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ON THE CONVERGENCE PROPERTTES OF THE GENERALIZED LFAST SQUARES
IDENTIFICATION METHOD

T. Stderstrdm

ABSTRACT.

Modelling of a discrete time system is often made by parametric iden-
tification. A linear difference equation is adapted to the dynamics of
the system. The parameters of the equation can easily be estimated by
the least squares method. This method has several advantages, but if
the residuals are correlated, the estimates are biased. The method of
generalized least squares proposed by Clarke is constructed to overcome
this difficulty. This method is an iterative procedure. The dynamics of

the system and the correlation of the residuals are estimated alternately.

The purpose of thisreport is to present an analysis of the convergence
properties of the generalized least squares method. Two different variants
are examined. They correspond to different ways of estimating the corre-
lation of the residuals. It is shown that one of those variants is equi-
valent to a maximization of the likelihood function of the problem, when
suitable assumptions are made. In this case the possible result of the
method is closely related to the number of local minimum points of a
corresponding loss function. Under the assumption of suitable regularity
conditions of the input signal and the system dynamics the following is

theoretically shown in the report.

For every given system the minimization gives the true values of the
parameters if the signal to noise ratio is high enough. It is further
shown that the minimization may give wrong values of the parameters if
the signal to noise ratio is low enough. In this case the loss function

has no unique local minimum point.

The second variant is the one proposed by Clarke. By counterexamples
it is shown that also this variant may give wrong estimates for high

noise levels.,

The existence of wrong parameter estimates is illustrated by numerical

examples. Plant measurements as well as simulated systems are used.
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I. INTRODUCTION

1.1 The structure of the system.

Consider a dynamic process. A sequence of inputs {u(t)} and
corresponding outputs {y(t)} are given from an experiment. The
purpose of an identification is to fit a mathematical model to
the given data. This can be done in many ways. A good survey of

different identification methods is given in [U].

In order to develop some theory it is assumed that the process is
governed by some equation. The process given by this equation will
be called the system in this report, while the model refers to the

equation obtained in some way from the given data.

Assume that the system is linear, discrete, time invariant and of
finite order. If the disturbances can be represented by stationary

random processes, the system can in general be represented by
-1 -1
Alq y(t) = Blg Hult) + v(t) 1.1

where y(t) is the output at time t, u(t) the input at time t and
v(t) a stationary stochastic process. q—1 is the backward shift
operator and

A(qﬂq) =1 + aqq_q + ... + A q_n 1.2)

B(q™ ) (1.3)

H
o
.
O
+
+
o’
o)

It is assumed that the system is asymptotically stable.
For simplicity introduce the following conventions

i) e(t) is always denoting white noise (a sequence of independent,

equally distributed random variables with zero mean

i1) 02 denotes the variance of Eez(t)




a2 (t)

2
o

iii) S denctes the ratio

to noise ratio.

In the following it will be assumed that the noise v(t) can be

expressed as
v(t) = H(q De(t)
where H(q_1) is a stable filter and e(t) white noise.

Introduce the matrix notations

B - [~ n
yv(n+1) vin+1)
Y = vV =
y(N+n) v(N+n)
-y, (1) ... u(]
(}5 =
=y(N4n=1)...  =y(N) u(N+n=1). .. u(lN)
L ]
_a1ﬂ
a
n
by
6=
b
I n o

(1.1) can be written as

Y = ¢68 + V

where N is arbitrary.

, which is proportional to the signal

(1.4)

(1.5




1.2 The least squares method

The least squares (LS) estimate 6 f 6 1s obtained by minimizing

s ©
) ) .- )
V() = Y - ee|]” = (v - 98) (v - 60)

with the well-known solution

~

_ T -1 T
eLS-e+(¢ $) oV (1.6)

assuming that the inverse exists.

Astrdm has shown [1] that this method gives consistent estimates if

v(t) is white noise.
Correlated noise causes biased estimates. The generalized least
squares (GLS) method introduced by Clarke [8] is intended to over-

come this situation.

1.3 The Markov estimate

Introduce the symmetric matrix R, which is assumed to be non-singular

T (0)... 1 (N+1)]
v vV

r ()
v

- o~

rv(r) denotes the covariance function of the noise v{(t).

If R is known the Markov estimate O of 8 is obtained by minimizing

v, (8) = |1Y-¢é||2_1 = (v-68) R (Y-48)

\

with the result




By = 6 (¢TR—1¢)-1¢TR—1V (1.7)

which is a consistent estimate.

This follows from the consistency of the LS estimate as shown below.
It is believed that the following description of the Markov estimation
besides proving consistence will give some more insight in the method
and motivation for the generalized least squares method (introduced

in the next section) as well.

From the relation (1.4)

v = He (1.8)
where

1

hy
H = 0

and

e(n+1)

e(N+n)
Define the filter F(q—q) by

/‘

r(q ) = HQ ) (1.9)

and form a corresponding matrix




- T
f1
0
F = .
fN—1 f1 1

(1.9) can then be written

F=q

From (1.8) it follows that
R = Bvw™ = o"HH

and invoking (1.11)

T = 1-7 Py
(6]

Introduce the filtered signals

) = Fa Tyt

) = T Hu)

or in matrix language

¢P=F¢,YF=FY

Then V,(8) = %(YF—ché)T(YF—q;Fé)

0

From (1.5), (1.8), (1.11) and (1.14)

YP:¢Fe+e

From (1.15) and (1.16) it is seen that the consistency of O

follows from the consistency of the LS estimate.

(1

(1.

1

(1

1

(1

(1

10)

1)

12)

.13)

W)

.15)

.16)
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In figure 1 the configuration adapted to LS is shown

v(t) = e(t) (white noise)

e(t)

A(g-1)

u(t) Blq-1) y(t)
Alg-1) 2

Figure 1

Figure 2 shows the general situation corresponding to (1.1)

elt)

F-lg-1)
Alg-1)

V(t)

ult) Blg-1) ’@ y(t)
Alg) 2

Figure 2




11

This system can, however, also be represented by figure 3, where
the filter F(qﬁq) has been moved and the filtered signals o (1)
and yF(t) have been introduced.

ult) Fiq)

Fit)[ g (g-1) yFel [ y(t)
Alg-D miRR

Figure 3

If R and then the filter F(q—1) are known, uF(t) and yF(t) are easily
obtained and it is sufficient to deal with the framed part of the
system. This part, however, is quite similar to figure 1, thus indicat-

ing the consistency of the Markov estimate.
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1.4, The generalized Least Squares method. Two versions.

The assumption of R known is highly unrealistic. In the general least

squares (GLS) method 6 and R are both estimated in an iterative way.
1. Guess a covariance matrix Rk’

2. Compute 6, from (1.7) with R = Rk'

3. Evaluate the residuals € * Ym¢ek and use them to estimate a new

covarilance matrix R .
k+1

4. Put k=k+1 and repeat from 2 until the estimate converges.

In this report two versions of the generalized least squares method
are treated. In both versions the estimates of R are obtained by

fitting an autoregression to the residuals.
Version 1:

This version can be described by the following scheme.

~

- EPU IUE S—
1. Guess a filter Ck(q ) =1 + O 4d *...te

el

2. Compute yi(t) and ui(t) from

yi(t) ék(q_1 )y (t) (1.17)

ui(t) 6k<q"“>u<t>

~

and determine ek by applying LS to the model

Ak<q“1>y§<t> - ék<q'1b£<t> + e(t)




3. Evaluate the residuals
e, (t) = A _(q” Dy(t) - B (¢" ) (1.18)
W0 =y Ay .
Determine Ck+1(q-1) by fitting an autoregression to the residuals.
4. Put k=k+1 and repeat from 2 until convergence.
Clearly, this version corresponds to the model

A Dy = Bq Huct) + e () (1.19)

~

C(q_1)

with e(t) white noise.

Version 2:

This version coincides with Clarkes original proposal [8]. The iteration

scheme is the following.

0. Put y§<t> - (1), u§<t> = uCt), k=1

PN

- R
1. Guess a filter Ck(q ) =1 + Cd *..etC

1nd

2.  Compute yi(t) and ui(t) from

v, () = C (q Dy, ()

K K . (1.171)
F.o. _ 2, -1_F

W (1) = C (q )uk_1(t)

and determine ék by applying LS to the model

~

Ak<q““>y£<t) - ék<q‘“>u£<t> + e(t)
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3. Evaluate the residuals
o =1 F . 4, =1 F :
ek(t) = Ak(q yk(t) Bk(q )uk(t) (1.18")
and determine a new filter Ck+1(q_1) by fitting an autoregression
to the residuals.
4. Put k=k+1 and repeat from 2 until convergence.

With this version a successful iteration procedure ends when
é (q_1) a1

k

The corresponding model is

i e(t) (1.20)

AQ™ Dy() = Blq ut) + —

. -
n C(qg )
k=1 S

For both the versions of GLS it is of course not necessary that the
orders of the operators A, B and C are the same. In this report the
orders will in general be assumed to be the same, but the generali-

zation 1s trivial.

The second version may be better if the noise v(t) is not generated
as an autoregression. It will be shown, however, that both versions

may fail (give biased estimates) at high noise levels.

The GLS method has some similarity with the repeated LS method as
pointed out in [u].

In the repeated LS method (LS with successively higher order of the
model) it is hoped that the A and B polynomials will have some factors

in common. These factors are due to the correlation of the present noise.




Tn the GLS method there are always factors in common. To realized that,

(1.19) is rewritten in the form
I T R B
[A(g )C(q DIly(t) = [Blg )C(g Ddh(t) + elt)

The GLS method can thus be interpreted as a LS method with the constraint

that the A and B polynomials have common factors.
In order to closer examine the properties of the two versions, the
nature of the noise v(t) or the covariance function PV(T) must be
specified.
Some results in this report require only

-1
v(t) = H(q )De(t)

where H(q_1) is a stable filter and e(t) is white noise.

Sometimes special interest will be paid to the following filter of

finite order

H(q_1 ) = ""‘"‘—’I:,‘]""_
Clqg )
where
-1 L= ~-n
Clqg ) =1+ €,q +...tcq

has all zercs outside the unit circle.

In these cases obviously

;
C(q

v(t) = e(t) (1.21)

T

The reason for a study of (1.21) is its similarity in structure
with the model (1.19).

Tt ‘will be shown that under suitable regularity conditions on the
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input signal and the system dynamics the first version of the

GLS method will always give consistent estimates, if the signal

to noise ratio is high enough. However, if the noise level is high
enough this version can give asymptotically biased estimates. It
will also be shown that the second version can give biased esti-
mates if the signal to noise ratio is low. All results hold asymp-

totically when the number of data tends to infinity.
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IT. MATHEMATICAL PRELIMINARTIES

2.1. BErgodic properties of time series

Tt is the purpose to develop results which are valid as the number

of data tends to infinity.

The least squares estimate 6 g (1.14) can be written

L
T T
6. = g 0y g v
O1g = 6 + () )
T TV
The elements of the matrices iﬁi and QFT' are sample covariances. It

is valuable to know when these sample covariances converge as N+, and

in case of convergence the limits too.

The questions are answered by ergodic theory. Some results of this

nature are collected in Appendix A.
The main result is the following.
Thecrem 2.1: Consider the system
() = 6(q" Hult) + HQ™ ) e(t)
where

G(q_q) and H(q—1) are asymptotically stable filters of finite

orders.
e(t) is white noise with finite fourth moment and independent of u(t)
u(t) = uq(t) + uz(t)

UT{t) deterministic and almost periodic, that is to every e > 0 there

is a periodic function u%(t) such that
lu1(t) - u%(t)| <e allt

uQ(t) = F(q_j) v(t) with F(q_q) an asymptotically stable filter of
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finite order and v(t) white noise with finite fourth moment.

let further D1(q—1) and Dz(qmq) be asymptotically stable filters

of finite orders.

Then
n ¥ 1 y(t)
1lim - I (Dq(q Jy(t) + D2(q nu(t))
Dtz u(t)
1 1 y(t)
= E(Dq(q Yy (t) + Dz(q Ju(t)) (2.1)
u(t)

with probability one and in mean square.

n
If x(t) is deterministic, E x(t) denotes lim % T x(t).
ne otz




2.2. Persistently Exciting Signals.

10

Definition 2.71: u(t) is said to be persistently exciting of order n if

N N
i) lJ'ij s ult) = U and 1im1N p fuO)=Tuter0- = o (1)
oo N 21 Now N 21
exist and

ii) the n by n symmetric matrix

ip M) »» Meeee.. T (n—1)—
u u u
R =
u
r (1)
u
r (0)
u

is positive definite.

Some simple properties of persisteﬁtly exciting signals and a
characterization of this concept in the frequency domain is given
in [15]. In this report the following properties will be used
(proved in [15]).

Lemma 2.7: u(t) is persistently exciting of order n if and only if
the spectral density corresponding to the sample covariance func-
tion is non zero (in distributive sense) in at least n different

points.

Tf u(t) is periodic, the spectral density will be discrete and con-
sist of a number of §-functions. The distribution &(x) is here

considered as non zero in x = 0.
Corr: Let y(t) = H(qmq)u(t). If u(t) is persistently exciting of
order n and H(q_q) is stable and has no zeros on the unit circle,

then y(t) is persistently exciting of order n.

A simple application of the definition is made in
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n~1 .
Lemma 2.2: Let y(t) = H(g Du(t)  H(G ) = 1 hq ™
i=0
i) If y(t) = 0 with probability one and u(t) is persistently

exciting, then hi = 01 =04..0,sn=1
ii) If u(t) is not persistently exciting of order n, then

there exists H(q—q) $ 0 such that y(t) = 0 with probability

one.

Proof:

[+ (0)..... r (-] [n 7
u u O
Fy2(t) = o+ Pt |
r (0) h
L u B 3 n—1~

yv(t) = 0 with probability one if and only if EyQ(t) = 0,
i) Ey(t)2 = 0 and R non singular implies hi =01 =0,...n=1
ii) Ru is singular, Take the vector

s

hn—1

H
(@]

in the null space of R+ Then E y(t)2
0.E.D.
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2.3. The system covariance matrix

Consider the undisturbed linear system
ol
y(t) = K(g dult)

Definition 2.2: The system covariance matrix of order 2k is understood

as the 2k by 2k symmetric matrix

R R
y yu
R =
R
uy u
T (... 1v(=1) 1_(0)... (k=1 |
y Y yu yu
py(o> ryu(’l-—k)... ryu(O)
i r (0) v (k=1)
u u
ru(O)
be _—
5 (=10 ]
1 n+N
=limg 3 [y(t=1)... y(t-lk)ult=-1)... ult-k)]
Nesoo +z=n+1 y('t"k)
ult=-1)
&Kt—k)—

lemma 2.1. lLet R be the system covariance matrix of order k of

g(£) = K(q~ Hult)

Then

xRx = r (0)
€




22

with

e(t) = F(q@ Dy(t) + 6(q” Hult)

I | R |
F(g )=t f.ga”, G(@ ) ==<g.q
i i
1 1
_ T
x = [ffreg gl
Proof:  Straight forward calculations give
T 4 p DN v
x Rx = lim  x T . [y(t=1)..oult=k)Ix
Noreo t=n+1 U (E=k)
yv(t-1)
= %iz.ﬁ t:i+1([f1'...fkg1 ..gk] u(t=-1) | )
u(t-k)
n+N 5
= 1im -N' X € ('t) =T (0)
No-co t=n+1 £

Q.E.D.
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Theorem 2.2.: Let the controllable, asymptotically stable system

A Dyt = Blq™ Hult)
be of order n.
Consider the system covariance matrix R of order 2k.

i) Assume that k < n. If u(t) is persistently exciting of order

n+k, then R is positive definite.
ii) Assume that k > n. If u(t) is persistently exciting of order

n+k, then R is singular (positive semidefinite). Further the

null space of R is spanned by vectors of the form

X = (2.2)

where fi and g fulfil the relations

k

Fo™h = 1 f.q =A@ L@ (2.3a)
i=1
k

-1, -i -1 ~1

Glqg )= I g4 = =B(qg ) L(g ) (2.3b)
i=1

I(qg ) = 2 1. is arbitrary (2.1)
i=1

iii) Assume that k > n. If u(t) is not persistently exciting of

order n+k, then R is singular.

Remark: In the not described case, when k < n and u(t) is not per-

sistently exciting of order n+k, nothing general can be stated.
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Proof: Consider the equation

Rx =

0

or equivalently

(2.5)

(2.6)

With notations from and use of lemma 2.3 this is written

r (0) =0
€

(2.7)

Since then r ({) = 0 all t, it follows that (2.7 ) is equivalent
€

to

1

Now e, (£) = Alq” DIF(Q Dy(t) + G(q” Hul®)]

r (0) =0 e (t) = A et

- 17 B + 6tqHag HIuw = B Hum

The original equation (2.1) is thus transformed into hTRu_h = 0.or

ru(O)....

r (n+k=1) |
u

r (0)
u

(2.8)




25

Separate two cases.

(2.8) implies h = 0 or H(q—1) = 0.
If P(qnq) £ 0 it is then concluded that

B . _ 6@ h

- (2.9)
Ay F(@TH

where the left hand side is of order n and the right hand side of

order k-1,

If k < n this is a contradiction and F(q—q) = G(q_1) =0, or x =0

is the only solution of (2.5) which proves part i).

If, on the other hand, k > n, all solutions of (2.9)'are of the
form 6(a™1) = -B(@™) 1@, F@) =A@ L@ vhere

k-n .
L{q 1) = 1g ' is arbitrary. This proves part ii).
i=1

The equation H(q—q) = 0 can be transformed to a system of linear

equations
Tx = 0

with x as before and T a (n+k) by 2k matrix, depending on Bpseees

an,bq,..., bn' More explicitly T is the matrix

B ]
0 0 1
0
by 24
T = 0 * 1
bn b,| an a1
0 s 0
b a
_ n i

From the discussion it is clear that the null space of T N(T) = {0}
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if and only if kg n.

Case b): Assume that u(t) is not persistently exciting of order n+k.

Then (2.5) is equivalent to h € N(Ru). let r be an arbitrary vector

in the null space N(Ru). Ry transforming the equation as before
Tx =1 (2.10)

Ifk>ntaker =0 and x as (2.1) = (2.4).
Tf kX = n, T is a square, invertible matrix and tb every r # 0 there
is a non trivial solution of (2.10). This proves part iii).

0.E.D.

Interpretation: Consider V = r _(0),

-1

-1 -1 R S I
e(t) = F(qg Dy()+6(q Hult), F(q ) = f.q ", 6(q ) =12 gq
1 1

The system covariance matrix of order 2k is singular if and only if
the minimum of V with respect to'{fi} andv{gi} is zero.

Loosely speaking the result of the theorem is:

If k > n, the filtensF(q=1) and G(qhq)are of higher order than the
system and it is possible to get V=0.

If k < n it is not possible to get V = 0 if all modes of the system

are excited.
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ITI. MAIN RESULTS

3.1. Introduction

In this chapter the first version of GLS is closer examined. First

it is shown (thecrem 3.1) that the method can be interpreted as adap-
ting the maximum likelihood technique to this problem. The question

of convergence #s then reduced to an examination of local maximum points
of the likelihood function. It is rather easy to give conditions which
guarantee a unique global maximum of the likelihood function (lemma
3.1). As the computations of the GLS method must be carried out on a
computer the possible existence of several local maximas is of greater
interest. In three theorems it is shown that the number of local maxi-
mum points depends on the signal to noise ratio and the order of the
model (theorems 3.2, 3.3 and 3.4).

The second version can be interpreted similarily. In the end of
this chapter it is shown how to construct examples, where this

version of GLS convergesto biased estimates.
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3.2. Maximum Likelihood Interpretation

In this section it is shown how the GLS method can be interpreted
as the maximum likelihood method. Expressions for a corresponding
loss function are given in matrix notations and using operators.
Finally the 1limit of this function, as the number of samples tends
to infinity, is studied.

Theorem 3.1: Assume that the disturbances are given by

1
C(q—1)

v(t) = e(t)

e(t) white Gaussian noise. The first version of the GLS method is
equivalent to maximizing the likelihood function of this problem

by a relaxation method.

Proof:

The probability function of y is given by

1

fly) =
2 getR)

, 7 775 exp - %(Y-¢6)TR—1 (Y-48)1
27}

(3.1) is written by matrix notations

e = Fv
= .
1
01 0
F =
c
n
0 C aenne 1
L n .

Trom (1.12) it folrows that

R = Tuvl = (3—2- Flpy”
o]

(3.1)
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The likelihood function is given by

~log L = %(Yncpe)T 1 FTR(v-98) + % log det(F 162(FH ™y + %[ log 21 (3.2)
02
Let
W(B,F) = e(=48) TTE(Y=48) (3.3)
SO
N - 1 AZN N
=log L = — W(8,F) + 5 log(o™ ) + = log 2m
QQ
since det F = 1
2&? = 0 implies - NNTS,;) + ¥2 =0
90 (%) 20
so L is maximized with respect to 62 by
/\2 A A
0" = 2W(p,F) (3.W)

Maximizing L is then equivalent to minimizing W(é,f). The actual
algorithm can be interpreted as a minimization of this function by
alternating between

1. Minimize W(8 %k) with respect to ék

k’

2. Minimize W(&k,Fk+1

) with respect to Fk+1

which is a relaxation method.
0.E.D.

Bemark 1: Denote the estimate of a,],...,an,b,],...,bn,c,],...,cn by

Oy when the record length is N. It follows from [3]1 and [6] that

éN has nice asymptotic properties:
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~

1. ©,, converges with probability one to the true parameter vector

N
as N increases.

~

2. Oy is asymptotic efficient (i.e. has minimal variance).
3. Oy is asymptotic normal with the mean value ¢ and the covariance
matrix
- 111
e W
N “wo

RemarkiZW(ék,%k) is a decreasing, bounded sequence, which implies

convergence., Possible bounded limits must be stationary points of
W(é,%). They cannot be local maximum points. It is shown in Appendix
B that saddle points have not to be considered either, since they are
not "stable" points. By this concept it is meant that a start of the
iteration sufficiently closed to a saddle point will not in general
imply convergence to the point. Since the minimization of W(é,%) has
to be carried out on a computer, rounding errors must be introduced
in the calculations, and the probability of convergence to a saddle
point can for practical cases be regarded as zero. Local minimum
points are thus the only "practically possible", bounded limits of

(ek,Fk) as lereo,

Remark 3 Note that the convergence of the minimization algorithm is
very slow. It is shown in Appendix B that close to a minimum point

6, will converge linearly.

k

Remark 4 The second version of GLS can be interpreted in a similar

way. Let W(é,F) be defined from (3.3) and put

F = 1 F.. The iteration procedure is a minimization with different
i=1 R N ~

constraints on F. I.e. in step k, F1""’Fk-1 are fixed. W(ek,F) is

minimized with respect to Fk' Fk+1 = Fk+2 ....I. This step corre-
sponds to the estimation of the filter Ck(q—1). From this inter-

pretation it is clear that W(6,F) is decreased in each step. This

fact is shown by straight forward calculations in [18].
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From the discussion in 1.3 it is clear that the loss function W(e,F)

can be expressed as

N
- - - - 1 Fo 2
W(aq,...,an bq,..., nc,],...,cn) = 5—-t§16 () (3.5)
e (1) = Clq™De(t) = e(t) + eye(t=14...4c_s(t-n) (3.6)
e(t) = AlQ Dy(t) - Bla™ Hult) (3.7)

SO

) PN “m, =1
Feoy = oeqy AaRE@ DA DEQ Dy

A(q_1)
NP NP
209 00 D gy (3.8)
Alg )
Clearly W is a polynomial in ;1 ..... c, where the coefficients are

different sample covariances. An analysis of W and especially the
local minimum points of this function must therefore be done in a
probabilistic setting., In order to do the analysis reasonable asymp-
totic theory will be used.

In the following some assumptions are made

D ult) = u ) +eq e, (1)
u1(t) is deterministic, and almost periodic.G(q_1) is a stable
filter of finite order.
eq(t) is white noise.

$9) v(e) = H(q-1)e2(t)

H(q_q) is a stable filter of finite order

eQ(t) is white noise

iid) ej(t) and eZ(t) (u(t) and v(t)) are independent.




32

Under these assumptions it follows from Theorem 2.1 that

~ ~

W has a limit V(aq...an by...b, cq...cn) with probabili=-
ty one, and that

V(a1...cn) = V1(a1...cn) + Vz(a1...cn) (3.9)
. ~ 1 F, .2

Vi(aq,..cn) = 5 Eei(t) (3.10)
F - o1 Al BT - A HBa™h

ey (£) = C(q~ ) =4 9 e 9 u(t) (3.11)

Alg )
F Ala”NHea M ™
e, (t) = 9 qq 9 e(t) (3.12)

AlCq )

The notation Eu%(t) denotes

lim %

N
)}
N> t=

u%(t).
1

It is the purpose of Sections 3.3 - 3.7 closer to exa-
mine the loss function V. The main interest will be an
investigation when the loss function has a unique local

minimum.

In order to simplify the analysis a bit only "interesting"

values of the parameter estimates will be considered.

In many cases the following compact set in the parameter

space will be reasonable:

i) A(z) has all zeros inside the circle [z{ < r<t.

ii) C(Z) 1" [ 1 1" 1" 1" [Z‘ s r<1.
iii) bi bounded.

r close to 1.
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This restriction is well justified by physical reasons.

i) means that a stable model is required,

ii) is motivated by the representation theorem [2] and

finite variance of the output,

iii) must be fulfilled if the model has finite gain.

3.3. Global properties of the loss function.

This section contains some simple considerations concer-
ning the global minimum of the loss function in the spe-

cial case

v(t) = ———— (%) (3.13)

C(q_q)

Lemma 3.1: Consider the loss function (3.9) with v(t) as
(3.13). Denote the order of the model by m and the order

of the system by n. Assume m 2 n.

i) Global minimum points are the solution of

( 1

Acg He™ = aigheg™ (3.14)

n s =1 - 1.5, =1
EF(t) - C(q 1) A(g )B(g ) A(g )B(gq ) wt) = 0
1 -1
ACg )
| with probability one.
ii) a, = a; i=1, ... n a, = 0 i =mn+1, ... m

bi = bi i=1, ... n bi =0 1 =n+1, ... m (3.15)
c; = ¢y i=1, ... n c, = 0 i =n+1, ... m

is always a global minimum point.
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iii) If u(t) is persistently exciting of order n+m, m=n,
and the system is controllable, then (3.15) is the

unique global minimum point.

iv) If u(t) is not persistently exciting of order n+m,

m=n, there may exist other global minimum points

than (3.15).

V) If u(t) is persistently exciting of order n+m, m>n,

there are in general several global minimum points.

These points are equivalent in the sense that they

all satisfy

B(a™H) _ Bg™H
AG™Y  Ag™h
1 1

1 1

A" o™ ahe™h

Proof: Clearly inf V1 = 0. Further inf V2

realize that define

~ m/] ~ _/] [s'¢) n'
6(q 1) : A(q_1)C(q_1) -1+ 3 £.q 1
A(Cg ")C(q ) i=1
Then
12 o
v, = 5 Ee (t)|1 + 151 giJ

. 1 2 .
and inf V, = 5 ke (t) for g; =0, 1 =1,...

(3.186)

(3.17)




i)

ii)

iii)

iv)

V)
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The equations

<
n

inf V1

<<
it

5 inf V2

have the solutions (3.14).
The assertion follows directly from i).

From Lemma 2.2 it is concluded that

A" HB(a™" = ag B!

)

and by arguments as in the proof of Theorem 2.7

the assertion follows.

An example for a first order system with a # ¢

Lemma 2.2 implies

A HB(™Y = ag B

)

so (3.16) is proved. (3.17) follows from (3.14).
In general the factor in common between A(q_q) and
é(q—q) can be chosen in several ways to satisfy
(3.17).

Q.E.D.

Remark: The assumption that (3.13) holds is essential for
the result.




3.4. Estimates at high signal to noise ratios.

Models of correct order.

In this section a theorem of uniqueness is given and dis-
cussed. The essential part of the proof is found in Ap-

pendix C as a series of lemmas.

Theorem 3.2: Let the system of order n

A" My e) = Bla Hule) + v(t), v(t) = H(q e(t) (3.18)

be controllable and the input u(t) persistently exciting
of order 2n. Assume that the order of the model is n.
Consider parameter estimates in ©, an arbitrary compact

set.

Then there is a constant So such that if SO £ S < « then
the loss function (3.9) has exactly one stationary point

in Q. This point is a local minimum and satisfies

a; = a; + 0(1/8) i =1 n
bi = bi + 0(1/8) i =1 n (3.19)
c; = oo ¥ 0(1/8) i =1 n
where C( _1) =1+ ¢ q_1 + + ¢ g ™and (¢ c_)
4 1 n 17 n
is the minimum point of
" 2
E[C(q )v(t)] (3.20)

Proof: Introduce the vectors x and y by

r _ —
a1

>
0O

n N
X = | A y:
1 7 by :
A~ s n
b - b
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Then the loss function (3.9) can be written

V(ix,y) = % XTP(y)X + eh(x,y)

with P(y) as the covariance matrix of the system

A hyF o = - BamHuf o

ey = caHuce

This fact follows from Lemma 2.3. From corr of Lemma 2.1
and Theorem 2.2 follows that P(y) is non singular for
all y. Further the loss function is assumed to be scaled

so that ¢ denotes the quantity 1/S.

