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Abstract

Mathematical models describing the dynamics of tank reactors are well-
known in literature. The equations are strongly nonlinear which makes
the analysis hard. It has been shown for batch reactors that there
exist invariants which make it possible to reduce the order of the
equations. Based on linearized analysis it has also been shown that
the equations for tank reactors have asymptotic invariants. The pur-
pose of this note is to show that the nonlinear equations for tank
reactors have asymptotic invariants. A simplified derivation of the

results for the linearized equations is also given.

1. INTRODUCTTION

Consider a tank reactor where n constituents react in m reactions.
Let ¢ be a vector whose i:th component is the concentration of the
i:th constituent in the reactor, let r be a vector whose i:th com~
ponent is the rate of the i:th reaction, let a be the ratio of volu-
metric flow and reactor volume A 'the transpose of the 3 ¢

matrix. It is assumed that the columns of A are linearly independent.

The mass balance for the reactor can then be written as

g-% = alogm0) + A v(e,T) (1.1)

where the vector Ce denotes the concentration of the feed. Notice
that the reaction rate r depends on the concentration and on tem-
perature. The temperature can be determined from an enthalpy balance.
This may take different forms depending on the practical arrangement
of the reactor. Three cases will be considered i.e. isothermic, adia-

batic and reactors with cooling.




Isothermic Reactors

In the isothermic case the temperature T is constant and the reactor

is described by (1.1).

= = a(cf—c) + A r(c) (1.2)

Adiabatic Reactors

In the adiabatic case the enthalpy balance becomes

Ir = o(heh) + a re,T) (1.3)

where hf is the enthalpy of the feed, a is a row vector whose i:th
component denotes the enthalpy per mole generated in the i:th reac-
tion and r(c,T) is the reaction rate as before. Since T is a function

of h we thus find that the reaction rate is given by
T = rq(c,h) = r(c,T(h)) (1.4

Introducing the vector

X = (1.5)
h

and the matrix

- (1.6)

a

the equation for an adiabatic reactor can thus be written as

g-’ti = a(xex) + & 1) (1.7)

which is identical in form to (1.4).

We thus find that (1.7) describes both the adiabatic and the isothermic cases.




The matrix A has m columns in both cases. Notice that the dimension
k of the state vector of (1.7) equals n in the isothermic case and

n+! in the adiabatic case.

Reactors with cooling

A complete description of a reactor with cooling requires an enthalpy
balance. The nice structure of the equations is then lost and it is
difficult to make general statements as can be done for isothermic and

adiabaticsreactors:.
2. BATCH REACTORS

First consider batch reactors i.e. a=0. The equation (5) then reduces
to

dx

el Ar(x) (2.1)

Let V be the subspace of Rk that is spanned by the columns of A and
U its orthogonal complement which is of dimension k-m. Any vector x€X

can then be rewritten as
X = u + Av (2.2)

where v E Rm and

uTA =0 (2.3)

Introducing (2.2) into (1.5) gives

dx _ du dv _
E = c_i-f + Ag{ = M(U+AV)

Projecting this equation on U and V gives

du
at

1
o

(2.4)

dv
at

]

r{u+Av) (2.5)




We thus find that
ult) = u, = constant (2.6)

which means that there are k-m invariants, (n-m in the isothermic case
and n-m+1 in the adiabatic case) and that the analysis of the batch

reactor can be reduced to the analysis of the equation

dv

Erl r(uo + Av) (2.7)

where v ER™,

Using the explicit form of the projection operator the reaction invariants

can also be written as
[I-!KﬁquAT]Ldﬂ —xkﬁ]z@ (2.8)
3. THE STIRRED TANK REACTOR

Now consider the general case i.e. a$0. Proceeding as before to parti-

tion the state space into U and V and introduce (2.2) into (1.5) we get

dx _ du dv

- @ + Aa€ z u(uf+Av -u~-AV) + Ar(u+Av) (3.1)

f

Projecting this equation on U and V respectively and we find

%% = a(uf—u) (3.2)
%z— = a(vmv) + p(uthy) (3.3)

The reactor is thus described by the equations (3.2) and (3.3). In this
case there are no true invariants. Notice however that the equation
(3.2) can be solved explicitely

u(t) = ue + uo'emOLJC (3.4)

It follows from (3.4) that

lim u(t) = Ug




Since dim U = k-m -we thus find that there are k-m asymptotic invariants.

In analogy with (2.8) these asymptotic invariants can be expressed as

1im [1 - Al AT] [X(t) - x(o)] = 0 (3.6)

T
Introducing (3.5) into (3.3) we find

g_\i:a(v

It f—v) + P(uf+uo'exp(—at) + Av) (3.7)

and we find that the reactor can be described by an equation of
dimension m. Notice that (3.7) is not autonomous. However when t goes

to infinity the equation (3.7) will converge to

dv

gt = olvemy) + rlug + Av) (3.8)

If u(t) = Ug

feed is considered as the control variable. This means that if u(t) =

the space U is an uncontrollable subspace of (3.1) if the
= Ugs the reactor will be described by (3.8) even if the feed is changed.
Also notice that if the input composition Xe is changed in such a way

that it remains in the subspace spanned by the columns of A, u(t) remains

constant.
4. LINEARIZED ANALYSIS

Assuming small perturbations around a reference solution we

find that the perturbations 6x satisfies the equation

d
T 6x = = adx + (A B)Sx = (- oI + A B)sx (4.1)

where

and ro denotes the matrix of partial derivatives of r evaluated
of the reference solution. Similarly linearization of (3.6)

around a reference solution with u = Ue gives

=38V = = a8V + BASv = (- oI + BA)GSvV (4,2)




The character of the solutions of (4.1) and (4.2) in the
neighbourhood of the reference solutions are thus given by the
matrices AB and BA. Notice that A is an k x m matrix (kEﬂm)

and B is an m x k matrix.

The relation between the eigenvectors of the matrices AB and

BA will now be explored.

Let e be an eigenvector of AB corresponding to the eigenvalue
A then

AB e = de (4.3)
Multiplication of this equation by B from the left gives

BA(Be) = Bie = A (Be)

Hence if e belongs to the subspace spanned by the rows of B,

Be is nonzero and we thus find that Be is an eigenvector of

BA corresponding to the eigenvalue A. If B is of rank m

there are then m eigenvectors such that Be is not zero and we
thus find that at least in the case of distinct eigenvalues

all eigenvalues of BA are among those of AB and furthermore that

the eigenvectors are simply related.
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