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1. Introduction

The quadruple tank process is a two-input, two-output system with a mov-
able zero composed of an interconnection of two double tank processes. For
a full description of this process and the work already completed on it, see
Karl Henrik Johansson’s paper "A Multivariable Process with an Adjustable
Zero” (1997). The two inputs are the voliages to the two water pumps, and
the two outputs are the water levels of the two lower tanks. In addition, there
are valves between the pumps and the tanks. By adjusting these valves, the
proportions of flow going to the upper and lower tanks is changed, thereby
moving the zero. This movable zero is located on the real axis and can bhe
moved between the left and right half planes,

The main purpose of this paper is to illustrate how right half plane (RHP)
zeros limit performance for a multivariable process. The reader should see Fun-
damental Limitations in Filtering and Control (1997) by Seron, Braslavsky,
and Goodwin for a full treatment of RHP zero performance limitations. As
is well known for single-input-single-output (5ISO) systems, if any RHP zero
lies within the closed loop bandwidth, problems will occur with any control
law. In other words,

azeroatz=a = wla

Therefore, the only option-is to reduce ‘the bandwidth and hope that the
responses obtained at lower frequencies are adequate. As the experimental data
will show, nonminimum phase controllers which do produce stable responses
have small bandwidths compared to that of the minimum phase controllers,
Control laws which attempt arbitrarily good tracking for the nonminimum
phase plant will be unstable. From the view of the linearized dynamics, the
only way perfect tracking can be obtained when a right half plane zero exists
is if there is an unstable pole-zero cancellation. Another way the theoretical
effects of RHP zeros are illustrated is with the water-bed effect:

. 1
sup  |S(jw)| = e
wE[whtUz] ”S”%
where m is a positive constant and the system contains a zero in the open
RHP. This theorem states that if the magnitude of the sensitivity function is
made small in one frequency range, it must necessarily be large in another

range,




In the multivariable case, zeros also have a direction associated with a
location. If there exists a multivariable zero at z = «, then the transfer matrix
G(s) loses rank at z = a. In addition, there is a direction vector % such that

Gu{a) Gia) h -0

Gzl(a) Gzz(a) Py
Provided that 4 is not in the direction of a unit vector, the effects of a RHP
zero can be distributed among more than one output. As a consequence, the
performance limitations of a RHP zero for a MIMO system are not as great
as in a SISO system.

In addition, the dynamics for the process are nonlinear which provides for
different control methods to be studied: equilibrivm point linearization, feed-
back linearization, and model predicted control. Therefore, comparisons can
be made between controllers based on linearized and non-linearized dynamics.

The remainder of this paper is divided as follows: Section 2 contains the sys-
tem dynamics about which the controllers are designed, Section 3 makes some
technical comments about the process, Section 4 contains the description of
the design techniques for each of the controllers, Section § makes comparisons
of the experimental data, and then Section 6 makes the concluding remarks.

2. Dynamics

The following are the system dynamics for the quadruple tank system,
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where each v; € [0,1] is set by the valves and determines the plant phase, and
k; are the pump gains.

After solving for the equilibrium points u? and k¢, make the change of
variables 2; = h; — b7 and w; = u; — u? and the linearization becomes
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Ay, Az [em?] 28
Ag, Ay [em?] 32
ar,as  [em?] | 0.071
as,as  [em?] | 0.057
g [em/s%] | 981

Table 1 Parameter values for the physical experiment.

where

o
ai\l g
Notice there is no longer the k. term in the linearized € matrix. The conversion
from volts to the tank heights is dealt with in the software, so k. is no longer
necessary.

The phase of the plant is determined by ;. If 1 < 41 + 92 < 2, the phase
is minimum. If 1 < 93 4+ 742 < 2, one of the plant zeros moves along the real
axis into the right half plant, so the phase is nonminimum. If 4 + 3 = 0, the
zero is located at the origin, and the equilibrium tank flows through Tank 1
and Tank 2 are dependent.