The function h(0,y) = 2 EIC(q” v(t)1% is quadratic in y.
1"

It has a unique minimum point Yoo which fulfils h y(O,yo)

positive definite. Invoking Theorem C.1 the proof is fi-

nished.

What sense have the different assumptions?

i) The restriction on the input signal is very natural.

This condition is necessary for the result (Lemma

3.1)-

ii) The study of only parameter estimates in g is moti-
vated before.

ii1) The restriction on the signal to noise ratio is

crucial as is shown in Theorem 3.3.
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iv) The assumption of controllability is essential. If
the system is non controllable, there is a factor
in common between A(q ) and B(q ). Equation (3.18)
can be divided by this factor, obtaining a controll-
able system of lower order than the original and
with another correlation of the noise. If the sys-
tem is not controllable, it is thus equivalent to
regard the order of the model as higher than the
order of the (controllable part of the) system. This
situation is treated in Section 3.7, where it is
shown that non controllable systems in general will

give no unique local minimum.

3.5. Estimates at low signal to noise ratios.

This section deals with the case of low signal to noise
ratios. It turns out that a possible property of the noise

plays an essential role for non uniqueness.

Definition 3.2. The noise v(t) = H(qnq)e(t) fulfils the

"noise condition" (NC) if there ex1st at least two diffe-

rent palrs of polynomials A (q ), C (q ) and A (q 1),
C2(q ), such that

2
. L . RIS IS -1
Vy(aqee-a s Cqonec) = E[A(q 2€CqH(g )y (3.9)
n ol
ACqg )

has a local minimum point with a positive definite matrix

~ A

of seco?d or?er de?lvatlves in (a,m...a1n5 Cqqe C1n) and
(a21. P 021"'02n)'




39

Remark:

-1
w(t) = igﬂ:?l e(t)
ACg )

is the measurement noise if all noise of the process is

interpreted as measurement noise.

Corr 1: v(t) fulfils (NC) if there exists a minimum

" ~ - ~ o
point with v, positive definite, A(q 1) f C(q 1).

Proof: Take A2 = C, C2 = A. By symmetry this corresponds

to another point satisfying the predescribed conditions.
Corr 2: If

V() = — e(t)

C(qmq)
it is sufficient that there is a factorization of A(qn1)
and C(qu1) such that A(q_1)C(q_1) = A1(q“1)C1(q—1) where
A1(qa1) and Cq(q—1) have no factors in common.
Y= a@™h, c@™ = c@™ and Ay e =

Proof: A1(q_
_1) = A1(q_ ) define +two different (local

c,(a”h, C (q
and global) minimum points. The matrix of second order

derivatives is given by

2

oY -in, -1 ~35, =1
g = 2E [q C(q )v(t)][q jC(q )V(t)]
9a. oa.

173 )
32v2 Sin o P 7
- 7F [q Tc(q )v(t)][q JAa(q )v(t)] ¥

aaiacj i

+ zz[[q‘i“jv<t>}[A<q‘“>é<q“1>v<t> }
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—2 . zz{[q“iA(q"1>v<t>]{q"jA<q“1>v<t>]J

With A(q“1)é(q_1) = A(q_1)C(q_1) the second term of

82V2/aaiacj vanishes and % VE becomes the system cova-
riance matrix of

A

Ag" Hy(t) = cq"Huct), o) = Alg™ v
From Theorem 2.1 it follows that Vg is positive defi-
nite.

Q.E.D.

It would be valuable to know, when (NC) is fulfilled
in general. However, (NC) is depending on the orders
of A(q” ") and C(q™"

Some results for the simple case of first order models

) and the correlation of the noise.

are given in Section 3.6.

The concept of (NC) is now used in a theorem of non

uniqueness.

Theorem 3.3. Assume that the noise v(t) fulfils (NC).

Then there is a number S4 > O such that 0 < S ¢ S4 imp-

lies that the loss function V (3.9) has more than one

local minimum.

Remark: The result of the theorem holds only for suffi-

ciently small values of the signal to noise ratio. Si-
mulations show, however, see Chapter 4, that the result

may be true also for reasonable values of S.

Proof: It will be shown that V has (at least) two local

minimum points satisfying
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NP

Alq ') = Ai(quq) + 0(8)

i=1, 2 (3.21)
C(q_1)

Ci(qm1) + 0(3)

It follows from the proof of Theorem 3.2 that the equa-

tions

are a system of linear equations in the unknown parame-
ters. The system has always a unique solution, depending
on a. and Cy but not on S.

Put this solution into the remaining equations.

3V

= 0 i=1, , N
LEW
i
{ (3.22)
E¥~ = 0 i =1, , N
3C.
i

(3.22) is now written in the form

0= Vi) + sV%(x> (3.23)
where it has been assumed that 02 = Eez(t) = 1,

~ ~ A A~ T
x denotes the vector [aq...an, C1"'Cn] .

(NC) implies the existence of two points x4 and x, sa-

tisfying

i=1, 2 (3.24)

Vg(xi) positive definite
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From Lemma C.3 it follows that the solutions (3.21)

exist.

When the variables are ordered as

~ ~ A~ ~

[a1... a, Cq...Cy b1’°'bn]

the matrix of second order derivatives will be

Vilx, + 0(8) 0(s)
i

0(s) SP

where P is a positive definite matrix. From Lemma B.5
it follows that V" is positive definite and that the

obtained solutions of V' = 0O are local minimum points.

Q.E.D.

Bohlin [5] has given results, which can be used to test
if an estimate is the true maximum likelihood estimate.
The test quantity involves sample covariances of e(t)

and u(t). If, however, the noise level is high this
method cannot be used successfully in the case described
here. The minimum points of the loss function will give
residuals e1(t) and EQ(t) satisfying 51(t) - ez(t) = 0(S)
so also all possible test quantities will differ Jjust a
little if S is small.
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3.6. Analysis of the "noise condition'" (NC) for first

order models.

The noise condition (NC) will be closer analysed for
first order models in this section. In this case the

loss function (3.9) reduces to

V2(é1,é) = [1 + (é+é)2+ 5252]ro +
+ [2(51-%(3)(14—&1(3)]131 + [2éé]r2 (3.25)
where
r_ = PW(T)
H(qg™ D)
w(t) = —3—= e(t)
ACg )

An analysis of this function is made in

Lemma 3.2. For models of order one (NC) is fulfilled

if and only if

v 2 B 2 2__72 2_
D¥ = r1(r2 ro) 4(ro rq)(r1 r T

o 2) > 0 (3.286)

Proof: See Appendix D.

The following examples illustrate the fact that the
noise condition depends on the covariance function of

the measurement noise w(t).

w(t) = L e(t)

(1+aq“1)(1+cqa1)




(NC) is fulfilled if and only if a # ¢ (Corr 2 of Def.
3.1).

For the special structure w(t) = (1 + cqmq)e(t) this is

never fulfilled.

Example_3:

3
N

3]

O

Then D* = 4 rgrz and the sign of D¥* is equal to the
sign of r,. For the special structure w(t) = (1 + Yq_z)
*» e(t). D* > 0 if and only if v > 0, i.e. (22 + yv) has

zeros on the imaginary axis.

-1
w(t) = =129 o e(t)
1 + aq

Up to second order terms in a and c¢ D¥ is given by
D¥ = (a - c)(3a + 7c) +
This expression indicates that a rather involved rela-

tion between a and ¢ determines if (NC) is fulfilled

or not.
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3.7. Estimates at high signal to noise ratios.

Models of too high an order.

Since the true order of a system seldom is known in
practice, it is valuable to know what will happen if
the model has higher order than the system. In this
section it is shown how the result for models of cor-

rect order (Theorem 3.2) can be generalized.

The result of Theorem 3.2 can be described as follows.

Neglecting terms 0(1/8) the (unique) minimum satisfies

A

i) it minimizes Vq(a1.. bi‘ cn),
ii) with the remaining degrees of freedom it minimi-
zes V2(a1.,. Cn)'

If the order of the model is greater than the order of
the system it will turn out that there may be more than
one minimum point, but the characterization above still
applies if local minimum points are concerned under

part ii).

Theorem 3.4: Let the system

AGg My(t) = B Hu(t) + v(t), v(t) = H(qg Delt)  (3.27)
be controllable and of order n.

Assume that the order of the model is n+k, k > 0 and
that u(t) is persistently exciting of order 2ntk Consi-
der parameter estimates in Q, an arbitrary compact set.

Then there is a constant SO such that if SO < S < =,
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i)

ii)

Proof:

All local minimum points of the loss function (3.9)
fulfil

Ag™M = ag™ML™) t o), s+ = (3.28)
PR PR -1

B(gq ') = B(g JL(g ) + o(1), S » = (3.29)
where L(q—q) = 1 + 21q_1 + ...+ qu“k.

Further L(qaq) and é(q_q) fulfil

g M = @™ rot), S e (3.30)
SUUEE I

C{g ) = C(g ) +o0o(1), S » o (3.31)
where (Eq, ceey Ek’ 51, cee En+k) is a stationa-

ry point of
Vag(lyy wvey 2
= E[L(q"c(g™ Hvit)1? (3.32)

The matrix of second order derivatives of V3 in
(Eq, N En+k) must be positive definite or po-
sitive semidefinite.

If the matrix of second order derivatives of V3 in
(E1, cees En+k) is positive definite, then there

exists a unique local minimum point of the form

(3.28) - (3.31) and the terms o(1) can be replaced
by 0(1/8). Further the matrix V" is positive de-

finite in this point.

See Appendix E.

Remark 1: The number of stationary points of V3 and the




number of local minimum points of V are coupled to the

condition (NC) introduced in Section 3.5.

Remark 2: All possible local minimum points have the

property

A -1

2 2 - Bla )y oy, s

ACg ) ACqg )

Remark 3: If Vg is singular in (51, ceay 5n+k) nothing

general can be stated. In the special case

/]

v(t) = i e(t)
Clg )
all points (21, cees Ay 51, ceny £n+k) satisfying
I I
L(g J)C(q ) = C(q ) (3.33)

are global minimum points of V3 and for some of them
Vg is singular. This follows from the proof of Corr 2
of Def. 3.2. However, from Lemma 3.1, part i), it fol-
lows that the points satisfying (3.33) correspond to

global minimum points of the loss function.

3.8. Counter examples to convergence of the second

version of GLS.

In this section an example illustrating the possible
behaviour of the second version of GLS is described.
The question of convergence of this version under
suitable conditions cannot be answered easily, and it

has not been studied by the author.
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The following case will be taken into consideration. The
system and the model are both of first order. The itera-
tion is started with the LS estimate of a and b. Condi-
tions for convergence in the next step are examined. If

1

the estimated operator C(q ') =1 then the following es-

timation of a and b will give the same result as before.

The interesting equations are thus:

. r (1)
c = - —£ = 0 (3.34)
r (0)
€
e(t) = (1 + ag”Dy(t) - bg lult) (3.35)
r (0) v ()] A (1)
y yu NEE y (3.36)
“ryu(O) ru(O) b ryu(1)

Example: Consider the system

(1 + ag” Dy(t) = ult) + v(t), v(t) = — 1 o(t)

1T + cq !

where u(t) is white noise. There is a number So > 0 such

that if 0 < S ¢ S, then (3.34) has two solutions w.r.t.a,
which satisfy

Q
1

0(s), S >0

o3
i

In Appendix F the existence of these solutions are

proved.
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Note that in this example of first order systems, only
systems with a special value of a and a low signal to
noise ratio will converge to biased estimates. Never-
theless, the examples indicate that the method may

yield "wrong" results. If the iterations procedure is
studied in more steps, several more cases of convergence

to uncorrect estimates may be detected.

If there is no restriction on the input signal, other
examples can be constructed. For example, if the input
signal is not persistently exciting of order 2, there

are values of a, independent of S, such that the sys-

tem in the example above will yield biased estimates.
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IV. NUMERICAL ILLUSTRATION.

L,1, Introduction.

The theory of the GLS method in Chapter 3 requires an
infinite number of data. For practical purposes it is
interesting to know if the result holds with "good app-

roximation'" for a finite number of data.

The loss function (3.9) is a polynomial in the vari-
no b1, R bn’ Cqs weoes Cow The coef-

ficients are different sample covariances, which con-

ables g5 ceey @

verge with probability one to the corresponding cova-
riances, as N - o, A sufficiently small deviation of
the coefficients from their limits can only move the
minimum points a little bit, but the probability for
a drastical change of the character of the loss func-

tion is very small.

This means that for a "sufficiently large" number of
data the results of Chapter 3 will hold with probabi-
lity close to one. However, it is not practically
possible to analyze what sufficiently large exactly

means.

In order to examine the situation of a finite number
of data simulations were used. These simulations are

illustrating the results of Chapter 3 as well.

The simulations were carried out on a UNIVAC 1108. A

description of the used programs is given in Appendix
G.

The results of the simulations are presented in the

next sections.
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All the simulated systems were generated by the equation
-1 - -1

A(Cg DJy(t) = B(q Du(t) + v(t)

v(t) = H(q  De(t)

The number of samples were 500 in all cases and the in-

put signal was a PRBS with amplitude 1.0.

4,.2. Illustration of Theorem 3.2.

These examples are intended to demonstrate that when the
conditions of Theorem 3.2 are fulfilled there is a solu-

tion, which satisfies

>

o
R
Q

o >
1
o

>

where E(q—q) corresponds to the minimum point of

E[C(q” v(t)]?

The following systems were studied.
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Table 4.1 - Generated systems,
~1 2
System aj s (az) by (b2) H(q ) Ee® (1)
S1 -0.8 1 = 1.0
1T+ 0.7g
S2 -0.8 1 (1 + O.7q_1) 0.01
-1 -2
S3 -0.8 1 (1-1.0q '+0.2q “)  0.01
Sy -1.5 0.7 1.0 0.5 (1 + O.7q—1) 0.01

The results of the identifications are given in Table 4.2.

The iterations were started with the LS estimation of the

1

accordance with the expectations.

a. and the bi parameters. The results are very well in

Table 4.2 - Identification results.
System| aj, (a,) by, (b,) cqs (ey) 51, <62>
S -0.80L 1.010 0.697 0.7
S2 -0.803 1.000 -0.449 -0.469
-0.803 1.003 -0.607 0.352|-0.603 0.284
S3 -0.799 1.005 0.555 0.589
Sk -1.505 0.704 1.001 0.498 -0.uuy -0.4069
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4,3. Illustration of Theorem 3.3.

For the following systems 500 samples were generated
with a PRBS as input signal. The iterations were started

with expected values of C. .
The system S7 requires a comment. The equation

V'o= V'(8,0) = 0 (4.1)

-

where ol = [aﬂ"'bi"'cn] and 02 = Eez(t) was solved
(using analytic expressions for the covariances) with
successively decreasing values of the parameter o. A

change do of ¢ causes a change in 6 approximately

A~

a6 = - v'(6,0)" " 2 vr(s, o)do

90
Starting with this new value of 6 (4.1) was solved with
respect to 6 by Newton-Raphson technique. This procedure
of computing solutions for different, decreasing values
of o stops when V" is not positive definite or when

8 = 60 is obtained as solution.

Table 4.3 - Generated systems.

System a, b, H(q_q) Ee? (1)
S5 0.8 1.0 — 100.0
1 - 0.2q
S6 0.0 1.0 (1 + 0.7q'2) 100.0
S7 (=S1) | -0.8 1.0 ! = 1.0
T+ 0.7q
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The results presented in Table 4.4 .coincide with the pre-
dicted values. The last system shows that it is not ne-
cessary that the noise has unrealistic high variance for
Theorem 3.3 to hold. The expected value of B1 is compu-

ted from the equation

5 A
- V(a1,b1,cq) = 0

Bb1

~

where the values of ay and c, are inserted.

Table 4.4 - Identification results.

System ;1 51 e, EfpectedAvaluesAof
ay b1 op
S5 -0.774 1.051 -0.233 -0.8 1.0 ~0.2
-0.243 0.740 -0.767 ~0.2 1.0 -0.8

56 -0.676 0.705 0.676 -0.69 0.68 0.69
0.674 0.882 -0.678 0.69 0.68 -0.69

S7 -0.804 17.010 0.697 -0.8 1.0 0.7
0.327 0.461 -0.771 0.35 0.44 ~-0.81

4.4, Tllustration of Theorem 3.4,

The illustration of Theorem 3.4 has turned out for the
author to be more difficult than the previous examples.
The reason for this difficulty is probably that the
properties (as existence of several minimum points)
of the loss function are rather sensitive for the num-
ber of data and the realization. This fact is also the
reason why the examples in this section require more

iterations for convergence.




Analogously to the previous examples the iterations were

started with the expected values of the c; parameters.

Table 4.5 -~ Generated systems.

System a, b, H(q—q) Eez(t)
S8 -0.8 1.0 (1 + 0.8q" %) 0.01
1
S9 -0.4 1.0 = - 1.0
(1 - 0.8q )(1 + 0.8 )

The result of the identifications (see Table 4.6) are

well coinciding with the theory.

Table 4.6 - Identification results.

From simulation
System &y a, b1 b2 c, Cy
S8 -0.94 0.11 1.00 -0.14 0.11 -0.46
-0.06 -0.60 1.00 0.74 -0.78 0.11
-1.39 0.47 1.00 -0.59 0.55 -0.15
S9 -0.45 0.06 0.97 ~0.04 0.03 -0.66
0.40 -0.35 1.00 0.79 -0.82 0.05
-1.11 0.25 1.01 -0.69 0.69 -0.11
Expected values
S8 -0.80 0.00 1.00 .00 0.00 ~-0.45
-0.13 -0.54 1.00 0.67 -0.67 0.00
-1.47 0.54 1.00 ~0.67 0.687 0.00
S9 -0.40 0.00 1.00 0.00 0.00 -0.64
0.40 -0.32 1.00 0.80 -0.80 0.00
-1.20 0.32 1.00 -0.80 0.80 0.00
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4.5,

Iliustration of Section 3.8.

The following examples illustrate that the second ver-

sion of GLS can converge to "wrong" values of the esti-

mates.

a way similar to System S7.

The third example, System S12, is constructed in

0f course, there is another

equation to be solved. (More exactly c(a,cqo) = 0 is

solved with respect to a for decreasing values of the

parameter ¢ and with fixed value of the parameter c.)

Table 4.7 - Generated systems.

System a, b, H(q_T) Eez(t)

510 ~0.5 1.0 — 100.0
1 + 5q

S11 0.0 1.0 — 100.0
1 - 8q

S12 ~0.7 1.0 — 1.2
1 + 9qg

The results of the identifications, given in Table 4.8,

confirm the theory. cé

1

denotes the estimated standard

deviation of cq. The PRBS which is used as input signal

is with "good approximation'" white noise.
Table 4,8 ~ Identification results.
- A ~ Exp. values of
System ay b1 cy Ocl a b o
1 1 1
S10 -0.017 0.98 0.007 0.045 0.0 1.0 0.0
S11 -0.79 1.08 -0.026 0.0u45 { -0.8 1.0 0.0
S12 0.16 0.94 0.043 0.0u45 0.09 1.0 0.0
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V. EXAMPLES OF LACK OF UNIQUENESS FOR INDUSTRIAL DATA.

5.1. Introduction.

In this chapter identification results using the GLS
method of real data are presented. The main purpose of
the identifications was to investigate the possible
existence of more than one minimum point of the loss
function. A straight forward application of a test of or-
der 3] would in general result in more complex models.
However, the ordersof models in the presented cases are

not unreasonable.

The results of the identifications are compared with mo-
dels obtained with the "ordinary" maximum likelihood mo-
del

A Ny (t) = B(a™ Hu(t) + Cq Me(t) (5.1)

It is to be noted that for a "wrong" minimum point the

covariance matrix

<V vn"1

N

of the parameter estimates has dubious meaning.
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5.2, Identification of dynamics of a heat rod process.

The system is a copper rod, which acts as a one dimen-

sional heat diffusion process. The system is located at
Div. of Automatic Control, Lund Institute of Technology.
Identification results using the ML model (5.1) as well
as a short description of the process are given in [14].

(The data used here is Serie S1, output x = 38&/4.)

The test quantity for comparing models of orders 4 and
5, [31, is F(862,3) and has the value 109. Since the
ML identification [14] indicates a model of order 4 as
reasonable, this order was considered in spite of the

great value of the test quantity.
The loss function turns out to have (at least) two mini-
mum points for fourth order models. The results are pre-

sented in Tables 5.1 - 5.2 and Figures 5.1 - 5.4,

The theoretical value of the static gain is 0.25, which

indicates that model 1 is the most correct one.

In Figures 5.1, 5.2 the following signals are plotted:

1. the input u(t),
2. the output y(t),
B(g™ D
3. the model output y _(t) = —9:7— u(t)
ACg ')
4, the model error em(t) = y(t) - ym(t)
5. the residuals e(t).

In Figures 5.3, 5.4 normalized covarious functions are
plotted. The criterion by Bohlin [5] can be formulated

as: the estimate is true if and only if




r’e('r) = 0 T > 0
PEH(T) = Ee(t)ult+t) = 0O all
The second condition can also be written as

r, u(t) = 0 all =
m

Discussion_of the results:
Already from the values of the static gain it
expected that model 1 is superior to model 2.

is very much confirmed by the plotted signals.
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can be

This fact

A comparison with plots of the ML model (see [14])

shows little difference between that model and model 1.

In the model 2 the output is "interpreted" as mainly

due to noise.

From Figure 5.3 and 5.4 it is seen that the residuals

are not white in any of the two models. The input sig-

nal and the residuals are considerably more correlated

for the second model.
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Corresponding
Model 1 Model 2 model in [14]
51 ~2.4307+0.0424  =1.2374+0.0510 =-2.9563+0.0017
éz 1.8776+0.1118 0.6056+0.0888 3.2694+0.0049
%3 ~0.37271+0.0999 -0.5161+0.0723  =1.6134=0.0047
a, -0.07101640.0303 0.3525+0.0332 0.3025+0.0015
51-103 0.14908+0.0559 ~0.6393+0.066U4 0.0
52-103 ~0.01612540.1233 ~0.3379+0.0788 0.1297+0.012L
£3e1o3 ~0.84271+0.1261 =0.7060+0.0719  -0.416620.0252
bu-103 1.5127+0.0822  ~0.4971£0.0775 0.7942+0.0138
;1 1.3882+£0.0516 -0.6593x0.0528 Comparison
52 1.2794+0.0468 ~-1.0558+0.0622 1s 1mpossible
A3 0.95739+0.0504  0.2150+0.0486
cy, 0.39324+0.0330 0.5017+0.046k
v 2.16 « 1077 5.13 « 1077 0.92 « 10”7
o 0.658 « 10°° 1.013 « 107° 0.428 - 107°%
Table 5.1 ~ Parameter estimates from GLS identification of

the heat rod.
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the heat rod process.

Corresponding
Model 1 Model 2 model in [14]
Poles -0.435 -0.189+1 0.672 0.602+1 0.18Y4
0.810+1i 0.140 -0.189-1 0.672 0.602-1 0.184

0.810-1 0.140 0.806+1 0,269 0.810

0.952 0.806-1 0.269 0.943
Zeros -1.166 0.064+i 1.089 ~-1.606+1 1.883
1.442+31 0.827 0.064-1i 1.089 -1.606-1 1.883

1.442-1 0.827 ~0.652 -
Static | g 9598 -0.0106 0.2440
gain

Table 5.2 - Poles, zeros and static gain of the models of
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\

Fig. 5.1 - Model 1 of the heat-rod process. All variables are given in “c.

(Constants are added to the input, the output and the model

output.) The sampling period is 10 sec.
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Fig. 5.2 = Model 2 of the heat-rod process. All variables are given in “c.
(Constants are added to the input, the output and the model

output.) The sampling period is 10 sec.
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Fig. 5.3 - Normalized sample covariance functions for the

heat-rod model

1.

The dashed lines give the 5% confidence inter-

val.

The time is given in sampling periods.
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Fig. 5.4 - Normalized sample covariance functions for the
"heat-rod model 2.
The dashed lines give 5% confidence interval.

The time is given in sampling periods.
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5.3. Identification of dynamics of a distillation column.

The system is a binary distillation column. The data have
been received from National Physical Laboratory in London.
Results of maximum likelihood identifications are repor-

ted in [12]. The input signal is the reflux ratio and the
output signal is the top product composition. (Experiment
UB, [12], was used.) The test quantity for comparing mo-

dels of orders 2 and 3, [3], is F(240,3) and has the value
36. Since the ML identification [12] indicates a model of
order 2 as reasonable, this order was considered in spite

of the great value of the test quantity.
The second order models two minimum points of the loss

function were found. The results from the identification

are given in Tables 5.3, 5.4 and Figures 5.5 - 5.8,

Discussion of the result.

From Table 5.3 it is seen that é(q_q) of model 2 is very
like A(qﬁq) of model 1. With Theorem 3.3 in mind, this is

not astonishing.

The model from [12] is very like the model 1, which means

that the noise can be well modelled as

" -1
v(t) = CML(q Ye(t)
as well as

V(E) = o ()

/1
CeLsla )

with e(t) white noise.




The values of the static gain indicate that model 1
gives the best description of the process. Also from
the lower value of loss function at the corresponding
minimum point, it can be expected that this model is to

be:preferred.

The plots of the results, Figures 5.5 - 5.6, are a nice

illustration of the expected differences.

From Figures 5.7 and 5.8 it is noted that the residuals
are most white for model 2 and most uncorrelated with

the input for model 1. That means it 1is hard (or im-

67

possible) to choose the '"best" model from these figures.
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Para- Corresp. ML
meter Model 1 Model 2 model in [12]
;1 -1.5275+0.0187 0.1865+0.0820 -1.,5369+£0.0180
;2 0.5473+x0.0188 -0.0227+0.0529 0.5535+0.0180
B1 0.2447+0.0193 0.3730+0.0218 0.2251+x0.0190
52 -0.6164+0.0194 0.2174+0.0317 -0.5979+0.0214
C1 0.82132£0.062 -1.5076x0.0754 Comparison
” 0.4088+0.059 0.5358x0.07u47 impossible
Vv 69.0u 164.37 71.68
o 11.75 18.13 11.97
Table 5.3 - Parameter estimates from GLS identification of
the distillation column data
Correspondin
Model 1 M P g
cde odel 2 model in [12]
Poles 0.95 -0.093+1 0.118 0.96
0.57 -0.093-1 0.118 0.58
Zero 2.52 -0.584 2.66
Static
gain -18.77 0.507 -22.U46

Table 5.4 - Poles, zero and static gain of the GLS models

of the distillation column.
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Fig., 5.5 = Model 1 of the distillation column. Digital

units are used. The sampling period is 96 sec.
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Fig. 5.7 - Normalized sample covariance functions for the

distillation column, model 1.

The dashed lines give the 5% confidence inter-

val.

The time is given in sampling periods.
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Fig. 5.8 - Normalized sample covariance functions for the

distillation column, model 2.

The dashed lines give the 5% confidence inter-

val.

The time is given in sampling periods.
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5.4, Identification of dynamics of a nuclear reactor.

The system is a nuclear reactor where the input is re-
activity created by control rod movement and the out-
put is the nuclear power, measured by fission chamber.
Measurements have been received from OECD Halden Reac-

tor Project in Norway.

The experiment is described in [16] and is called RUN
11 EP 714B. The first 1000 data were used.

The system contains a direct term. This is easily esti-
mated by shifting the input signal. The used B(q_q) po-

lynomials were of the form

1 -n

B(g ') = bo L bnq
Test quantities for comparing order are F(1000,3). The
value when models of orders 1 and 2 are compared is
11.4, while the value is 1.1 when models of orders 2
and 3 are compared. Thus the order two seems to be

good.

Two minimum points of the loss function were found for
this order. The result of the identifications is given
in Tables 5.5, 5.6 and Figures 5.9 - 5.13.

ML identification using the model (5.1) has been done
[71, [16].
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Discussion of the result.

It is seen from the figures that the differences bet-
ween the models are sTall: Fu€the? (é1, ;2, 81, 52) of
model 1 is close to (01, Chs 8y az) of model 2. In
fact, both models as well as the model in [7] may be

simplified to a first order system

1
1 - 0.9q

y(t) = 2.4(1 + 2.6q Dult) + e(t) (5.2)

1

if approximate factors in common and small zeros are

omitted.
An identification of a first model gave the result:

-1

2.396 + 6.2349 4y . 1
-1

Y(t) = =7 -
17 - 0.00012q 17 - 0.918q + 0.0001q

2

and A = 2.6660 - 10 > which differs just a little from
the simplified model.

Since the two models do not differ very much it is im=-
possible to call any of them the '"best" or most "cor-

rect" one.

