r N

af

y(s) ( Hul(s1+g = Hu)I(ti+g ( y(ti+Ze (y +e& .
ref ref

If on the other hand y(t)fty F+2€s then
re

y(t+h) £ Hud (e+rhi+e £ Hud (Ri+eta «h (
max

( yltir+2e+a ch (y +g —2e s
max ref ref

for a short enough h.

% is a monotone sets so a completely optimal control law is
given in Theorem 4.1. In facts for large Ks the control law
(6.1) is  also completely optimael. Assume that for some t»

uCt?{t. Then y(t) » ¥y -1/K and for szt
ref

y(s) 2 Hu)(si—g 2 HWI(ti—g 2 y(t)-Zg )
Yoy -1/K-2 ) y —E for KY1/2e.
ref ref ref
o
The P-controller in Example 6.1 could be considered as an
‘on—off controller. By intrpducing a time delay in the

process it can easily be seen that the P-controller does not

solve the problem. Howevers a derivative control will help.
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Example &.2: Consider the basic start—up problem as in

Example 4.1+ but let the models of the process be given by

-sT

a
g-e

Assume that u€elos 11y a€L0y a 19 and a Ty . The last
118 X thax ref

condition is essential becausk also the PD-controller will

act as an on-off controller. Let the output from the

PD—controller be

sat [K(y -y = T y*11] y (y -d
r D

ef ref

ucty =

O otherwise.
Assuming an exact model and d=0 the controller is turned off

approXimately when

K¢ -y=T y* 21 = K( - att-T)» - 7T a)» = Q
yreF Y Dy yreF D

giving t=y /a if T =T and K large. This is what is
ref D

desired. A closer look showss howevers that y will have a

plateau y=y F—i/CZK) during the time t=y /a until
r

e ref
t=y F/a—l/aK+T. During the same time u is equal to 0.5
re
giving that y in the end becomes about vy +aT/2. K is

ref
assumed to be large. Adding the dead zone to the controllers

the problem of the overshpoot is solved if dy1/(2K). The
controller iss howevers not admissible in the meaning of
Chapter 3 unless Assumption 3.1 is augmented. The problem is
due to the use of the derivative y’. If Assumption 3.1 is
augmented to exclude high frequency noise and & is constants

it is possible to prove that the PD-controller is :Dmpletely‘



100
optimal. The proof is rechnical and is given in Appendix D.
The control law (4.3) in Theorem 4.1 is completely optimal
when Assumption 3.1 is not sugmenteds and it works even if
am@xT ’ yreF“

%]
These two exanples show that the PD—controller can be guite
successful in two interesting cases. Two move examples will
be given here. In spite of not being optimal the

pD-controller makes good control.

Example &.3% The hot plate process will be studied once

more when the water guantity m iz unknown. Use of the
w

Laplace transform ON Model (B.1) with oa=0 W/ °C and

T ¢0a=T (01=0°C gives

w p
A .
T.6% T gy U
o [s]%
500
0 T T T &=
0 1 2 3 m,, Tkg)
m Com ©
Wow P
Fig. &.1 (Ex. &.33 T =T 5 ———=————=——7 as function of m «
D Al C +m © 2 w
pp WWw
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m Oom
h A S T o= ot B PP
where TG Almn C  m © 3"

pp wWw PP wWw
With u =u s
max

—t
Toer =0t - Ta-e 1w (6.3
W [£17= 24

Assume that a PD-controller is used. The power is turned off

»

when

u = K(T =T =T T 3 =02 TT (t) =T ~T (&), (&.4)
wref w D w ) Dow wref w

Assuming full power until turn off (i.e. K is large) implies

that the turn off time v has to satisfy

T = fateu u (&.50
wref max

Equations (&6£.313 (L4235 and (46.5) give

-7/ T - /T
T All- e Yoy = TsA(l-e o “
D nax i@ X

Elimination gives TD = T. Dbserve that

TT (k> (T -~ T (& t (=

w wref W
so if K is large the PD-controller will give u=u until
max
t=¢ and it can be shown that T ~T =TT remains egual to
wref w w

zero for © ) T.

If TD< T the turn off will be made too late giving an
overshoot. If TD> T the turn off is made to early. The
result is & slower start—up than when TDg T but no overshoot

is obtained.
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The above analysis have been simplified by assuming K to be
infinite at suitable instances. Assuming K to be finite but
large wills: however: give the same result but certainly a
more complicated analysis. In this example TD depends on how
much water there 1S in the kettle. The dependence is shown
in Figure &.1. If half a litre of water i minimums T
pelongs to a rather narrow interval [270 s: 375 sl and in

»

order to completely avoid a overshoot TD should be chosen to

ju}

Example_&.4: A better model of the hot-plate (sea

m % = -A (T -T2
Woww wk w k
waCT = A (T —-T131-A (T =T
kK k k wk w k kp Kk pl
m C = A (T -T »~-A (T - T ¥ +u
pt p pl kp  k = pp  pl p<
m C = A (T =T 13
p2 p p2 pp pl pZ
T (o1 =T ¢Oy =T (0 = T <0y = 0°C
w K pl p2
where m = 0.4 kg @ = 0,9 kg 0 = 0.6 kg u = 1350 W
pl p2 max
C = 4170 Ws/Kg Ck = 700 Ws/Kg C = 500 Ws/kg
W
A = 10 W/°C A = J.5 W/°C A = 5 W/®C.
wk kp pp

fssume that K is large and that when the power is turned
offs it will remain off. Then TD can be determirned by
simulations of the fourth order model with u=u . T is

max D

=T by

given as Function of T =
wref inf




-
o
[

te=u
. maX___
inf mew + mka mp1 p1 mpg 2z
- T
- _wref W
D a
T
w
in Figure ¢.2 T_ as function of T =T is given for two
D inf wref
cases of m . TD iss in this cases not only dependent on m
w W
but also an the final temperature T . Aboves T = 10°C.
inf inf
T ims howevers nearly constant. This means that if one

wants to raise the temperatufe with more than 10°Cs TD can
be chosen independently of reference value and water

guantity m .
w

It is now easy to choose the parameters for the

pPD-contraller. K is chosen so that the controller is
proportional well beyond the knees in Figure &.2.
T = 10°C gives K-T = u 3 which means that

inf inf max
K = 135 W/°C. Figure 4.2 gives TD = F00 s (or 378% s to be

my, = 0.5kg

400 -
My :Zkg

200 -

0 H T T T
0 10 20 30 L0 TipgloC)

Fig. &.2: (Example 6.43. TD as a function of the final

temperature T c for two different cases of
in
guantity of water: m =0.5 and 2 kg
W
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T, [°C)
100

0 400 800 1200 tis]

ulwl

1000
my = 0.5kg \ my = 2 kg

500 -

0 400 800 1200 t1s]

3 A m,, =0.5 kg

my, = 2 kg

0 400 800 1200 t1s]

300 4\ my, = 2kg

The lower curve is: my = 0.5 kg

0 400 800 1200 sl

Fig. &.3% (Example 6.41. Simulations of the fourth aorder
system when controlled by a modified PD—controller.
K = 135 W/°C and TD = 300 s.
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exactl). Simulations of the closed system show good results

(sepe Figure 4£.3). The simulations show that the turn off is

almost definitive. Thus the assumption made above is

When T
wref

success. A

relevant. = 4°C the low gain K is responsible

for the high gain would have demanded a much

higher TD according to Figure 4.2. Howevers the control is

u could be held at u

1S

at least for the
MaXx

not at all optimal.

time

T =T =Ly =C

+m £+
wref W oW k k

With T = 4°C and m =

wref w

0.5
fu]
in

These examples show that fixed PD—controllers are optimal

some important cases and show

Observes howevers that the use

good feeling for how to choose

good control in other cases.
of the PD—controller requires

the values of the parameters

IMPLEMENTATION OF A DIGITAL PD—CDNTRdLLER

b.2

The basic start—up problem will be considered for the

hot-plate process when T = 40°C and & = 2°C. An
wref ref

implementation of a PD-controller will be made and tested.