3. Notes on Hardware,Software,and the Physical
Process

The newly rebuilt quadruple tank process has the added benefit that the phase
of the controller can be changed by the flip of a couple switches. When valves
one and three are on, the phase is minimum. When valves two and four are
on, the phase is nonminimum. And when all four valves are on, the movable
zero is usually located very near the imaginary axis,

The equilibrium points for a given phase are often not very consistent from
day to day. Table 1 shows the range of values for each v; and each pump gain &;.
Due to these large variations in the physical process, it becomes necessary to
measure y; and &; each day, and then design a controller around the measured
parameters for that day. The parameters do not vary too much within a given
day. Because of this fact, the different controllers in this paper are designed
around the equilibrium point the day the data was taken. Therefore, step
response were done at slightly different heights.

A second problem with the physical process occurs during the start-up.
Occasionally, there is a back-flow problem with the valves after the pumps
have been off. The result is that all the water flows into only one of the
tanks. In this case, it is recommended that the pump voltage is turned on
high for a couple of seconds and then turned back down to the equilibrium
level. Therefore, it is necessary to watch the more aggressive controllers which
reduce the input voltage(s) to zero. If the input voltage is at zero for a long
enough period, this back-flow problem could occur during a control action.

All controllers in this paper were implemented in dSPACE, not the In-
Touch interface used for the already documented decentralized PI controllers.




Valves 1,3 Valves 2,4 Valves 1,2,3,4

(minimum) | (non-minimum) | (imag axis pole)

71 | 0.60- 0.70 0.30 - 0.40 0.44-0.50
72 | 0.60 - 0.70 0.30 - 0.40 0.50-0.56
By 27-34 2.7-34 3.0-3.5
ka | 2.7-34 2.7-34 3.0-3.5

Table 2 Measured tank parameters on the physical process.

The benefit of dSPACE is that nonlinear control can be implemented through
S-Functions in the simulink diagrams. S-Functions were used in the case of
feedback linearization and model predictive control. Another benefit is that
linear controllers can be loaded in as .mat files. This is extremely useful when
controllers have more than a few states. One drawback with dSPACE is that no
easy way to reset the linear controller states was found. This can cause prob-
lems if you restart a controller with integrators which previously had large
errors. If this is the case, it is necessary to down-load the dsp again.

The data for most controllers includes the experimental responses and the
nonlinear simulation responses. The nonlinear simulation were done directly
in Simulink with S-Functions, not in the InTouch interface previously used
with the decentralized PI controllers.

Excluding model predictive control, all controllers in this paper were ran
at a sampling period of .2 seconds. This is faster than the sampling period of
1 second previously used. In the case of model predictive control, a sampling
period of 1 second was necessary for the additional computation time.

The output measurement for the water level of each tank (v;) is given in
volts. There is an approximate factor of 20 between this measurement and
the water height. In addition, a small offset is added in. Both of these values
vary from day to day. The variance in the factor of 20 is relatively small, and
therefore it can be assumed to remain unchanged. The offset not only varies
from day to day but from experiment to experiment. This offset ranges in value
from -.6 cm to 2 em, Setting this value is necessary every time the experiment
is ran.

h; = au; + b; where a; = 20 cm/V and — 0.6 cm < b; <2 cm

Finally, the tank labels on the physical system were changed. Tank 1 cor-
responds to Tank 1b, Tank 2 to Tank 2b, Tank 3 to Tank 1a, and Tank 4 to
Tank 2a.

4. Control methods

There are five different control schemes studied, and each was examined on
the minimum and nonminimum phase plant. Most design techniques used the
linearized model given in section 2, or an augmenied version of this model.
Feedback linearization was the only method based on the full nonlinear dy-
namics.




All linear designs use a controller of the form:

_ | Huls) Kuafs)
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No other limitations were placed on the structure or the order of the con-
trollers.

4,1 Linear Quadratic Gaussian Control

The first Linear Quadratic Gaussian {LQG) controllers were designed using
the separation principle with Matlab’s LQE and LQR. commands which allows
the principal gains to be shaped. Controllers were also designed directly using
the LQG Matlab command on the plant and also on a plant augmented with
integrators.

LQG Design Method 1  Design by the separation principle contains two
steps:

e Construct a Kalman filter to obtain the optimal state estimate,
¢ Solve the deterministic linear quadratic problem.