If (5.2) is an adequate description of the dynamical
behaviour of the process then it is expected with Theo-
rem 3.Y% din mind, that there will be (at least) two
different but equivalent models of second order. The
models obtained by identification are in fact close to
these expected models. Of course, this is a very loose
discussion according to the assumption that (5.2) desc-

ribes the system adequately enough.

e(t)




Para- Model 1 Model 2 Model in [7]
meter
é1 -0.177£0.0672 0.911+0.025 -0.890+x0.02u
52 0.073%0.019 -0.009+0.021 -0.008x0.019
Bo 2.41£0.14 2.38+0.14 2.4320.12
51 5.80%0.21 4.01+0.19 4.02+0.17
AZ ~1.08%0.38 -5.8340.16 ~5.68+0.15
Cy -0.790%0.066 ~-0.058+0.039 Comparison is
o -0.124%£0.060 0.062+£0.034 impossible
ve10® 3.4 3.47 3.45
o-10° 2.61 2.63 2.63
Table 5.5 - Parameter estimates from identification of
the nuclear reactor data.
Model 1 Model 2 Model in [7]
Poles [0.088+1 0.256 -0.010 -0.009
0.088~1 0.256 0.921 0.898
Zeros -2.575 -2.621 -2.564
0.174 0.935 0.911
Static 7.95 7.07 7.50
gain
Table 5.6 - Poles, zeros and static gain of the models

of the nuclear reactor.
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Fig. 5.9 - Model 1 of the nuclear reactor. The input is given in

digital units and the other variables in MW. The sampling

period is 2 seconds.
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Fig. 5.10 ~ Model 2 of the nuclear reactor. The input is given in
digital units and the other variables in MW. The sampling

period is 2 seconds.
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Fig. 5.12 - Normalized sample covariance functions for
the nuclear reactor, model 1.
The dashed lines give the 5% confidence in-
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The time is given in sampling periods.
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Fig. 5.13 - Normalized sample covariance functions for

the nuclear reactor, model 2.
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The time is given in sampling periods.
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VI. CONCLUSIONS.

Some essential properties of the generalized least

81

squares

(GLS) method for identification of dynamical systems are

summarized below. Part of the material is well-known.

o The GLS method can be interpreted as a maximum
lihood method when suitable assumptions of the
ture of the equations governing the system are

The estimation of the correlation of the noise

like~
struc-
made.

can be

done in some different ways, and every way to do it

corresponds to some structure of the system equations.

The GLS method is then a special minimization algo-

rithm applied to a corresponding loss function, which

is a sum of squared residuals. The GLS method will

then have nice asymptotic properties.

0 The GLS method is an uncomplicated extension of the

least squares (LS) method. Besides a program for LS

identification only programs for administration and

filtering are needed.

o The GLS method gives a very slow convergence close

to a minimum point of the loss function. The method

is thus inappropriate if great accuracy is required.

o Applied to nice data the GLS method gives good

results

comparable with the results of the more complicated

"ordinary'" maximum likelihood method. The required

conditions of the data are weaker than for the

ler LS method. For a sufficiently high value of

simp-

the

signal to noise ratio it can be shown theoretically

that the loss function has only one local minimum

point.

o The loss function corresponding to the GLS method may
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have more than one minimum point. In this case the
result of the GLS identification depends on the start
values of the parameter estimates. The existence of
several minimum points can be shown theoretically for
low signal to noise ratios. In practice it can happen
also for reasonable values of this ratio. It is not
always easy without intimate knowledge of the actual
process to decide which of the models that will be

the "best" or most "correct™.
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APPENDIX A
A SUMMARY OF ERGODICITY THEOREMS.

The purpose of this appendix is a study of expressions

of the type

a
n t=1

~1 3

21(t)22(t)

and their limits as n -+ «. zi(t) will be deterministic

signals or stationary stochastic processes of the type
z(t) = H(g Del(t)

where H(qnq) is a stable filter and e(t) a sequence of
independent, equally distributed random variables (white
noise). For the study of such expressions some well-
known ergodicity theorems will be used. In order to show
how these are exploited, the theorems will be stated

here in form of two lemmas.

Lemma A.1: Assume that x(t) is a stationary process with
discrete time and finite variance. If the covariance

function rX(T) ~ 0 as |1| > = then

1 n
— ) x(t) > Ex(t)
n t=1

with probability one and in mean square.
Proof: See [11].

Lemma A.2: Assume that x(t) is a stochastic process with

zero mean. Lf the covariance function fulfils

A




.2

[0 o
Tt 4+ s

[pt,8)] ¢ K —2—
1+ |t-s]

with K > 0, 0 ¢ 20 < g < 1 then

x(t) = 0

14
o~

with probability one and in mean square.
Proof: See [91].

Some kinds of conditions for deterministic signals are
also needed. Inspired of the theory of almost periodic
functions, see [20], almost periodic sequences will be
used. In the time discrete case the results are much

more simple than for time continuous functions.

Definition A.1: The sequence {u(t)}::1 is said to be al-

most periodic if to every e > 0 there exists a periodic
§:1 (that is v(t) = v(t+T) some T, all t)
with finite period T, such that

sequence {v(t)}

|v(t) = u(t)]| < e all t
It is now possible to start the analysis.

Lemma A.3: Let the stationary stochastic processes zq(t)

and z,(t) be given by
2,(t) = G(a el

2,(t) = H(q De(t)

where e(t) is white noise with zero mean, unit variance

and finite fourth moment u.




6a™ = 7 gt
1=0
and
H(q”1) = § h.q"i
. i
1=0
If
.Z gi < g Z hi < o
1=0 1=0
then
n o0
E z,(t)z,(t) » Ez, (t)z,(t) = .Z h.g:, 1 > e
t=1 i=0

with probability one and in mean square.

Remark: The condition on G(q~1) and H(q_1) means Jjust

that 21(t) and zz(t) have finite variances.
Proof: Define v(t) = 21(t) . zz(t).

v(t) is a stationary stochastic process with
Ev(t) = ) h.g

The convergence of this sum is an immediate consequence

of the assumptions and Schwartz' lemma.

In order to use Lemma A.71 the covariance function must

be computed.




L

r (1) = 7§ y ) ) g.g:h h Ee(t-ide(t+t-~3) -
v 120 420 k=0 gz0 I K *
) 2
« e(t-kle(t+t-2) - [iZO higi]
But

Fe(t-i)e(t+r-jle(t-k)e(t+t-2) =

+ +

6j,r+i625T+k * 6i,kéj,z CS5L,r+i6j,r+k

+ (ung)dj,r+i6k,i6£,T+i

which gives

[o o] 100

r () = 7§ ) g.g.,. hnh +
v 120 k2g 1 i+t k k+1t

o (oo} cao

* .Z Z gigk+Thkhi+T * (u=3) .Z gigi+Thihi+T
i=0 k=0 1i=0

- {izo gigi+r][kzo hkhk+r] ¥

+ ( ) g.h. ]{ Y g,_,.h }
i%o 11+t s k+1 'k

From this expression the following inequalities are ob-

tained using Schwartz' lemma.




But

as 1 + «, which implies IPV(T)[ >0, as 1 » w.

Invoking Lemma A.1 the proof is finished.
Q.E.D.

Lemma A.4: Let the stationary stochastic processes 21(t)

and ZQ(t) be given by

(a7 - e ()

21(t)

H(qT') + e, (1)

1}

zz(t)

Here eq(t) and ez(t) are independent white noises with

zero means and unit variances.

and




If

1 1 :
= ) ZTGt)zz(t) >0, n » o
=1

with probability one and in mean square.

Proof: Define v(t) = zq(t) . zz(t)3 a stochastic process

with zeroc mean.

The covariance function of v(t) is

iZO jZO kZO QZO gigjhkhﬁEe1(t—i)eq(t+T"j)

PV(T)

. ez(t~k)e2(t+T—z) =

1
He~18

0 gigi+'f kz=O hkh](+’[

From this expression

(s8] oo 2 00 (o] 2 !
[rV(T)I < \/_z gi - ) hi ) hoy o 70, 7w
1= = = =

The assertion of the lemma now follows from Lemma A.71.
Q.E.D.




Lemma A.5: Let z,(t) be a deterministic, bounded sequence

and zQ(t) a stationary, stochastic process, given by
_ -1
zz(t) = G(g De(t)

where e(t) 1s white noise with zero mean and unit vari-

ance,

If the covariance function of Zz(t) fulfils

%
PN

|PZ ()] <« co y > 0 T
2
then
)
- z,(t)z,(t) = 0O n >
n 1 2 ?
t=1

with probability one and in mean square.

Proof: Define v(t) = zq(t) . ZQ(t), a stochastic process
with zero mean. By the assumptions zq(t) is bounded, say

|z1(t)l < D. The covariance function of v(t) fulfils

v (t,8) | = |Ez (D)2, (t)z, (s)z, ()] < DQIPZZ(’C—S)‘ <

£ DQCI*c—srY for |t-s| = 1

Lemma A.2 can now be used with o = 0, B = vy and




.8

Lemma A.6: Let 21(t) and 22(t) be two almost periodic

sequences. Then

1

i ~1'3

z,(t) « z,(t)
+ 1 2

1

converges as n -+ o,

Proof: Define v(t) = Zq(t) . zz(t). Clearly v(t) is al-~
so almost periodic. Let u(t) be a periodic sequence such
that

|v(t) = u(t)| < ¢ (all t)

The convergence of

u(t)

|
13

is trivial. Put

v(t)

He~13

Using the Cauchy criterion for the sequence

n
Yo (v(t) = ult) + u(t)) -

<

1 m
- 1 (v - ult) + ul) | s




;0
525+=—ZU('E)“
o

Bl

m
) ult)| < 3e
=1

]
PR

t
if min(m,n) > N(g)
Using the same criterion for the sequence s, the conver-
gence is proved.
Q.E.D.
The following example shows that x(t) bounded does not

imply convergence of

x(t)

]_\
ne~13

This means especially that zi(t) bounded is a too weak

condition in Lemma A.6.

Example: Define x(t) by

x(t) = 1 t = 1
= “1 t = 2) Ll’
= 1 t = 3. 12
= =1 t = 13 36
and
x(t) = GO ™ e et e . gT
Put
;D
s, = o ) x()

t=1




.10

1/2 if n =Y « 3 m odd

Then s
n

-1/2 if n =4 3 m even

"

and s
n

From this it follows that lim inf s, < lim sup s, and

thus 1lim 5. does not exist.
It is now possible to prove Theorem 2.1.

Proof of Theorem 2.1: An inspection of the kind of terms

in (2.1) shows that the proof follows immediately from
Lemmas A.3 - A.6.

If e(t) and/or v(t) has not zero mean, it is rewritten
as e(t) = [e(t) - Ee(t)] + Ee(t) and the lemmas are app-
lied twice. In this case the following easily proved
property is required as well.

1

If v(t) = H(g ') - e(t), e(t) white noise with zero mean

and
] ng< -

1=0

then

4 D

- ) v(t) ~0, n o
t=1

with probability one and in mean square.




APPENDIX B
ANALYSIS OF THE MINIMIZATION ALGORITHM.

The purpose of this appendix is to examine the proper-
ties of the minimization algorithm. To get reasonable

work it is assumed that the loss function is a quadra-
tic form, which is a good approximation close to a sta-

tionary point.
Define

Q Qo] %
L R 17
Wix,y) = =[x v (B.1)
2 {sz QZQ}NXY

where Q is a symmetric matrix.

The vector x corresponds to [a1—a1, cess b —bn]T and the

N n
vector y corresponds to [c1~c1, e ooy cn—cn]T.

The minimization procedure is given by

Q4Xpqq T Quoyy =
(B.2)

Qp1¥ppq ¥ Qop¥yyq =0

It is assumed in the following that Q11 > 0, Q22 >0

(are positive definite) which always can be assumed to

be true for the actual loss function (3.3). An exception
is the case of no noise and too high an order of the mo-
del, but this case can be excluded. This means that (B.2)

has always a unique solution.

Introduce




1

oo o
Pr® Q4Q45Q,,Q,4
(B.3)
P - oola. Q]
2 = QyR01R14Q,
Then from (B.2)
X4 ] Py 0 1%
= (B.4)
Y+ 0 Pol Vi

It is of great interest to analyze the eigenvalues of

the matrix

Lemma B.1: Let A and B be two matrices, such that AR
and BA are defined. If ) % 0 is an eigenvalue of AB

then A is also an eigenvalue of BA.

Proof: ABe = )le gives BABe = ABe.
If Be £ 0 then A is an eigenvalue of BA with the eigen-
vector Be.

If Be = 0 then » = 0, a contradiction.

Q.E.D.
Corr: P1 and P2 have the same non-zero eigenvalues.

The following well-known lemma will be used below and

in Appendix C.




Lemma B.2: The symmetric matrix

Q Q
Q= |1 12
Q1 Qoo

is positive definite if and only if Q22 > 0 and Q11
ol
Q12Q004 > O-

Further, if Q » 0 (positive semidefinite) and Q22 > 0

=1 . .. . ..
Then Q11 - Q12Q22Q21 is positive semidefinite.
Proof: See [13].

Introduce

%
%

-1
Qi1 = Q19Q00Q4 (5.5)

1

iy
Qoo = QpqQ11Q,

Then the criterion (with the assumptions above of Q11

and Q22) can be written
Q > 0 1f and only if 61 > 0 if and only if 62 > 0

(B.3) and (B.5) give easily

o
1

=1
I-Q
! T (B.5).

"
1

-1
2 T 17 Q0

Let P, have an eigenvalue ) with the associated eigen-

vector e

Pqe = e




(B.6)

gives

e - Qqqawe =2

and

Lemma

Proof:

eTéqe

which

Lemma

Proof:

eTQ11e

B.3: All

2T -
= e Qqqe

gives

N
S

or

B.b4: P1

Follows

erqe

e, @1e = (1 - A)Q11e

(B.7)

eigenvalues of P, are positive.

T -1 T
e Q1,Q0Q) e s e Qe

N

has a basis of eigenvectors.

from [19] (Thm. 6.2.3) since P, is a pro-

duct of a positive definite matrix and a positive (semi-)

definite matrix.

Lemma B.5: Let A denote an eigenvalue of P1.

i)

ii)

iii)

Q » 0 if

Q » 0 if
for at 1

Q indefi

and only if x < 1 (all ).

and only if X < 1 (all A) with equality

east one X.

nite if and only if X > 1 some X.




Proof:

i) Assume Q > 0. Then eTéqe > 0 and (B.7) gives
1T - x>0 or x < 1.

If on the other hand X < 1 all x then eTa1e > 0

for a basis of vectors and 51 > 0 gives Q > 0.

ii) By repeating the argument above and using > instead
of this part follows in the same way. The equiva-

lence in part 1) is to be used too.

iii) This part follows from i) and 1i) by a simple ne-

gation.

Q.E.D.

Definition B.1:

[X}
y
is said to be a stable point if there is a § > 0 such
that

it[xo | <5

Yo

]
O

implies

x
lim k = 0
kK>eo yk

With this use of stability it is easy to summarize the

result,




Theorem B.1: Consider the function W given in (B.1).

i) If Q is positive definite, x = 0 is a stable point.

The convergence is linear.

ii) If Q is indefinite, x = 0 is not a stable point.

Remark 1: Part ii) means that saddle points are of no
interest when examining the possible limits of the mini-

mization method.

Remark 2: Part i) means that the convergence is very slow.
Close to a minimum point, the algorithm can be compared

with the steepest descent method. The bound

N

1/2
2 2
[Heanl 17+ 11330001 17]

n| 2 211/2
¢ tnax 21”1 112+ vyl

is easily obtained, where equality is possible.

Let for example max A(P;) = 0.95, [[x_[] = Hy Il =1,
and [[xnll = |]yn|| = 10", The  bound above gives

that 179 iterations are needed!

Since the eigenvalues of Q and P1 vary continuously
with the elements of Q it follows from Lemma B.5 that

max A(Pq) + 1 when the condition number of Q -+ «,




APPENDIX C
ON CONDITIONS FOR LOCAL MINIMUM POINTS OF A SPECIAL
FUNCTION.

In this appendix a special function is studied and its
possible minimum points are examined. The reason for
studying this function is that it can be interpreted
as the loss function of the GLS method.

When the variance of the noise is small the equation

V' = 0 will lead to equations of the type
f(x) + g(x) = 0, g(x) = 0(Ce)

where ¢ is a small number. Some of the following lemmas
deal with the properties of the solution of such equa-

tions.

The first lemma is the well-known principle of contrac-
tion mapping. It is stated here in order to later show

how it can be used for the actual problems.

Lemma C.1: Let B, (x_ ) denote the set {x; ||x—x0|[ < 6}

Consider a map S(x). If

< (1-a)8 a < 1 (C.1)

i) [1s(x) = x ||

ii) []S(x") = S(x")|] < af|x" = x"||, x',x" €Bg(x_ ) (C.2)

then S(x) has a unique fixpoint (a solution of x = S(x))

in BS(XO).
Proof: See [17].
The next lemma deals with necessary properties of solu-~

tions. It does not guarantee existence or uniqueness of

solutions.

N




Lemma C.2: Consider the equation

F(x,e) = £f(x) + g(x,e) = 0 (C.3)
where f and g are continuous functions.

Denote the null space of f by Nf (Nf = {x; £(x) = 0})

Let @ be an arbitrary, compact set, which may depend on

g. Assume that

i) 2 - Nf is non empty

ii) there are constants €4 > 0 and K < « guch that

0 s e < e, implies

sup |lg(x,e)]] s Ke
X € Q

Then there is a number €y > (0 such that if 0 € & € ¢

o)
and x is a solution of F(x,e) = 0 then
inf | 1% - XO[| -~ 0, e » 0 (Cc.u)
X, € Nf

Proof: Define a set M(e'), a neighbourhood of Nf by

M(e') = {x; inf | 1x - Xoll < e}

x & Nf
o

By the construction and the continuity of f

inf [[f(x)]] = aCe') >0 if &' > 0
X e Q=-M(e'")

(where it is assumed that 2 - M(e') is non empty).

Let 0 € ¢ ¢ €y Then




inf | | F(x,e)|] = inf RESCIREE
Xx&e Q-M(e') xe Q-M(e")
- sup | lg(x,e)|]| 2 ale') - Ke
xe Q=M(e")
) _ . 1 ale') . . .
Define now €y = MIN (€45 7 e which is strictly po-

sitive.
Let 0 < e ¢ €e Then

inf || F(x,e) ]| = % ale') > 0
x e -M(e")

If x is a solution of (B.3) then x eM(e') and

However, e' can be chosen arbitrary small, so all solu-
tions of (C.3) fulfil (C.4).

Q.E.D.

Corr: If g(x,e) = eh(x,e) where h(x,e) is a continuous

function, the compact set @ can be chosen arbitrarily.

The following lemma gives a sufficient condition for

existence of a unique solution of the form (B.4).
Lemma C.,3: Consider the equation
F(x,e) = f(x) + g(x,e) =0 (C.3)

where f and g are twice differentiable functions and

dim £ = dim g = dim x.

Let X be a zero of f(x) such that




. : . .
i) fx(xo) is non singular

ii)  there is a set B (x)) = {x; [[x - x| s 8} with
§ (independent of ) > 0, and constants €15 C1 and
C2 such that

a) X is the only zero of f(x) in Bé(xo),

b) 0 5 e ¢ €4 implies

sup [ lelx,ed) || < Cqe

x & B (x,)

sup llg!(x,e)|] < C,e
x & Bg(x)) x 2

Then there is a number e, > 0 such that 0 < e < €, implies
i) F(x,e) = 0 has a unique solution x in Bé(xo)
ii) x fulfils

X = x_ = 0Ce), e > 0 (C.5)

Proof: Study solutions of (C.3) in B (xo) where §_ is

o
an arbitrary constant satisfying 0 < §, 8.

Consider the function
S(x,e) = x - fl(x )an(x €)
2 X o b
If S(x,e) is a contraction mapping its fixpoint is the

solution of x = fi(xo)_qF(X,e) = x of F(x,e) = 0.
=1
Put CO = ||f%(xo} I




Let 0 ¢ ¢ < Then

81.

e 11ERx )T ] [FGx o) || < e c

I!S(Xo,e) - X oCqe

@]

Let x' and x" be two arbitrary, different points in B (xo).

o)
With use of the mean value theorem [17]

“S(X':E) - S<X”:€)’!

= sup ||S!(tx' + (1-t)x",e)|]
%' = x"]| ostg1
Assume that the supremum is obtained at x = x'''.
[lS(X'>€) - S<X”a€)1| < I'S'(X"' E)‘! _
xt = x| o
= [T - £ T ELG )+ gl (k! e ] ]

t 11 — t
s Coll£4Cet )y = £1(x )| + CChe < CCa8_ + CC

16
for some constants C3 (depending on § but not on GO).
Now (C.1) and (C.2) are fulfilled if

Colqe ¢ (Tmads

C.C

360 + COC1€ < o

Choose a value of a. Let S satisfy




Define then

O

ﬁ, (C.6)
K oc(Ccy + ch)

Then (C.1), (C.2) and §, € 8 are fulfilled if 0 < ¢ < gé.

Now consider the set Q = Bé(xo) - BGO(XO)'

It has to be shown that F(x,e) = 0 has no solutions in

Q 1f e is small enough.

If 8 is small enough

inf|[f(x)|| = inf TG ] =
: e 126,
= inf [[f(xo) + f;(xo)(x—xo) +
| |x=x_]]=¢,
£ 0(] |x=x||®)]] = as_ + 0(s2)

o denotes the smallest singular value of fi(xo).

Thus there are constants e% and C,, such that 0 < ¢ < ¢

1
1

L{' - <
implies
inf ||F(x,e)|]| = inf |[£(x)|] - sup ||glx,e)|] =
X € Q XEQ X £ Q

This expression should be positive. Insert §, = Ke.

e[(ocK-Cq) - C Kze] > 0

m




Now choose finally

c C 3C
K = max[ © 1, 1]

1=o o

and

With these values of K and e  and with §, = Ke it can
be seen by going through the proof once more that

F(x,e) = 0 has a unique solution in B (XO) and no so-

So

lution in Bs(xo) - B

6O(Xo).

Q.E.D.

Remark: If f%(xo) is singular, nothing general can be
stated. Consider the scalar examples Pj(x) = X2 - ¢ and
FQ(X) = x2 + €. Fq(x) has zeros close to x_ = 0, but
these do not satisfy (C.5). Fz(x) has no real zeros at
all.

Near a local extremum the matrix of second order deriva-
tives plays a fundamental role for determining the cha-
racter of the extremum. The following lemmas which deal

with quadratic forms will be useful in the analysis of

this matrix.

Lemma C.4: Consider the symmetric matrix

A + €A1 B

Q = (C.7)
eB eC

and the vector




eb
r = (C.8)
0

Assume that A and C are positive definite. Then if
0 < e ¢ ¢ where 1/e_ > the largest eigenvalue of
a7, - BT BT

i) Q is positive definite

iiy Q7 'p o= 0(e), e » 0

i) By Lemma C.2 Q > 0 is equivalent to
A+ ey - eB(e0) TeBT > 0 or
A+ e¢D >0 (C.9)
where D = A, - BC BT,

1

(C.9) 1is apparently true for small values of ¢
(since the eigenvalues of A + eD are continuous
functions of €). & must only be smaller than the

smallest number ¢ such that

det[A + 6D] = 0 (C.10)
(C.10) is rewritten as

det[Aé(% T+ a7 D)) = det(Aé)det(% I+ A D) =0

From this equation it is seen that 1/6 = the largest

eigenvalue of A-qD.




ii) Using formulas for the inverse of a partionated

matrix [10]

(A + eD)&qeb

Q r =
-1 -1
-C "B(A + eD) eb
If ¢ < 6 then [A + eD]mq = A~1 + 0(e) and
Q_jr = 0(e) follows easily.
Q.E.D
Lemma C.5: Consider the function
V(x,e) = 5 x'QCe)x + x r(e) (c.11)
with
A+ eA, eB )
QCe) = r(e) =
T
eB ECM 0

with A1 in a symmetric matrix, A and C are symmetric and
positive definite matrices. There is a constant e, >

such that if 0 < ¢ ¢ €6 then:

To every K2 > 0 there is a constant K1 (depending on K2

and €5 but not on &) such that

inf Vix,e) 3 K2€2

> (C.12)
[ Ix] =K, e

Proof: Consider the set

Q(Vo,e) = {x3 V(x,e) < VO}
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Define
% (&) = ~0(e) (e
@]

Then Q(Vo,e) is given by
T - x () Tate) (x = x () € U, + 5 x ()TQCedx (&) (C.13)

Q(Voss) is non empty if

Vs - mox () Qledx (e

where ¢ is the largest eigenvalue of A—q[A1 - BC"WBT].

Let X denote the i:th component of x.

Define a new set

2,V se) = {x3 [x;-x_(e);| s sup |x;-x (e s |all 1}

1" o 1
X € Q(VO’E)

Clearly Q(Vo,e) Q,Q1(VO,€)-

What is sup ]xi»x

(e)-‘ ?
x € oV _,e) *

)

Let e. denote a unit vector, which i:th component is 1.
Then the maximum of eg(x - xo(a)) under the constraint
(x - x (£))TQCe)(x = x_(e)) = 2V_ + x_()TQCe)x (&)

o o o o o€

is sought.




Using a Lagrange multiplier

e; + A2QCe) (x - xo(e)) =0
T
)

(x = % (e))TQCe) (x = x (&))" = 2V, + x_(e)TQ(e)x ()

from which

2V + XE(E)Q(e)xO(e)
- Xo(e)i[ = [Q(g)_1].. (C.14)

11

sup [Xi
X € Q(Vo,e)

is obtained by straight forward calculations.

The sphere

SqVgse) = x5 [[x = x Ce) || <

T | 2
ZVO + XO(E)Q(E)XO(E)
1

) -
[ [QCe) ™' 1,

ii

N

contains the set Q(Voge) and so does the sphere

S,V se) = 4xs ||x[| < [[|x (e ]| +
- T 2
. z 2VO + XO(E)Q(E)XO(E)
£ QCe) 1.,

A graphical illustration of the sets (V_,e), 9,(V_,e),

81(Vo,e) and 82<Vo’€) for a two dimensional example is

given in Fig. C.1.

11
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A

—) (Vo, €)
X
.k
’

\
S] (Vo"E)
SZ(VQ] €)

Fig. C.1.

The function V(x,e) has the following property. Let M,

and M2 be two convex and compact sets, containing xo(e)

and aM,. If M, ¢ M, then

and with boundaries an 5 1 5

inf V(x,e) ¢ inf Vix,e).
xszaMz

This 1s true since V(x,e) is a convex function. Define

§2 & aMz by

V(iz,e) = inf Vix,e)

Xé§3M2
There is at least one point §1638M1 such that
xg = tx Ce) + (1-t)x, 0 ¢t <1

SO




inf Vix,e) < V(§1,e)
X € 3M

IN

tV(xO(e),e) + (1=t)V(§2,E) <

<

1
< V(EQ,S) =z inf V(XQ,E)
x & 3M
2
Put now M1 = Q(Vo,e) and M2 = SQ(VO’E)’
Applying this property
inf Vix,e) > VO (C.15)
|]x||:R(VO,e)
where
- T < 1/2

RV ,e) = l|xo(e)|| + [(QVO + XO(E)Q(E>XO(€>]Q(E)J (C.16)

_ 1
qle) = Z—”—-—_T——" (C.17)

1 [QCe) T1..

11

There are constants e, C,, C, and C, (with e, < ¢ and C 5Cho
C3 independent of ¢) such that 0 < e €4 implies

1]xo(e)|| s Cqe

[1x0(e)QCedx () || < Cpe’

qle) < C,

The last inequality follows from the expression for the

inverse of a partionated matrix [10].
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Define
] 2,.1/2

Let now 0 < ¢ ¢ e,- Then R(E,VO) < Rj(e,VO) and from the

property of V(x,e) described above

inf Vix) 2V

_ O
[ x] [=R, Ce,v )

Now take K, >0 arbitrary and put Vo = K

Then R1(€9VO) = K1e with

25

- 1/2
K1 = C1 + [03(21<2 + Cz)]

and the lemma is proved.
Q.E.D.

In the following theorem the results of the foregoing
lemmas are applied to a function of special structure.
It will later turn out that the loss function of the
GLS method has this structure.

Theorem C.1: Consider the function

V(x,y,e) = % X P(y)x + eh(x,y) (C.19)

where P(y) is a positive definite matrix for all vy,
twice differentiable with respect to y and h(x,y) a
twice differentiable function. e is considered as a

fix parameter.

Then there are necessary and sufficient conditions for

local minimum points in an arbitrary compact set Q.




There 1s a constant €y 7 0 such that if 0 < ¢ < ¢_ the

O

following is true.

i) Every stationary point of V(x,y,e) in @ fulfils
(x,y) = (O,yo) + (0Ce),0(1)], e » 0 (C.20)
where y is a solution of
h!'(0,y) = 0 (C.21)

y

If (x,y) is a local minimum point it is necessary
that h§v(03yo) igs positive definite or positive
semidefinite.

ii) If v, is a solution of (C.21) and h;y(O,yo) is po-
sitive definite then there exists a unique local
minimum of the form (C.20), and the point will in
fact satisfy
(x,y) = (0,y,) + (0(e),0(e)), e + 0 (C.22)
The matrix of second order derivatives is positive
definite in the minimum point.