When the hot-plate process is described by simple modelss it

is easy to find good PD-controllers. In practice there ares

howevers problems. First of alls features like gain-—

scheduling are necessary (see next section). Therefore the

controller must be implemented digitally. An analog

PD-controller with filter is given by the Laplace transform
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K( 1 + ————mm—ee ). (babd

With h denoting the sample periods a discrete version of

(b.b) is
uiny =  «aly —y {1+ Ruin-11+ yly(n—=12-y{nld
ref
T T *
KeN=h D D TDN
where ® = e = 3y y = K —m—mme—m—
T + heN T + h-N T + heN

No derivation is done on the reference value.

From the previous section it follows that reasonable values

of the parameters are
K o= 135 W/°C and T = 250 s.

Observe that the losses make it possible to use a lower T

than could be deduced from Examples &.3 and &.4. What N
should be is more difficult to know. The result of using no
Filter (i.e. N=eo in the Formulas above) was a nhegative
steady—-state error af about 5°Cy i.e. Tw= y = 45°C. The
negative steady—state error depends on the discretization of
the output signal. Each time the output ﬁasses down a
discretization level a large positive input signal is
obtained. Certainly a large negative input signal is
obtained when the output passes beyond a discretization
1evels but negative signals have no effect on the hot—plate.
With a filters the rcontrolier will not give such large
signalss but even suchs there are problems with negative
stationary error. The problem is solved by introducing a

non-linearity in the PD-controllers such that the input v is
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Tw[OC][
T T i T T T T T T T T -
0 400 800 1200 t(s}
ulwl
1000 A m,, = 0.5 kg
0 1 TLM‘ IA I‘ 1 J I T T T T D’
0 400 800 1200 t(s]
ulw] i
1000 - 2kg
0 400 800 1200 t(s]
Fig. 4.43% The curves show water temperature and the control

signal us
PD—controller

N

is controlled by a
TD= 250 83  and

when the hot—-plate
with K = 138 W/°Cy

10.
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zero when the output Tw is larger than the reference value.
Another possibility had been to use integration in the
controller. It iss  howevers difficult to avoid integral
wind-up ands at the same *imes assuring that the first part
0f the start-up is not influenced. Furthers the losses are i

small Cabout S0 W) when T = 40°Cs so a possibly positive
w

statipnary error is small due to the large gain. The method
used is much simpler. For N=10 the hot—-plate process was

controlled in two casest

40°C

i}

Case 1% i 0.5 kg

T
W wref
2.0 kg T

w wref

il

40°C

Case Z: m

in both cases the result was good as seen in Figure &.4.
Maybe TD could be a little less and K a little highers but

it is difficult to make it significantly better. This can be

seen in the case where m was 0.5 kg. The overshoot is about
w

0.5°C in both cases. It can thuss on good groundss be Judged

that the PD-controller iz admissible if € F= z°C  and
re

T = 40°C. It would maybe even be possible to have it

wraf

lower.

6.3 PROBLEMS WITH A PD-CONTROLLER

The PD-controller seems to work rather well both in theary
and in practice. Problems haves howevers: been demonstrated.
One problem was the time delay of the process (sea
Figure &.5). If the change TwreFWTw(OD is not limited from

belows the gain must probably be very low. An unacceptably

slow response would result in cases where T -T (02 is
wref w
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Ty-Ty (00°C1 |
o
o %
S A
X
o
L; ~ X X
e o
— X
3 2 e 0.5kg
@ X
2 o o 1 kg
o
1 4 ® x * 2 kg
X 569 %
0 Q( T T T — S
0 50 100 150 200 t(s])

Fig. &.8% Step responses in the cases of 0.55 1 and 2 kg of
water.

larges and for high temperatures the high losses would give
a steady—-state error which is too large already with

K = 135 W/°C.

The PD-controller cannot handle such situations but

gain—scheduling could be used. The gain would be a function
of the difference T =T (0)., If the PD-controller is
wref w

implemented by & computers this is surely possible. The real
problem is to decide upon the form of the gain-scheduling.
Even if gain-scheduling is used there are problems. For an
iron kettle the time delay is s0 long that when
T =T (0) = 10°C the gain must be lower than 35 W/°C. If a
wref w

big kettle with 40 litres of water (there are such kettles!)

were used: the result would be such that it takes about

three hours to reach [T -131°C when T =T (O)=10°C. This
wref wref w

result is far from optimal.
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Another problem is when the reference value is high and it

is not known if a lid is wused. Without the lid the losses

are so large that the analysis made in Section 4.1 is not
applicable. The high losses require a large gain or some
Form of resets for instance an integrator. Simulations were

made on a fourth order non-linear model (7.%) and an

integrator was added to the controller. The input wass
howevers limited in order to prevent reset wind-up (see
Astrém and Wittenmarks 1982). To get an over all good

performance K and TI were chosen to K=270 W/°C and TI=325 =3

With little waters m = 0.2 kgs the best value of TD is
w

about 32 s. If mw = 2 kg and a lid is used (simulated by
multiplying mw(Tw) in (7.5 with 0.2 TD has to be about 100
s if large overshoots are to be avoided. With mw = 0.2 kg
and no lid is used the start-up takes nearly three times

longer time with TD=100 s than with TD=32 =3

Until now only the hot—-plate has been considered. If other
problemss like the one of the start-up of a batch furnace
are considereds new problems turn up. In such cases there
are oOften requirements on temperature gradients in both
space and time. The gradients. in themselvesy are not

measurable. The use of PD-controllers in such casess if it

is possibles requires even more tailoring.

4.4 CONCLUSIONS

For 'straightforward” start-up problems the PD-controller

can be easy and efficient to use. Howevers in many practical
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cases much tailor made work haes to be done to enable the the

use of the PD-controller.

The main problem is not that PD-controllers are impossible
to use but that the use of them seems to emphasize searching
for tricks: which are often specific for the actual process.
The main advantage with PD~controllers - the limited

requirement of process knowledge — is no longer true.



