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Linear Filtering With Unknown Initial Values

Per Hagander

Abstract: Linear filtering with unknown initial values is the dual

of the linear quadratic control problem with fixed endpoint.

The Kalman filter would require infinite initial gain and finite

gain would give infinite error covariance. It is here shown both

for continuous and discrete time that an optimal estimate with finite
error covariance can be obtained after a nonzero time interval giving
starting values for the Kalman filter. The requirements on observa-
bility are also specified. The structure of the optimal solution is

similar to the smoothing estimate.




Introduction: At the start up of a Kalman filter it is assumed that the

statistics of the initial state are known. It is often unrealistic
to rely upon that information. If no second order moment of the
probability distribution of the initial state is assumed to exist,
this paper gives the necessary modification for an optimal solution.
Tt is usually suggested that the inverse of the covariance matrix
should be used to start up the covariance equation, e.g. [5] , but
this does not solve the problem with the filter. A finite gain will
not give the correct start up, and the error covariance will never

exist!




Statement of the problem: Regard the system

dx = Axdt + dv x(0) = X,
dy = Cxdt + de y(0) = 0
where Exo = 0, and where v, e wiener processes with incremental

covariance R1dt, det?independent of each other and of X Assume
also that the probability distribution of the initial state is de-
generated, so that there exists no finite second order moment in
some linear subspace of the state space, while it is finite in the
rest of the state space. lLet the projections of X, into the two sub-

spaces be given by the projection matrix N1

X = x1 + X2 = N,x_ + (I - N,x
e} o) e} 10 170

where xl has the finite covariance Rg.

Determine the best linear estimate x(tq) of x(tq) based on y(t)

during [0, t,1.

1

First estimate linear combinations of x(tq) say aTx(tq) and let best

mean minimizing the mean square error
J = Ea'x(t,) - a'x(t,))’ 1)

Admissible estimators are

T

R 1
aTx<t1> = - 7 Ul (D)dy(t)

O

The notation aTx(t ) will be justified later. There is really a

N 1
x(tq) such that aTx(tq) ig the best estimate of aTx(t1) for all a.




Solution by duality: The problem will be solved using the duality

with linear quadratic control problems [1,4] .

Rewrite (1) using the vector z(t) defined by

-y = ALz 4 Oy (2)
z(t1) = a
then
Y
aTx<t1>-aTx<t1> - zT(tO)x(tO)+ FZ () dvit)+ut (£)de ()]
(@]

In order to get a finite J, i.e. to have a finite covariance of

zT(O)x(O), z(0) has to be orthogonal to all xg, requiring

Nz(0) = <I-N1>Tz<o> = 0 (3)
so that
t
J = zT(O)R;z(O) v s (zT<t>R1z<t> + uT<t)R2u<t)>dt (1)
O

J should now be minimized with respect to u under the constraints

(2) and (3) giving, e.g. [2]1 or [3] ,

ult) = ngén<t>z<t>~R;“cw<t,o)NT(NM(O,t1>NT>"1N¢T<t1,o>a (5)
where

§f[ = A + HAT + R1 - HCTR;CH (6)
o) = R;

and where the fundamental matrix y satisfies




T -1
(§¥ b(t,8) = (A-T(CTR; Ot 8)

Us,s) = I
and
Y
T T -1
M(t,tq) = [ v (s,t)C R2 Cy(s,t)ds (7)
t

the observability Gramian.

By solving (2),(5) expressions for z(t) and u(t) are obtained

Y

2(t) = wT<t1,t>a-f ¢T<s,t)CTR;“cw<s,o>dsNT<NMNT>‘1N¢T<t1,o>a -
t

= wT(t1,t)a—M(t,t1)w(t,O)NT(NMNT)_quT(tq,O)a
and

u(t) = [-R; enop’ (e, 048] enemee, e, u e, 08" aenHnp’ (e, ,09-

- R;1C¢<t,o)NT(NMNT>'1NwT(t1,o)]a

Thus
t
1 T Ty =1, T
x(tq): i {w(tq,t)n(t)~w(t1,O)N (NM(O,t1>N ) Ny (t,O)M(t,tj)H(t) +
o]
+ w<t1,O)NT(NM(O,t1)NT)'1NwT(t,0)}CTR;1dy(t) (8)

independent of a.
Note also that the minimal J is

J = aTH(t1)a+aTw(t1,O)NT(NM(O,t1)NT)—1NwT(t1,O)a




The covariance of the estimation error, %(t1), is thus

_ T T\=1. T _
P(t,]) = H(t1)+¢(t,],0)N (NM(O,‘C,])N ) Nu (t1,0> = (9)
= H(t1) + Z(tq)

Purther differentiate (8) to obtain a recursive formula for

x(tj) and use

d_

dt

(NM(o,g)NT)'1 :—(NMNT)—T{Nw(tq,O)CTR;1CwT(t1,O)NT}(NMN)_T
1

so that

: oAl T T~ T, -1 ° 1_
dx(tq) = Ax(t1)dt1+{n(t1)+w(t1,O)N (NMN™) Nw(tq,O)}C R, [dy(tq)—Cx(tj)dt1j—
- A T~ 2

= Ax(tq)dt1+P(t1)C R, {dy(t1) Cx(tq)dtj} (10)
This is the usual Kalman Bucy filter.

However (10) could not be applied from t=0 since I(t) and thus

P(t) are infinite for t=0.