Proof: The equation V' = 0 turns out to be

P(y)x Lh;((x,y)“

+ e =0 (C.23)
3 (1,7 '
ay[ X P(y)x}ﬁ vhy(x,y)

and the matrix of second order derivatives
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[

VH VH
V” B XX Xy .
VH VH
L ¥X yy
P(y) 2 [P(x)y]
By
= 2 ‘ _ +
3 rp(x)ylt 211 KTriyx
N oy |2
hh;X(x,y) h;y(x,y)&
+ £
h;x(x,y) h;y(yay) (C.24)

The first part of (C.23) yields the necessary condition

]l = el [P0 nlGoyd | s Ke (C.25)
where
K = sup [1BCy) ™ h) G,y ||

(x,y)€Q

Apply Lemma C.2 to the second part of (C.23) putting

- 1
fy) hy<0,y>

+ h&(x,y) - h&(O,y)

Assume that (C.25) holds. Then there is a number eé > 0
such that if 0 < ¢ < sé the following condition is ne-

cessary

y = Yo = 0l1), >0 (C.26)




where Yo is some solution of
h§(0,y) = 0

If (x,y) is a minimum point, it is necessary that V" is
positive definite or positive semidefinite. From this it
follows that the same must be true to V&y and further

"

that there is a number eg such that 0 < ¢ < eg implies

. 0
the same condition for hyy(O,yo).
The first part of the theorem is proved.

If h!' (0,y ) is positive definite, it follows from Lem-
yy o

BN

ma C.3 that there is a number eé" > 0 such that 0 < ¢ ¢

Tt

S eé implies that (C.26) can be replaced by

Yy 2 ¥, F 0Ce) (c.27)

When ¢ is small

eh!(0,y )’
V(x,¥,e) = V(0,y_,e) = [x (y“yO)T][‘ e J +

0
1. T T P(yo) * Ehxx(o’yo) Ehxy(o’yo)
+ §[x (y—yo) ] .
_‘ghyX(O ayo) €hyy(05yo)
%
. + r(X,yV,¢)
AR

where 2(x,y,¢) = 0(][(x,3) = (0,50 []%).

A straight forward application of Lemma C.5 gives: there
are constants E;V, K1 and K2 such that 0 < & ¢ eév

implies
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inf Vix,y,e) = V(O,yo,e) - r(x,y,e) 3 K2€2

][(x,y)—(oayo)[l:K1e

But there are constants eg and K3 such that 0 < ¢ ¢ EZ
implies
3
sup r(x,y,e) < K3e
|1 (x,y)-C0,y )| |=K e
Thus
inf V(x,y,e) 3 V(O ) 4 Kyel - K e
5y3€ - 9yoa€ 26 3E

|](x,y)~(0,yo)[|=K1e

is greater than V(O,yo,e) if K, = Kge > 0.

Put
VLo K2
© 2K

. 1vov
Then 0 < ¢ ¢ mln(eo s €

local minimum point in the set

Vi o . )
)€ ) implies the existence of a

SCe) = {(x,y)5 [[(x,y) = 0,y ) |] <« Kye}

When (x,y) € S(g)

P(yo) + 0(e) 0Ce)
VH - ’
0Ce) eh!" (0,5 ) + 0(e?)
yy 7o’ :
By Lemma C.4 it follows that there is a constant egll

such that 0 < ¢ ¢ ggll and (x,y) € S(e) imply that V"

is positive definite. From this it follows that V(x,y,e)




C.19

has a unique minimum point in S(e).

. . iv vV vl vil
Finally, choose €, = mln(Eé,ES,Eé", o 2E09Eq 2E€ )
Going through the proof once more, it is seen that all
parts hold.

Q.E.D.

Remark 1: The greatest possible value of e, may depend

on Q. It is in general not possible to take @ as the

whole space. A simplified example: Ve(x) = x? 4 e(x3~x)
has two stationary points: Xq(e) = - % + 0(e) and x2(e) =
= % + 0(83) while Vo(x) has one stationary point, x = 0.

Remark 2: If h&y(o,yo) is positive semidefinite (singu-
lar) nothing general can be stated. An illustrative

example is

Vix,y) = % %2 +e{% <%+ Xy + KynJ

where the integer n » 3.

The equation (C.21) has the only solution y = 0 and
h§y(090) = 0. For this function

x + EX + €Yy )
V' o=
n-1
ex + eKny
1 + ¢ € )
VH -
n-2
£ eKn(n=1)y

The stationary points are the solutions of
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X = - \%

1 + ¢

y|y"T - —=— =0
(T+e)Kn

(x,y) = (0,0) is always a stationary point and a saddle
point. If
yn=2 - €

(1+e)Kn

has a solution then V" is positive definite in that

point. This implies

i) If n is odd, there is one minimum point and
% = O(E), y = O(ET/(H—Z))‘

1i) If n is even and K » 0, there are two minimum

points and x = 0(e), y = 0(81/(n“2)).

iii) If n is even and K < 0, there are no minimum

points.




APPENDIX D.
ANALYSIS OF
MODELS.

In order to

derivatives

First order

THE NOISE CONDITION (NC) FOR FIRST ORDER

prove Lemma 3.2 it is necessary to study the

of V2 and the solutions of Vé = 0.

derivatives.

Direct computations give

L S -
5 Va = (a + ¢ + ac )ro + (1 + 2ac + ¢ )r1 + cr,
(D.1)
1 Vr o= (a4 ¢+ a‘edr + (1 + 2ac + 32)r + ar
2 cC o 1 2
The equations Vé = 0 are rewritten

~

(4 + ¢ + ééz)ro + (1 + 2ac + c2)r1 +5r2 = 0
(D.2)
[(a - c)][acro + (a + c)r1 +r,] =0
Case_1): A possible solution fulfils
a = ¢
(D.3)
(25 + 53)r + (1 + 3éz)r + ar, = 0O
o) 1 2
N 3 2
Let f(x) = (2x + x )ro + (1 + 3x )r1 XD, .

With use of

the relation

7




which holds since w(t) is persistently exciting of order 3,

) 2 2
£f(1) = 3ro + 4r1 tr, o> ;—(ro + rq) > 0
o
f(-1) = - 3r_ + U4r, - 1, < = 2—(r - 1 )2 < 0
O 1 2 o) 1
o
2
1 —_
fr{x) = (2 + 3x )ro + Eixr,I T, >
IR T IR B IC SRR LS

r
O

From these inequalities it is concluded that (D.3) has a

unique solution, which satisfies |a| < 1.

(é+6)ro+(1+éé)r1 = 0
(D.4)

acr | + (a + c)r1 v, = 0
Introducing the new variables é1 = a + 8, &2 = ac it is
found that é and é are the roots of
22 - 4.z + 4, = 0 (D.5)

1 2 ‘

T r.][a v, ]

° T L Y o (D.5)
r1 ro d2 rz

Real valued solutions of (D.5) exist when the discrimi-~
/\2 PN

nant dj - 4d, 3 0 or invoking (D.6)
w2 _ 2 2 2.2
D¥= rq(r2 ro) H(PO P,l)(r*,1 rorz) > 0 (D.7)




Proof of Lemma 3.2: From the analysis above it is clear

that

i) if D® <

ii) if D¥ =
tions

iii) if D® >
tions.

Only the case

The change of

E[ﬂ(qnq)w(t)]z

is minimized.

[

0 then Vé 0 has one solution

0 then Vé 0 has three coincident solu-

0 then Vé 0 has three different solu-

D¥ > 0 has to be considered closer.

variables means that the function

1 1 To=2

,  D(q ') =1 + d1q_ + doq

This function has a unique minimum with a

positive definite matrix of second order derivatives.

When D¥ > 0 the solutions of (D.5) satisfy a ¥ c and

the Jacobian of the transformations of variables is non

singular. This fact implies that VE is positive definite

for solutions

of (D.5) if D% > 0.
Q.E.D.




APPENDIX E.
PROOF OF THEOREM 3.4.

In this appendix it will be shown that by changing vari-

ables, Theorem 3.4 follows from Theorem C.1.

Proof of Theorem 3.4: Introduce the vectors (as in the

proof of Theorem 3.2)

a; - ay
4h 7 4y
; 3
« = An+k y = |: (E.1)
by = By ;
n+k

bn - bn

n+k J

The loss function can be written

1T .
Vix,y) = 5 x"P(y)x + eh(x,y) (E.2)
with P(y) as the covariance matrix of the system

A" HyF ) = - Ba™hufny,  Fo = Gg Hue

P(y) is, however, always singular, but the null space
of P(y) is independent of y. This is obvious, since from
Theorem 2.2 the null space is spanned by vectors of the

form




f1
fn+k
&1
Jgn+kﬁ
with
—1 n+k -3 -1 -
F(qg ) = fiq 7 = A(q JL'(q
i=1
-1 n+k -1 -1 -
G(gq ) = ) g:8 = B(g )L'(q
i=1
-1 b -1 .
L'(q ) = 7} 2iq = arbitrary
i=1

Introduce now the new variables

>

>
N - A=
s

1

1

(E.3)

) (E. W)

) (E.5)

(E.6)

where X% is of dimension k and xé of dimension 2n+k. The

vector x' is defined by

o™
X = QX' = [Qf] i QQ-]
X'

where

(E.7)




g 0
24
a 1
n
0 an
Q1 = | ———
0 0
b1
bn b1
0 bn

(E.8)

Q, is a (2n+2k) x k matrix and Q an arbitrary (2n+2k) x

x (2n+k) matrix with the properties QE‘FQ2 = 0 and Q non
singular. Q2 can for instance be constructed by Gram

Schmidt orthogonalization.
From the discussion it follows that

!

Q1X1 is a typical element in the null space N(P(y))
Q,x) is a typical element in the space N[P(y))L

From these facts it is concluded that
P(y)Q,I =0
and that the matrix

R(y) = QP(y)Q,

(E.9)




of order (2n+k) x (2n+k) is non singular for all y.

The loss function is now written as

V(xb,2) = 5 x} R(z)x) + ek(x},2)

where 7z denotes the vector

Write the vector x% as

Then x = qu‘ is equivalently expressed as

/l

A(qﬁ ) = A(qﬂq)i(qq)5 %(q” ) = B(q“q)i(q‘1)

The function k(0,z) is written by operators as

(0,2) = BE[L(q" (g™ Hvit)1?

Invoking Theorem C.1 the proof is finished.

(E.10)

(E.11)

(E.12)

(E.13)




APPENDIX F.
CONSTRUCTION OF COUNTER EXAMPLES TO THE SECOND VERSION
OF GLS.

The equations (3.34) - (3.64) for the example of Section

3.8 are examined in this appendix.

(3.36) has the solution

. r_ (1)
a = - X

ry(O)
b = 1

from which

~ - ey
1 + ag 1 + aq

Define the functions F, f and g by

Fla,c) = r€(1) = f(a,c) + Sgla,c)

Py Sy = )
T 1 +a'qg v(t) o 1 +a'g v(t+1)

fla,c) = = -
1 + aq 1 + ag
with
. r!'(1) ;
A T € Y RS
r&(O) 1 + aq

g(a,c) is a differentiable function.

Consider now especially




v(t) = =7 e(t)
1 + cq
Then
al = &trc and fla,c) = —ac(ate) 5
1 + ac (1=ac)(1+ac)
Further
f(0,c) = 0 fé(O,c) = 5
(1=-c)(1+c)
f(-c,c) = O fl(-c,c) = =

(1-c2)2(1+c%)
if ¢ # 0 the existence of solutions of the forms

0(s)
- c + 0(8)

Q
"

now follow from Lemma C.3.




APPENDIX G.

DESCRIPTION OF PROGRAMS.

The main structure of the program package for the GLS

identification is given in the table below.

In the fol-

lowing pages a more detailed description of every sub-

routine is given.

Program or PUrpDOSe Called

subroutine urp subroutines

TGLS Main program SIMUL
GLS

SIMUL Simulates the system PRBSTA
PRB
NODI

GLS Performs the GLS identification LS
FILT
RESID
VGLS

PRBSTA, PRB|Generates a PRES -

NODI | Generates white noise -

LS | Performs a LS identification LSQ

LSQ Computes a least squares -

solution

FILT Filters data -

RESID Computes the residuals -

VGLS Computes the loss function and FILT

related variables DSYMIN

EIGS

DSYMIN Invertes a symmetric matrix -

EIGS Computes eigenvalues and eigen- -

vectors of a symmetric matrix




In subroutine VGLS there is a possibility to improve
the solution by making some (approximative) Newton Raph-

son iterations.
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PROGRAM T&LS

MAIN PROGRAM FOR SENERALIZED LEAST SQUARES IDENTIFICATION
OF SIMULATED DATA
AUTHOR TORSTEN SODERSTROM 1971-10-01

THE FOLLOWING DATA ARE READ FROM CARDS
M ISYSTeIMODY INF - 4110
¥ = NUMBER OF SAMPLES (MAX 10007
iF M=0 THE PROGRAM STOPS
ISYST=100004MA+100%NB+NC  ORDER OF TRUE OPERATORS
IMOD=10000%MNA+100%xMNB+MNC ORDER OF ESTIMATED OPERATORS
iNF:lOOOD*ITER+1ODD*IFILT+100*INIT+10*IPRINT+ISIM
ITER = MAX NUMBER OF ITERATIONS
IFILT =0-FILTER DRIGINAL DATA =1=FILTER FILTERED DATA
INIT =0 START wITH LS ESTIMATE OF A AND B
=1 START WITH VALUES OF A AND B FROM CARD
=2 START WITH VALUES OF C FROM CARD
IPRINT  =0=LITTLE OQUTPRINT =1 GREAT QUTPRINT
iSIM =0 U(T) IS A PRBS
=1 U(T) IS A WHITE NQISE INDEPENDENT OF E(T)
(T(I)oI=1s (NA+NBHNC) )AL = 8F10.5
7 = PARAMETER VECTOR (TRUE VALUES)
AL = STANDARD DEVIATION OF THE NOISE f
/ZIF INIT=1/ (T(I)rI=1s (MNA+MNB)) = 8F10.5 START VALUES OF A AND B
/IF INIT=2/ (TCI)+MNA+MNB) » I=1 o MNC) -8F10,5 START VALUES OF C
SUBROUTINE REGUIRED
SIMUL
PRBSTA
PRB
NODI
GLS
LS
Lo®
VGLS
USYMIN
FILT
RESID
EIBS

GIMENSION U(1000)»Y(1000) ¢DAT(3000),AB(1000r11)
DIMENSION TSYST(30)»TMOD(30)




OO0 000O00O0O00C0O0

G.h

SUBROUTINE SIMUL(U,YsTsAMPL,ALsM:NA,NBsNC,IUL,TU2,IE)

COMPUTES A SIMULATION OF THE SYSTEM

ACQ) XY (T)=B(QR)*U(T)I+C(Q)I*E(T)

E(T) GAUSSIAN WHITE NOISE

A(Q)=L + A(1)*%Q%x*(=1) +eset+ A(NA)*Qx%(=NA)

B(Q)=

B(1)*Q%*(=1) +ese+ B(NB)*Qxx(=NB)

C(Q)=1 + C(1)*Q*x*(=1) +eee+ C(NC)*Qx*(=NC)
STARTVALUES oOF U(T) AND E(T) ARE ZERO.
1971-10-01

AUTHOR TORSTEN SODERSTROM»

U = VECTOR OF ORDER M CONTAINING THE INPUT

Y = VECTOR OF ORDER M CONTAINING THE OQUTPUT ,

T = VECTOR OF ORDER (NA+NB+NC) CONTAINING THE PARAMETERS
T:(A(l)oqu(NA)'B(l)oooB(MB)'C(l)oooC(NC))

AMPL = AMPLITUDE OR STANDARD DEVIATION OF THE INPUT SIGNAL
AL = STANDARD DEVIATION OF THE NOISE »

¥ -~ ORDER OF

UeY

NA = ORDER OF A
NB = ORDER OF B
NC = ORDER OF C

(NA+NB+NC)
iUl - =1 THE
2 THE
3 THE
4 THE

5 THE

IU2 ~ NUMBER

(MIN3»MAX17)

(MIN 0r,MAX 30)

INPUT SIGNAL
INPUT SIGNAL
INPUT SIGNAL
INPUT SIGNAL
INPUT SIGNAL

(MIN 1+NO

1S
IS
Is
IS
IS

MAX)

A PRBS, ,

A STEP AT TIME T=1

AN IMPULSE AT TIME T=1

WHITE NOISE INDEPENDENT OF E(T)
CONTAINED IN U

OF BITS IN THE SHIFTREGISTER FOR THE PRBSGENERATOR

IE = STARTVALUES TO NODI

IE

MUST BE AN ODD INTEGER

ATTENTION. FOR BEST RESULT THE VALUE OF IE MUST BE CHOSEN wITH CARE

SUBROUTINE REQUIRED

NODI

PRBSTA

PRB

DIMENSION U(1),Y(1)»T(1)
DIMENSION FI(30)LAC(L7)LX(17)
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SUBROUTINE GLS(DAT»TeABeMeNAYNByNCyITERyITERL»IFILToINIT,IPRINT,
FEPSTeIAIR)

COMPUTES THE GENERALIZED LEAST SQUARES ESTIMATE
AMQ)*C(Q) Y(T) = B(@)*C(Q) U(T) + E(T)

ACQ)=1 + A(L)*Qx*k(=1) +eee+ A(NA)*Q*x*x(=NA)
B(Q)= B(1)*Q*k*(=1) +see+ B(NB)*Qkx(=NB)
C(RI=1 + C(1y*Q@**k(=1) +ese+ C(NC)*Q%x(=NC)

AUTHOR TORSTEN SODERSTROM 1971-10-01
DAT = VECTOR OF ORDER 3%M» CONTAINING THE DATA IN THE FOLLOWING FORM
TIME(D) »U(L) o Y(L) »TIME(2) r0ee Y(M) '
T - VECTOR OF ORDER (NA+NB+NC) AT RETURN CONTAINING THE PARAMETER
ESTIMATES
T = (A(l)r...’\(NA)rB(l)v...B(NR.rC(l)v..-C(NC))
AB = MATRIX OF ORDER M*(NA+nNB+NC) USED INTERNLY
M = ORDER OF U AND Y (NUMBER OF SAMPLES) (MIN 31,MAX 1000)
NAPNB»NC = ORDFR OF A»BrC RESP.
(NA+NB+NC)  (MIN 0»MAX 30)
ITER = MAX NUMBER OF ITERATIONS (MIN 0+NO MAX)
ITERL =~ MAX NMUMBER OF VGLS=CALLS (MIN 1.NO MAX)
IFILT = IFILT=0 THE FILTER C(Q) IS APPLIED TO ORIGINAL DATA

= IFILT=1 THE FILTER Cc(@) IS APPLIED TO FILTERED DATA
INIT = INIT=0 THE ITERATION IS STARTED WITH THE LS-ESTIMATES OF A AND B

INIT=1 THE ITERATION IS STARTED WITH GIVEN VALUES OF A AND B
INIT=2 THE ITERATION IS STARTED wITH GIVEN VALUES OF C
IPRINT = IPRINT =0 MINIMAL RESULTS ARE PRINTED
JPRINT =1 MEDIUM RESULTS ARE PRINTED
IPRINT =2 MUCH RESULTS ARE PRINTED

EPST = TEST QUANTITY FOR STOP OF ITERATIONS
IA»IB DIMENSION PARAMETERS OF AB

THE VECTOR DAT IS NOT DESTROYED

SUBROUTINE REQUIRED

L5

LSG

RESID

FILT

VGLS

DSYMIN

EIGS

ODIMENSION DAT(1)»T(1),AB(IA»IB)

DIMENSION U(lODO)vUF(lOOO)vY(lOOO)0YF(1000)vRES(1000)'DATA(3OOO)
DIMENSION T1(30)T2(30)sTT(30)sNNB(1)

COMMON/LSCOM/ V»SSeP(50050),C(50),Q(50)
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SUBROUTINE PRBSTA(LA#NA)
SUBROUTINE TO START UP THE PRB=SUBROUTINE

REFERENCESe We we PETERSONs ERROR=~CORRECTING CODES

Bs ROSENGREN AND I. NORDHr KONSTRUKTION AV PRBS=GENERATOR

M. RUDEMO, ON PSEUDO=RANDOM NOISE GENERATED BY SHIFT REGISTERS
AUTHORs» STURE LINDAHL 1970-02-10

REVISE» STURE LINDAHL 1970-11-24

LA VECTOR» CONTAINING THE FEEDBACK=POLYNOMIAL
NA NUMBER OF BITS IN THE SHIFTREGISTER

NA MUST BE IN THE RANGE 3+LEeNALE.17
SUBROUTINE REGUIRED

NONE
DIMENSION LA(L)
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SUBROUTINE PRB(LALX»Y»NA»AMP)

SUBROUTINE TO GENERATE A NEW STATE IN A PRARS=GENERATOR
REFERENCES» wWe We PETERSON» ERROR CORRECTING CODES

Be ROSENGREN AND T+ NORDHe KONSTRUKTION AV PRBS-=GENERATOR

Mo RUDEMO» ON PSEUDO-RANDOM NOISE GENERATED BY SHIFT REGISTERS
AUTHOR» STURE LINDAHL 1970-(2-10

REVISEDy» STURE LINDAHL 1970-11-23

LA VECTORy» CONTAINING THE FEEDBACK=POLYNOMIAL
X VECTOR» CONTAINING THE ACTUAL STATE

Y OUTPUT FROM PRBS=GENERATOR

NA NUMBER OF BITS IN THE SHIFTREGISTER

AMP SPECIFIED AMPLITUDE OF QUTPUT-SIGNAL

LA CAN BE ASSIGNED VALUES IN A STARTROUTINE PRBSTA

SUBROUTINE REGUIRED
NONE

CIMENSION LA(1) LX(1)
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SUBROUTINE NODI(NODD»GAUSS)

GENERATES RANDOM NUMBERS N(0s1)+SUITED FOR REPEATED USE.
REFERENCE B JANSOMNe RANDOM NUMBER GENERATORS.,
AUTHOR K EKLUND 9/9 1970

GAUSS~-RETURNED COMTAINING A RANDOM NUMBER N(0r1)

NODD =-BY FIRST CALL OF NODI» NODD MUST EQUAL AN 0ODD INTEGER
NODD IS5 RETURNED CONTAINING A NEW ODD INTEGER WHICH
IS USED BY REPEATED CALLS ‘

SUBROUTINES REQUIRED
NONE




onnnonononnnnnnnnnnnnnnnnnnnnnnnnnnonnnnnnoonn

SUBROUTINE LS(DAT,T»ABsMeNUsNAYNBsIA»IBs IPRINT)

COMPUTES LEAST SQUARES MODEL
Y(TI+A(L)*Y(T=1)+o e +FA(NA) *Y (T=NA) =
BLOL)*UL(T=1)+40eBL(NB(L))*UL(T=NB(1))+s0,

BNUCL) %UNU(T=1)+0 0+« BNU(NBINU) ) *UNU(T=NB(NU) ) )+E(T)
AUTHOR» TORSTEN SODERSTROMy 1970~03-03

REVISEDs TORSTEN SODERSTROM» 1971-10-01

DAT-VECTOR OF ORDER Mk (NA+NB(1)+...+NB(NU)+1)

CONTAINING THE DATA IN THE FOLLOWING FORM

TIMECL) »UL(1)2U2(1) pae e UNU(L) »Y (1) 60

TIME(2)pUL(2) v U2(2) r o0 s UNU(2) pY(2) 040,

TIME(M) »UL (M) »U2(M) p o0 s UNU(M) p Y (M)

T=VECTOR OF ORDER (NA+NB(1)+.,.NB(NU))

TZCACL) p o s AUNAY #B1(1) » oo BLINB(1)9B2(1) »+eBNUINBINU)))

AB-MATRIX OF ORDER Mx(NA+NB(1)+s¢«+NB(NU)+1) USED' INTERNLY

M=NUMBER OF SAMPLES (NO MAX)

NA=NUMBER OF A~-PARAMETERS.

NU=NUMBER OF INPUTS

NB=VECTOR OF ORDER NU

NB(I) IS THE NUMBER OF BI~PARAMETERS

THE FOLLOWING RESTRICTIONS ON MyNA»NU,NB MUST HOLD

(NA+NB(1)+eeoNB(NU)) (MIN 0sMAX 50)

NA+NB (1) +4 0 o NBINU)+MAX(NAINB(1) » 40 e NBINU)) oLTe M

i1A»IB = DIMENSION PARAMETERS OF AB £

IPRINT=PRINT PARAYETER,

IPRINT=0=NOTHING IS PRINTED.

IPRINT=1 THE PARAMETERS ESTIMATES AND STANDARD DEVIATIONS
THE LOSS FUNCTION AND THE SINGULAR VALUES ARE PRINTED

IPRINT=2 AS IPRINT=1 + THE COVARIANCE MATRIX OF THE PARAMETER
ESTIMATES IS5 PRINTED

THE FOLLOWING VARIABLES LIE IN A COMMON BLOCK CALLED /LSCOM/
V=THE LOSS FUNCTION

S=ESTIMATED STANDARD DEVIATION OF THE NOISE

P=MATRIX OF DIMENSION 50%50 = THE COVARIANCE MATRIX OF

THE PARAMETER ESTIMATES

C=VECTOR OF DIMENSION 50 = THE STANDARD DEVIATION OF

THE PARAMETER ESTIMATES

G=VECTOR OF DIMENSTON 50 CONTAINING THE SINGULAR VALUES

THE VECTOR DAT IS NOT DESTROYED

SUBROUTINE REQUIRED
LS@Q

UIMENSION AB(IA(IB)

DIMENSION DAT(1)¢T(1),NB(1)

COMMON /LSCOM / VyS»P(50050)C(50)9Q(50)
DIMENSION XX(5001)
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SUBROUTINE LSQUAB XX,QvEPSsMU NNyJJP,IM IN,IP INP)

COMPUTES THE LEAST SQUARES SOLYUTION OF THE SYSTEM A#X=B USING
SINGULAR VYALUE DECOMPOSITION.

REFERENCE, GOLUB=REINSCH,SINGULAR VALUE DECOMPOSITION AND
LEAST SQUARES SOLUTIONSs

AUTHOR,TORSTEN SOQERSTROM,11/06=70

AB=MATHIX OF OQRDER MM*(NN+JJP)s THE FIRST NN cOLUMNS CONTAIN
THE MATRIX aes THE LAST JJP COLUMMNS CONTAIN THE MATRIX Be
XX~MATRIX OF ORDER NN#JJP,RETURNED CONTAINING THE LEAST
SGUARES SOLUTION \
Q=VECTOR OF ORDER N, RETURNED CONTAINING THE SINGULAR VALUES OF As
EPS=1F AMY CLEMEMT OF § 1S «LTe EPS#MAX Q(I)y IT IS
CONSIDERED AS ZERO

MM=NUMBER OF ROWS OF A (NO MAX),

NN-NUMRER OF COLUMNS OF A (MAX G0)s NN aLEe MMo

JJP=NUMBER OF COLUMNS OF B (NO MAX).

IMyINSIP, INP=DIMENSION PARAHETERS

ATTENTION. THE MATRIX AR [3 DESTROYED.

SURBROUTINE REQUIRED
NMONE

DIMENSIOH AB(IM,INP) JXX(INZIP)»QCIN)
DIMENSION E(50)
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SUBROUTINE FILT(UrUF»XeNMet)

COMPUTES THE FILTERED SIGNAL
UF(T)IZU(T)#X (1) *U(T=1) 40 e o +X{N) RU(T=0)
STARTVALUES 0OF U(T) ARE ASSUMED TO BE ZERD

AUTHOR» TORSTEN SODERSTROM 1971-10-15

U = VECTOR OF ORDER My, CONTAINING THE SIGNAL TO BE FILTERED
UF= VECTOR OF ORDER M, CONTAINING THE FILTERED SIGNAL

X = VECTOR OF ORDER RNy CONTAINING THE FILTER

M = ORDER OF U (MIN 1,NO MAX)

N = ORDER OF X (MIN 0sMAX 20)

NelEeb

SUBROUTINE REQUIRED
NONE

DIMENSION U(1)UF (1) X (1)
DIMENSION F1(20)
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SUBROUTINE RESID(UrY»RES»XeMeNA»NB)

COMPUTES THE RESIDUALS
RESITIZY(TI+A(L) Y (T=1) 400 s ACNAY XY (T=NA) =
=B(1)*U(T=1) =40 ,=BINB)*U(Y=NB)

RES(T)I=0 T=1lress MAX(NAPNB)

AUTHOR TORSTEN SODERSTROM 1971-10-15

U = VECTOR OF ORDER M, CONTAINING THE INPUT SIGNAL
Y - VECTOR OF ORDER Mr CONTAINING THE OUTPUT SIGNAL
RES = VECTOR OF ORDER M »CONTAINING THE RESIDUALS

X = VECTOR OF ORDER (NA+NB)

X=(A(1) 2 a0sA(NA) »B(1)rseeBINB))

M= NUMBER OF SAMPLES (MIN 1»,NO MAX)

NA»NB - ORDER OF A RESP B

(NA+NB) (MIN 0rMAX 20)

MAX(NAYPNB) oLTe M

SUBROUTINE REQUIRED
NONE

DIMENSION U(1) Y (1) RES(1)rX(1)
DIMENSION FI(21)

G.12
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SUBROUTINE VGLS(UsUF»Y»YFoRES, ToyMyNAYNBsNC, IFILT» IPRINT, ITMAX)
COMPUTES THE LOSS FUNCTION ETC FOR THFE GLS PROBLEM
AUTHOR  TORSTEN SODERSTROM 1971-10-01

U = VECTOR OF ORDER ™ CONTAINING THE INPUT
UF= VECTOR OF ORDER ™ CONTAINING THE FILTERED INPUT
Y = VECTOR OF ORDER ™ CONTAINING THE OQUTPUT
YF= VECTOR OF ORDER ™M CONTAINING THE FILTERED OQUTPUT
RES=VECTOR OF ORDER ™ CONTAINING THE RESIDUALS RES(TI=A(@)*Y(T)=B(Q)*U(T)
T = VECTOR OF ORDER (NA+NB+NC) CONTAINING THE ACTUAL PARAMETER VALUES
M=ORDER OF U AND Y (NUMBER OF SAMPLES) (MIN 31».MAX 1000)
NA»NB»NC = NUMBER OF A»BeC PARAMETERS RESP
(NA+NB+NC) (MIN 0oMAX 30)
IFILT = IFILT=0 THE FILTER C(Q) IS APPLIED TO ORIGINAL DATA
= IFILT=1 THE FILTER C(@) IS APPLIED TO FILTERED DATA
IPRINT =PRINT PARAMETER
THE FOLLOWING VARIABLES ARE PRINTED
IPRINT=0 THE LOSS FUNCTION AND THE GRADIENT
STANDARD DEVIATIONS OF THE PARAMETERS AND THE NOISE
EXTRAPOLATED PARAMETER ESTIMATES BASED ON NEWTON=RAPHSON
ELSE AS TPRINT=0 +
THE MATRIX OF SECOND ORDER DERIVATIVES
ITS EIGENVALUES AND EIGENVECTORS
THE ESTIYMATED COVARIANCE MATRIX OF THE PARAMETER ESTIMATES
iTMAX = MAX NUMBER OF NEWTON RAPHSON STEPS.