CHAPTER 7

A CASE STUDY ¢t

THE HOT-PLATE PROCES®SS

In Chapter 5 was undertaken a general discussion about
control principles for the hot-plate process using the
concepts of Chapters 3 and 4, Now the results of Chapter 5
are used in making a controller for the hot-plate process.
Second and fourth order models for the hot-plate process are
described in Section 7.1. The set Es the generation of £
and the control law are discussed in Sections 7.2 - 7.4. In
Section 7.5 an implementation of the proposed controller is
described. Results are givem in Section 7.6s5 where the
controller is compared with the PD-controller used in
Section &.2.

7.1 MODELLING THE HOT-PLATE

One of the basic ideas behind the control strategies
proposed in Chapter § is the definition of a set % of
physical models. Such models for the hot-plate process will

be presented and discussed.

To have only one states i.e. one temperature when describing
the system is inadequate. The natural subsystems are the
plates the kettles and the water. A crucial gquestion is if
the temperatures can be considered constant in each
subsystem. In such a case three states can describe the
system. The different subsystems and their contact surfaces
will now be discussed from a thermodynamic viewpoint.
Measurement data from the hot-plate process are shown in

Figures 7.1 7.2 and 7.4 - 7.%.
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|
o 30 4
e,
¢ 2 Kettle bottom
é Centre of the kettle bottom
2]
a 10 -
& ‘,
) P
- I
0 T T S
0 100 200 300 t{s]

Fig. 7.1f Pulse response fo} the system. The pulse is
30 seconds long and the amplitude is 1350 W.

First the temperature difference AT between the heat
elements and the plate surface will be estimated. Assume
that the maximum powers 1330 W is transferred from the heat
elements up to the plate surface. In stationarity the

Following equation gives AT.

A A AT
Fe pr 60:0.,02
———————— B mmmme——— AT W/°C % 1350 W == AT ® 4.5°C
d 0.004
pr
where %F is heat conductivity of iron. Used
e

value: 460 W/ (m=Ki.

Apr is the area of the heat elements. These are
considered as a homogeneous thin plate. Used
values: 0.0z m2

i is the distance from the heat elements to the

pr
upper surface of the plate. Used valuet Q0.004 m.

The small AT and Figure 7.1 imply that only one state can
represent the temperature in the plate. Howevers the case is

made more complex by the fact that the plate is not
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homogeneous. The centre of the plate contains no heat
elements. There is also a pit having a diameter of 55 mn.
Moreovers the iron is thicker in the centre. In Figure 7.2
a pulse response for Jgust the plate is shown. One
temperature sensor was placed directly on the upper surface
of the plate and another was wmounted from below in the
centre of the plate. This indicates that a good model

-

requires at least two states.

The heat capacity ‘ af the plate is

mC = 1.5 kg 500 Ws/kg = 750 Ws. This is small compared to
PP

the heat capacity of a normal quantity of water. The plate
temperature duving the critical stage of a start-up iss
howevers wmuch higher than that of the water. During the
critical stage of a start-up the plate will therefore
contain more heat than the water. A good model of the plate
is therefore important.

Kettle:

Assume that maximum powers 13350 Ws is transferred through
the bottom of the kettle. In'statiomarity the temperature

fall AT across the kettle bottom is given by the equation

]

20 Surface, model

10 4 lf/" Surface, measured _ . T
Centre, model

0 T T T G

T
0 25 50 75 100 t[s]

* Centre, measured

Temperature [°C]

Fig. 7.2% Pulse response for the plate only. The pulse is
& seconds long and the amplitude is 1350 W.
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AA AT
Al bottom 210-0.025
———————————— e AT W/ R 1350 W o= AT n 1.2°C
d 0.0035
bottom
where AAl is heat conductivity of aluminum, Used

value? 210 W/ (m-KD

A is the bottom area of the kettle. Used
bottom .

value? 0.025 m .

»

d is the bottom thickness of the kettle.
bottom

Used value 0,003 m.

Figures 7.1 and 7.2 show that the temperature difference
between the plate and the water wmust be hundreds of degrees
centigrade in order to transfer the max. power through the
kettle bottom. The temperature fall AT across the kettle
bottom should thus be negligible compared with other
temperature differences. Thus it seems natural with only one
state representing the temperature of the kettle. On the
other hand Figure 7.1 shows different temperatures at
different locations on the bottom. The sensor was Just
placed in the water on the bottom. The electrical
conductivity in water is so low compared to the conductivity

in the sensor that it does not disturb the measurement.

There are two reasons for different temperatures. Firsts the
bottom of the kettle is not plane and second there is the
small pit in the centre of the plate mentioned above.
Consequently: the bottom ought to be described by different
regions. One suitable region might be the part of the bottom
in direct contact with the plate. The rest of the bottom can
be the other regions. The heat transfer to the regions
without direct contaect with the bottom is going in a

| TP I e AL ramtimn almas Flagm ket eEam T cmE s LR LR R
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means for heat transfers consider a sguare (5x5 om) of the
bottom. If the temperature difference between two sides of
the square lying opposite gach other is 1°Cs the amount of
heat passing in the sguare is about 1 W. This shows that a
large temperature difference is required to transfer a
significant amount of power. A good model of the kettle
would therefore require many states. However: compared with
the plates the situation is‘diFFerent because the energy
located in the kettle is small compared with what is located
in the plate and in the water? This is seen by studying the
temperature of the kettle and considering the low heat

capacity of the kettle (540 Us).

The temperature difference between the kettle and the water
is significantly smaller than the difference between the
kettle and the plate. This is observed in Figure 7.1. Note
that the plate centre temperature shown in Figure 7.1 is
lower than the surface temperature. Naturally the latter is
higher in the beginning since the heat elements are located
just under the surface. The heat is then propagating towards
the centre. With the kettle on the plate the situation is
other thamn it was when the temperature curves in Figure 7.2
were measured. Energy considerations shows howevers that
still most of the available ernergy content is located in the
plate surface during the first part of the start-up. For the
overall performance it is thus concluded that it  is more
important to have a good model for the plate than for the

kettle.

During a sten resnonse: one spreor was placed in the water



close to the bottom at the side and another was placed in
the centre Just below the water surface. After 60 seconds
the first sensor showed a temperature increase of Z.7°C
while the other showed only a 0.5°C increase. After some
time the differences were typically less than 0.5°C.
Obviously: one state does not describe the water content
dynamics during the First stage of a start—-up. However: the
poor accuracy due to the low order model is accepted in a
short time—ranges because in a longer time—range the control
philosophy can compensate for the inadeguacies of the model.
Compare with the end of Section S5.4. This means that the
model error £ has to be larger than for a more elaborate
model. Howevers by making £ depend an the input us it is
possible to use € which will decrease after some time. Most

of the start-ups will take longer time than for a more

elaborate model. This is the price paid for a simpler model .

The discussion aboves together with Figure 7.13 shows that
it is clear that the large temperature gradients must occur
in the contact surfaces plate—kettle and kettle-water. This

is im agreement with Fenech et al (19642, Typicallys the

Q1mm

L

05mm Aluminum

0

ron

Fig. 7.3% Contact surfeces between two metals in great
magnification. Modification of a Figure in Fenech
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Fig. 7.4: Temperature curves vwhen the empty kettle was
placed on a warm plate. From these curves the heat
transfer coefficient I\k was estimated at

- p
4.5 W/°C.

contact surfaces between metals can be illustrated by
Figure 7.3. The contact surface plate—kettle is probably
even rougher. As can be seen by the naked eye. both surfaces

are turned on a lathe.