The performance specifications are considered by the design in the first step:
The open loop principal gains of the Kalman filter are shaped to produced a
satisfactory return ratio. The second step involves recovery of the return ratio
of the Kalman filter at the output and has an effect of a tuning knob: As the
knob is turned, the principal gains of G{s)K(s) will approach the open loop
principal gains of the Kalman filter.

A Kalman filter produces the optimal states estimate for the plant:

@ = Az 4 Bu - Guw
y=Cz+ Dutwv

where the process noise w has covariance ¢J; and the measurement noise v
has covariance R;. As the first design step for the minimum phase case, a
Kalman filter was constructed where disturbances on the plant were assumed
to act through the input, and @; and R; were chosen to be identity matrixes.
Figure 1 shows the principal gains of the return ratio for this filter. Both
have a small constant gain at low frequency which will result in steady-state
error. To solve this problem, two poles placed at s = —.0001 were augmented
into the plant. A Kalman filter was then designed about the augmented plant.
Figure 2 shows the new singular values for the return ratio. The integral action
worked in raising the gain at w = 0. Using singular value decomposition, the
process noise covariance (1 was modified to raise the lower principal gain up
to the higher principal gain to improve more on the steady-state error. Figure
3 shows the new principal gains.

The second step of solving the deterministic linear quadratic control prob-
lem involves finding the gain matrix such that the state-feedback minimizes
the cost function:

T
lim E{/ (mTQgcn - uTRgu)dt}.
0

T—o0

The () matrix was chosen such that weight was placed on k; and hy, and
Ry was chosen such that Ry = plI. As p is decreased, the principal gains of
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Figure 1 Minimum Phase LQG 1: Principal gains of return ratio using the
non-augmented plant.
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Figure 2 Minimum Phase LQG 1: Principal gains of return ratio using the aug-
mented plant.

G(s)K (s) will approach the open loop principal gains of the Kalman flter, and
the return ratio of the Kalman filter will be recovered at the output. Figure 4
shows the principal gains of the sensitivity function S(s) and the closed loop
transfer function T'(s) for the final control design.

The same method was used to design a controller for the nonminimum
phase plant. LOQG compensators are known to have problems with right half
plane zeros, and the only hope is that the RHP zero does not lie too far
within the bandwidth. Therefore, weights on the covariance matrixes were
adjusted, reducing the bandwidth, such that stable responses were obtained..

i Vs i

Figure 3 Minimum Phase LQQ 1: Principal gains of return ratio with modified
-
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Figure 4 Minimum Phase LQG 1: Principal gains of S(s) and T(s).
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Figure 5 Non-Minimum Phase LQG 1: Principal gains of 5(s) and T{s).

More specifically, unstable responses were obtained when p was reduced be-
yond a certain value. Figure 5 shows the principal gains of the sensitivity and
closed loop transfer functions.

Two points should be made about the plots of §(s) and T'(s):

o The reduction in bandwidth due to the RHP zero is very clear.

s For the nonminimum phase system, the movable zero is located at z =
.017, which is slightly within the bandwidth. As a result, a hump in the
sensitivity function near the zero is evident. If the bandwidth is pushed
out farther, this hump will increase and eventually result in an unstable
system. - . . o

LQG Design Method 2 LQG controllers were then designed for the min-
imum phase plant directly with Matlab’s LQG command. As Figure 1 illus-
trated, a DC offset should be expected for the non-augmented minimum phase
plant. The weighting matrix W was chosen such that the cost function place
a heavy weight on the error of iy and hy, and very little weight on the error
of hy and hy. Figure 6, which shows the sensitivity and closed loop transfer
function of the resulting controller, also verifies the DC offset.

An LQG controller was also constructed with the non-augmented, non-
minimum phase plant. Although stable, this LQG design method was not
very successful as Figure 7 illustrates. At low frequency, the smallest principal
gain of 1'(s) is far less than one. Therefore, DC offsets will be extremely bad.
Also, the principal gains of the sensitivity are large at low frequency, which
will result in very poor disturbance rejection. This controller was not tested
on the physical experiment because of its poor characteristics.
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Figure 6 Minimum Phase LQG 2: Principal gains of S(s) and T(s).
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Figure 7 Non-Minimum Phase LQG 2: Principal gains of S(s) and T(s).