=

e

SUBROUTINE REGUIRED
FILT
RESID
USYMIN
EIGS

DIMENSION UCL)»UFCL) pY (L) pYF(1)P»RES(1)»T(L)

DIMENSION RESF(1000)»vT(30)VTT(30+30)P(30+30)¢DT(30)»
FT2(30)rR(30030),EV(30),C(20)

DOUBLE PRECISION P
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SUBROUTINE DSYMIN(NeIA»IFAIL»A)

DOUBLE PRECISION YERSION OF SUBROUTINE SYMIN,
SUBROUTINE FOR INVERSION OF SYMMETRIC MATRICES.
REFERENCE»RUTISHAUSER»CACM»ALGaNR.150.
AUTHOR 1K+ MORTENSSON G4/04=68,

A=MATRIX TO BE INVERTED.UPON RETURN A CONTAINS A=1 IF THE

INVERSION HAS SUCCEEDED.

N=ORDER OF A,

[FAIL=-RETURNED 0 IF THE SUBROUTINE HAS EXECUTED CORRECTLY.
1 IF NOT.

IA=DIMENSION PARAMETER.

CAUTION.NEAR-SINGULAR MATRICES MAY GIVE MISLEADING RESULTS.
MAXIMUM ORDER OF A=40,

SUBROUTINE REQUIRED
'NONE

COUBLE PRECISION A»BIGYTEST»Q.P

DIMENSION A(CIA»IA)P(40)rQ(40)IR(40)
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SUBROUTINE EIGS(AsRyEVINeTA,MY)

COMPUTES EIGENVALUES AND EIGENVECTORS OF A REAL SYMMETRIC MATRIX
USING THRESHOLD JACOBI METHOD.

REFERENCE» RALSTON AND wWILF» MATHEMATICAL METHODS FOR DIGITAL
COMPUTERSe CHAPTER 7.

AUTHOR» CoKALLSTROM 1970-07-16.

A =ORIGINAL MATRIX (SYMMETRIC)» DESTRAOYED IN COMPUTATION,. :
RESULTANT EIGENVALUES ARE DEVELOPED IN DIAGONAL OF MATRIX IN
DESCENDING ORDER., .

R =RESULTANT MATRIX OF EIGENVECTORS (STORED COLUMNWISE, IN SAME
SEQUENCE AS EIGENVALUES). ,

EV=-VECTOR CONTAINING THE EIGENVALUES IN DESCENDING ORDER.

N =ORDER OF MATRICES A AND R.

IA=-DIMENSION PARAMETER,

MV=INPUT CODE '

0 COMPUTE EIGENVALUES AND EIGENVECTORS.:
1 COMPUTE EIGENVALUES 0#dLY (R MUST STILL APPEAR IN CALLING
SEQUENCE) »
THE OFF=DIAGONAL FLEMENTS IN A ARE SET EQUAL TO O BEFORE RETURN.
THERE ARE NO MAXIMUM ORDER OF THE MATRICES A AND R.

SUBROUTINE REQUIRED
NONE

UIMENSION A(IA»IA)Y+R(TAPIA)»EVI(L)
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ABSTRACT.

Estimation of the parameters in a mixed autoregressive
moving average process leads to a nonlinear optimization
problem. The negative logarithm of the likelihood func-
tion, suitably normalized, converges to a deterministic
function, called the loss function, as the sample length
increases. The local and global extrema of this loss
function are investigated. Conditions for the existence

of a unique local minimum are given.
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1. INTRODUCTION.

Let {y(t), t =1, 2, ...} be a stationary gaussian sto-
chastic process with rational spectral density. It fol-
lows from the representation theorem, see e.g. Astrdm
(1970), that the process can be representated as a mixed

autoregressive moving average process, i.e.
Alqly(t) = C(gle(t) (1.1

where e(t) is a sequence of independent normal (0,1) ran-
dom variables. The operators A(g) and C(q) are given by

ACQ) n n-1

1
O
+
U]
—
a)
+
+
4]

(1.2)

11
O

C(qg) ooy c4q + ... + C
where q is the forward shift operator.

It follows from the representation theorem that the poly-
nomial A(z) can be chosen so that it has all zeros inside
the unit circle. The polynomial C(z) may have zeros in-
side and on the unit circle. The number n can be chosen

so that A(q) and C(g) have no common factors.

The estimation of the parameters dq5 +ev @5 Cqy o ae. Cp

with the maximum likelihood method leads to the problem

of minimizing the function

N : e ) =

v c2(t) (1.3)

(a,},,.. an, Cl,],.a. n -Z-N't

1 ~73 =

1

See Astrém-Bohlin (1966).The residual e(t) is a function of
the observations y(1), y(2), ... y(t). It is defined by




~

Aa) orpy = AQICGI) Ly, (1.4) |
C(q) C(q)A(q) |

e(t)

where

A(q) =q + a,q + ... t+ a
(1.5)
é(q) = q + c.q + ... +

Since C and A are assumed to have zeros strictly inside the
unit circle and since we anly are considering asymptotic
properties the initial conditions of (1.4) are not important.

They can e.g. be selected as zero,

The maximum likelihood estimates of the model parameters
are obtained by finding the absolute minimum of VN for
each N. It can be shown that the estimate will converge
to the true parameter values if the polynomials A(z) and
C(z) have zeros strictly inside the unit circle. Since

~ ~

the function VN is nonlinear in Cqs ++e5 c the minimiza-
tion must be done numerically. It may happen that

the function VN has several local minima. The existence

of local minima may lead to wrong estimates and cause dif-

ficulties in the computations.

Since VI i1s a random variable it is in general very diffi-
cult to analyse the existence of possible local minima.

It can, however, be shown that VN under mild conditions,
see Hannan (1960), converges with probability one to the

function V, defined by




~ ~ ~ ~ . N A ~ ~
V(a1 see @ps Cq e cn) = 1lim V (a1 vee Al Oy
N->oo
o1 [ AmC(AG D™ dz
- ‘é’ EEZ (t) - ~ _,_1 . _»1 =
b A(z)C(z)A(z YC(z ) =z

where the integral path is the unit circle.

The purpose of this report is to find all the local extre-

ma of (1.6).




2. STATEMENT OF THE PROBLEM.
It was previously assumed that

o n = deg A(z) = deg C(z) = deg A(z) = deg é(z)
(2.1)
A(z) and C(z) have no common factors

This condition can be generalized somewhat. For technical

reasons 1t will be suitable to assume that

o n = deg A(z) = deg A(z)
. (2.2)

m = deg C(z) = deg C(z)
and allow common factors in A and C. It is not neces-

sary that n = m, although this may be a natural choice.
The apparently more general assumption

deg A(z) ¢ deg ACz)

deg C(z) g deg C(z)

is easily obtained from (2.2) putting the last a, and ¢,

parameters zero when necessary.

The polynomials involved are now rewritten as

Alz) =z + a1znm1 .. +a = §(Z-ai)
A(z) = 70+ éqznuq + ... 4 an = %(Z“&i)

| C(z) = z + qumw1 + te = ?(Z“yi) o
Clz) = 2™ + é/izmm1 + + ém = ?(z-;i)




To establish convergence of VN it is furthermore assumed

that

lag | < 1 1 ¢ 1 ¢<n (2.4)
ijl < 1 15 j < m (2.5)
To ensure that a; = a;, 12 1, vy Dy Cj = Cj’ is= 1,

., M,can be & local minimum the following conditions are

assumed
]&il < 1 ¢ 1 ¢n (2.6)
'le < 1 1T <3 sm (2.7)

The conditions (2.u4) and (2.5) are required to guarantee
that the residuals will have finite variance. The condi-
tion (2.7) restricts all zeros of C to lie inside the

unit circle.

The problem is to find all local extrema of the loss func-

tion V (1.6) subject to the constraints (2.4) - (2.7).




3. PRELIMINARIES.

The local extrema of the loss function will now be deter-
mined. The calculations are technical but straight-forward.

The results are summarized as Lemma 4.1 in Section k4.

Introduce the reciprocials of the polynomials A, A, C,

and'é defined as

[ A%(z) = 1 +‘aqz oo, + anzn = ZDA(Z—1>
A¥(z) = 1 + 512 oo énzn = 2Rz

) (3.1)
C¥(z) = 1 + Cuz + ..+ cmzm = sz(z—1)

| C¥(z) = 1 + 51z + ...+ émzm = zmé(z_q)

The stationary points of V are the solutions of

— = 0 1 ¢ 1 ¢ n
aai
{
(3.2)
i¥m = 0 1 ¢ 1 ¢m
9C.
1

After some computations we find that these conditions can

be written as

1 3g i A(z)C(2)C¥(z) dz
e z . — — = { 1 ¢ 1 ¢ n
201 A(z)A®(z)C(2)C¥(z) =z
(3.3)
1 <j€ 1 ALIAR(2)C(2)CH(z) _dz | 1 cicm
A(z)A¥(2)C(z)C%(z)*

211

To avoid the formal difficulty that may arise if A and
C have a common factor the polynomials A' and C' are now

introduced.




CA(z) = A'(z)D(z)
C(z) = C'(z)D(z)
n-k
A'(z) = 1 (Z—ai)
1
m-k
J C'(z) = 1 (z=y;)
1
k
D(z) = 111(2m6i)
A'(z) and C'(z) relatively prime
<d‘i;};Yj T ¢ 1 ¢<n-k, 1T ¢ 3 ¢ m=k)

The case k = 0 is permitted.
In the same way assume

A(z) = A'(z)D(z)

C(z) = C'(2)D(z)
. n-k .
A'(z) = 1 (z=ai)
1
1. m-k .
C'(z) = 1 (z-y.)
] i
. koo
D(z) = g(z~6i)
A'(z) and C'(2) relatively prime

(3.4)

(3.5)




Note that the value of k depends on the actual point (a,,

ces Al Cqp ey cm) in the parameter space.

The polynomials A'®¥(z), A'%(z), C'%(z) and C'%(z) are de-

fined analogous with (3.1).

Furthermore introduce the function

fln) = Al(z)CI(z)CIH(2) (3.5)

AT (2)A'%(2)C"(2)C'%(2)C%(2)

Using (3.4) - (3.6) the equations (3.3) are rewritten

o i aez 92 < g 1 <4 <n
211 4 z

< (3.7)
A % zlA'“(z)f(z) dz . 0 1 ¢ 1 ¢ m

L 2]'[i Z

The definition of A'¥(z) and C'¥*(z) gives.

n-k - .
ZC!mLc§zl+]f(z)éE=O T <1 gn
=0 3 o2mi 2 |
4 (3.8)
n-k . .
) al 1 § 21T le(2) SERG 1 ¢1 <m
j=0 3 2mi z
Define for p 3z 1
F o= —3——% PE(z) 42 (3.9)
p 2 i z

Then (3.8) becomes.




i 1A
1 Ch v Co Xk F1
0
0
1 el ! -
- I = 0 (3.10)
1 toa :
1 24 “n-%k
% ‘ ' O
O &
~ . ~ g N R
i 1 21 anwk__gn+m~k*

The matrix in (3.10) is (n+m) x (n+mmﬁ). Since A'(z) and
C'(z) by assumption are relatively prime it follows from
elementary algebra that the rank of the matrix is n+m~ﬁ.
See e.g. Dickson (1922).

Thus
A % teez)d2 - g 1 ¢ i < nt+m-k (3.11)
201 Z

The poles of f£(z) inside the unit circle now are relabelled

through
N n-k m-ﬁ R 2 ti
A'(z)C'(z) = T (z-a.) T (z=v:) = T(z-u.) (3.12)
i j i
1 1 1

where u; % uy if i f3, t; » 1 all i and
2 ~
; t; =ntom- k = k (3.13)
This implies that f£(z) can be written
F(z) = —8L2) (3.14)

L t.

’H (Z“"ui)

i=1
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where

[ 3PEY
C7(z) (3.15)
ATR(2)C'¥(2)CF(2)

g(z) = A'(2)C'(z) -

is analytic inside the unit circle.

Using (3.14), the equation (3.11) can be replaced by

i-1 % i-1
0 = ] i g(zi dz = J Res _EZ_M__&L% =
2l T(z-u.) 3 = 2T m (zeuy)
L 1 (-1 zlmqg(z) _
k=1 (g -1 T (z-uy) ] =l
j:1 k
Ik
I tkm1 ., =1 . (t.—1=v)-
1 k (V) _i-1 1 g(z)
- L D'z ]Z:u D .
k=1 (=11 v=0 |V K n(z-u) Y

where D denotes differentiationﬁwith'respect to z.

Hence
g T (). i1 .
Y ) D VIzt 1., ", =0 1 ¢1i ¢ n+m-k  (3.16)
k=1 wv=0 Tk
where
1 (tkmqmv) g(z)
dp, = D T (3.17)
V! (g =T V) ! I (z-u.) K :
. J
j#k Z=U
k

Using matrix notation (3.16) can be expressed as
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S . @ =0 (3.18)

d
I £3t2~1

and S a (m+n—£) x (m+nwkﬂﬁ) matrix

(t,-1)
0 -
K 0 1 N N £ 2
! (’tz”’]) 1 L
u 1 u [z'1 _
1l 2 ( 7 ’ Z=Ug
2 2 Tt -
u 2u u D & Tz ],
S = 1 1 2 Z—U'Q,
m+n-k-1 . m+n-k-2 m#n-k-1 () nwnﬂ;4]
u (m+n-k-1)u A .. D [z -u
|1 1 2 : z=u,y
The matrix S is a generalization of the van der Monde
matrix. It follows from Kaufman (1969) that its upper,
square part is non-singular. Thus (3.18) implies
G =0 (3.19)

A useful lemma will now be proved.
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Lemma 3.71. Let h(z) and g(z) be analytic functions in a

neighbourhood of z,. Assume that g(z;) f 0. Then

D(p)[h(z)g(z)]Z:Z = 0 0
| 0

(3.20)

n
J
2N

3

is equivalent to

DPIn(z)1 =0 0
B

(3.21)

A
J
"

3

Proof. The equation. (3.20) implies.

P D . _:
) ( }D(l)[h(z)lzzz DP ) g(z)1 . =0 0¢pn
1=0\1 0 0

or equivalent in matrix form

{D(O)g(z)

D(1)g(z) D(O)g(z)

p(2) p¢o)l

a(z)  208Mg(a) 2(z)

_D(n)g(z) ' . ) : ; . D(O)g(z)m

()

p{Mn(z)

° ° = O (3022)

D(n)h(z)x

Z=ZO

According to the assumption g(zo) ¥ 0 the matrix is non-
singular and the equivalence between (3.20) and (3.21)

follows. [
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Equations (3.19) and (3.17) give

(t. ~1=vy)
p ok glz) . =0 (3.23)

m (z-u.)
sk 3 dET

k (3.24)

Using the Lemma 3.1 again [with h(z) = A'(z)C'(z) cf.

(3.15)] the following equations are obtained.

p A1 . =0
2545 (3.25)
0 1 ¢ty y» 1T ks
Hence
~ L tk"1 ~
A'(z)C'(z) = 1 (z=uk) : = A'(z)C'"(z) (3.26)
k=1

Thus it has been shown that the stationary points, i.e. the

solutions of (3.7) must fulfil (3.26). Conversely, the calcu-
lations show that (3.26) implies (3.7). The latter assertion
can be proven directly since (3.26) implies that f(z) has no

poles inside the unit circle.
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4. MAIN RESULT.

The following lemma is a summary of the calculations in

the previous section.

Lemma 4.71. Consider the loss function (1.6) subject to

the conditions (2.4), (2.7) and the constraints (2.5),
(2.8). Let A'(z), C'(z), A'(z), C'(z) be defined by (3.4),
(3.5). Then the stationary points of V are the solutions
of

A'(2)C'(z) = A'(2)C'(z) (4.1)

The next lemma deals with global minimum points.

Lemma 4.2. Consider the loss function V (1.6) subject to
the conditions (2.4), (2.7) and the constraints (2.5),
(2.6). Then the global minimum points of V are the solu-

tions of
A'(z)C'(z) = A'(2)C'(2) (4.1)
Proof. Introduce

HH(z) = A¥(z)C*(z) - 14+ ¥ h.z

~ . bl
A¥(z)C¥(z) 1

I

where the infinite series converges in and on the unit

circle. Put hO = 1, then

Thus
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Vs 1/2
with equality if and only if H(z) = 1 or
A(z)C(z) = A(2)C(z)

Invoking (3.4) and (3.5) we find that this equation is

equivalent to (4.1). o

It remains to analyze the solution of (4.1). The equa-

tion can be written as

C'(z) _ C'(z)
A'(z)  A'(z)

(4.2)

The number k has not been determined yvet. To establish
equality in (4.2) for all z it is necessary that both
sides have the same polesgs and zeros., Since there are
no common factor it is thus necessary and sufficient
that k = k, A'(z) = A(z) and é'(z) = C(z).

Two cases can be separated:

1. Xk = 0. Then k = 0 and the loss function has a unique

local minimum

2. k > 0. Then k > 0 and there are infinite many local
minimum points. In fact, these minimum points form a
manifold in the parameter space. On this manifold the

loss function obtains its infimum. This case means that
that the model contains too many parameters.

Another way of characterization is the following. The un-

~

known parameters are k, aj, ..., al_/,

.y dﬁ. Of these must for all minimum points

t H ~
c ., C
1° > Tm-k?
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k =k
;! = al 1 ¢ 1 ¢ n=Xk
i i
c!l = ¢! 17 ¢ 1 ¢ m=k
i i
while dy ... ai (if k > 0) are arbitrary.

The result of the calculation and the discussilion 1s summed

up in the following theorem.

Theorem., Consider the loss function (1.6) subject to the
conditions (2.4), (2.7) and the constraints (2.5) and (2.6),
Assume that deg A(z) = n, deg A(z) = n+£, deg C(z) = m,

deg C(z) = m+m where min(%,ﬁ) > 0 and that A(z) and C(z)

are relatively prime.

~ ~

i) If min(n,m) = 0 there is a unique local minimum,
namely
a, 1 < 1 < n
~ 1 - -
a. =
i R
0 if i > nand n > 0
C. 7 <1 <m
R i - -
i .
0 if 1 >mand m > 0
ii) If min(n,m) > 0 there are infinitely many local

minimum points given by the manifold

A(z) = L(z)A(z)

A if m > n
C(z) = L(z)C(z)z" ™




1ii)

or
A(z) = L(2)A(z)z" T

if m < n
C(z) = L(z)C(z)

L(z) is an arbitrary unitary polynomial of degree

min(n,m). Each point in the manifold also is a

global minimum point.

There are neither local maxima nor saddle points.
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ABSTRACT.

Maximum likelihood identification of a linear dynamic sys-
tem is performed as a minimization of a loss function. The
concept of uniqueness of the parameter estimates is close-
ly related to the number of local minimum points of this
loss function. The number of local minimum points is exa-
mined for some different models. Asymptotic expressions
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imply a unique local minimum point.
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I. INTRODUCTION.

The maximum likelihood (ML) method is a useful tool for
estimation of parameters in system equations. The ML es-
timate Oy, is the global maximum point of the likelihood

~

function L(8), i.e.

Ly ) > L(8) all e

In most cases there is no analytical expression for the

~

maximum point 6 The maximization of L{6) has to be

ML®
done computationally using some search routine. Such a
search routine may converge to a local maximum point 6%

of L(8), i.e.
L(6%) 2 L(8) all 8 close to 6%

It is then valuable to know i1f the likelihood function

has a unique local maximum point or not.

This issue is closely related to the concept of identi-
fiability, see Bellman-Astr&m (1970). The purpose of this
report is to analyze the local maximum points of the like-
lihood function for some different structures. Bohlin
(1971) has given some tests, which can be used for de-
tecting if a local maximum or generally an arbitrary point

is a global maximum point or not.

The report is organized as follows: In this chapter some
basic assumptions are given. In the next chapter the ma-
thematical tools of the analysis are penetrated. Chapter
IIT contains an examination of the global maximum points
for the different structures. It is desirable that the
true value 6 is a global maximum point and preferably a

unique one.




Moreover, this examination simplifies the analysis of
the local maximum points, since it describes all "de-
sirable" points. The last three chapters deal with the
examination of the local maximum points for some speci-

fic likelihood functions.

Consider a system given Dby

y(t) = (850 ult) + H(ss3q Delt)

where

G(o3q" 1) = ) gi(a)qml
L

H(s397 1) = J hy(e)q ™"
0

u(t) is the input, y(t) the output and e(t) gaussian white noise
with zero mean and standard deviation A. q_1 is the back-

ward shift operator. It is assumed that ho(e) = 1. The

system can be illustrated by the figure below.

el(t)

H(©;q)

u(t) 6(6:q-) . y(t)

Figure 1 - Block diagram of the system.




The purpose of an identification is to estimate the
value of the vector 6 based on an input-output record.

The true value will be denoted by 9.

In this report some different transfer functions G and
H will be considered. It is assumed that G and H are
rational functions in qﬂq. The coefficients are func-

tions of 8,

Under these assumptions the maximization of the likeli~
hood function is equivalent to the minimization of the

loss function, see Astrdm-Bohlin (1966).
N N ”
V(8,8) = 5= ) e (1) (1.1)

where the residuals €(t) are defined by

y(£) = 66307 Hult) + H(o3q  De(t) (1.2)
while the output is given from

y(t) = G(o5q  Dult) + H(eza  Delt) (1.3)

- The ML estimate 6 of 8 is thus given by

ML

V(8. ,08) = min V(6,6)

ML 5
assuming that a global minimum exists.

The residuals can be written as

H(o3q )
i)

-1 ~oo=1
G(Bsq ) = G(osq ) Wit +

= - e(t) (1.4)
H(63,q ) H(6:q

e(t) =




In the analysis of the loss function (1.1) ergodic theo-

ry will be used.

The generalized least squares method has been treated
elsewhere by the author in S8derstrdm (1972), where it

is shown that the loss function in this case has a unique
local minimum point when the signal to noise ratio is
high' enough. For small values of this ratio there may

exist several local minimum points.

For the other cases treated here it is shown (under suit-
able assumptions) that all local minimum points are glo-
bal minimum points. There will be a unique global (and
local) minimum point if the correct order of the trans-

fer functions 1s used.




IT. MATHEMATICAL PRELIMINARIES.

In this chapter the basic mathematical tools for the ana-

lysis of the loss functions are given.

First some conventions used in the report are presented.
Then some polynomial equations are studied. A lemma giving

sufficient conditions for the existence of

lim V(e,86)
N-é-oo

is considered. Finally the concept of persistently exciting
signals is treated and some applications are made. Some of
the lemmas are given in S&derstrdém (1972). They are stated

here too in order *to clarify their use in the analysis.

In order to simplify the notations the following conven-

tions will be used throughout the report.

Convention 2.1. Polynomial operators will be denoted by ca-
1

~

will be denoted by n or n with a corresponding lower case

pital letters, e.g. A(q '). The number of coefficients

letter as a subscript.

Examples:
n
-1 & -1 A 1 S|
Alg” ) =1+ ] ajaq ACqg D=1 +) a;q
1 1
L2 Sl Py
B(g~ ) =] biq B(qa" ) =) b.q
1 1




The expression

is interpreted as zero if n_ = 0.

Convention 2.2. Given two polynomials

n n
a . b »

ACz) = ) a.z" B(z) = ) b.z"
. 1 . 1
1=0 1=0

the notation A(z) = B(z) means

a; = b. 0 < 1 < mln(nagnb)

and

if ng > ny a; = 0 ny <1 g ng

if Ny > 0, bi = 0 n, <1 gng

Convention 2.3. Given the polynomials A(z) and B(z) (and

C(z)). They are said to be relatively prime if there is
no common factor to all the polynomials. The physical in-
terpretation is that the system

-1 _ =1
A(g Dy(t) = B(g Hu(t)

(A" Hyt) = Ba™Hutt) + cla™He))

is controllable and observable.




Convention 2.4. &£x(t) denotes

’ N
lim N z x(t)
Now - t51
If x(t) is an ergodic stochastic process £x(t) = Ex(t).

All stochastic processes in this report are ergodic. The

notation is used for deterministic signals as well.

The following elementary two lemmas from the theory of
equations will be useful. The proofs are not very diffi-

cult and they are given here.

The first lemma deals with an equation, which will occur

several times in the forthcoming analysis.

Lemma 2.1. Given the polynomials

Ny
A(z) = 1+ § a 7t
i=1
and
Ny,
B(z) = ] b,z
1=1

Consider the following equation in the unknowns (519 oo ey

aﬁa, by . bab) with n, = min(namna, nb—nb) x> 0
A(z)B(z) - A(z)B(z) = O (2.1)

Assume that A(z) and B(z) are relatively prime.




i) If n, = 0 the only solution is given by
Az) = A(z)
. (2.2)
B(z) = B(z)
ii) If n, > 0 all solutions are given by
A(z) = A(z)L(z)
(2.3)

B(z) = B(z)L(z)
where

n
L(z) = 1+ 7§ 857

n
The coefficients (ﬁLi)1Z are arbitrary.

Proof. Since A(z) % 0, Az) f 0 the equation can be writ-

ten

ACz) A(z)

B(z) | é(Z) all z

Noting that the right hand side must have the same zeros

and poles as the left hand side the assertions are obvious.

Q.E.D.

Corr. If B(z) is of the form

B(z) =1 + ) b.z
] i

and B(z) of the form




Ip :
B(z) = 1 + ) b.z"
1 1

the lemma remains true without changes.

Lemma 2.2. Consider the following matrix of order

max(na+nb, n_t+ng) x (na+nb)

o ! ; -
b1 0 o 0
| é
L] a 1
P = bnb 4 . é ana N (2.’4)
b,I |
0 ? 0
i bnb 3 ana‘
n, columns Ny columns

(At least one of the figures bnb’ an, is on the last row.)

~

Let A(z) and B(z) have m common zeros. Assume that n, >

2 N_, Ny o3 N X )
Then rank P = max(na+nb, na+nb) - m.
Proof. Consider the equation

A(z)B(z) - A(z)B(z) = 0

From lemma 2.7 it is known that the general solution is

of the form

Alz) = E(z)L(z)

"

B(z) = B(z)L(z)

11




where

A(z) and B(z) are relatively prime

2
L(z) = 1 + ) g z*t
1
n, = min(n_-n_, nbmnb) + m
Introduce new variables o ey d1
Na
n. )
Clz) = ) c.zt = A(z) - A(z)
5 i
b . R
D(z) = ) d,z' = B(z) - B(z)
1

The equation is then
C(z)B(z) = A(z)D(z) = 0
with the general solution
C(z) = A(z)(L(z) - 1)

D(z) = B(z)(L(z) - 1)

However, this equation can be written as

dﬁb

by

10.




The expression of the general solution implies that
dim N(P) = n.

Thus rank P 1is given by

. T, _ - A
dim R(P~) = n Ny dim N(P)

n_ + - mi -n -n - I
a D ‘ n(na a’ b b)

]

max(na+nb, na+nb)m m

Q.E.D.
Remark. In the case ﬂa = n_, ﬂb = Ny (P is square) P is
nonsingular if and only if m = 0. This fact is already
shown by e.g. Dickson (1922). In this report, however,

the general case will be needed.

In the analysis of the loss functions ergodic expressions

will be used. The loss functions are all of the form

N
1y Ao
2N t=1

with e¢(t) given by (1.4). The following lemma gives suf-

ficient conditions for convergence of such expressions.
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Lemma 2.3. Consider the system/

y(t) = G(q” Hult) + Hg Delt)

where G(qmq) and H(q”1) are asymptotically stable fil-
ters of finite orders, and e(t) is white noise with fi-
nite fourth moment, independent of u(t).

The input u(t) is the sum of two terms,u1(t) and u2(t),
of which one may vanish. The term uj(t) is deterministic
such that to every e > 0 there is a periodic function
u%(t) fulfilling

[u ) - wi(t)] < e all t

The second term is given by
-
uy(t) = Flg Iv(t)

where F(qmj) is an asymptotically stable filter of finite

order and v(t) white noise with finite fourth moment.