To get an estimate of the heat-transfer ratio Akp between
the kettle and the plates the kettle was put on the plate.
The temperature of the plate was about 3I0°C and that of the
kettle about 20°C. The temperatures of the kettle bottom and

the plate were measured. The result is shown in Figure 7.4.

The definition of Ak and Figure 7.4 gives
p

dT

t
AT =T 5 = mC --29RESM oy A m 4.5 w/ecC.
kp p bottom k k dt kp

The plate temperature was measured by the sensor mounted in
the centre of the plate. The surface will have a lower
temperature giving a higher A . On the other hand, it is

kp
doubtful to use the whole mass of the kettle in the

equation. It would probably be more correct to include only

the bottom mass which gives a lower Ak . If the max. power
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(1350 W) is assumed to be transferred into the waters it

would require a temperature difference of 270°C between the

plate and the kettle.

Im Bird et al (174602 the heat transfer coefficient between a

ligquid over a relatively warmer solid surface is given as

2 2
100 — 400 keal/m hr K or “113 - &95 W/ im K.

This gives 0.025-115 = 2.7 A Ak ( Q.025:695 = 17.4 [W/°Cl.
p

By following the definition of A ; the energy inserted to
wh

the water during the time t1 to t2 can be expressed by the
left part of (7.1). This amount of energy is absorbed by the

water and can be expressed by the right hand side of (7.1)

t
2

A J (7 (&) — T (€21 dt = LT ¢&£ 0 = T (& 23 4 € (7.12
wk { K W w 2 w 1 Wwow

1
The following table can be derived from Figure 7.1 and

(7.10. Tk(t)—T (t? is supposed to be constant in the
w

interval [tlu t2].

t1[5] t2[5] TR—TWE°C] Tw(tz)—Tw(tl)[°C] AWREW/°C3
&0 20 11 0.= 13

140 180. & .6 10.5

250 350 2.4 Q.b 10

The achieved values of A « are in good agreement with the
w
values given by ERird et al (1960). The value of A is more
w

than three +times greater than that of Ak . The kettle
P




121
temperature will therefore be closer to the water
temperature than to the plate temperature. Moreovers in
Figure 7.1 the pulse length was shorter than wusual. With a
longer power pulse the temperature differences will bhe
larger which will increase the circulation of the water. The
result is a higher A *. A is also increasing with

wk kp

temperature differences but not to the same extent as A kg
N w

which can be seen in Figure 7.7 below.

Second _grder model:
To this point a second order model of the hot—-plate has been
used extensively. There are good reasons for not increasing

the model complexity in a practical cases the main ones

beings

(1) The temperature difference between the plate and the
kettle dominates if short transients are disregarded.
The heat capacity of the kettle is small compared to
that of the water. A second order system with one state
for the plate and one for the combined kettle and water
is therefore natural. Compare with the situation in
which the kettle’s heat capacity is in the range of that
of the water and the heat transfer ratio A is equal to

kp
the heat transfer ratio A K In such a case» a special
w
state is required for the kettles giving a third order

system.

# Boiling water has a heat transfer coefficient of about

1000 ~ 20000 kcal/mzhr K. SB8ee Bird et al (19460). Compare



(23 The paraweters of a second order wsodel are easy to
identify compared to how it should be by using a higher

order model. The intended identification is done

aff-line.

(33 It is easier to implement a control structure based an a
low order model. Moreovers the actual computer has
neither memory— or DPUlcapacity to handle more than

second order models.

The resulting second order model iss

m C T = =A(T =T 3 = @ ]
W oW W w p w
2
- v
wm CT = AT ~-T 1) -~ & + ——— g b (7.22
P PR LA P R
T 0y = T () = T
w p rOOM
where A = A(T =T D
poow
R = R(T ) is the resistance of the plate
p
V is the voltage of the AC-net
g = (T -T 1 is the loss from the water
w W W Toom
w =@ (T -T ¥ is the loss from the plate.
p p P room

The input has been expressed in a form suitable for the
experimental set up. Earlier it was assumed that the power
was controlled directly. On the laboratory set-ups the pawer
iss howevers controlled by a triac. The triac is an on/off
device for the control of the half periods of the AC-voltage
sine curves. By turning a half period on or offs the overall

power may be controlled guasi-continuously. The plate is
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2

assumed to be wmade up of iron with C =500 Ws/kg. At 20°C a
p
proper value is about 430 Ws/kg and at 400°C  about

&00 Ws/kg. The choice of c is commented upon in
p

vl

Section 8.2.

The second order model was identified from measurements of

the losss both for the whole system and for the separate
plate. For every sampling intérval of 20 secondss the input
power is defined by the computer as the number of AC voltage
sine half periods turned on. When stationarity had been
reacheds the rooms the water .(in applicable cases)s and the
plate temperaturess as well as the heat element resistance R

and the AC-net voltage V were measured.

Figure 7.5 shows measured losses for the total system o
tot

and Figure 7.4 for the plate ¢ . In the latter cases the
P

plate was insulated from above. Due to effects like the heat

exchange between the kettle and the iron sheet around the

irpn plates the measured losses for the plate are only an

Lpfof A [w]
500 H

No lid is used

Lid is used

'Troom

[°C]

Fig. 7.5% The upper curve is the total loss when no lid is
used. The lower one is the total loss when lid is
used. The data points producing the curves are
also given.
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TP'Troom
0 T T T =
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Fig. 7.4: Losses for the plate only. During the measuremnents

an insulator was placed on the plate. The
points producing the curve are also given.

data

approximation of the real loss. In practice this does not

matter. When total loss was measured T was also recorded.

The room temperature was not the same in all experiments. It

affects the loss which means that the loss depends on two
temperatures. For low temperatures the proposed way of
regarding the loss as a function of the difference is
corrects but when the water is near boilings it is

incorrect. This is esasily seen by assuming T
room

not be warmeyr than 100°C even if full power

to be S0°C.

The water will

is used.
@ (T -T y is defined in discrete points by
W W room
w (T .-T 3= T -7 Yy = (T -T 3 (7.3
w W room tot w room p p room

where ¢ (T =T
p

oo

3 is given by Figure 7.6,
m

The heat transfer ratio can now be calculated as
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Fig. 7.7% A calculated from measurements. A is plotted
versus the differences Tp—Tw. The full lirnes are

used as estimates of A. The wupper line is used in

the second order and the lower in the fourth order
model.

In Figuvre 7.7 A is plotted versus the difference Tp—TW.

The heat transfer between the plate and the kettle can be
separated into three parts: conductivitys convection and
radiation. Heat transfer through conductivity is essentially
linear as a function of the temperature  difference.
Convection is in classical thermodynamic theory shown (see

Jacobs 194%9) to be proportional to

7 - T,
p w

Heat transfer due to radiation is proportional to
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Figure 7.7 indicates thaet a considerable part of the heat
transfer takes place through convection. This is in
agreement with the previous discussion concerning the form

of the contact surface between the plate and the kettle.