LQG Design Method 3  As can be seen from the singular value plots,
using Matlab’s LQG command on the plant augmented with integrators makes
significant improvements to both the minimum and nonminimum phase plant.
The weighting matrix W for the cost function placed small weight on the errors
of h and hy4, large weight on the errors of h; and hy, and very large weight
on the integral of the errors of hy and h,.

4.2 H,,
Hoo controllers were designed for both the minimum and nonminimum phase
plants using Matlab’s g~ Analysis and Synthesis Toolbox.,

The uncertainty in the plant comes from three main areas:

Sryuvam

Binguaar Valliam (a0}

Frogperey [adsed]

Figure 8 Minimum Phase LQG 3: Principal gains of S(s) and T(s).
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Figure 9 Non-Minimum Phase LQG 3: Principal gains of S(s) and T{s).

" - -

Figure 10 Uncertainty Weighting Function Wy for both minimum and nonmini-
murn phase.

¢ The inconsistent v; and k; produce significant variations in the equilib-
rium points. Therefore, the controller will probably be operating at a
different equilibrium point than the one it was designed about.

o Besides normal sensor noise, the measurement of the tank heights are
fairly inaccurate in other ways. As already mentioned, it is necessary to
set a bias value every time the experiment is tested, but this value can
also change noticeable during the experiment. For example, the capacitor
above the water level could initial be dry, but as the water level raises
and lowers, some moisture is left on the capacitor above the water level.
This has been seen to change the bias value. ' -

o The nonlinear terms in the dynamics besides other common nonlineari-
ties such as input saturations and time delay.

This overall plant uncertainty is lumped together and modeled as multiplica-
tive uncertainty. For both the minimum and nonminimum phase plants, the
uncertainty weight, Wi, allowed for up to a 50% modeling error at DC and
increases with frequency.

In Matlab, the nominal performance requirements are specified by a trans-
fer function Wy. The inverse of this transfer function gives the desired upper
bound on S§(s). The weighting function for this design desires no more than
a 3.3% error at steady-state, and this performance requirement decreases at
higher and higher frequencies. The weighting function for the nonminimum
case was chosen such that the performance requirements become less strin-
gent at lower frequencies than the weighting function for the minimum phase




Figure 11 Performance Weighting Function Wy for both minimum {solid) and
non-minimum (dashed} phase.

+abust HaBHIEY and o] petothae

Figure 12 Minimum Phase He: Robust Stability (solid) and Nominal perfor-
mance (dashed).

case. More specifically, the nonminimum phase sensitivity specifications be-
comes less stringent faster by a factor of ten. As a result, the bandwidths of
the two different controllers differ by an approximate factor of ten. See figure
11 for the the weighting functions, W5, of both phases.

Two disturbances were modeled on the outputs to the plant, ; and hy. The
suboptimal H, controller for the minimum phase plant was produced in Mat-
1ab such that the co-norm of the transfer function from the perturbation inputs
and disturbances to the perturbation outputs and errors is internally stable
and minimized. Figure 12 shows the frequency response of Wo(I 4 GK)~! and
W1KG(I + KG)™, where K is the controller and G is the plant model. It
follows from these plots that the controller meets the robust stability require-
ments since [|[Wy(I + GK) !l < 1 and nominal performance requirements
since |W1KG(I+ KG) oo < 1.

Using p-Synthesis, robust performance is checked. Figure 13 shows that
[[Wa(I + GK) Y|eo > 1. Therefore, it follows that this controller does not
achieve robust performance. D-K iferation was completed in Matlab and a
new controller was designed. D-K iteration works by concentrating the H,,
minimization across certain frequencies, and as a result, the order of the con-
troller is greatly increased. The H,, controllers used in this paper contain up
to 28 states. Figure 13 shows that this controller does achieve robust perfor-
mance.

10




Figure 13 Minimum Phase H: Robust Performance before D-K iteration {solid)
and after (dashed).
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Figure 14 Nonminimum Phase Ho: Robust Stability (solid) and Nominal per-
formance (dashed).