Let Dq(qm1) and Dz(qmq) be two arbitrary asymptotically

stable filters of finite order. Then

4 N 1 -1 y(t)
lim g ) [D1(q )y(t) + Dy(q Dult)] (2.5)
t=1 u(t)

N-o

exists with probability one and in mean square.

If u(t) and y(t) are stochastic processes the limit is

- -1 ~Y(t)
E[D1<q Jy(t) + Dy(g Hult)]
u(t)

Proof. See S&derstrdém (1972).
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The notion of persistent excitation introduced in Astrom-
-Bohlin (1966) is very useful in the analysis of the loss

function.

Definition 2.1. u(t) is said to be persistently exciting

of order n if

1 X .
i) lim i ) ou(t) = 4 and
N- o t=1
1 N - -
lim 7 L luCt) - ulluCt+r) - al = Pu(T)
N0 t=1

exist and

ii) the n by n symmetric matrix
v, (0 r (1)L r (n=1)
R = ¢ ¢
u .
i ru(O) |

is positive definite.

Some simple properties of persistently exciting signals
and a characterization of this concept in the frequency
domain is given in Ljung (1971). In this report the fol-

lowing properties will be used (proved in Lijung (1971)).

Lemma 2.4. u(t) is persistently exciting of order n if
and only if the spectral density corresponding to the
sample covariance function is non zero (in distributive

sense) in at least n different points.
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If u(t) is periodic, the spectral density will be disc-
rete and consist of a number of &§-functions. The distri-

bution 6(x) is here considered as non zero in x = 0.
Corr. Let y(t) = H(qmq)u(t). If u(t) is persistently ex-
citing of order n and H(qm1) is stable and has no zeros

on the unit circle, then y(t) is persistently exciting

of order n.

A simple application is made in

Lemmamg;é. Let

g(t) = H(q DHult)

-1 n-1 -3
H(q ') = ) h.gq
. i
i=0
i) If y(t) = 0 with probability one and u(t) is per-
sistently exciting of order n, then hi =0, 1= 0,..
ii) If u(t) is not persistently exciting of order n,

then there exists H(qmq) £ 0 such that y(t) = O
with probability one.

Proof. See S8derstrdm (1372).

A combination of Lemma 2.7 and Lemma 2.5 gives a further

result.

,n-=1.
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Lemma 2.6, Given A(qnq)g B(qmq) and u(t). Assume that
A(qmq) and B(qﬂq) are relatively prime and that n, o=
= mln(namna, nb“nb) 3 0.

Consider the equation:

1

A B - A" B T HIu) = 0 a.s. (2.6)

~ ~

Let m = max(na+nb, na+nb).

i) If u(t) is persistently exciting of order m the

general solution is given by

AGQ™ ") = A" Hug™h
(2.7)

Bg" ") = B(g" (g™

where
T

L( —1) =1 + ) 2 -1 if n, = 1

q ] lq [

1 if n, = 0
The numbers zi are arbitrary.
ii) If u(t) is not persistently exciting of order m

there 1s at least one more solution of (2.6) than
(2.7).

Proof. If u(t) is persistently exciting of order m it

follows from Lemma 2.5 that

1 1

A" B - ag™Hre™h = o

The general solution is then obtained from Lemma 2.1.
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If u(t) is not persistently exciting of order m, Lemma

2.5 implies the existence of

such that

- _
H(g Ju(t) = 0
Writing the equation

1 1 1

A" e - aghe™ = Hg™h

and invoking Lemma 2.2 the assertion ii) follows.

Q.E.D.
The concept of persistent excitation is now applied to

a matrix consisting of covariances of the input and the

output.

Definition 2.1. Let y(t) = G(qsq)u(t). The following mat-

rix of order (m_+my ) x (ma+mb) will be called the system

covariance matrix of type (m_, my).

ry(O) . ry(ma-1) ‘ -ryu(O) .. _Pyu(mbmq)
Roo | DyTa e w0 e ) ey ()
Eryu(O)” . =ryu(1—ma) ? ru(O) . e ru(mbvﬂ)
_mryu(mb—1)w$-ryu(mb=ma) % ru(mb—T) . ru(O) |
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Lemma 2.7. Let | %

B(q™ )
y(t) = === u(t)
Alq )

where A(ch) and B(qwq) are relatively prime. Consider
the system covariance matrix R of type (ma, mb). Assume

that u(t) is persistently exciting of order max(ma+nb,

na+mb) and let n, = mln(ma—na, mb—-nb)°
i) Then R is positive definite if and only if n, < 0.
ii) If n, > 0 the null space of R has dimension n, and

is spanned by vectors of the following form:

[c1 cee Cmgo dy .. dmb]T with
Ma

C(qmq) =) ciqml = A(qmq)L(qn1)
1

- b -1 - -1

D(q~ ) =) dsq = = Blqg )IL(qg )
1
My

L@™ = ] 507t
1

The numbers L. are arbitrary.

Proof. In order to investigate the null space of R con-

sider the equation

%TRx = 0 (2.8)
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, . .
Let x* = [ey .o cq  dy - dpy, 1 and introduce the cor-

responding operators

m m
-1 & g -1 b4
Clq ') =) c;a T D(q~ ') = } diq
1 1
Then
T : 12
X Rx = B[[—y(t—1) . e ﬂy(t—ma)u(t~1) c e u(twmb)]xw

E[-c(q"DHyt) + pia” Huce)] ?

The equation (2.8) is thus equivalent to

c(a"Hra™ - pig"Hacg™

A(qwq)

)

u(t) = 0 a.s.

From Lemma 2.4 Corr and Lemma 2.6 it follows that this

equation can be replaced by

1 1

ca"Hag™" - g™ Ha™ = o

Using new variables given by

1

A(q” )

1"
—
+
e B Y
o)
0
111
o2
Pany
el
i
—
+
(@]
~
FQl

1

é(q— )

i
-3 3>
[ @
el
"
vs]
anS
O
I
-
A —
+
)
P
)
[
A
3
i
=
jul]
b
P
=
o
3
o
p

the equation is written as

1

A g™ - ag™ M

) =0
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T _ , .
Let x7 = ley .. Cmy dq <. dmb] and introduce the cor

responding operators

m m
-1 @ -1 -1 b -1
Clg ') = Z c.a T D(q ') = Z diq
1 1
Then
T ) 2
X Rx = E[[my(t—1) o “y(t—ma)u(t—1) . o u(t—mb)]x]

E{—C(qnq)y(t) + D(qm1)u(tﬂ 2

The equation (2.8) is thus equivalent to

c(a"Hra™M - pa”Haw™
INCED

u(t) = 0 a.s.

From Lemma 2.4 Corr and Lemma 2.6 i1t follows that this

equation can be replaced by

1

ca"MHrg™ - pigHa™ = o

Using new variables given by

n
a . .
D=1 - -1 -1, -
ACq ") = 1 + ; a;q T2 A(gT) + c(q s n, = max(m_,n_)
N b ~ =1 -1 -1 "
B(g ') = ; b.q = B(q ') + D(gq ) n, = max(mb,nb)

the equation is written as

1 1

A HBg™ - agHa™ = o
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From Lemma 2.1 itthus follows that:

i) if n, £ 0 x = 0 is the only solution,

ii) if n, > 0 the general solution is given by
cg™™ = a Hug™h
p(q™ "y = B(q Hng™hH

where the numbers Qi are arbitrary.
As a consequence N(R) has dimension n,.
’ Q.E.D.

The following two lemmas yepe originally used in the

author's previous work, S8derstrdm (1972), where also

proofs can be found.

Lemma 2.8. Consider the equation

F(x) = f(x) + eg(x)

]
jan

(2.9)

where dim f = dim g = dim x. Let @ denote a set with the

following properties:

f and g are twice differentiable,
f(x) = 0 implies x = x4,

f'(xo) is non singular.

Then there is a ey > 0 such that 0 < ¢ ¢ €4 implies that

(2.9) has a unique solution x in g. X fulfils

X“XO:O(E)'; €_>O
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Lemma 2.9. Consider the function

V(x,y,e) = % xTP(y)x + eh(x,y)

where (x,y) belongs to a set @, for which P(y) is a po-
sitive definite matrix for all y, twice differentiable
with respect to y and h(x,y) a twice differentiable func-

tion. ¢ is considered as a fix parameter.

The following necessary and sufficient conditions for

local minimum points in Q are true.

There is a constant EO > 0 such that if 0 < e < e, the

following is true.
i) Every stationary point of V(x,y,e) in @ fulfils

(x,5) = (0,y) + (0Ce),0(1)), e + 0 (2.10)

where Yo is a solution of

! =
hy(O,y) 0 (2.11)

If (x,y) is a local minimum point it is necessary
that h;y(OsyO) is positive definite or positive

semidefinite.

ii) If Y is a solution of (2.11) and h;y(O,yO) is po-

sitive definite then there exists a unique local

minimum of the form (2.10), and the point will in

fact satisfy
(x,y) = (OaYo) + (0(6)30(6)), e > 0

The matrix of second order derivatives is positive

definite in the minimum point.
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IIT. GLOBAL MINIMUM POINTS FOR DIFFERENT STRUCTURES.

In this chapter the global minimum points of loss func-

tions of the type

N
- 1 2
V(8,8) = == ) e (%)
2N ey
{ (3.1)
Q039" ") - G(83q 1) H(e35q 1)
e(t) A2l ult) + =229 2 o()
H(6:5q ) H(6s5q )

are analyzed.

For finite N the analysis has to be done in a probabilis-
tic setting. In order to do the analysis reasonable ergo-

dic theory will be used.
The following assumptions are made:

o Let @ = {63 such that the poles of G(63z), the poles
of H(®:z) and the zeros of H(6:;2z) are outside the
circle |z| = 1 + €, where € > 0 is some small num-
ber}. It is assumed that 6 € Q and only points 5
in the set 9 are considered. This limitation is mo-
tivated from the representation theorem, Astrdm
(1970), and the demand of a finite variance of the

output.

0 The input is assumed to be a periodic signal or fil-

tered white noise (or a sum of these two types).
0 The input signal and the noise e(t) are independent.

Under these assumptions it follows from Lemma 2.3 that

V(é,e) has a limit W(é,e) (with probability one and in
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mean square) as N tends to infinity. The function W(@,e)

is given by

~ 2
N e =1
W(B,0) = & g{e‘(e,q ) - 8(8:q ) u(t)J +
H(63q )
. _1 2
NS S|k R e(t)] (3.2)
H(63q ) .
Let
-1, _ H(e3q" D) Toa i
H(q)zv—mA—’«ﬂ:?—w:W-f-Zhiq
H(6:q ) 1=1
Then
- 2
W(e,6) = 5 E[%(t) + ) h e(t—l{l =
. i
1=1
S]], A2 (3.3)
T2 i 72 :
But W(6,0) = % A% which implies that 6 = 8 always is a
global minimum point of W(6,6). However, 6 = 6 is not ne-

cessarily a unique solution of

W(8,6) = inf W(e6¥,6) (3.4)
g%

This equation can in view of (3.3) be written as

1 1

G(83q ') - G(égq“ ) uit) = o
7
A(o3q ) (3.5)
H(83q7 ") = H(B3q )
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The equations (3.5) will now be discussed for different
structures of the system. The input signal will be as-
sumed to be persistently exciting of a sufficiently high
order. The first part of (3.5) will then in fact be re-
placed by

1 1

G(e3q ') = G(a3q )

Most of the material is well-known and parts of it have
been treated by the author before in S8derstrdm (1872),
Astrém-S8derstrdém (1973). These parts are included here

to get a more complete survey.

As a general result it can be said that the loss functions
for the different cases have a unique global minimum if
a model of correct order is applied. If the model order
is too high there 1S in most cases no unique global'mi—

nimum point.

To simplify the notations the second argument in W will be

dropped in the rest of the report.

Structure 1: The Least Squares (LS) Method.

The system is in this case given by

A Dy (ty = B(a T Hut) + e(t) (3.6)
SO
-1 B(q™ 1) -1 1
ACq ) ACqg )

The equatiors (3.5) become
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A" e - ag Hha™h

= u(t) = 0
ACq )

or simplified

[é(q“1> - B(q_1)]u(t) = 0
(3.7)

)

Ag™™ = aqq”
The consistency properties of this method are well-known,
Astrém (1968),

Lemma 3.1. Assume that n, = min(%a—na, ﬁb—nb) > 0 and
that u(t) is persistently exciting of order ny. Then there
is a‘unique global minimum point given by A(q_1)5(A(q_1)

B(q")=B(q""

2

). There are no other local minimum points.

Proof. The first statement follows immediately from Lemma
2.5 and (3.7). The second statement is true since V is
convex.

Q.E.D.

Structure 2: The General Least Squares (GLS) Model.

The structure is given by Clarke (1967), Sdderstrdm (1972)

1

C(q_q)

A Hyey = BGa Huce) « e(t) (3.8)

Thus
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g

G(e;qﬂ) = Mji ) H(e;q_1> = 3,11 =7
A(q ) A(Cg )C(gq )

The equations (3.5) become

A

1 - A
€42 tace™MBa™ - al@THB(QT D Tuc) = 0
Ala (3.9)

1

A" o™ = a o™

The solution of these equations is treated in S&derstrdm
(1972).

~ ~

Lempq 3.2. Assume that n, = mln(navna, nbwnb)a 0,

(ncmnc) > 0, u(t) is persistently exciting of order

max(na+nb,na+ﬂb)5 and that A(quq) and B(qmq) are relative-

ly prime. Then the solutions of (3.9) fulfil

A = a@ Hue™h
(g™ = B(g HLg™h (3.10)
Lq" e = cig™
where
-1 o -1
L(g ) =1+ ; 2:q if n, > 1
= 1 if n, = 0

Proof. The assumptions of the theorem imply that the first

equation in (3.9) can be replaced by

1 1

Aa™ e - ag e = o




Lemma 2.1

Remark 1.

Remagk 2.
number of
GLS case.

structure

Remark 3.
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gives the rest of the proof.

Ifn =0 ¢ = g is the unique solution.

Note that when n, 1 there are only a finite
solutions of (3.9). This is particular for the
The reason for this property is the special

of the system equation.

If u(t) is not persistently exciting of order

max(ﬂa+nb, na+ﬂb) there may exist global minimum points

which do not fulfil (3.10). An example is given in S&der-
strdm (1972).

It is well-known, S8derstrddm (1972), that the number of

local minimum points depends on the signal to noise ra-

tio.

Structure

3: Time Series.

In this case stochastic processes of the form

A(qaq)y(t)

= c(q" De(t) (3.11)

are considered. Then

1

G(eo3q )

-1
0 H(eyq ) = §_<__<1_____1_=l
AlCqg )

The equations for the global minimum point (3.5) are

ACa™ e(q”

1

Ty - A" o™ =0 (3.12)




Lemma 3.3. Assume that

i) A(qmq) and C(qmq) are relatively prime

W
O

ii = mi =N_ ,01_=
) n, mln(na 2004 nc)

The solutions of (3.12) are

A = a Hue™
N » » (3.13)
C(qg ) = C(g )L(g )
where
L("’“)—1+nlz"lf 1
q = ; ;14 1ting, 3
= 1 if n2 = 0

The parameters L; are arbitrary. These points are the on-

ly = stationary points as well.

Proof. See Astrdm-Sdderstrdm (1373).

Remark. If n, = 0 6 = o is the only global as well as lo-

cal minimum point.

Structure Uu.

The system is assumed to be governed by

A"y () = B(@  Hut) + AGq” De(t) (3.14)

SO
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-1
elo3q” 1) = E_ﬁ_gjml H(o3q 1) = 1
Alg )

The equations (3.5) are thus replaced by
=1

[A(qﬁq)B(qmq) - A(q~1)é(q
At~ HA™h

)]

u(t) = 0 a.s. (3.15)

. ng-ng) x 0, AlgT )

and B(q ) are relatively prlme, and that u(t) is persis-

Lemma 3. 4 Assume that n, = min(na—na,

tently exciting of order max(n gty N +nb). Then the so-

lutions of (3.15) are

A™ = ag™Hue™h
N - 1 (3.16)
B(qg ) = B(g JL(g )
where
L) =1+ ] aq -
q - 1 iq n,QJ -

= 1 n, = 0
The numbers ¢, are arbitrary.
Proof. Lemma 2.4 and Lemma 2.1 give the result.

Q.E.D.

Remark. If n. = 0 6 = 6 is the only global minimum point.
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Structure 5.

This structure is discussed e.g. in Astrdm=-Bohlin (1866),

It is given by

A Hy(t) = B(g Hult) + clq” Hel(t) (3.17)

This means that

G(@;qmj) = ELATTL H(e;qn1) = ELQ:TL
ACqg ) ACq )

and (3.5) can be replaced by

Acg” B - ag Hr™h

7 u(t) = 0
ACg J)C(gq ) (3.18)
aa" e - ag e =g
Lemma 3.5. Assume that n, = mln(na«na, n "Ny, nc—nc) : 0,

u(t) is persistently exciting of order max(ﬁa+nb, na+ﬁb),
and that A(qnq), B(qmq) and C(qmq) are relatively prime.
Then the general solution of (3.18) is given by

A(q_q) = A(qw1)L(qm1)
B(g" ") = B(q"HLg™H (3.19)
¢ =g Hug™h
where
-1 L
L(g ') = 14~; pa  if g x
= 1 ifn, =0
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The coefficients g, are arbitrary.

Proof. Define K(qmq), %(quq) and D(qnq) from

aq™h = Kqg"hn™h

B(q") = B(q"Hn(g™ )

K(q=1)5 %(qu1) are relatively prime
-1 R

D(g ) =1 + ; d.q (ng 2 0)

The first equation of (3.18) can be replaced by (Lemma
2.4)

A" M8 - g Heg™h = o

The solution is (Lemma 2.1)

a”™ " = Regm g™

B(q" ) = Ba Mg (3.20)
n |

Mq™ "y = 1+ ] miqm:L
hE

My = Bg * Dy

n
(mi)i:1 are determined only by the second equation in (3.18)

The last equation of (3.18) gives

1 1

Mg Hea™ - pigThHe™ = o (3.21)
According to the assumptions of the lemma C(qm1) and

D(qmq) have no common factors.




31,

The solution of (3.21) w.r.t. M(q_1)'and C(q ') is
ca™ "y = cg Hn™h
-1y _ - -1
M(q ') = D(q )L(g ) : (3.22)
nf&
L™ =1+ ] aqTt

i)
(SLi),1 arbitrary

The combination of (3.20) and (3.22) gives the desired
solution (3.19).
Q.E.D.

Remark. If n_ = 0 6 = 8 is the only global minimum point.

Structure 6.

In this section the structure used by Bohlin (1970) is

considered

B(q~ ) cg™hH
y(t) = 2282 u(t) + =2 e () (3.23)
INCELD D(q™ 1)

The equations (3.5) turn out to be

1
1

y Aca"Mea™ - ag"Heg™
) A" DA™

D(q_

e u(t) = 0 a.s.
C(q

(3.24)

1

cta™ Mo = g™ Hdg™h
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Lemma 3.6. Assume that

n

. 0

I

mln(na—na9 nb“nb)

n

mi - n.=-n >
n 1n(nc n,, Ny d)

> 0
-1 -1 . .
A(g ') and B(g ) are relatively prime

C(ng) and'D(qw1) are relatively prime

u(t) per

)

sistently exciting of order max(na+nb, na+ﬁb

Then the genefal solution of (3.24) 1is
A(q_1) = A(q“1)L(qm1)
B(a™ ") = B(q L™
ca™ My = ciqg” Mg
D(a" ") = pa"HnE™h (3.25)
where
. Ny .
Liqg ') =1+ J g.q 7
1 l
n
-1 & -1
M(g ) =1+ ) mq
1
Ny

(Ki)

9

1

n
(m:),™ arbitrary
171

Proof. The result follows from Lemma 2.7 and Lemma 2.4,

Remark.

point.

Q.E.D.

If n 6 is the only global minimum
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IV. LOCAL MINIMUM POINTS FOR STRUCTURE iu.

In this chapter the local minimum points for the case

with white measurements nolse are treated. It will be

shown thatna =n, = T, ny arbitrary will imply a unique lo-
cal minimum point. The loss function can in certain ca-

ses have "singular" saddle points corresponding to

5 =
B(q

ded to the case n, > 1.

) = 0. The analysis can unfortunately not be exten-

For the structure with white measurement noise the sys-

tem 1s described by

A" Dy (t) = Blq™ Hult) + Alg™ el(t)
The loss function for this structure is given by

T
W)+ (4.1)

X r. =1 -1, ~1in, -
208y = € A(Cqg )B(q »z - AE? )B(q
ACq JA(g )

~

Assume that ﬁa > N, Ny 2 Ny, B(quq) iAO and that u(t)

is persistently exciting of order max(na+nb, na+nb).
The stationary points of the function are the solutions

of Wé(é) = 0, which is written as

o -1 “1yn, =1 N :
g|ala DBG ) - Ald JBG ) yepy) | Bla ) g7hyn| = 0
ACqg JA(q )

1 ¢ 1 ¢n

(h.2)

A -1 -1, =1 - -
%{A(q )B(g ) - A(g )B(g ) U(t)J {w -t q lu(t)J = 0

- ACa” DA™ Aq

T ¢ 1 ¢n
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It is not possible to find all solutions of (4.2) in an
easy way. The following attempt of analysis will be made.
Let

-1 1 Tya, =1

)B(q

-1 ~

n |
H(q™") = § noq™t o= AT - adg” )
1

with m = max(ﬂa+nb, na+ﬁb), The equations (4.2) will be

rewritten as

where Q(é) is a matrix of order (na+nb) x m. If rank Q(8)
is m for all 6 it can be concluded that h, =0 for i =
1, «+«., m. This gives the equation for the global minimum

points, Lemma 3.4.
Put

v(t) = L u(t)

A(q_q)A(qnq)2

Then (4.2) is equivalent to

~B(q" Hacg  Hvie-1)

mé(qa1)A(q_1)v(t—5a)

™M

-4 [A(qm1)v(t—1) . A<q“1)v<t«m>}
Alq DJA(qg Hv(it-1) ;

Al Ha@ Hvit-n)

b




which can b

L

e
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wrltten as

—’b;l 7
b oo o
« 1
-b, . . =b2 )
n .
ST c Py oo | | =0 (4.3)
.
l'la 0
h
mm-d
ana(

where P, is the following matrix of order (5a+ﬂb) X .

To continue
rank of the

to separate

Case 1.

aq” Hv(e-1)

alq”MHv(t-n -n

E&(quq)v(t—1) . A<q'1>v<t~m>]

) (4.4)

b

the analysis it is necessary to examine the
two matrices in (4.3). It will be necessary

three different cases.

Consider points such that A(qmq) and B(qm1) are relative-

ly prime. Then the first matrix of (4.3) is non singular

(Lemma 2.2). Define a square matrix P of order m x m.

P(AA,v) =

7

ACa™ Hv(t-1)

{A(q31)v(t-1) e A(q_1)v(t~m)v

alq” v t-m)] (4.5)




which
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consists of the upper square part of PO.

n

If P is non singular for all possible (éi)iiW then it is

possible to conclude that h,

(4.3).

1

0 is the only solution of

The properties of P(A,A,v) are described in

Lemma

i)

1i)

Proof.

i)

4.1,
Assume that n_ = 1, ﬂa = 1. Then P(A,A,v) is non
singular for all A, all A and all v(t), such as v(t)
is persistently exciting of order m.
There are A, A and v(t) such that n, = 1, ﬁa = 2,
m = 3, v(t) persistently exciting of order m and
P(Agﬁav) singular.
Let x = [x1 oo xm]T be an arbitrary vector and de-
fine

-1 ° -3
X(q ) = ; X1 q
Then

xPx =€ (A Hx T DOy 1A DX T Hv) 1 =

Tr - 13
S {TrRe[A(elw)A(e_lw)][X(elw)[2¢v(w)dw

The function ¢v(w) is the spectral density associlated

with the asymptotic sample covariance function.
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But

Re[A(e™™)A(e ™) =
=1 + aa + (a+a)cos w x 1 + aa - ‘a+él P

2 <1—Ial)<1»lé|> > 0

Thus x'Px * 0 and equality implies IX(elw)|2¢v(w) =

2 0. From Lemma 2.4 it is concluded that this im-

plies X(e™) z 0 or x = 0.
ii) Let v(t) be white noise with unit variance. Take

ATy = 1+ ag” ! and AT = (1-ag™H2. Then

1—2a2 a 0
N 3 2

P(ALA,v) = | -2a+a 1-2a a

a2 m2a+a3 1-=2a2
- 2 L 6 . .
det P = 1 - 2a® + 3a - Uba” i1s a continuous func-
tion of a. Det{P(a=0)] = 1 and det[P(a=1)] = =2

imply that there is |a| < 1 such that det P = 0.

Q.E.D.

Case 2.

Consider points such that A(qmq) and B(qmq) are not rela-

tively prime, but B(qa1) £ 0.

Define
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by

A = Ba™Hig™h

Bqg™ ) = E(qmj)i(qmq)

K(qmq) and E(q—q) are relatively prime
Ha 7 0g 7 Mys I 7 0y 7 0y

Change the definition of H(q_q), m and v(t) to

-1 g

_ B o, =1 - -1z, =1
) = ) h.q ~ = A(q )B(g ) - A(q )B(gq )
1

m = n_+ +n
max(na Ny, Ny nb)

V() = b ()
A(q JA(g DIA(g )
Then the equation Vé(é) = 0 can be written as
0 =By oBR, 0
n’ 3 mh1!
|0 0 -b ~b3 I
[ ._u . S J— c. 1, U — OO b ° Q O ° o = O
1 a, - ang . .
n. h
b 0 ) ) m|
i 1 a, ang

n_+n.-n, colum
a b % Jmns

where Q4 igs the following matrix of order (na+nbmﬁg) X

(4.6)

m
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acq” Hvie-1) T

0y - & : A hHvee-n L A(q“1>v<tmm>1

aCq” Hv(t-n -n + ) | (4.7)

b

According to Lemma 2.2 the first matrix of (4.6) has rank
n, +t ny - ong. Thus hi = 0 is the only solution if rank QO =
= m, This condition, however, is already analyzed in the

previous case,

case 3.

Consider points such that é(qn1) = 0. Such singular points
may look uninteresting from a theoretical point of view.
For two reasons they are studied here, besides the purpose
to give general information of the loss function W. The
first reason is that in a practical case it is not trivial
to determine if Bi = 0. The other reason is that the re-
sult of this chapter will be used later on in Chapter 6.

For this case the equations (4.2) turn out to be

...’l _i
g[Bgi:Tl u(t) Tg“fT“ u(t)| = 0 1T ¢ 1 ¢
Alg ) Alg )

>

Ny (4,8)

If Ba > ﬂb this system is overdetermine? and may have an
infinite number of solutions such that A(z) has zeros out-
side the unit circle. In Appendix A this case is further
considered. It is also shown that the stationary points

satisfying é(qmq) = 0 always are saddle points.

The equation (4.8) implies

-1 -1
el 22 -y [ 22 we-1y] = 0 G o)
Alqg ) 11ACGqg ) )




b4o.

Put
-1
B ( )
V() 7 e u(t)
ACq )A(g )
If n_ = ﬂa = 1 it follows from Lemma 4.1 that (4.9)

cannot be satisfied.

In Appendix B the special case of uf(t) as white noise

is treated. It is shown that the mild condition NNz

P max(na,nb) implies that the global minimum points are

the only stationary points.

Summing up, the analysis has given the following informa-
tion of the loss function W(e). Assume that u(t) is per-

sistently exciting of order max(na+nb, na+nb)

1. If ﬁa =n_ = 1, Ny oz Ny, Ny arbitrary then W(s) has
a unique stationary point, namely the local (and
global) minimum point 6 = 9.

2. If n, > n 2 and ng > ng there is no unique global

minimum point.

3. The analysis gives no information of the number of
local minimum points if ng, % 2.

PN ~

4. There are systems such that n, = ng = 2, Ny = Ny = 1

and with a set of saddle points satisfying B(qz1) = 0.

An immediate implicatién is that it is not sufficient
to consider only W'(8) = 0 in the general analysis

of the number of local minimum points.

~ ~

5. If u(t) is white ncoise and n_=ng s max(najnb) then

the global minimum points are the only stationary

points.
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V. LOCAL MINIMUM POINT FOR STRUCTURE 6&.

In this part structure 5 is considered. Partial results
on the number of local minimum points will be given. On-
ly cases with very high or very low signal to noise ra-
tios are treated. The mathematical tools are Lemma 2.8
and Lemma 2.9. These two lemmas deal with the effects of
a disturbance term eg(x) resp. eh(x,y). The application
of them will be made on the loss function. e will be in-
verse proportional or proportional to the signal to noise

ratio.

Theorem 5.1. Consider the system

- - ‘ - 3.1
alq” Dye) = B HuCe) + cq” elt) (3170,
and the loss function

A A 2
- 2 e - agT e
2W(e) = £]22d T d ult) |  +
Alg )C(q )
[aca o™ : |
+ B|—dd— e () (5.2)
A(qg J)C(gq )
Assume that
i) n, = min(namnas Ny =Ny s ncﬂnc) = 0
ii) u(t) is persistently exciting of order max(na+nb,
na+nb)
iidi) A(qmq)g B(qmq) and C(qm1) are relatively prime.