It is possible to rewrite %(tq) using ;H(t1):

{d%nw = MDAt (CTR]] (dy(£)-Cx (£)dt) (1)
XH<O) = 0
or
t
X (t,) = f1 (t, yOT(E)CR: Tdy(+)
e R . b AT v

then




4

x ()= (e 4y, N QM) NS o (e, 000 RS lay (o) -
O

‘t,1 't,]

- e, 000 wT<s,t)cTR;10w(s,t)n(t)cTR;1dy<t>>ds
o) t

t

- §H<t1)+¢(t1,O)NT(NMNT)"1N[f wT(t,O)CTqudy(t) -
O

Y

S
- f wT(s,O)CTR;1C[fw(s,t)H(t)CTR;1dy(t)]ds -
O O

Y

= x (b )4yt 0N )™ v (£,00¢R) ey (1) -Cx (Dat]
O

- ;H(t1)+w(t1,O)NT(N M N o) (12)
where

(~dx(t) = (A—HCTR;1>Tx(t)dt + CTRET[dy(t) - c%n(t)dt]
Py =0 (13)

Note the ressemblance with the smoothing estimate formulas e.g. [3]1.
Thus if xg is observable at t=1, i.e. (NIVI(O,T)I\TT)_,I exist, x(r ) and
P(1) could be obtained using (11), (12), (13) and (9). What approxi-

mately happens as 10 is demonstrated in Example 1.




Discrete time results: The discrete time case

x(t+1) = ¢ (t+1,Ix(t) + v(t)
(y(t) = ex(t) + e(t)

with analog v, e and x(0), can be treated in the same way. The best

one step predictor ;(t1|t1-1) is

Ot |t =1) = % (b, [, =1+t st ONTQMCE Lt N e =1)
11 -t 1’70 o’ o

where

x (t+1]1) = 8 (41, D (| =KD [y () -ox_ (] +-1)]
x (t |t -1) =0
1" 0 ©

K(t) = ¢<t+1,t>n<t>eT[eneT+R2]“1
pEH1, 1) = o (t+1,1) = K)o (t)

(t+1,t)H(t)¢T(t+1,t)+R1—K(t)eH(t)¢T(t+1,t)

én(t+1) = ¢
R
H(to) = RO
t -1
Mt ,t,) = ; Tee,t )0 (R 4om(t)e ) oy (t,t )
o017 7 ret ¥ ’ o 2 LAR o)
"o
3x<t—1> =y e, O (D0 TR #1617 Ty (0)-0% (] t=1)]
A(tq—W) =0

The covariance of the errcr §(t1lt1—1) is
Pt )= Tt )45(E, ) = Tt )y (t, £ ONLOME LT OND My (e, 4t )
1 1 1 1 1° 0’ T o’ 1°"0

which is finite provided that the part of the initial state that does not
have any finite second moment, is observable for the interval [to,t1].

This assures that the inverse exists. The proof is done in the same

way using duality but is rather lengthy.



Example 1 (Continucus time)

e

- 2 - -
Ex_ = 0, ExJ 3. R,=1, R =

"
J
ol
b
+
<

1

n(t) = [A21(‘t,0)+A22(t,O)H(O)J/[AM(‘t,O) + A12(t,O)H(O)J
d : a ! 3
a?A(t,O) = A(t,0), ACD,0) = I, X = r,+a
r -ad
1
1 7
cosh At + % ainh At N sinh At
Alt,0) = r, i
3 sinh At cosh At - T sinh At
ntt) = r, tanh 2t/()+a tanh 2 t)
? t o9
2(t) = p (t,0)/ f v (s,0)ds
@)

0,0 = §(£,0) = ¢(t,0mE) M)+
For t =ze+0: p(e,0)® 1, M(0,e) = e, ()= 1/¢

€ -
A (0) = s y(s)ds, xH(e)z 0

o)

and thus

~ 1 €

x(g) = — f y(s)ds = y(0)
e

P(g) = 1/¢

This gives the starting values for

X(t) = —ax(t) + P(t)(y(t)-x(t))

when started from t =¢.
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Example 2 (Discrete time)

0 1
x(t+1) = x(t) + v(t) N=T R =TI R, =1
P 1 2
y(t) =11 01 x(t) + e(t)
m(0) = 0, K(0) = 0, 3(1,0) = ¢, n(1) =1
x (1/0) = 0
1 0 1
M(0,1) = R >\1(—1) = y(0)
0 0 0
R '-.'?_1 o) 0
x(1}0) = y(0), P(1) =
1 0 2
; (0] 172 0 0 1
K1) =5 w(2,1) = ¢ =
1 0 1 1/2 0
I
o . |0 2 0
(211) = = v(1) m(2) =
"1 2 14 o 32

1 1
AQ(O) =5 . y(1)
i 1 1 ’ 0
¢A2(O)+[]y(0)=[ y(0)+§[]y(1)
0 0 1

0
% [ ] (1) + m(2,1)w(1,0>M'1(o,2)x2(—1) =
’

. [0 10 1 o0 T 1 07
= .2.[ ]y(’]) + >\2(—1) = y(0) + y(1)
1 o 1724 Lo 172 0 1

-1
2 0 ] 172 0 10
- + ¢ 0
P(Q)"[o 3/2 | [o 1] [o 1/4]
2 0 10 3 0
“lo a2l Flo 72l 1o 2

Ay (=1)

x(2]1)

0 1

¢‘T|i']/2 O-(b"r’:
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Remark: The expression can be obtained also by starting with Ro = ¢TI and
c s but for large systems the expressions of P(tﬁ) and'x(tq) in ¢ would be
extremely complicated. Formel manipulations on computer would be necessary.

Mumerical solution for large parameters c would give large round off errors.
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Conclusions: The optimal filters for systems with unknown initial values
have been deduced both for continuous and discrete time. The error cova-
riance becomes finite as soon as the unknown initial modes become observ-
able. Using a formula similar to smoothing the estimate and its error
covariance could then be obtained, and a usual Kalman filter started.

The error covariance still does not contain the actual measurements.
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