Figure 15 Nonminilmum Phase H.: Robust Performance before D-K iteration
(solid) and after (dashed),

Sngler Vabies,
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Figure 16 Minimum Phase Ho,: Principal Gains of S(s) and T(a).
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Figure 17 Nonminimum Phase Hu: Principal Gains of §(s) and T(s).
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Figure 18 Nonminimum Phase Desired L.

4.3 Loop-Shaping

The general idea behind simple loop-shaping methods is to construct an open
loop transfer function L which meets desired performance requirements. The
controller is then obtained from the plant by C=I/P. This method should work
provided the plant has no RHP zeros. Otherwise, there will be unstable pole-
zero cancellations in the system. There are more advanced methods of loop-
shaping to deal with RHP zeros, but they were not pursued here. This simple
method of loop-shaping illustrates how easy controller design is for minimum
phase plant. The response which the minimum phase controller produces is
comparable to the other control methods, and this loop-shaping controller is
the Jowest order (4) of all controllers documented in this paper.

Srgtar Veban

Brgilar Values {421

Faganey Fatee)

Figure 18 Minimum Phase Loop-Shaping: Principal Gains of §(s) and T(s).
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4,4 Feedback Linearization

Feedback linearization was attempted on the quadruple tank system with full
state feedback and the control law:

A
Uy = (— ay(hy ~ hyg) — %\/ 2gh; + %\/ 29h1)

Y1k1

A
g = 2 (— az(hs — hag) — %‘i‘\/ 2ghs + 2—22\/ 291'12)

B Yok

where A; g is the desired height in Tank ¢ and a; is chosen to be a positive
constant. In both simulations and on the experiment, a value of .2 was used
for oy and ay. The resulting closed loop dynamics from this control law are

h',; + a;(h.,.; - h;,d) =0 fori=1,2

Obviously, hy and hy are stable, but as the phase of the plant changes from
minimum to nonminimum, the internal dynamics on k3 and k4 become unsta-
ble. The unstable internal dynamics of the nonminimum phase plant can be
seen by the nonlinear simulation results in Figure 16. The dynamics of k; and
hiz can become arbitrarily good (in simulation) by adjusting o;, but for non-
minimum phase systems, infinite control energy is needed for perfect tracking.
The plots show that h; and hy produce excellent responses, but in order to
hold these heights, u; must tend towards —oo and 4y must tend toward +oo.
The result is that the water level in Tank 4 tends towards co and the level
in Tank 3 tends towards —oo. On the physical systems, since negative control
inputs do nof exist and since it is impossible to have negative water heights,
Tank 3 will empty and then Tank 1 will eventually begin to overflow. As u,
is increasing indefinitely (or at least to saturation), Tanks 2 and 4 will also
overflow.

13
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Figure 20 Nonminimum Phase Feedback Linearization: nonlinear simulation re-
sults,
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4.5 Model Predictive Conirol

The design of the first MPC controller contains an algorithm which predicts
only one step into the future and attempts to minimized ||e},2||2, where e%.z =

(e},el) and € is the etror in tank & at ¢ steps in the future. The algorithm
which computes the minimum of ||e_-1[,2||2 loops through each input value at
multiples of .1 volts, and it predicts the output using the linearized model.
This algorithm is extremely inefficient and is unable to solve for more than one
step into the future without exceeding available computation time. Therefore,
this MPC controller produces poor results in even the minimum phase plant,
The responses contain very large oscillations which are the likely result from
predicting only one step into the future: The controller attempts to reach the
desired position in only one step without any consideration of overshoot at
the next step. In fact, the oscillations would eventually start to grow, and
this controller becomes unstable. This MPC control algorithm tested on the
nonminimum phase system not only has the same large oscillations at the
output, but it also gives the appearance of unstable internal dynamics, The
error function only tries to minimize the errors on h; and hs, so hz and hy
are permitted to go unstable. These unstable dynamics are very similar to the
unstable internal dynamics found in feedback linearization of the nonminimum
system. The MPC controller attempts perfect tracking, but this is impossible
for nonminimum systems.