A conservative estimate of A is given by the upper curve in
Figure 7.7. In Section 7.3 it will be argued that the upper
and the lower estimates shown in Figure 7.7 are

satisfactory.

With the heat transfer ratio A givens ¢ (T -T Y was
W W rooim

finally calculated from the equations

p T -7 yo= g (T =T Yo+ o (T =T )
tot w room Wwoow room p P room

ACT =T ) = @ (T =T ).
P oW W W room

(7.4

In stationarity a second order wmodel will give the same
water temperature as the true system if the total loss of

the system is correctly given by o (T -7 3.
tot w  room

In Figure 7.8 the plate resistance is plotted versus T .
: P

]
RIQ l

20 100 200 TP[°C]

Fig. 7.8¢ The resistance R of the heat elements in the plate

plotted versus T . Data points producing the curve
p
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An experiment was done on the hot-plate with mw= 1 kg. The
result is shown in Figure 7.9 together with a simulation of
the described second order model. It is of great interest to
compare the accuracy of a complex (fourth order) model with

that of the simple second order model. A simulation of the

fourth order models described belows is shown. The fourth

order model will be used later to estimate the modelling

error g»

Fourth_ order model?
The heat caepacity of 0.1 kg of water is the same as that of
the kettle. The kettle can therefore be represented

satisfactorily by jJust one state. The wmass of the side of

the kettle is included in the water mass which reduces the

model error. From now on mk is supposed to be 0.4 kg. The
remaining 0.2 kg of the kettle has a heat capacity of only
1820 Wsy which is less than the heat capacity of 0.05 kg
water. With two states for the plate the resulting order is

four. The extension from second to fourth order is made in a

straightforward wey. No loss term is used for the state T
describing the kettle temperature since Tk in fact
represents only the bottom of the kettle. The main
contribution to the losses from the kettle comes from the
sides which are included in the water content. The second
state of the plate T . also lacks loss term. This state
describes the temperature of the centre of the plate. The
centre part is much more compact than the rest of the plate.
Consequentlys it is believed that the wmain part of the

losses for the plate is associated with the first state T =
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Fig. 7.9 The output from the real system (T 39 the
Wimeas
second order model (Tw L)1 and  the fourth arder
9 £
model (T a). In the middle figure some
Wa
differences between outputs are shown. The
amplified difference T A_T _ is referred to in
W Wy 2 ’

Section 7.3.
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= -A (T -T ) - gy
wWow oW wk w k W
i C % = A (T -T> — A (T =T
k k k wk  w k kp k pt
y 2 > (7.5)
m CT = A (T -THirA (T -T 3 - + —-——u
pl p pl kp k p pp  pl  pZ p R
m €T = A (T =T
pZ p pZ : pp pl p2
T (0) =T (0) =T Q) =T 0) =T
w k jul pi N room
where A = A (T =T 13
kp kp p k
p =@ (T =T )
W W opoow
w = @ (T =T 2
p P P W
R = R(T ).
By setting Ak = 0 only the plate was simulated (see
p
Figure 7.23. The values
A = 5 W/°CH fn = 0.9 kgi mo = 0.6 kgi
pp pl pz

were found to be satisfactory.

In stationaritys» the total heat transfer ratio A from plate

to water is given by

AT =T 2 = A (T -T2
P w wk k w 1 1
ACT =T » = A (T -T2 A A A
p oW kp p k

Acecording to a previous discussion good estimates of A y and
w

t’\k are 10 W/°C and 4.5 W/°C. These values and (7.3) give
p
A= 3.1 W/C. In comparison with Figure 7.7 this seens to

ha ermewhat 00 bBiakh Bt ot111 reaconabhle
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It is crucial to have a good model accuracy in stationarity.
Thus it is better to define Akp as the solution of (7.4) for
a given As since A is  known with better precision than Akp'
A is chosen according to the lower curve in Figure 7.7. The
reason is explained in Section 7.3. The laoss from the water
was previously defined as depending on the heat transfer
ratio A. Since it is not the same for the two modelss ¢ has

w
to be calculated specially for the fourth order model.

As already mentioneds a simulation of the fourth order model

is shown in Figure 7.%.

7.2 CHOICE OF X

In the previous section it was argued that the set E should
contain second order models of type (7.2) of the hot—-plate
process, A discretization of E will be mades so the six
different guantitiess mws wwa mps As Ry and Vs will have to
bhe determined. From Figure 7.7 it follows that € should be
large during transientss given that the resolving power af E
is poor for the same time. From the diécussion in
Section 5.4 it follows that finer discretization in the
value of the guantity of water mn : which is supposed to be

W

in the interval [0.5 kgs 2 kgls are of no use. Therefores m
w

is given for each 0.1 kg.

In Section 5.5 was discussed how a loss function could be
represented. The knowledge in this case is certainly better
than it was assumed in 5.5 but the same idea can be usea.

The resulting E woulds howevers be too large to be used in




the actual computer. It is therefore assumed that

(T ) =@ (T
woow nw W

p (T 2 o ¢ (T2
P B PpoPp

where [

nominal function ¢ given by (7.4)
nw W

p nominal function ¢ given by Figure 7.4.
np N p

This implies that

G.7-¢ (T 3 % k @ (T >
ntot w tot w ntot w

A
S

o~
—
I
-
[

=

where o tot = nominal function given by Figure 7.5.
nto

The inequality is nhot exact depending on the non-linear As
but in practice this fact can be neglected. From the loss

data it seems enocugh with the proposed interval for «.

The poor resolution of E during transients also means that
the parameters of models in E are difficult to determine
except for the static gains which is a function of os As Rs

and V.

A is difficult to determine. In principles the ideas in
Section 5.5 about loss function could be applied. This
woulds howevers increase the amount of models in E  too
greatly. Furthers it is very difficult to get any resolution
in A of practical value. Therefore A is supposed to be the

upper line in Figure 7.7.



R seems to be known with good precision as a function of T .
P

The function is represented by the line in Figure 7.%.

It was found that V was nearly always varied in the interval

L2235 Vv, 227 V1. Also heres the resolving power in E makes it

nearly impossible to get better precision in V. V ig

supposed to be 228 V. .

E is chosen as the set of models defined by model (7.2)s

where
R is given by the curve in Figure 7.8
A is given by the upper curve in Figure 7.7
Vo= 225 V
[t is given by the curve in Figure 7.4
np
[ is given by (7.4) where o is from Figure 7.5
nw ntot
and ® from Figure 7.6
"p
« € L0.9y 0,98 1.05 1.0%s 1.10]
m € [0Sy 0.6 cuvucoona 1.95 2.01 kg.
W

In totals 20 different second order models are used in e

7.3 GENERATING &

The error quantity £ is used when deciding if a model is
possible or not as described in Chapter 3. In Chapter S the
main problems in determining = were discussed. In
Example 5.2 one way to determine an £ on-line was proposed.

A similar means will b2 used here. The main part of *bhe
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error i due to the low order of the model as seen in
Figure 7.%. The way used to choose € is to multiply the

difference between the fourth and second order models with a

constant as suggested in Figure 7.9%.