Denote the signal to noise ratio by S. There is a number

SO (which may depend on Q), such that if SO £ S < = then
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W(e) has a unique local minimum in €, namely 6 = 6.

Proof. This proof is a modification of Appendix E in S&-

derstrdm (1972). Perform a change of variables by

T
;na ) ana - =
g 1
N v = | (5.3)
b, - b, A
e
by, = Py C
LS

1 1

1

Assume that A(q” 1) = X(a"na™ "y, B(a™ = B¢ o™

v, =1 v, =1 . .
where A(q ') and B(g ) are relatively prime and

g
D(q" ") = 1+ ] d.q"t (n, 2 0)
q ] 1 a ”
The loss function can be written
1T =
W(x,y) = 5 X P(y)x + eh(x,y) (5.4)

with P(y) as the system covariance matrix of

£, uFee) = Tml=7m ut)

Clq )
where uF(t) is the input and yF(t) the output.

-1, F

A" Hyf ey = B(g™ Hu
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P(y) may be singular, but the null space of P(y) is in-
dependent of y. This is obvious, since from Lemma 2.7

the null space is spanned by vectors of the form

£y
fna
&1
Zny,
with
r;a
F(a™ = J f£.a7" = K Hr™h
1
R T -1
G(q" ) = ] gia T = Blq DIL'(q™ D)
1
-1, K -1
L'(q ') = ) Q’iq is arbitrary
1
The simplest case k = 0 is not treated explicitly in the

following. In this case P(y) is non singular. It is easy

to see how the proof can be simplified for this case.

Introduce now the new variables




by,

where x% igs of dimension k and x% of dimension (na+nb“k).

The vector x' is defined by

1

%1
x = Qx' = [Q ) Q,1]--
*2
where
K 0 ]
N\
29
[aV]
V)
ana 1
v
0 aga
0
Q = I S
! 0 0
aV]
by
oy 4]
bgb b1
y
0 bgb
0

Q, is a (ﬁ n ) x k matrix and Q. an arbitrary (n_+n,) x
10T a b 2 T a b
x (na+nb“k) matrix with the properties Q1Q2 = 0 and Q

non singular. Q, can for instance be constructed by Gram

Schmidt orthogonalization.

From the discussion it follows that
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1% is a typical element in the null space N(P(y)]

Q
szé.is a typical element in the space N(P(y))‘L

From these facts it is concluded that

P(y)Q1 = 0

and that the matrix
AT

R(y) = QQP(y)Q2

of order (na+nb—k) x (na+nb“k) is non singular for all y.

The loss function is now written as

W(x),2) = % xéTR(z)xé b eh(x),2) (5.5)

where z denotes the vector

T
%

y

Write the vector x% as

4
1 -
X =
3
Then x = Q1x% is equivalently expressed as
A = a Hih, B =@ Hiah
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with

1 -1 T =k

(g~ ) = 1 + R

The function h(0,z) is written with operators as

P -1
h(0,z) = E L(q__q)g(qq) e(t)} (5.6)
D(g )C(g )

From assumption iii) and the discussion above it follows

that k 2 ng, min(k—nd, ncﬂnc) = 0 and that C(qa1) and
D(q_j) are relatively prime. From Lemma 3.3 it follows

that h(0,z) has a unique local minimum point given by

ﬁ(qmq)

HIE

jw}
P
0

C(qmq) = C(q
The matrix of second order derivatives of h in this point
turns out to be the system covariance matrix of the sys-

tem

u'(t) W) = e(t)

) c(q™

_c@™h

y'(t) =7
D(q

It is positive definite according to Lemma 2.7.

From Lemma 2.9 it follows that V has a unique local mini-

mum point in . It fulfils

6 = 6 + 0(1/S) S

A

S+ o (5.7)

~

Since 6 = 6 1s a minimum point it is concluded that it
is the only local minimum point in Q.

Q.E.D.
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The other theorem of this chapter deals with the case of

a low signal to noise ratio and utilizes Lemma 2.8.

Theorem 5.2. Consider the system (5.71) and the loss func-
tion (5.2).

Assume that

~ ~

i mi - n_=-n
) n(na n_ s

) = 0
c ¢

ii) u(t) is persistently of order Ny
1ii) A(qmq) and C(qm1) are relatively prime.

Denote the signal to noise ratio by S.

There is a number S1 such that 0 < S ¢ S1 implies that

W(8) has a unique local minimum in £, namely 6 = 6,

Proof. From the equation

ig* = 0 1 ¢ 1 ¢ ﬁ
b . b
1

{Ei} can be solved as functions of {;i’éj} according to
assumption ii). Cf. the representation (5.4%) of the loss
function. The&agi functions are put into the remaining

equations. The remaining equations can be written (after

division by A2)

fx) + eg(x) =0 (5.8)

~ ~ ~ ~

. ~ ~ T .
X 18 the vector [a1 RN ana5 Cq v cnc] . f(x) is the

gradient of
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c = =1 2
A e ooy
Elaca™ e

and g(x) -is the gradient of

Yo =1 -1 ~1,5, =1 2
~lACg ")B(g ') - A(q )B(gq ) (t)
< T A, A Y

A(qg C(g )

where the expressions for bi are used.

The quantity e = 1/A2 is proportional to S.

Since (according to assumptions i) and 1ii)) f(x) = 0

has a unique solution given by

A(qﬁq) = A(qﬁq) 6(qm1) = C(q_j)

and f' is non singular in this point it follows from Lem-
ma 2.8 that (5.8) has a unique solution in Q. Since 6 =

= 6 1is a local minimum point it follows that it is the

only local minimum point of V in Q.

Q.E.D.

Discussion of Assumptions and Results.

The assumptions i) = 1ii) of Theorem 5.1 are sufficient
(and almost necessary) conditions for a unique global

minimum, Lemma 3.5.

The assumptions i) - iii) of Theorem 5.2 are slightly

stronger than the conditions used in Lemma 3.5.

If assumption i) in Theorem 5.1 is changed to n, > 0 the
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mathematical machinery of S8derstrdm (1972) will give
that every local minimum points are close to some global
minimum point. It is harder to examine if there are lo=
cal minimum points which are not global minimum points.
Since the case n, > 0 is rather degenerated it is the
author's point of view that a careful analysis is of

little interest.

The very strong assumptions in the theorems are the rest-
rictions of the signal to noise ratio. It is shown that

a sufficiently high and a sufficiently small signal to
noise ratio will imply existence of a unique local mini-
mum point. However, it is unfortunately not practically

possible to give any estimates of the bounds Sy and S, .
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VI. LOCAL MINIMUM POINTS FOR STRUCTURE 6.

The structure is given by

B(q™ ) c(g“1)
y(t) = =92 y(t) + e(t)
=1 -7
Alq™ ") D(q ")

and the loss function for this structure can be written

2W(e) = Wq(e) + Wz(e)

T =1 1y 2, =1 2
W, (6) = g {?(qmq) - B(q_1)} Dl ) u(t)} (6.1)
ACqg ) ACg ")/ C(qg

S 4 2
D(g J)C(g ) e(t)
cq"Hpa™h

1
inal

wz(e)

If the operator 6(q“1)/é(q“1) has no influence on the
number of stationary points of W1(6) the properties of
this function is already known from Chapter 4. The func-
tion Wz(é) is exactly the loss function for structure 3.
In order to utilize these facts the following condition

is introduced.

Definition 6.1, The function

1 1

1

Moy - ¢ “ljﬁ(q ) B(qm

2
= u(t)} (6.2)
ACq ) A(q

is said to fulfil the uniqueness condition (abbreviated
UC) if for u(t) persistently exciting of order max(na+n

b5
na+nb) it follows that all local minimum points satisfy




1

Aa Hrg™h

From Chapter

case n = n
a a

Theorem 6.1,

51.

1

atg Hag™ = o (6.3)

4 it is known that UC holds at least in the
= 1,

Congider the loss: function

- B(q”")  Ba™MH)n™H i
2W(8) =€ ||t - Ao TSt ()|
ACg ) ACg ))C(gq )

1

+ E P
C

Assume that

_.,’I - 2
(q_1)C(qm1) e (1)
(g )D(g )

N ~

i) N ox Ngs Ny 2 Ny Ng 3 Doy Ng 2 Ny

.. -1 -1 - -1

ii) A(g ') and B(g ) as well as C(g ) and D(g ) are
relatively prime

iii) u(t) is persistently exciting of order max(5a+nb,
na+nb)

iv) The UC is fulfilled.

Then all local minimum points of W(é) are global minimum

points, i.e.

A(qmq)B(q—

6(q“1)D(qm

they fulfil

1 1

)
)

1l
(o)

y - A(q” )B(q”

1 1

y - c(q  D(q”

1
o




52.

Proof. Let 6% be a local minimum point of W(e8). Then
there is a § > 0 such that ||e¥=-8|| < & implies W(e¥*) ¢
< W(p). Let especially 8 coincide with 6% in the c.- and

d,-components. Then W, (e%) < W,(e). Thus 6% is also a lo-

cal minimum point of W,(e). From UC it follows that

1) = 0

A He™ - A HBe”
When this expression is used in Wy = 0 it follows that

it is necessary that (01, c e cﬂ R d1, ...dgd) is a
c

stationary point of Wz(e), i.e.

ca Hn™H - cahHoe™ = o

Q.E.D.
gorr, If especially min(n_-n_, ny-ny) = 0 and min(n_-n_,
ndmnd) = 0 the loss function has a unique local minimum

~

point & = 9.

The conditions in the theorem for a unique local minimum
point are partly the same conditions as used in Lemma 2.6
for a unique global minimum point, partly the uniqueness
condition (UC). In contrast to the theorems for structure
5 no assumptions on the signal to noise ratio have been

done.
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APPENDIX A.

This appendix deals with the degenerated solutions of
1

(4.2). If %(q“ ) = 0 the condition Wé(@) = 0 gives
=i N
F—fﬂﬁl mw]ﬁrﬁi—w u(t)} = 0 1¢ismy (4. 8)
ACq ) ACq )
Con81der for a whlle the following example. Let B(qmq) =
i 0, n. = n_ = 2, Further the input u(t) is as-

a a
sumed to fulfil u(t) = A(g 1)(1+c,]q 1+c2q 2)w(t) where

w(t) is white noise.

The equation (4.8) gives after a simple calculation

2 : 2 "
(1+a1c1+c1+a1c102+a2c2+02) + <"a1C2"C1 c1cz)a1,+

= 0 (A1)

For ¢, + 0 (A.1) describes a parabola 1n the (a1,a )=
p%an§ Let S be the subset of the (aq,a )= plane such that
(a1,a ) € S implies that the zeros of 1 + a,z + a222 =0
are outside the unit circle. Depending on the values of

dqs ags Cy and P the parabola may intersect the set S.

In Figure A.1 the parabola and the set S are drawn for

the special case a, = -1.8, a, = 0.81, cy = 1.8, c, = 0.81.

The following discussion will show that all stationary

points, which satisfy (4.8), are saddle points.

Let oF satisfy é(qﬂT)

i

0 and (4.8). The matrix formed by

~on 1
Wh:b- =£ { U, o | |
i”] Aq 1) t {"W




Figure A.1 - Illustration of eq. (A.1).

~

is positive definite for all arguments 6. If only the
b.-components of 0% are changed W(#8) will increase. If

only the a.-components of 6 are changed W(8) will have

the same value. There exists a point 6¥*  which
1) is arbitrary close to ¥
2) differs from 8% only in the a;-components

3) does not satisfy (4.8),

Clearly from 2) W(o*¥*) = w(e®). Given o*% a new point

0*¥*%* i3 constructed. W(8) is minimized with respect to

~

the b.-parameters and with the éi~parameters given by
o*%  Since Wﬂigj is positive definite the optimi?ation
problem has a well defined solution. Call it 6% Ac-
cording to 3) W(e¥¥¥) < y(o¥¥) - Weo®). Finally it is

observed that ||e¥¥¥*-g*¥
| [6%*-6%||.

| depends continuously on

To summarize this means that there exists a
point o*** arbitrary close to 6*, such that W(e*%¥) -

< W(e*). This discussion proves that 0% must be a saddle

point.




The following schematic figures are intended as an expla-

nation of the behaviour of W(g).

V- Sy

b

v
ja})
N

e* e**

okok
6

Figure A.2 - Schematic figure of o¥, ¢¥¥, ¢*¥¥

The curve S' is given by (4.8) and lies in the (51,52)m

plane. 6¥ 1ies on 8. o*¥ lies in the (51,52)mp1ane, close

Rk

to 6% but not on 8. © lies below the (a;,a,)-plane. In

Figure A.3 it is shown how W(®) may vary in the plane spanned
by 0¥ 6**9 6***. :
1s,

9

4
\ Increasing

o* o¥* valyes of
> wiB)

Figure A.3 - Schematic curves of W(8) = constant.




APRENDIX B

In this appendix the structure 4 will be considered in the
special case when the input signal is white noise. First
the rank of the matrix Q defined in (4.7) will be examined.

Then the equation (4.8) will be discussed.

In order to simplify the analysis it is assumed that

~

n = n = n n =n = n

N b N L m2n (B.1)

This is a mild condition. Further let u(t) be white noise
of unit variance. Denote ﬁa and Sb by n, which particularly

means m = n+n., Define

1

n
A*(Z): Z0 Az ) =zt o+ oy a;z

Then the ij:th element of Qo can be written as

n+n

—_
[V

i -j_n+n i=
0 1 Z A dz _ (B.?2)
LS - 4 ~ o Lok - X 1 = R s~
©513 2ML T R(z)E(z) A ()R (z) 2 7 e TFD

A

The matrix QO will be factorized using ideas from Astr&m=-
-S&derstrédm (1973).

The poleeg inside the unit circle of (B.2) are exactly the

* - %
zeros of A (z)A (z). They are relabelled by

3
(z-u,) < (R.3)

1

* - %
A (z)A (z) =
k

[I=kw]




where t. > 1, u, # u, if k # ¢ and
k = Ik

P -
%, tk = n + n=m
Je=1

With the use of (B.3) Qo”ij is evaluated as follows.

]

m+i-3-1

1 Z 1

Q .. = .gﬁA - dz
©»1J 21 A(z)A(z) E t

k
k=1

(z~uk)

D m+i=J=1 ;
= ¥ Res 2

- N b
£=1 z=u, A(z)A(z) o (z=uk)

k=1

“x

1]
i M

it -t = [ -
k,(tQ T-k)! z=u,

2 ' ]
: 1 e TR A R T CP R

=

(B.4)




where D denotes differentiation with respect to z and

the functions Fﬁ(z) are defined by

1 i

F (z) = «—— (B.5)
g AE) P T
k=1
£
Thus 212
2 |
Q, * Ved = [V, Vpeee V10 (B.6)

g . | ) )
Z 1 0
I “ : (B.7)
T "1_“ (t —1) - "“m_
LN 1 p[ 0 1]' D 2 [Zn+n 1] N
) Sz =4
2
The matrix 52(1i£ip) is t,xm and is given by
(t,=-1) .
g = 1 £ m-7
%15 ° (T-1)T(t,-D)! b [z FQ(Z>]Z:HQ (B.8)

The matrix V is a generalization of the van der Monde matrix.

It follows from Kaufamn (1969) that the rank of V is m.




The matrix 5 also can be factorized. In fact

§ = sex (B.9)

The matrix Xy(1§2§p) is tQXm and holds

e | -
pLz™ 1 0
= . B.10
XQ = . ( )
(+ -1)
2 m-1
D [z o O—~z:ul

According to Kaufman (1969) X is nonsingular. The square

matrix S can be written as




where 819..., S_ are square block matrices of the orders
tTthg..,, thtp. They are given by
0 if k » Ty * 1T -1
Ssz,ik S
y (t,=i+1-k)
(T TR T (e, =T71=10 T P EPACRE PR

The elements of the cross diagonal are given by

S

_ 1
Lit,+1-i T TEEDTCE DT T ()

and they are nonzero according to the definition (B.5) of

FQ(Z). This means that S is nonsingular.




Thus it has been proven that the rank of QO is m.

i

Now the degenerated case of B(q ) = 0 will be treated.

*®
Consider the equation (4.8). Factorize A (z) as

* q Sj
A (z) = T (z=-u.) (B.11)
i=1 .
where s, > 1 and
q
2 8, =n
j=1
Using (B.11) the equation (4.8) is written as
: B (2) . -
- ¢ (z 2 dz = 0 0. < 1i<mn =1 (B.12)
2i1 ™ g 55 A(z) T
T (z=u.)
j=1
Straight-forward calculations analogous to (B.u4) give
S
Ueg = (U, U, ...U_] %2§ = 0 (B.13)
©
i
2q ]
The matrix U (1<22q) is ﬂxsg and holds
l] O . O
4 1
U2 = : : : (B.148)
o . (g ,-1) -




To summarize it has been shown that if the input is white
noise and the assumptions (B.71) hold, then the loss function

has no other stationary points than the global minimum points.

Is it possible to extend the calculations? One extension
would be to substitute (B.71) with the more general
min(ﬂawna, %b_nb) > 0 and another to permit input si: 1ils
which are filtered white noise. Note that it is trivie

to allow the case ; > max(na,nb). If e.g. n_ is larger

*
than ny the polynomial B (z) can be multiplied by

Zna " and the new polynomial will have n_ coefficients.
However, the extensions desired are not possible in general.
The reason is that the number of poles inside the unit
circle may be larger than the numbero of rows in QO resp.
the number of equations in (B.12). This means that the ma-
trices V and U will have a smaller number of rows than
columns which causes the idea of the calculations to break

down.

However, there are cases where the results.can be extended further.
For instance, the analysis of (4.8) can be extended in a
straight-forward way to the case

~ ~

max(naanb) < Ny, Ny arbitrary

Since the extensions can not be done in general and since
the assumptions (B.1) are mild, it is of minor interest

to extend the calculations further.




The vector g, is given by

’ (sgei)
€o,i T I =1yT © £, (221, (B.15)
(s, ! .
The functions fz(z) are given by
B (2)
_ z, : .
£.(z) = - g - (B.16)
A(z) T (z-u.)
i=1
1L

Since the rank of U is n, see Kaufman (1969), it follows that
g2 = 0 1

Then it follows from Astrdm=-S&derstrém (1973) +that
*

g ()] =0

suy O sk ssy=1, 13 24q (B.17)

Thus

B (z) = HB(z)

o= 0

S .
(z-u.) 3
j=1 J

where B(z) is some polynomial., B (z) is, however, a poly-

nomial of degree n-1, while +the product
q S.
T (z-u.) 3
j=1

is a polynomial of degree n. This implies
that B(z)

111

0 and the contradiction B(z) = 0 is established.




To summarize it has been shown that if the input is white
noise and the assumptions (B.1) hold, then the loss function

has no other stationary points than the global minimum points.

Is it possible to extend the calculations? One extension
would be to substitute (B.1) with the more general

~

min(namna, ~nb) > 0 and another to permit input si; 1ils

n

b
which are filtered white noise. Note that it is triviec
to allow the case n > max(na,nb)u If e.g. n_ is larger

*
than ny the polynomial B (z) can be multiplied by

zna b and the new polynomial will have n_ coefficients.
However, the extensions desired are not possible in general.
The reason is that the number of poles inside the unit
circle may be larger than the numbero of rows in 0, resp.
the number of equations in (B.12). This means that the ma-
trices V and U will have a smaller number of rows than
columns which causes the idea of the calculations to break

down.

However, there are cases where the results.can be extended further.
For instance, the analysis of (4.8) can be extended in a
straight-forward way to the case

~ ~

max(na,nb) < Ny, Ny arbitrary

Since the extensions can not be done in general and since
the assumptions (B.1) are mild, it is of minor interest

to extend the' calculations further.
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AN ON-LINE ALGORITHM FOR APPROXIMATE MAXIMUM LIKELIHOOD
IDENTIFICATION OF LINEAR DYNAMIC SYSTEMS

T. S&derstrdm

ABSTRACT

A recursive algorithm for maximum likelihood estimation of
parameters in a linear dynamic system is presented. The basic
idea in the algorithm is a recursive optimization of the like=-
lihood function. Different approximations are used. With special
simplifications the algorithm becomes identical to methods
earlier proposed. The properties of the algorithm are illu-
strated by application to data from simulated systems as

well as plant measurements.




T. INTRODUCTION |

In the field of the identification of dynamic systems
special interest has been given to on-line methods. It may
be desirable to proceed the identification until a speci-
fied accuracy is achieved. An on-line identification method

also is necessary for adaptive control.

Several on-line identification methods have been proposed.
In Astrdm=~Eykhoff (1971) a short description of different
methods is given. The algorithms described in Young (19870),
Young-Shellswell-Nethling (1971) seem to work quite satis-
factorily.

When off-line methods are considered it is known that the

maximum likelihood method- is a powerful one and in most

cases gives the "best" estimates, Astrdm-Bohlin (1966),

Gustavsson (1969b). The purpose of this report is to describe |
an approximative recursive version of this method using

ideas due to Astr®m, who has made an outline of the algo-

rithm.

Tt is well-known, Astrdm (1968), Astrdm-Eykhoff (1971) that
the least squares (LS) method easily can be computed re-
cursivly. The recursive version can be interpreted as a
Kalman filter. The ML method can be considered as an ex-
tension of the LS method. One way to construct a recursive
ML algorithm is to generalize the Kalman filter of the LS
case. This approach has been taken by Young for the esti-

mation of parameters of time series.

Panufka (1968) gives a similar algorithm based on stochastic
approximation. A comparison of Panugka's algorithm and the

off-1line ML method is given in Valis-Gustavsson (1969).

In this report an estimation algorithm will be derived via
a recursive minimization of a time varying loss function.

When different approximations and simplifications are made



the algorithm is the same as the one used by Young or

the one used by Panu&ka.

The approach of minimizing a loss function can be applied
to different models. Several well-known methods as least
squares, generalized least squares, Clarke (1967), S8der-
strém (1972), the "ordinary" ML, Astr8m-Bohlin (1966) and
the method used by Bohlin (1870) can be interpreted as maxi-
mum likelihood models when appropriate assumptions of the
structure of the systems are made. All the methods can be
expressed as a minimization of a loss function of the
form
- N R
vN(e) -1 s sQCt;e) (1.1)
t=1
N is the number of samples and e(t;é) the residual at time t.
The vector 6 is an estimate of 6, a vector containing para-
meters which describe the system. The elements of é will be
called the model parameters. The explicit expression of
e(t;é) as a function of 6 differs between the different

methods. The variances of the residuals can be estimated by

o2 -
S min VN(G) (1.2)
0
Let Oy minimize VN(G). A recursive algorithm must give
eN+1 from BN, the measurements at time N+1 and a reasonably

small amount of collected information of the system. In the
recursive LS method this is done exactly but for the other

methods approximations have to be used.

Another way of discussing the properties of a reasonable
algorithm it to use the concept of sufficient statistics.
When the disturbances are gaussian it is well-known that

there is a sufficient statistic in the LS case, namely
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general case g sufficient statistic must include all old

and a few of the latest measurements. In the

measurements explieiftly. Thus it is suitable to base an algorithm

On an approximate sufficient statistic.

In the next chapter an algorithm for the recursive minimiza-
tion of VN is developed. Different approximations are discuss-
ed.. In chapterIII the Kalman filter approach is taken into
consideration and some comparisons are made. Possible limits
to which the estimates may converge are analysed in chapter
IV, The fifth chapter contains some examples and discussions
about how to implement the algorithm. Finally examples using

plant measurements are presented in chapter VI,




IT. A RECURSIVE MAXIMUM LIKELITHOOD ESTIMATOR

In this chapter the recursive algorithm is developed. The
first part deals with the recursive minimization of the

loss function

% eZ(t;8) (1.1)

N
z
=]

V. (8) =
N t

in general. In the second part the algorithm will be applied
to the specific model, Astrdém=Bohlin (1966)

Ata Myye) = Ba  Hut) + ca” e(tse) (2.1)

where y(%t) is the output and u(t) the input at time t.

The polynomial operators are

A(qw1) = 1 + éqqm1+...+ anqmn
B(q™ " = E1q—1+. + gnq_n
é(qaq) = 1 + éqq—1+.n,+ énqmn

q_}I is the backward shift operator and
S IR SUUN L

Let Oy be the minimum point of VN(G).TMEestﬁmme'é

computed from a Taylor expansion of V

N+1;Wl]l be

N+1(e) around eN.

Suppose that an expansion including second order terms is
accurate enough.

! : o . i - A“A
Vireq €8 v (eN) + v (8 )C6-0,) +

N+1 N+1

Too o Toy ~ N
+ ~§-(e eN) VNM(eN)(e eN)
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Minimization gives

~

- — yn Y
Oe1 = Oy VN+1(6N) VN+1(6N) (2.2)

which 1s the first iteration of a Newton Raphson algorithm

applied to the equation V! (8) = 0.

N+1

The estimated minimum value of VN+1<6) is
Vo6 ) = V. (8) = v e v e )Ty (6 )T (2.3)
N+1 N+1 N+1 N 2 N+1 N N+1 N N+1 N )
To form a recursive estimator the relation between VN+1<6>
and VN(G) must be utilized. By definition

\Y (6) =V (é) o 1 ¢2<N+1~é) (2.4)

N+1 N 2 : ’

i - - VA «.A 1 .A

Vi, (8) = Vi(e) + e(N+158)e’ (N+156) (2.5)

Vi (80 = V(o) + T (N+138) e (W+130) +e(N+136)e" (N+150)

(2.6)

The following approximations are made now
Vice,) = 0 (2.7)
e(N+1;éN)e"(N+1;éN) . (2.8)
vrce, ) = Ve, ) (2.9)

The assumption (2.7) can be assumed to hold since oy is

assumed to minimize VN(S). For off=1ine ML the term
N A N

¥y e(ty;6)e"(t;0) has little influence on the minimization,
t= N
Gustavsson (1969b). The equation (2.9) is motivated if Oy is

close to @ Also notice that (2.7) - (2.9) as well as

N=1°
the Taylor expansion hold exactly in the LS case.




With the use of the approximations

~

- A l 2 . A _,,lv A " AN 1 NI
v (6N+1)’VN<9N>+ 5 € (N+1,eN) 2VNH(eN)v (eN) vV (eN)

N+1 N+1 N+1
(2.10)
1 - - .A f A . -
VN+’I (GN) = e(N+1 ,GN) e (N+z,8N) (2.11)
. R A A
1 - i [EN . 1 .
VNH(GN) = VN(eNm1)+e (I\+1,6N) £ (N+1,9N) (2.12)
Introduce the notations
P = yrco. ) (2.13)
N N "N=1 ’
© = "Ny 6. )T (2.11)
N > °N-1 | .
ey = E(N;@N_1> (2.15)
Y =1+ T'P~m (2.16)
N+1 N+1 "N "N+1 ’
Then (2.2) can be written as
Ot “O0 0 7 Pne1PueaCen (2.17)
The well-known matrix lemma
TS S LV B Vb R R VS R Vi
applied to (2.12) gives
p =P - 1 p T b (2.18)
Ne1 TN T Y NN+ 1PN+1 TN :

Finally (2.10) can be rewritten after some trivial calcula-

tions as

A 2

1
(O

) = V(8,) + 4 g
N''N 2 YN+ N+1

Ve (2.19)




In the general case it now remains to develop recursive

equations for ¢, and O+ For the LS case this is very simple

A N N

since €(t36) is linear in 6. The derived algorithm coincides
with the well-known one in the LS case. The expression (2.19)
can be found in Wieslander (1971) where it is derived using

a Kalman filter representation.

In the derivation of recursive equations for ey and ®y
specialization will be made to the model
~ o ~ "o -
Alg Dy(t) = B(g Ju(t) + C(g De(tyo) (2.1)
which can be written in state space form as
o i r " T
T O T A e I
b “ ! 0. . Ly (E+1)
: oy
x(t+1) = Cx () + : U_('t) (2.20)
O
=C 0 0 a -b
. n | - n n
e(t;0) = xq(t)
The derivatives e'(t;6) are given by
Co™ "y 25 (ty0) = y(t-i)
oa.
i
S =1 de oy L .
C(g ) =—— (t38) = -ul(t-i) (2.21)
ob.
i
cqa™y 25 (t38) = ce(t-ije)
3C.

1




A state space form of (2.21) is

~ ~

-C,, . =C_ . %y(t)

1 n
1 | (:) 0

€' (t4130)= 10 "% | ' (£30)+  ~ult) (2.22)

i 1o Lo
The initial values are x(0)= 0, €'(038) = 0.

In order to compute e(t;é) and a’(t;é) (2.20) and (2.22)

have to be solved from t=0. Since e and e' must be computed
for new arguments at every time step this means an unreason-
able lot of calculations. Moreover, all old measurements must
be saved. Note that no matrix multiplications have to be done
explicitly. E.g. all but three components of e(t+1;é) can be
computed by shift.

One way of reducing the computational work is the following.
(2.20) and (2.22) are solved only once and with time vari-

able matrices. When x(t) and e'(t; © ) are computed from

t-1

x(t=1) respectively e'(tm1;etn2) the components of 6 are

t-1
used in the matrices. If 0. does not change very much with
t this approximation can be assumed to be good. The resulting

values of the residual will be denoted ;t'

A further simplification would be to substitute é(q_1

)
in (2.21) " with 1..This does not reduce the computations
very much but it has a nice interpretation which will be

shown in the next chapter.




