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“Stufen

Wie jede Bliite welkt und jede Jugend

Dem Alter weicht, bliiht jede Lebensstufe,
Bliiht jede Weisheit auch und jede Tugend
Zu ihrer Zeit und darf nicht ewig dauern.

Es muf das Herz bei jedem Lebensrufe
Bereit zum Abschied sein und Neubeginne,
Um sich in Tapferkeit und ohne Trauern

In andre, neue Bindungen zu geben.

Und jedem Anfang wohnt ein Zauber inne,
Der uns beschiitzt und der uns hilft, zu leben.

Wir sollen heiter Raum um Raum durchschreiten,
An keinem wie an einer Heimat hingen,

Der Weltgeist will nicht fesseln uns und engen,
Er will uns Stuf’ um Stufe heben, weiten.

Kaum sind wir heimisch einem Lebenskreise
Und traulich eingewohnt, so droht Erschlaffen,
Nur wer bereit zu Aufbruch ist und Reise,

Mag lihmender Gewdhnung sich entraffen.

E's wird vielleicht auch noch die Todesstunde
Uns neuen Riumen jung entgegensenden,

Des Lebens Ruf an uns wird niemals enden ...
Wohlan denn, Herz, nimm Abschied und gesunde!”

’

Hermann Hesse*

* Das Glasperlenspiel, Suhrkamp Taschenbuch Verlag, Frankfurt am Main, 1972




PREFACE

MY interest in control of critical processes and extreme values began
in the autumn of 1990 as I was following a course on extremes in
random processes given by Professor Georg Lindgren at the Department of
Mathematical Statistics in Lund. Initial results were in the area of linear
feedback control of Gaussian random processes. As was pointed out to
me by Professor Torsten Soderstrom in Uppsala, the generic controller
for critical processes should be nonlinear. This is indeed the case. Some
work has been done in this area. However, it has been difficult to obtain
general results for nonlinear controllers that are easy to implement in
terms of numerical routines. Most of the work presented in this thesis
will be on linear controllers.

The thesis is somewhat interdisciplinary and in the borderland of au-
tomatic control and mathematical statistics. It is primarily written for a
reader with knowledge of automatic control at a graduate level, but I hope
that the references will help any other reader with some mathematical
background to read it.
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Introductory Part

Background and Motivation

ANY processes in industry are critical. They are often critical in

the sense that they have a limiting level. This can be either phys-
ical or artificial. Examples of the former are such levels that cannot be
exceeded without catastrophic consequences, e.g. explosion. One exam-
ple on the latter is alarm levels, which if they are exceeded will initiate
emergency shutdown or a change in operational conditions. Another ex-
ample is quality levels, which if they are exceeded will cause unsatisfied
customers. Common to the critical processes are that they enter their
critical region abruptly as a signal exceeds a limiting level.

The distance between the limiting or critical level and the reference
value is normally not small, since otherwise the number of exceedances
of the level by the controlled signal would be intolerably high. However,
there may be other control-objectives that make it undesirable or impossi-
ble to choose the distance large. An example of problems of this kind can
be found in Borisson and Syding (1976), where the power of an ore crusher
should be kept as high as possible but not exceed a certain level, in order
thatthe overload protection does not cause shutdown. Another example
is moisture control of a paper machine, where it is desired to keep the
moisture content as high as possible without causing wet streaks, Astrém
(1970) pp. 188-209. Yet another example is power control of wind power
plants, where the supervisory system initiates emergency shutdown if the
generated power exceeds 140% of rated power, Mattsson (1984). Other
examples can be found in sensor-based robotics and force control, Hansson
and Nielsen (1991), and control of non-linear plants, where the stability
may be state dependent, Shinskey (1967).

The main contributions of this thesis is the formulation of critical
control problems in terms of the Minimum Upcrossing (MU) controller.
The upcrossing criterion goes back to Rice (1939). It will be seen that

1




Introductory Part Background and Motivation

this stochastic optimization problem can be solved in terms of a one-
parametric optimization over Linear Quadratic Gaussian (LQG) control
problems. Another contribution of the thesis is simple necessary and suf-
ficient conditions for existence of solutions to LQG problems. These are
used to derive necessary and sufficient conditions for existence of the MU
controller.