The reason  for the cheice of A in the second and fourth
order models is now discussed. It seems natural that a high
A gives a high Twn In the casé of no lossess constant A» and
a second order models this was demonstrated in Example 5.2.
Let 811 parameters be fixed sxcept A» which is limited by
the two curves in Figure 7.7. Then it is plausible that the
chosen second order model gives maximal TW among  the
possible second order models. In the same way it is
plausible that the fourth order model gives the lowest Tw
among all possible fourth order models. Furthermores all
simulations show that for egual As the second order model
gives a higher value of T than the fourth order wmodel.

W
Hence it can be assumed that this is true in general.

The second order model gives an upper estimate of the
temperature T . OFf vcourses measurement errors make it

w
necessary to assume that & F 0. For the same reason g€ is
L

not allowed to decrease to zero.

g = 1°C

maxli.0s 3.5-(T -t 23
- wes2zZ wed

m
]

where the subscripts 2 and 4 stand for second order

model and fourth order model.
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The chosen value of € is optimistic as can be seen from

Figure 7.%. On the other hand & 1is pessimistically chosen.
+

7.4 THE CONTROL LAW

The control law proposed in Section 5.6 will be used. This

means that u(t) is chosen so»> that the second order models

with udt+3r=0 jzl, gives a predicted output y satisfying
y(s) + € £y + &g : sxt.,
+

e was chosen at 1.0°C in Bection 7.3. If € were equal to
+ +

e 5 it would also have been necessary to calculate the
fourth order model when calculating the predicted output
with the result that an already overloaded CPU might have

had a S0% load increase.

7.5 IMPLEMENTATION

The computer program implementing the control strategy is
called HOTCON (HOT-plate CONtroller). In Secfion 7.2 the
set ¥ was defined. To every member there is associated a

data—-structures

3
<

R
s

These are the parameters which are

w specific for each member.
Tw’ T 3 states in the second order model
T + T s T .5 T 3 states in the fourth order model.
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The sampling interval is 20 seconds. The control u(t) is

decided as the largest u for which no member in B gives

an overshoot. Et is not possible to use due to calculation
times. It is not generally necessary to examine all the

members in E . For instances 1if it is known that the model

with m =1.0 kg and «=0.%5% does not give an overshoot for
w

ultd) then it is known that this applies to the model with

»

m =1.,1 kg and «=0.93. By generalizing this ideas a subset of
w

Et called WorstCases can be defined. This set includes the
only members of E which need to be examined when the control

sigrnal uit) is calculated.

A correct implementation of the rontrol strategy requires

thats
(13 time keeping is done perfectly:s
(23 right amounts of power are switched on to the plate at

the right times

(3 T is measured at the sampling instances
w

(4) the control signal ut+l) is calculateds

(5) models are rejected in order to know the sets Et,

The timing is very important. Missing 0.1 seconds of full
power each sampling period (20 seconds long? would mean that
ar average of about 7 W was wmissed. The total loss from the

process when T = 40°C is about 40 W.
w

Rejection of models reguires simulation of all models in Et,
im the beginning of a start-up when no models are rejected:

the simulation time is twice the simulated time (Euler

approximations are used with At=2 s). To get good control



under such a condition seems to be impossible. The tasks
ares however: possible to perform  with only one CPU because
they do not reqguire to be executed with equal precision in
time. The philosophy is that the model rejection is not
necessary. It only speeds up the start-up. Therefore it can
be done with low priority.

Ry the use of c;ncurrent programming tsee
Brinch-Hansen 1973) the problem iss howevers solved by
letting each of the 5 tasks_described above be executed by
its own programs subsequently called process. A process 15
executed by the CPU in the order of its priority. The list
above is in fact ordered in priority. The processes interact
with each other via monitors*. The access graph of HOTCON is
shown in Figure 7.10. The program is written i Pascal using
certain external procedures with which creation and
synchronization of processes are done (see Elmgvist and
Mattssons 1931). The processes will be described in their
order of priority. A sixth process is added that performs

logging of the experiments onto disk storage.

Inm Main the other processes are created. This means that
each process gets its own stacks heaps and program counter.
The monitors are initialized. Main is then working as a
software clock. Every 20 seconds Main tells the monitor
Synch to release all processes which are awaiting in Synch.
¥ A monitor is a set of dats and a set of procedures which
are working on the set of data. A process in real time
programming can be viewed as a complete program which

interacts with other processes via the monitors (see
Brinch Hansens 1573).
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Fig. 7.10: Access graph for HOTCON. The sguares are monitors
and the circles are processes.

Power is awaiting in Synch for a8 new sampling interval. It
starts with reading in PowerMon how many ticks (tick= 20 as
is the time-unit of the computer) the power is to be
switched onto during the present sampling interval. The task
is executed exactly. Then Power awaits in Synch for the next

sampling instant.

Regul is awaiting in Synch for a new sampling instant. It

starts by measuring T and by writing T in y-store. Then
w w

Regul asks Ubox for a new input u. Regul will be awaiting in

Ubox until 2 new u is received or one second is left of the

sampling interval. If Regul is released because of the last
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reasons u is set to zero which for the hot-plate process is

a safe value. The u-value is converted to a number of ticks

(pticksstrunc(uknticks)s nticks 1is the number of ticks
during a sampling period) which is written in Powerfon. It
is also written in u-store. (In fact u=pticks/nticks is

stored in order not to make a discretization error which

would be 0.7 W in mean). Observe that Regul will always
write the converted u—-valug in PowerMon in good time before
the sampling instant. Consequentlys it is sure that Power

will switch on the power to the plate as asked by Regul.

Regul also sends the u-— and y-values to Filep.

Compu is awaiting in Synch for the next sampling instant.
Then it waits for 1 second more in order to give 8kip the
possibility to use the latest data when uwpdating the set
WorstCases. Compu then starts by updating the members in
WorstCases and then computes the new u. u is placed in Ubox

where Regul gets the value.

Filep takes care of logging: both that made on screen and on

disk storage.

Skip:
Skip calculates Et and changes the set WorstCases if

necessary.




7.6 RESBULTS

HDTCON was tested in three cases wm = 0.5 kgs 1.0 kg and
w
2.0 kg. T was 37°0C and € = 2°C. Observe that the
wref ref
control law has T +E ~g =40°C as the target. In this

wref ref -
way both HOTCON and the PD-controller of Chapter & are

aiming towards the same temperature.

Y

HOTCON gave good centrol in all three cases. Maximal values
in the three cases were 37.8: 39.46 and 37.7°C. For the first

two cases HOTCON identified:s Howevers that m was 0.4 kg and
w

1.1-1.2 kg. This shows that & was too small. Already in

Figure 7.9 it can be seen that the choice is optimistic. The

start up times and € were in the three cases:

@

m [kgl E (m e t s (37°0C) PD—-controller
w @ W m

.5 (Q.bs1.0 —1.12 400 348

1.0 (1.151.05-1.10¢(1.2+0.9%) 540

2.0 (2.0+1.0 =-1.1 740 576

For comparison the corresponding times are shown when the

PD-controller was used.