Matlab has many optimization routines which can be used to produce bei-
ter results in simulations. Unfortunately, these commands are not supported
by rtw and dSPACE to run in real-time. A second MPC real-time algorithm
was written on the concept of direction of steepest decent. The problem is to
solve the equation:

ki

minimize B(u) = Y (afjel o[, + B]l]|,)

i=1
subject to
0<ul <10

where ¢! and u® are the errors and inputs at i steps into the future, n is
the total number of steps into the future for which the error function will be
evaluated, and a and 2 are constants which will determine the shape of the
response. As stated earlier, the sampling time of this controller is 1 second, so
n also corresponds to the number of seconds which are predicted.

Given an initial set of inputs, the gradient of the error function is solved
numerically, and a step is taken in the direction of the input with the most
negative derivative. If any of the input values, u};, attempted to go outside the
allowable bounds, the error function was minimized with that input value set
equal to the appropriate saturation value. Since the error function is quadratic
in u, there should be no problem with multiple extrema. Predictions were again
based on the linearized model.

This algorithm was much more efficient and produced good responses for
the minimum phase system. At most, the experiment was tested with n — 20,
but anything beyond n = 5 produced very similar results for given values
of a and 8. The values of these constants which were tested are a = 40
and § = .5,1,2,3. The choice of these constants determines the shape of

15




the response. A smaller value of 8 will result in very fast responses with large
overshoot and oscillations. Increasing 8 will solve the problems with overshoot
and oscillations, but at the expense of rise time and DC offset. Since [ penalizes
any difference in control energy from the equilibrium, this DC offset is to be
expected as 3 is increased relative to a. Therefore, setting 8 equal to a large
value will result in a slow, smooth response with no overshoot and a large DC
offset.

This MPC algorithm modified for the nonminimum phase plant was found
to be unsuccessful. The same problem arises as in the first MPC algorithm:
Since only the errors on Tanks 1 and 2 are minimized, Tanks 3 and 4 are
permitted to go unstable while Tanks 1 and 2 have very good tracking (until
input saturations were reached). For this MPC nonminimum phase controller,
tracking on Tanks 1 and 2 is fast enough that n is not a large factor. Again,
any values beyond n = b produces a similar response. On the physical system
uy grows toward positive saturation and u, grows toward negative saturation.
As a result, Tank 3 empties, Tank 4 overflows, and Tanks 1 and 2 have very
good tracking until the input saturations were reached.

The nonminimum phase MPC algorithm was then modified to minimize
the function

T

Bu) = 3 (alletall, +alleb.all, + Al1],)

=1

where the new parameter 7 is the weight given to the 2-norm of the errors on
Tanks 3 and 4. The values tested for  were in the range from three to ten.
This nonminimum phase MPC algorithm was also found to be unsuccessful:
Due to limits on computation {ime, the software crashed at values of n around
25 seconds. This method is expected to work if there exists sufficient com-
putation time and more efficient algorithms. Based on the responses of other
controllers for the nonminimum phase plant, software and hardware which
can support computations with n = 200 (or perhaps more) can be expected to
yield reasonable results. Using this MPC algorithm with smaller values of n,
for example n = 15, produced exiremely large steady-state errors in all tanks.

5. Summary of experimental results

The control methods were tested experimentally in two different ways:

¢ Tracking. The trajectory is a step in hy while ky is held constant. This
is performed after the system reaches equilibrivm.

¢ Disturbance Rejection. A small cup of water is poured into h, after the
system reaches equilibrium. This corresponds to an approximate five
centimeter increase in h,.

The results of each controller to the above is shown in a figure with four
plots. The upper left plot shows h; measured in centimeters, the upper right
plot shows h; measured in centimeters, the lower left plot shows u; measured in
volts, and the lower right plot shows u; measured in volts. The plots of the step
responses also include nonlinear simulation results besides the experimental
results. The disturbance rejection plots only contain the experimental results
since the disturbance is hard to accurately simulate in Simulink. The results
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symbol | description units

i, Rise time sec
M, Overshoot percent
t, Settling time sec

88 ey Steady-state error in Tank 1 | percent

ledla | o/Sroo(hE - hia)?

leilloo | maXocken |2F — hidl

Table 3 Description and units of parameters used to evaluate the experimental
data.