The purpose of the Introductory Part is to give a background, moti-
vation and introduction to the other parts. In Chapter 1 previous work
by other authors in control of critical processes will be discussed. Both
deterministic and stochastic setups will be reviewed. In Chapter 2 dif-
ferent nonlinear optimal stochastic control problem formulations will be
given. For some examples explicit solutions will be obtained. In gen-
eral, however, the resort seems to be numerical computations. Then in
Chapter 3 the specific problems considered in parts I-IV of the thesis will
be described. They will all be partial information linear time invariant
optimal stochastic control problems. The risk criterion is the probability
that the largest value of the controlled process during a fixed time inter-
val exceeds the critical level. The Mean Time Between Failures (MTBF)
criterion is the expected value of the time between two consecutive up-
crossings of the critical level. It will be seen that the upcrossing criterion
can be used to approximate the two former criteria, and it seems possi-
ble to obtain explicit solutions only for the latter criterion. In Chapter 4
some examples will be investigated. Finally, in Chapter 5 an outline of
the remaining parts of the thesis will be given.




CHAPTER 1

PrEVIOUS WORK

RITICAL control systems, the expression was coined in Zakian (1989),

has attained much interest during the last couple of years. In the
sense of control of processes with constraints on the states and the con-
trol signals this has, however, been an area of research for more than 30
years. Some of the earliest contributions are Manne (1960), who used
linear programming to compute state feedback laws, and Andreev (1961),
who considered stochastic feed-forward control problems. Most work has
been done in a deterministic setup, see Chang and Seborg (1983) for early
references on constrained control problems, and Gutman (1986) for lin-
ear programming references. The aim of this chapter is to give a brief
overview of the status of current and previous research in the area of
critical control systems. In Section 1 general deterministic optimal con-
trol problem setups are discussed. In Section 2 some stochastic problem
formulations are reviewed. Finally, in Section 3 some concluding remarks
about analysis of crossing problems in stochastic processes are given. This
is an old research area that goes back to Rice (1939), and it is in this field
that the present work has its main roots. It is not claimed that the refer-
ences mentioned below constitute a complete list of work done in control
of critical processes.

1.1 . Deterministic Problem Setup

In a deterministic framework critical optimal control problems can be
formulated in terms of the criterion

max ||z]o
d

where z is the controlled signal and d is a disturbance acting on z. Prob-
lems of this type have been studied extensively. Depending on what as-
sumptions are made on d several different formulations are obtained.




Introductory Part Background and Motivation

The Hy-Controller

Assuming a linear process and bounded energy on the disturbance, i.e.
lldl|l2 < 1, gives the well-known Hjy-controller, Vidyasagar (1986). This
is perhaps not the most well-known derivation of the Hy performance
index. Usually it is derived in a stochastic context, where it is called the
LQG-controller. This controller was launched already in the fifties, and
it is regarded as one of the milestones in modern control theory. It has
been widely applied in practice. Although it has been thoroughly studied
in theory for more than 30 years, new interesting results still emerge,
Chen et al. (1993), Trentelman and Stoorvogel (1993), Trentelman and
Stoorvogel (1994), where existence and construction of the Hy controller
are investigated. This will be discussed in more detail in Part III.

The L1-Controller

By assuming that the disturbance has bounded supremum norm, i.e.
l|d||ee < 1, the L; performance index in continuous time, Vidyasagar
(1986) and the [; performance index in discrete time, Dahleh and Pear-
son (1987), are obtained. A book will soon be published on the topic,
Dahleh and Diaz-Bobillo (1995).

The Sup Regulator

In Liu and Zakian (1990) the disturbance has bounded increments, i.e.

||Ad|lc < 1. The controller that minimizes the performance index un-
der this assumption on the disturbance is called the sup regulator. It
is treated in more detail in Whidborne-and Liu (1993), where also some
applications concerning critical control systems are described. One of the
examples, the control of an electro-magnetic suspension, has also been

described in Whidborne (1993).