In Figure 7.11 the start up is showed when m = 2 kg.
W

Measured data are shown. The outputs from members in Et
which limit u are also shown. The index t in Et is not the
time shown by the time axis. The reason is that the process
Skip does not keep up with real time. The time leg is shown
in Figure 7.11. In Figure 7.12 the result:s when using

HOTCONs is compared with the result from Bection 6.2 when a

PD-controller was used. There are several reasons why the
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Fig. 7.11¢% The upper graph shows the measured output. The
outputs from the models which at any time have limited u are
also shown. A model output curve is discontinued when the
model no longer belongs to the set Et. Et containsg also

models whose output curves are not shown. Their outputs are
below the outputs shown in the figure. The middle part shows
the input. The lower part shows time lag of the process SKIP
as a function of time.
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Fig. 7.12%: The output for two cases of control. The upper
most curve is when the PD-controller in
Section 6.2 was used. The lower curve is when
HOTCON was used.
PD-pcontroller gives a better start-up.
Firsty the PD-controller works very well in cases when
m € [0.5 kg: 2.0 kgl and T is about 40°C. A perfect
w wref
start-up would have been a pulse and then u=0 until the

value of u becomes small

in stationarity. In the two cases shown

case m = F0%

w
were given in

0.5 kg 1is nearly perfect.

When m =
w

first 300

the first pulse.

280 kWs was given during the

signal is not perfect

before 300 seconds

in order to compensate for the loss

in Figure &.43 the

of totally 122 kWs

Z kgs 81% of total

seconds. The input

either. In this

case it would be possible to start-up slightly better.
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Seronds the computer is too slow. IFf Bkip had kept up with
real time the models could have been skipped at earlier
rimes. The input had not been zero for such a long interval
during the first JI00 seconds. Larger inputs would also have
given larger output signals which could have meant that
wodels could have been skipped @arlier. Thiss in turns would
have meant that the output c?uld have been larger. On the
other hand = would have been larger to some extent

counteracting the effect of the larger u.

Thirds the second order model is not good enough if HOTCOM
is to compete with a PD—controller. Retter models would have
given smaller € and faster skipping of wrong wmodels.

Howevers better models can not be used because of the low

capacity of the computer.

Careful analysis of Figure 7.11 shows that a wodel that
limits u is skipped at t=260 s but the new model limiting u
is not rejected until t=780 s. In spite of thaty u=0 during
LEL2R0y 3001 s and u=1 during tEL3IZ0s 3401 s. The reason is

that the set WorstCases contains two members from t=2460 s
until t=780. in such a case the calculation of the next

input u takes a long time (R20 s) and Regul does not get the
value in time for t=280 s. Consequently u is zero. This
would have been a bad means of real time implementation if
u=0 were not safe. At the next sampling instance Regul

obtains the calculated value u=1. Observe that it is safe to

delay the input. Compu starts again to calculate the next
input at t=301 s and again it takes too long time. Bo at

=320 s u is set to zero. At t=340 s u is set to 0.464. The




143

set WorstCases is changed at t=780 s giving a non-zero input

u at =800 s.

A longer sampling period would have improved the contraller
considerably because in such a case the input u had not been
calculated so often. Thus the Skip-process could get more
CPU~time and consequently not been so lagged in time. Just

the sames it is doubtful if the controller could have beaten

the PD-controller when m =2 kg. A longer sampling interval
w

woulds on the other hands: mean that the need for real=-time

programming had not been illustrated so well.

When m = 0.5 kg HOTCON is nearly as good as the
w

PD-controller. In this case the only problem for the

HOTCON-controller is to estimate the loss. The uncertainty

in the water content mw does not hinder the controllers

disregarding the need for more computing time. The least m
W

in the model set is 0.5 kg.

In order to demonstrate the superiority of model based
control over PD-based control another battleground has to be
chosen. But the short-comings in speed and mehory of the
computer prevents it’s application in cases where the

high—gain PD-controller would have been unsuitable.
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CHAPTER a2
DISCUSSION
.1 THE DOMAIN OF DEFINITION OF A CONTROLLER
When considering the herein used controller HOTCONs: it is

difficult to observe any feedback. Feedback exits but in a
non—conventional way. It is a priori assumed that there are
%0 possible types of systems. Such a controller cannot
handle disturbances 1like placing a lid on the kettle.
Neither it can take care of slow but large parameter

variations. If there are disturbances which need to be taken

carg ofs E should be enlarged such that the effect of the

disturbances are described by models in E.

Computer science recognizes the advantage of strictly
defined languages which react if the stipulated rules are
not followed. Even in automatic control it would be of great
advantage if the domain of definition of the control

algorithm were defined.

Example S5.1: Assume that the hot-plate is controlled by the
PD-controller in Chapter &5 the reference temperature is
&0 DC; and mw= 1 kg. The start-up will go smoothly and the
temperature will be nearly exactly 40°C after some time. But
sooner or later the temperature will go down slowly because
of water evaporating away making the temperature sensor

partially exposed to air. Due to thiss the PD-controller

will increase power with the effect of completely exposing
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the sensor to air. The effect this has on the PD-controller
would be that. it gives out maximal power.

o]
Te wmodify the PD-controller with an alarm device in the
above example is difficult. For the HOTCON-controller the
matter is simpler. An alarm is activated when the output is

not fulfilling Assumption 3.1.

2,2 MODELLING BY USE OF DRAWINGS AND PARTS LISTS

The use of a physical model when doing control emphasizes
the possibility of using drawings and parts lists. The
physical laws describing the system are often known. So much
of the basic material for making models is knowns or should
be knowns if the control engineer has worked Jointly with
the construction engineer. No doubt it would be possible to
iet s computer make models directly from drawings and parts
listsy which in the near future will already be located in

the computer due to the use of CAD/CAM-systems.

iIn the case of the hot-plate process: it would mean that at
least the model of the plate itself could have been done
automatically. The contrast between such a method compared
with the one used in Chapter 7 is sharp. Figure 7.2 shows
that +the model is far from perfect. The start-earror is
impossible to remedy by a second order models but it seens
to be an errors even in the heat rcapacity of about 5 %
Certainlys the heat elements are warmer-than the surfaces
but another important resson is  that the control enginear

(i.e. +the author) haz considered the plate as 1.5 kg of
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iron. it igy howevers 1.5 kg irons kanthal and
magnesium oxide. (Which is in fact only a good guess hy a
professional hot—-plate engineer at one of the larger
stove-making companies). The specific heat of
magrnesium oxide is nearly double in comparison to iron. So

there is good reason behind the model’s imperfection.

»

The main problem iss howevers not to make the modelss but to
estimate the modelling error. The estimate done in Chapter 7
may be regarded as a provisory arrangement. Certainly a more
systematic method is neededs especially if it is to be done

by computer.

&.3 UTOPIAN IDEA OR NOT

The herein presented control ideas wmay seem utopian. Even a
simple hot-plate could not be controlled efficiently. In a
way it is only the future that can tell the answer. The
primary reason why the ideas cannot be implemented is that
there are presently no computers cheap enough to do the job.