LQG | LQG | 1LQG | B, | 1p- | mk | MPC | MPC

1 2 3 shp [lin |B=5|8=2
t. 8 12 10 7 8 12 4 13
M, 30 5 10 8 10 | 0 3b 5
t, 120 70 65 b0 | bb | 25 35 50
88 €1 0 5 1 0 0 3 0 3

lellz | 34 | 27 | 25 {19 |22[26]| 20 | 24
ledflo | 1.0 | 10 | 1.0 [ 1.0 | 1.0 |10]| 1.0 | 1.0
lleall | 1.1 | 1.1 { 1.1 {06 {07]08] 07 | 1.0
lezllo | 02 | 02 | 02 {01 ]01]01] 01 | 02

Table 4 Experimental data for the step response in kb, for the minimum phase
plant.

for all controllers are listed in a table for direct comparison. Because of sensor
noise, some of the characteristics, such as settling time, are hard to measure,
so approximations were made. Table 3 describes the characteristics measured
for each controller,

5.1 Tracking

Minimum Phase  Table 4 illustrates the individual characteristics of the
minimum phase step responses. Some of the notable items are:

¢ MPC with § = .5 produced a very fast response. As a consequence, the
overshoot was large.

» The plots of feedback linearization seem to indicate a small DC offset.
Increasing oy should speed up the response and eliminate the offset.

¢ In terms of minimizing the error norms, H,, produced the best response.

*» As expected with MPC, increasing J slowed down the response, reduced
the oscillations, and created a DC offset.

Nonmintmum Phase Below, Table 5 lists the experimental characteristics
of the step responses for all the stable, nonminimum phase controllers. The
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Figore 21 Minimum Phase LQG 1 Step Response: nonlinear model and the ex-

periment,
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Figure 22 Minimum Phase LQG 2 Step Response: nonlinear model and the ex-
periment.

most unexpected item is that the H,, controller produced the worst response
in terms of minimizing the error norms. The weighting functions used in the
design were then modified in an attempt produce error noris better than that
of LQG methods, but to no avail.
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Figure 23 Minimum Phase LQG 3 Step Response: nonlinear model and the ex-

periment.
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Figure 24 Minimum Phase Ho, Step Response: nonlinear model and the experi-
ment.

5.2 Disturbance Rejection

Minimum Phase  Feedback linearization is found to have the best dis-
turbance rejection properties in all measured characteristics, and MPC with
f = .5 comes in a close second. Surprisingly, H, produced some of the worst
error norm characteristics which could indicate a poor choice in the selection
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Figure 25 Minimum Phase Loop-Shaping Step Response: nonlinear model and
the experiment.

12 12
150 < 115
IR T
£ 1 ¥ o1
105 105
10 10
o 50 100 150 o 50 100 150
t i
6 8
5 5
T4 Y4
] |
3] AN, ~~ AW 3 Laai u
2 2
0 ) 160 150 0 50 160 150

Figure 26 Minimum Phase Feedback Linearization Step Response: nonlinear
model and the experiment.

of the weighting transfer functions.

Nonminimum Phase Table 7 shows the disturbance rejection properties
of the nonminimum phase controllers.
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Figure 27 Minimum Phase MPC (8 == .5) Step Response: the experiment.
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Figure 28 Minimum Phase MPC (8 = 2) Step Response: the experiment,
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LQG | e | B

1 3
t. 200 i70 160
M, 30 T 25
ts 850 800 500
58 &1 15 g 0

leils | 11.73 | 8.91 | 14.16
leilos | 1.14 | 1.04 | 1.49
lealla | 7.10 | 9.65 | 11.44
llealloo | 0.62 | 1.06 | 1.20

Table 5 Experimental data for the step response in ki for the nonminimum phase
plant.
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Figure 29 Nonminimum Phase LQG 1 Step Response: nonlinear modet and the
experiment,

LQG | Hy Ip- fbk | MPC | MPC
3 shp in |f=56|8=2
llealz | 1.83 | 5.99 | 4.53 94 98 1.55
flei|lec | .31 | 1.41 | .97 .20 22 45
llealla | 13.90 | 13.90 | 13.04 | 12.26 | 13.04 | 13.4
llezlloo | 402 | 3.64 | 3.52 | 3.61 | 3.85 3.92