There are other possibilities to compute approximative values
" of the residuals. One is the following which is used by Young
(1970) and Panulka (1968), The equation (2.1) can be written as

e(£) = () = [y(t=1) . =y (t=1) u(t=1)..u(t-n) e(t-1)..e(t-m) 1 (2.23)

An exact computation of e(t38) requires the solution of

(2.23) from t=0 with constant 8. Similarly to the method
previously described 5(t56tm1) can be approximated by
ﬁ(t39tm1) = y(t) -

=[~y(t=1), . ~y(t=n) ult-1)..ult-n) E<t"1;etﬁz)"E(tmnget—n=1]Qt—1

(2.24)

The algorithm used by Young is obtained if (2.24) is used for
computations of ey and (2.21) with C(q_1) substituted by 1

for computations of Dy

PanuBka's algorithm uses a gradient method for the minimization.
In (2.17) Py is substituted by % I where K is a suitable con-

stant. ¢,, and ®) are computed as in Young's algorithm.

N
The general algorithm and Young's version are compared using
simulated data in chapter V. For these examples both the meth-
ods may give bad estimates if they are applied -straight-forward.
Suitable modifications are discussed in chapter V. Further it
turns out that after these modifications both the methods seem
to work well in the present simulated systems but Young's algorithm
gives larger variances of the parameter es?imates. For both the
methods the convergence of the A-and the B-parameters are con-

siderably faster than the convergence of the C-parameters.

Tn Valis-Gustavsson (1969) a comparison is made between Panuka's

method and the off-line ML method. The comparison shows not
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unexpectedly that the off-line ML method is superior. FEspecially
the C-parameters seem to be difficult to estimate accurately

with Panugka's method.
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TIT. COMPARISON WITH KALMAN FILTERING

Tt is well-known that the recursive least squares method can
be interpreted as a Kalman filter, Astrém (1968), Astrdm-
Eykhoff (1971). Using some approximations this idea can be
used for the model (2.1) as well. It turns out that Young's

"algorithm is very "natural" from this point of view.

The system corresponding to the model (2.71) can be written

as

6(t+1) = 6(t)

y(t) = C(t)e(t) + e(t) (3.1)

where e(t) is white noilse with variance AQ and

C(t) [-y(t=-1),..=y(t=n) ult=1).,.,u(t-n) elt-1)...e(t-n)]

1

T
6(t) [aqg..., a_, bq,ns.,b 5 Cqsenesy Cn]

If C(t)were known a Kalman filter for estimating the state
6 (t) would be

B(t+1) = 6(t) + K(t+1)[y(t+1) = C(t+1)6(1)]

Kty = ;% P(£)C(t)T (3.2)
A

P(t) = P(t=1)=P(t=-)C(t) T IaZsc(tIP(t-1)C(t) 17 T ece)p(t=1)

A way to overcome the difficulty of C(t) being partly unknown
is to replace e(t=1)...e(t-n) in C(t) by e(t-1)...e(t-n). The
residuals {e(t)} are defined recursively through

e(t+1) = y(t+1) = C(t+1)0(t)

The algorithm obtained is exactly Young's method.
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IV, ANALYSIS

To establish convergence of the algorithm, i.e. to prove that
ek ~ 8, k » » is a very hard task. The purpose of the follow»

ing analysis only is to determine possible limits of {Gk}.

First it is observed that the recursive algorithm given by
(2.17) = (2.19) formally can be interpreted as a recursive
least squares solution of the system of equations

T 7
© R ST
T A
®y Ep 9y 8y

’ 6 = ' (4.1)

L . i

This is true only formally since the right-hand side involves

~

83 B850 es

~ *
Assume that 6, tends to 6 with probability one when the number
*
of samples tends to infinity. Assume that 6 corresponds to a
*
model for which A (z) and C*(z) have all zeros outside the

unit circle.

If the initial values of the recursive least squares solution

are neglected then 6 must fulfil the normal equations

N

N N
1 To 1 _ T 2
T (@tmt)eN = ng @t( e, + 0L 6t—1) (4.2)
t=1 t=1
It is shown in the appendix that Oy and 9. 4 asymptotically
*
can be replaced by 6 . Further ¢_ and ¢, (asymptotically)

t T
* * .
can be replaced by €(t36 ) and €'(t3;06 ) respectively..Thus

(4.,2) implies

N

3k %k
Lim ¢ T e(t;0 )e'(t30 ) = 0 (4.3)
N=sco t=1
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Using standard ergodic theory it is possible to show, see
SGderstrdm (1972), that (4.3) can be substituted by

* #*
E e(t;6 de'(tye ) = 0 (4.4)

However, (4.,4) is exactly the equation for the stationary

points of
W(O) = E[e(t;0)]2 (4.5)

In S8derstrdém (1973) an analysis of the number of local
minimum points of W(6) is given. It is shown that 6 is al-
ways a minimum point and conditions are given which guarantee

that 6 is a unique local minimum point of W(e).

Thus if these condition are fulfilled and ., converges a.s.

it must converge to the correct values.
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V. NUMERICAL EXAMPLES

In this chapter some numerical examples will be given. It
has appeared to the author by practical experience that

the algorithm cannot be successfully applied in a straight-
forward way, but suitable tricks make it work rather well,
Several tricks and modifications have been tried by the
author but only the best one is used in the examples pre-
sented. At the end of the chapter a brief discussion of

other tricks is given.

Two different versions of the algorithm are used in the

examples. One is called RMLE1 (Recursive Maximum Likeli-
hood Estimation, version 1) and the other RMLE2. Both the
versions include the basic algorithm given by (2.17) -

- (2.19). The estimate of ) is taken as

—
A \/'N' VN(e )
In RMLE1 the residuals are computed from (2.22). RMLE?

is the version used by Young (who calls it AML, Approxi-

mate Maximum &ikelihood).

The initial values of all variables involved were all
chosen as 0 with the exception of P which was chosen

100-I. In the of f line version of the ML algorithm a test

of stability of C(Z) is made at every iteration and the
estimates are modified to give stability, Gustavsson (1969Db)
This trick was tried in the recursive algorithm as well

and it improved the result.

It would be valuable to have one number giving the accuracy
of the result. For instance, one can use !]émellz or more
generally (éme)TQ(éme) where Q i1s some symmetric positive
definite matrix.

In the following examples an asymptotic loss function was

used, namely,
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W(O36) = — B e2(t)
where

cla™ ety = A Hye) - Bq Huce)
and the process is described by

aa” Dy = Ba hue) + cahery, Eeleo)

i
>

with {e(t)} white noise. Thus

.

A e -2 HrG™

AGq” e

W(638) = —= F
N

ul(t) +

-2

A= =] |
RECHSIIC D e(t) |

A(qnq)@(qm )

Assume that the input is independent of the noise. If the
spectral density of the input is known (in the examples
the input is treated as white noise) W(63;8) can easily

be computed from integrals.

Clearly, Astrdém-Stderstrém (1973), W(s;6) > 1 for all o
where equality implies €& = 6, Further wg(e;e) = 0,

An expected asymptotic value of W(e3;8) can be calculated.
Assume that 6 is asymptotically gaussian distributed with
mean 6 and variance equal to the Cramér-Rao lower bound,

i.e,

. 2 N -1
Py = i W(os58) wée(e,e)

This assumption is valid for the off-line ML estimates,
Astrdm-Bohlin (1966). For large values of Ns W(636) then

can be approximated by 1 + % X where .




16

x = (8-0)" Pg1(ene)
is asymptotically x2(3n) distributed. Especially, under
these-assumptions E W(6;6) = 1 + %%.
In order to analyse the properties of the methods, the
algorithms were applied to data from simulated systems.
A number of realizations was used. The average values
and the RMS errors of 6 were ¢omputed. The RMS errors are
1 k . 5 1/2
(E R (Gi(]) - ei) )

3=

where 6.(j) denotes the i:th component of 6 obtained at
the identification of the j:th realization. The average
values and the RMS errors are compared with their theo-
retically expected values based on the Cramér-Rao lower

bound.

In all examples the number of samples was 2 000. The in-
put signal was a PRBS with amplitude 1.0. 11 different

realizations were used.

For the first order system the algorithms applied straight-
forward work rather satisfactorily. RMLE1 produces & consi-

derably lower variance of ©, than RMLE2. The results are

1
given in table 5.1.

. a1 b1 c1 A W

Expected mean -0.8 1.0 0.7 1.0 71,0015
RMS error 0.012 0.017  0.017 0.032 0.0019

RMLE mean ~-0.796 | 1.005 |0.695 1.009  1,0023
RMS  error 0.019  0.020 | 0.01%  0.037 | 0.0028
RMLE? mean -0.796 1.005 0.675 1.019  1.0056

RMS  error 0.023 0.027 10.038 0.042 0.0067

Table 5.1, Results for a first order system. RMLE1 is the general algorithm
given in chapter IT. RMLE2 is Young's algorithm.
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For a second order system, however, the results are consider-
ably inferior than in the first order case. The results of a
straight-forward application of the algorithms-are given in
table 5.2,

Expected ‘mean..-=1.5 0.7 1.0 0.5 -1.0 0.2 1.0 1.0030
RMS error i 0.007 {0.006 (0.022 10.029 0.023  0.022 {0,032 0.0032

RMLE mean ~1.418 0.624 0,990 10.513 . -0.747  0.103 .267 1 1.164
RMS error ¢ 0.259 10.242 10,073 0.072 0.517 » 0.116 | 0.591 | 0.185

-

RMLE? mean ~-1.490 0.688 1,009 0.487  -0.867 0,044
RMS error | 0.029 | 0.027 0,028 0,072 0.180  0.761

——

112 0 1.054
140 ¢ 0.076

jaw]

Table 5.2. Results for a second order system. Straight-forward application
of the algorithms. RMLE1 is the general algorithm given in chap-
ter II. RMIE2 is Young's algorithm.

In Figures 5.7 and 5.2 the estimates of one of the realiza-
tions (RMLE1 is used) are plotted versus time. A comparison
with- table 2 shows that the result of the identification of
this realization is among the best ones. From Figure 5.1 a
general tendency of the algorithm can be seen. It loses its
"gain" after some hundred samples and most often the estimates
of the C-parameters then are not close to the correct values.
This fact indicates that some kind of restarts would be valu-
able.

This idea will be combined with another. In the computations

~

of the derivatives of the loss function €_ is used as an ap=-

t
proximation of €(t;0) for various values of 6, If 9 is fixed

for a number of samples, the approximation e e(t;0) probably
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20—

>
Number of
samples

Figure 5.1 Parameter estimates of a- second order system. Straight-
forward application of the algorithm is done. The dash-

ed lines give the true values of the parameters.
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i Number of
samples

Figure 5.2 Loss function of a second order system. Straight-for-

ward application of the algorithm is done. The dashed

line gives the asymptotically expected loss.
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will be considerably better. If this idea would have any
practical value 6 must not change too much in the rest of

the identification.

The second idea has been examined to some extent by simula-
tions. The particular system given in table 2 was used. In
some simulations ét was fixed to Fhe correct values for the
first 100 samples and after that 6 was estimated according
to the algorithm. Good results were obtained. In other gi-
mulations the first 100 samples were used at an identifica-
tion with the off-line ML algorithm. These off-line identi-
fications produced good initial values of the recursive

algorithm, which produced satisfactory results in this case.

The algorithm has been modified in the following way. It is
applied straight-forward in N1 steps. Then a test of "con-
vergence'" 1s performed. If "convergence" has occurred;

the algorithm is continued straight-forward. If no conver-
gence ‘has occurred a restart is made with étkeeping its Yalue
and the other variables as their ordinary start values. 8

T
is constrained to be constant for the next N, steps. Aftenr

?
another N1 steps a new test of "convergence" is made. The
estimate X is modified in an obvious way with regard to the
latest restart. This prodedure of successive restarts is

continued until "convergence" has occurred.

A suitable test of "convergence" would be to use W(é;e).
If this quantity is small (close to 1) "convergence" may be
considered to have occurred. However, this test quantity
cannot be used in préctice, since it requires knowledge of

2 .
8 and Azﬁ Instead W(® ) is used with A substituted

5%, -,
by Xie This means that 6 is substituted by the estimate §°
which was present when the latest test -of '"convergence' was
made. If the test quantity is smaller than VTEST no more

restarts are made.
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Simulations were made using the same realizations as before.
The values of the variables used were VTEST 1.05, N, = 300,

and N2 = 50. It is the author's experience that the method

is not very sensitive to the values of the parameters VTEST,

N1 and NQ. The results are good for RMLE1 and a bit inferior,

but yet satisfactory for RMLE?2, see table 5,3,

Ixpected mean 1.5 0.7 1.0 0.5 -1.0 0.2 1.0 1.0030
RMS error 0.007 {0,006 /0,022 {0.029 0.023 | 0.022 0.032  0.0032

RMLEA mean ~-1.498 0.699 0.998 0.500 -0.987 0.180 | 0.994 | 1.0057
RMS error 0.008 0.008 {0.022 10,025 | 0.034% | 0.042 0.048 ' 0.0065

RMLE? mean -1.505 0.702 /1.002 |0.479 =0.,966 | 0.160 1.009 1.017
RMS error 0.01+ 0,014 ' 0.032 0.062 | 0.062 | 0.080 0.060  0.020

Table 5.3. Results for a second order system. The trick with restarts is
used. RMLE1 is the general algorithm given in chapter IT. RMLE2
is Young's algorithm,

In Figures 5.3 and 5.4 it is shown how the modified algorithm RMIF1 works

on the same data as were used in Figures 5.1 and 5.2.

It can be seen that the restarts give the algorithm larger "gain" than
before which causes a Jjerkiness of the estimates. The long range effect,
however, is that the estimates are considerably closer to the

correct values than without restarts.

Now a brief discussion of other tricks and approaches tried
by the author is given. His experience is that these tricks

do not give a satisfactory improvement of the algorithm.
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|
Number of
1000 samples

Figure 5.3 Parameter estimates of 'a second order system. The

modified algorithm is used. The dashed lines give

the true values of the parameters.
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1.0 I | I T I
0 500 1000 somples

)Number of

Figure 5.4 Loss function of a second order system. The modified

algorithm is applied. The dashed line gives the asymp-

totically expected loss.
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1"
The inverse VN(GN 47 "1 as computed by inversion of
VN(erﬁ)’ i.e. (2.12) was used together with inversion

1t ~

instead of (2,18). Since VN(G) is not independent of G
this may change the result of the algorithm.

~ 1 ~

The term E(N+1;6N)e (N+1;8N) was not dropped in the
T} ~

computation of VN+1(6N>'

If the algorlthm does not really minimize V the approxi=-

mation V (8 ) = 0 may not be accurate. The equation (2.11)
of the gradlent was changed to

1

T~ IS 1 -
N+1(e ) = avN(eN) + e(N+1;eN)e (N+159N)

The parameter o Was chosen in the interval [0, 1]. When

b

o 0 the previous algorithm is obtained. The choice of

o 1 caused very large changes in the parameter esti-

mates and was very unsatisfactory. The choice o = 0.6
gave some improvements of the convergence but it was

not satisfactory enough.

In order to speed up the convergence it may be appropriate
to change (2.17) to

-8 - nPp
et T O T N Eg e B
where 0 < B < 1. This attempt gave no improvement in a

few simulated examples.

The normalized loss function % N(e) was minimized

instead of VN(e). No significantly improvements occured.
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VI. APPLICATION TO PLANT MEASUREMENTS

It was shown in chapter V that the recursive ML method
worked well on the simulated data. In order to examine
the properties of the algorithm when it is applied to
real data, plant measurments were used. Measurements from
a nucléar reactor and from a laboratory heat diffusion
process were tried, Identification using an off-line ML
algorithm on the same data have been made by others.
Comparisons are made between the results of the different

methods.

It turned out that it is much more difficult to get the
algorithm to work satisfactorily on real data. There are
probably several reasons for that, for example that the

structure and the order of the process is not known.

Different values of the parameters N19 NZ’ and VTEST were
tried. The results of the identifications were not very
sensitive to the choice of these values. However, it cannot
be excluded that better results may be possible to obtain
by other choices or by a suitable combination of the tricks

mentioned in chapter V.

To illustrate the on-line identification procedure the
estimates ét and the residuals ;t are plotted versus
the time t. The comparison between the results of the
off=line and the on-line algorithms are illustrated with

plots of the following signals:

1. the input u(t)
2. the output y(t)

S =1
Bla_ ) e
Alg )

3. the model output ym(t)

4, the model error em(t) = y(t) - ym(t)

5. the residuals e(t;6)
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The model outputs of the on-line models were computed
using the parameter estimates obtained at the last

sampling interval.in the identification.

Example 1

The system is a nuclear power reactor in Agesta, Sweden. The
data were supplied to the Division of Automatic Control by
AB Atomenergi, Studsvik, Sweden. The system is described
briefly in Gustavsson (1969a) where also ML identifications
are reported. The number of data ig 1700 and the measure-
ments are called AR 60. The input is control rod position
and the output is the nuclear power. An idealized input
signal was used both for on-line and off-line identifi-
cation. The sampling interval is 1 second. Using an F-test
it is concluded in Gustavsson (1969a) that the system is

of third order.

When recursive ML identification was performed for a model

of third order several problems arose. The parameter esti-
mates did not converge. At no time their values were close

to the parameter values obtained in Gustavsson (196%a).
However, the model outputs of the two models did not differ
significantly. A possible explanation of these phenomena

is that the order of the model was chosen too high. An in-
dication of this is that both the model in Gustavsson (196%a)
and the model obtained by on-line identification have approxi-

mately one pole and zero in common.

The results of the on-line identification of a second order
model were more satisfactory. The parameters N19 NZ,and VIEST
were chosen as 300, 50 and 1.05 respectively. The parameter
estimates obtained are given in Table 6.1. In Gustavsson
(1969a) 95 % confidence intervals of the parameter estimates
are given. Only the parameters 51 and 82 of the model obtain-

ed on-line are inside these intervals.




On-line | Off-line
algorithm algorithm
used used

;1 -0.95 -1.08

. L |

a, 0.1 0.20

B1 1.69 1.69

b, -1,12 -1.37

51 -0.76 ~0.9? |

c, 0.23 0.27 :

A 0.18 0.17

Table 6.1 Results of identification of the nuclear

reactor data.

~

Figure 6.1 shows how the parameter estimates 6t and the

estimated residuals gt vary with time. The large values

~

of ey at t = 300, 650, 1000 and 1350 are due to the re-
starts. The large residuals at t = 41, 143, 1233, 1291,
1517, and 1597 are explained by large measurement errors
at these points. The measurement errors can be seen clear-

ly from plots of the data.

In Figures 6.2 the model outputs and the residuals are
shown for different models. When the second order models
are compared it is clear from Table 6.1, Figures 6.1 and
6.2 that there are only small differences between the re-
sults of on=line identification and the result of off-line
identification. The model output for a third order model

computed by on=line identification was very similar to the
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Figure 6.1 The parameter estimates and the residuals estimated for the
- nuclear reactor data. The sampling interval is 1 second.
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Figure 6.2 Three models of the nuclear reactor.

Model 1 is of second order and is obtained by on-line identifica-
tion.,

Model 2 is of second order and is obtained by off-line identifi-
cation.

Model 3 is of third order and is obtained by off-line identifica-
tion.

Digital units are used. The sampling interval is 1 second.
Notice the different scales.
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model outputs of the second order models. The best result
is obtained with a third order model obtained by off-_
line identification. However, the improvements are not
very great as can be seen in Figure 6.2. The slow oscilla-
tion with small amplitude in the model error disappears,

however.

Examgle 2

The system is a laboratory heat diffusion process at the
Division of Automatic Control, Lund Institute of Techno-
logy. The process consists of a long copper rod. The end
temperatures can be controlled using Peltier elements.
Tdentification results of the system using the off-line

ML method as well as a short description of the process is
given in Leden (1971)7 The data used here are called series
S1. The input is the temperature of one of the end points
of the rod. The other end point temperature was kept constant.
The output of the process is the temperature in the middle

of the rod. The number of data is 862 and the sampling inter-

val is 10 seconds. Leden (1971) found that a model of fourth

order was appropriate.

Recursive identification was performed with N, = 200,

N, = 50,and VTEST = 1.05. The resulting parameter estimates
are given in Table 6.2. They differ very much from the esti=
mates obtained with off=line identification. In Figure 6.3
it is shown how the estimates vary with time. The large
values of the residuals at t = 200 and 450 are due to the

restarts.

The model identified off-line is obtained by a straight-for-

ward application of the ML algorithm. In Leden (1971) also

a considerably better model is obtained by inclusion of esti-
mation of initial values and constant errors and by limiting

the residuals. This improved model has four real-valued poles

and the model error is much smaller than before.




On-1line Off-1ine
algorithm algorithm
used used
51 -0.88 -2.03
3 -0, 1.40
a2 0,35
: -0, -0.40
a, 0.01 0
a, 0.27 0.0u
A1-1o3 1,08 0.02
£2@1O3 1.22 0.48
. 3
by10 4,43 3,90
b 3 2.30
Lt 10 8.87
81 0.b4u -0.86
c, 0.32 0.54
e 0.26 -0.15
€3
-0. 0.2u
c, 0.03
o108 2.53 | 0.36

Table 6.2 Results of identification of the heat rod data.

In Figure 6.4 the model identified on-line and the model
identified by a straight-forward off-1line ML algorithm
are compared. These 'two models differ very much in the
parameter values. It can be seen from Figure 6.4, however,
that the model obtained by on-line identification describes
the slowest modes of the process well. When the input is
constant for a longer period the residuals are small. The

fast modes of the process are badly estimated.
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Figure 6.4
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Models of the heat diffusion process.

Model 1 is obtained by on=line identification.
Model 2 is obtained by off=-line identification.

All variables are given in OC. Constant levels are added to
the input, the output and the model outputs. The sampling
interval is 10 seconds. Notice the different scales.
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CONCLUSTIONS

The following conclusions are based on the examples given.

o The algorithm must be applied with caution. It does

not give as good estimates as the off-line ML algorithm.

o Applied to simulated data the algorithm works quite well

when suitable tricks are used.

o | Applied to real data it is difficult to get the algorithm-
working satisfactorily. An improper choice of the order
of the model may cause considerable difficulties. The
most dominating modes of the process are well estimated.
It is probably often appropriate to use a low order model.

N

o The choice of the values of N and VTEST is not

17 2°

very crucial.
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APPENDIX

The purpose of this appendix is to show that the equation
(4.2) can be substituted by (4.3). The basic tool is the

following lemma which is taken from Ljung (1973).

Lemma. Let {fn} be a strictly stationary process such that

Elfn[ exists.Assume that the sequence {an} fulfils

a =0 a.8., n >

Then

Corr 1. Let {en} be a sequence of stochastic variables such
that

Further let {fn(e)} be a strictly stationary process, which
depends on the parameter 6 such that fn<e) is (continuously)
differentiable with respect to 6 a.s. and that E[f£(6)|2

*

exists if 6 belongs to some neighbourhood of 6

Assume that the sequence {an} is bounded a.s. Then

1 N *
- ¥ [£f.(8.) - f£.(8 )]a. ~ 0 a,s. N =+ =
Ni:1 171 i i

Proof The assumptions imply

le. -6 | i> N

%
[£,0.) - £.00 )] < M. Je, > N

1
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for some N where {Mi} is a strictly stationary process

OD
such that E]Mil exists. Thus

,1N )
'ﬁifq[fi(ei) - £.(0 Dla,| <
o . ;N .
<.z |fi(ei) - £ (0 )] Iail vt [f.(ei) - £, (0 )Ilai!
1=1 1-NO+1
N
1t £ <e>-f<e*>[|a1+l§M|e - o7 a., |
Moo, it i A PR A i

The first term trivially tends to zero as N tends to infini-
ty. It follows from the lemma that the second term tends to

zero as well.

Corr 2. Let the assumption of {an} in Corr 1 be changed.
Assume instead that {an} is a strictly stationary process
such that E]anlzexistx, Then the result of Corr 1 remains
true,

In the present algorithm e_ and 0, are computed in an

approximate way as discusde in chapter II. To simplify
the calculations it will be assumed here that they are
computed exactly. The results of Ljung-Wittenmark (1973)
indicate that it may be possible to extend the calcula=
tions to the actual €. and o, .

Assumptions on the distribution of the noise will be made

indirectly. It will be assumed that the expectations
Ele'(t;0)] 2 and Ele"(t;8) 2

exist for all & such that the eorresponding polynomials




A(z) and C(z) have all zeros outside the unit circle.

The residuals e(t;é) and the gradient e'(t;é) are strictly
stationary processes if the initial values are chosen pro-
perly. However, the effect of the initial values do not af-
fect the result and it will be assumed generally that they

are chosen in a proper way.

To simplify,the following notations will be used

A~ * o
- 1 . - 1 a
o, = ¢ (t,atw1) 0. =& (tye )
0. ) s (30 )
e, = C(t’et~1 e, = e(t30

The calculations are organized as proofs of three assertions.

g N T~ g N
Assertion 1 1im 7 X mtmteN = (limﬁ RO
Nesco ~t =7 Ne~soo ** £=1

*¥T, %
©. )8 a.s.

t

Proof After a decomposition the sum of the left hand side

is written as

N N
1 - T, 1 kKT K
7L 008, = gX (00 )6
N.Tp TETEN N DT
N N
1 - T_ . * *Ty2 1 * *T o
+ ﬁtfq(mtwt O O )0+ Nt§1 © 0 " (8y=6 )

Tt follows from Corr 1 that the second term tends to zero

and from the lemma that the third term tends to zero,.
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. .1N T .1N**T*
Assertion 2 lim_p 0 0.6, = (lim= 5 0 0 )6 a.s.
Noseo N g2 Noseo N o
Proof A decomposition gives
N N
1 T 1 * kT O*
= X 0,0 6, ., = =X (0 0 g
Nt:1 Tt Tt th:1 Tt
N N
1 *x kT~ 1 * kT - *
3. . -
TN (Gp0p = @0 )04 * w2, PPt (6pq=0 )

Using the same type of arguments as in the preceding proof

the assertion follows.

N N .

. . 1 . 1 *
Assertion 3 1im = ¥ ¢, @, = 1lim = X €. © a.,S.,
Nooo Ntzq T8 Nohe Neoq BT

Proof Using a similar decomposition as before

e e T e
=3 e Q. = = e o, + = % e (0 -0
WD, Tt T NIyttt TOW L e e e
15 Jo v 1y ¢ Y ")
o £, ~€. )@ = £ ~¢ @, =@
Neoq t ot DR DT

The second and the third terms tend to zero according to

Corr 2. It follows from the lemma (put fnz1) that the fourth term tends

to zero.
]

It can be shown, see e.g. Stderstrdm (1972), that the right hand sides of

the assertions really exist under mild conditions.




CORRECTTONS

The abbreviation pa.b denotes page a line b.

p6.10 Read "na < i i_nb”

9.6 Read "the coefficients bnb, ana”

pit.4 Read "given by dim R(P)"

p20.4,p20.5 Read "three times differentiable"

p20.6 Read "fixed parameter"

p22.15, p24.1, p2u.4, p25.3. p29.8 Read "= 0 a.s."

D24.10  Read "A(qT ) = A(gT )"

p2u.13 Read "since trivial calculations show that V is strictly convex"

p26.3, p27.13, p28.16, p31.9, P32.18, p40.14, pu2,1, pi6.18, pu6.19,
pu7.11, pu8.10, p52.14. The equality 8 = 0 is not consistent if
the vectors are of different orders. The meaning is for p26.3
Aq™ = a@™h, 8@ = @™, c@ = c@™
For the other cases the modifications are analogous.

p27.6 Replace "=" with "="

p28.14, p30.8 Read "lemma 2.4 Corr and lemma 2.6"

p30.16 Replace the line with "which gives"

p32.16 Read "lemma 2.7, Lemma 2.4 Corr and Lemma 2.6"

P33.3 Read "measurement"

p37.19  Read ”§(q“1)="

p45.16  Read "A(Q™ ) = K@@ HLa ™, @™ = g HL@ Hr

p46.8 Read "a unique stationary point"

DpU7.6 Add "and ny z_nb” ) o )
p52.5 Read "minimum point with respect to (a,...a’ bq...bﬂb)”
p55.9 Read '"Canonical' @

PB.3.11 Read "Kaufman"
pB.8.13  Read "number"




CORRECTTONS
The abbreviation pa.b means page a line b.

P3.3 Read "the integration path"

p10.7 Replace VD(ti IR R T o N v)v

p10.12 and p13.2 Replace "' (z ~ w) S with " T (2 - u.)tj"
jk . 3 ¥k :
- t
p13.12 Read " 1 (z - uk) k"
k=1

p15.13 Read "C'(z) = C(z)"

p15.20  Delete "that"




CORRECTIONS

The abbreviation pa.b denotes page a, line b.

pl.2 Delete "the"
p7.5 Read "derived for the LS case"
p8.17 Read "residuals"

p16.Table5.1 The theoretical RMS error of A is 0.016

p17.Table5.2 and p21.Table5.3 The theoretical RMS error of A is
0.016 and the theoretical RMS error of W is 0.035

p17.7 and p20.5 Read '"table 5.2"

p19 The scale on the W-axis is incomplete. Figure 5.4

shows the correct scale.
p25.14 Read ''are not known"
p26.31 Replace ”a1”‘with ”bq”

*
p41.11 Replace ”wt” in the right hand side with ”wt”