But there are other obstacles as well. The software used is

easy to use but far from perfect. Among other thingss it
should be possible to describe mathematical models in a form

close to the language used in mathematics and physics.

When it comes to costly processes like furnaces of batch
type it may already now be possible to use the presented
control ideas. Furnaces of this type should be easier to
model than furnaces of continuous type. The cost of the

process would admit extensive wmodelling and the use of
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powerful computers. There are also few parameters left to

adapt to. This implies that the set E could be rather small.
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APPENDIX A

LARBORATORY ERUIPMENT

In Figure 2.1 the arrangement of the laboratory equipment is
shown. Some data and references about the equipment are

given hare.

Temperature_sensgrs? (Ni 100s SWEMA). Two types are used.
They are specially shown in Figure A.1. The sensor to the
rights placed in a cylinders is used when measuring

temperatures in water. The other one is used when surface

temperatures are measured.

Hot-Plate: (Electro Standard ABs type number 214, 220 Vs
1200 Wi. The weight of the iron—-plate is about 1.5 kg. From
below a temperature sensor is mounted in the centre of the

iron—plate. This sensor is used for the purpose of making

Fig. A.1:s The temperature sensors used.
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models of the hot-plate. It is not used in the control
algorithms.

Control _Unit: In the power control a trisc is used as a
contact which is open or closed the next half sinus period

depending on the control signal to the triac.

Computer: (DECs PDP-11/03). “56 kbytes primary memory and
floating point arithmetic in hardware (instruction timing?

add/subaB0uss multal00pss and diva200us) .



o
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APPENDIX B

SIMPLE PHYSICAL MODEL FOR THE HOT-PLATE PROCESS

The thesis is illustrated by the use of variants of a second

order model of the hot-plate process.

Model E.1:

m CT = -A(T - T 3 = (T - T )

W oW w W p W room

mCT = AT -T2 + u

P RP w p .
3 (B.12

T QY = T Q) = 20°C

w p

u € [QGs u 3

(T3] J

where

m iz the mass of the water. The usual renge [0.5y 2.01 kg.
w

m is the mass of the plate. Used valuet: 1.5 kg.

P
C is the heat capacitivity of water. Used
w
value: 4170 Ws/*°C.
c is the heat capacitivity of the plate. Used
P

value: S00 Ws/°C.

T is the temperature of the water.

w
T is the temperature of the plate.
=
T is the surrounding temperature. Used value is 20°C if
rOOM

nothing else is stated.

A is the heat transfer ratio defined by A«(T -T ) equal to
p w

transferred power from plate to water. The value is
in the range [1.5s 3.0] W/°C. Used value is 2 W/°C if

nothing else is stated.
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o is a coefficient. ®-T is considered as the loss from the
w
process. At 95°C the losses are about 500 W when no

lid is used.

u is the input power to the process. u & 1350 W.
max

To get shorter notations the following parameters are often

used:
c =m(C and © =m C .
p PP

Variants of Model (B.1) will be used throughout the thesis.
Some variants are so simplified that they are not suitable
for practical control. Actually the loss term in (E.1) is
not possible to use. The lpss is non linears and a linear
approximation is not possible to use when doing practical
control. Nor is the heat tranfer ratio A linear. In practice
it is necessary to let it be a non linear function of the

temperature difference TP—T .
w

The dynamics of the kettle can be neglected in a simple
model. This is in fact possible to do even in practice
depending on the low heat capacity (540 Ws) of the kettle
and the good heat conductivity of aluminium (210 W/°C). The
kettle can also be thought of as part of the water: because

the heat transfer ratio between the kettle and the water

(about 10 W/°C) is much higher than that between the plate

and the kettle (1.8 to 3.0 W/°*C).
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APPENDIX C

DEFINTION OF RESOLVING POWER

In Section 5.4 the resolving power of E was mentioned
without any definition. Here a proposal for such a

definition is made. The definition is made in two steps.

Definition S.1: Let o be a physical parameter in the models

that generate the members of E. E(«ib denctes all models of
Z which have a=«1. “1 is said to be separable from o if
there is an admissible control law F and a t20 such that for

all u€s and neES
t t

F € ¢ = {R n Bt 2 N Edx ¥ is empty.
tsusn trun 1 2

s}
Definition_$.2: The resolving power of E is the ability to

separate physical parameters accociated with the process.
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PPENDIX D

HE OPTIMALITY OF THE PD-CONTROLLER OF EXAMPLE 4.2

y augmenting the Assumption 3.1 by a requirement on the

erivative

ly(ty - Haer | Ce

ly? (€)= HGw" (e & o

t is possible to show that the PD-controller of Example 4.2
s completely optimal. Of course differences should be used
nstead of derivatives. Ordinary derivatives make it

owevers easier to see the essential points. Choose hs € o

[&]
1; ds and K such that
(i d + 2 ({ &
o} ref
(iid g + Te (y —- a T (D.17
o} i ref max

(iii) 28 + 2Te + /K <+ a W {d
0 i max

efine tm as the first time such that u(t“)(l. Assume first
1

hat y(t >y ~d. A lower estimate of t is then givén by
n ref s

KLy - a t =T) - g =~ Ta+g 21 ( 1. (D.22
ref i Q b

onsequently & lower estimate of the output at t=t +T-h is
"

(¢t ~h) - 2z2vVy -2 - Te - /K - a-h &y - & .
in Q ref O i ref ref
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Let t be such that u(tiI=0 if t2t and ult -h)>0. Assume
u u

u
that aT2d. The case when aT(d is taken care o0f below. From

(D.23s (D.12s and aTz2d it follows that

att ~h)y — & + Tla—e ) 2 vy - 28 - 2Te - /K + aT 2 y
fn Q 1 ref @) 1 ref

This implies that

t £t +7T-h (D.3
u n

-

If tU~T is small it follows from (D.1) that

alt ~T-h) + &8 + T(a+e » { y (D.4>
u 0O i ref

From (D.3) and (D.4) it follows that an upper estimate of t
u

is given by

KLy - att +T-h) + &g -~ T(a- 11 ¥ O
ref ] Q 1

Then an upper estimate of the output is

at ~h+8 =y + 28 + Te £f vy + &
u Q raf Q i ref ref

If y(t »2y -d then it follows from (D.1) that for s2t
s ref "

y(sl)y —g « It will now be proved that a possible
raf ref

overshoot is not to large. From (D.1) if follows that

(t ~h) 2 y(t ) — 2 - ah 2 ~d -2 - ah) 0.
Y i Y i} Q yreF (o]

This and udt -h)=1 imply that
fit

KLy - alt =h=T) - g = Tia+g 11 2 1
ref i Q 1
Thus

y - d £ at -T) + g £ vy = ah - Te -~ 1/K - aT
ref it (o) ref i

Hence aT+ahtd. In such a case it follows for all s that
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y(s) £ Hui(s) +g % HI(t ~h) + aT + & £
O u ¢

1.3

y ~d+ g + aT + &g £y + £ .
ref Q Q ref ref

Thus the proposed variant of PD-controller is

optimal.

completely