Table 6 Experimental data for the rejection of a disturbance in A2 for the mini-
mum phase plant.
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Figure 30 Nonminimum Phase LQG 3 Step Response: nonlinear model and the
experiment.
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Figure 31 Nonminimum Phase H, Step Response: nonlinear model and the ex-
periment.
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Figure 32 Minimum Phase LQG 3 Disturbance Rejection: the experiment.
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Figure 33 Minimum Phase Ho, Disturbance Rejection: the experiment,
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Figure 34 Minimum Phase Loop-Shaping Disturbance Rejection: the experiment.
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Figure 35 Minimum Phase Feedback Linearization Disturbance Rejection: exper-
iment,
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Figure 36 Minimum Phase MPC (8 = .5) Disturbance Rejection: the experiment.
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LQG | Hy
3
lesll2 | 16.55 | 20.08
lelloo | 2.06 | 2.48
lleallz | 19.57 | 28.61
lezleo | 3.85 | 4.94

Table 7 Experimental data for the rejection of a disturbance in h2 for the non-
minimum phase plant,
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Figure 38 Nonminimum Phase LQG 3 Disturbance Rejection: the experiment.
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Figure 39 Nonminimum Phase H,, Disturbance Rejection: the experiment.
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6. Summary

Almost all minimum phase controllers produced step responses which
were decently better than the decentralized PI controller already docu-
mented. As expected with the nonminimum phase plant, not all methods
worked, but those which did work produced responses which were sig-
nificantly better than those of decentralized control.

The effects of the RIIP zeros appeared in many different ways.

— For all stable controllers, the RHP zero resulted in a reduction in
bandwidth.

— On the simpler control methods attempted, the RHP zero resulted
in unstable dynamics,

— The RHP zero indirectly caused MPC methods to fail by creating
a need for extended computation time due to the low bandwidth.

The experimental evidence does not give much evidence that the perfor-
mance limitations of RHP MIMO zeros can be distributed among the
different loops and thereby reduced. One of the only small pieces of evi-
dence is that the RHP zero was slightly within the bandwidth for some
controllers. This fact does not prove much because there is no data on
how a SISO system would respond with the same RHP zero location and
bandwidth.

The notable difference between the working nonminimum phase con-
trollers discussed in this paper and the decentralized PI controller is
the anti-diagonal characteristic of these new controllers’ transfer matrix.
This characteristic can easily be seen in the step responses: A step in the
height of tank 1 (k1) results in a large control input from pump two (u3).
This characteristic comes from the fact the nonminimum phase plant has
a highly anti-diagonal transfer matrix.

All the minimum phase controllers produced comparable results, despite
the varying degrees of complexity. For the linear controllers, loop-shaping
produced good responses with four states, LQG with six states, and H,,
with as many as 28 states. The linear responses were not much different
from the nonlinear responses, although nonlinear methods did have a
couple of better characteristics. The only minimum phase control which
was noticeable slower than the rest is the decentralized controller.

The results of MPC depend significantly on two factors: the computation
time (or efficiency) and the relative weight of the inputs compared to
the errors in the E{u). When the algorithms are so inefficient that only
one step into the future is predicted, even the minimum phase plant is
unstable. The computation time needed for the nonminimum phase plant
was great enough that no stable controllers were produced. The relative
weights of the inpuis compared to the errors shaped the response with
respect to rise time, oscillations, and DC offset.

The special case of depend stationary tank flow corresponding to the
movable zero located at the origin was examined briefly with LQG and
H o, methods. Although these methods seem to produce good controllers
during the design process, responses were found to be unstable even in
linear simulations.
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o Integrators make a large difference in the LQG design method, espe-
cially for the nonminimum phase plant. Direct LQG design of the non-
augmented plant produced clearly the worst responses of all the stable
controller. Simply designing the LQG controller about a plant augmented
integrators produced one of the best controllers for the nonminimum
phase system.

e Feedback linearization was the only control scheme designed about the
nonlinear dynamics. The MPC algorithms could have also been designed
about the nonlinear dynamics, but only a linearized version was used in
this paper,

¢ MPC produced some very good responses for the minimum phase, de-
spite the fact it was based on a linear model: Its step response was very
fast and its disturbance rejection was one of the best.
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