1.2~ Probabilistic Problem Setup

Common to the deterministic criteria is the design for worst case distur-
bances, which may seem somewhat too conservative. The classical way
to overcome this is to introduce a stochastic formulation. This could be
done by considering e.g. the criterion

E{f(llzll0)} (1.1)

where E denotes expectation with respect to a probability measure in-
duced by some probabilistic characterization of a disturbance acting on
the controlled signal z.

4




1.2 Previous Work—Probabilistic Problem Setup

Andreev and Astrém

By taking the function f to be the indicator function for the set {x > 20},
the following performance index is obtained:

P{]lz[leo 2 20} (1.2)

where P is a probability measure, and where 2z is a critical level that the
controlled signal z should not exceed. This criterion is described already
in Andreev (1961), and extensively discussed in Andreev (1969). There
feed-forward problems are considered, for which approximate solutions
are obtained. In Astrém (1961) exact solutions are obtained for a first
order full information feedback example. This will be treated in more
detail in Chapter 2. In Chapter 3 approximations of the criterion in (1.2)
will be discussed.

Heinricher and Stockbridge

In Heinricher and Stockbridge (1991) full information feedback solutions
to problems similar to (1.1) are obtained by introducing the so called
running max £(¢) = max{z(s):0 < s < ¢}. Via dynamic programming
a Bellman-equation is obtained for a stopping problem. This equation
sometimes has analytic solutions. This will be discussed in more detail
in Chapter 2.

1.3 Concluding Remarks

In this chapter a brief review of previous work in optimal control of critical
processes has been given. However, some more work has to be mentioned
at this point, and it concerns the approximation of performance indices
such as (1.2). In the context of stochastic processes this is known as
extreme value analysis. The limiting distributions of the maxima for in-
dependent and identically distributed random variables were discussed al-
ready in Tippet (1925), Fréchet (1927), Fisher and Tippet (1928). The re-
sults were generalized to dependent variables by Watson (1954), Berman
(1964), Loynes (1965), Leadbetter (1974). A good book in the topic is
Leadbetter et al. (1982), where also continuous time is covered. There
distributions of extrema are approximated with upcrossing intensities.
These were discussed already in Rice (1939), Rice (1944), Rice (1945).
Rice’s celebrated formula for the mean number of upcrossings of a level
2o per unit time by a stationary Gaussian process, with zero mean value

5
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and covariance function r(7), is given by

- %X [’2552)0)}

The origin of Rice’s Formula is well described in Rainal (1988). The
minimization of this formula is the topic of Part 1. In discrete time the
corresponding formula is less explicit

u=Plz(k) <zonz(k+1) > 2z} (1.3)

Cramér and Leadbetter (1967). This makes the analysis somewhat harder
in discrete time than in continuous time. The minimization of this formula
is treated in parts II and IV.




CHAPTER 2

NONLINEAR CONTROL

IN this chapter nonlinear stochastic control of critical processes will be in-
vestigated. Nonlinear stochastic control in general has been a research
area for many years. Mostly full-information problems are treated, which
is the case also in this presentation. Both continuous time formulations,
Section 1, and discrete time formulations, Section 2, are given. They both
utilize the so called running max, Heinricher and Stockbridge (1991), to
formulate critical control systems in a stochastic context. Dynamic pro-
gramming will be used to derive a Bellman-equation. For some examples
explicit solutions of this equation are obtained. In general, however, the
resort seams to be numerical computations. Finally, in Section 3 some
concluding remarks are given.

2.1 Continuous Time Problems

In this section continuous time stochastic control of critical processes will
be discussed. To get a feeling for what problem-formulations are relevant
some examples will be investigated. The first example will be a simple
continuous-time linear first order process controlled with a proportional
controller.

ExamPLE 2.1—Proportional Control
Let the process to be controlled be given by the stochastic differential
equation '

dx(t) = [ax(t) + bu(t)]dt + odw(t), x(0) = x

where x is the state of the process and where w is a standard Wiener-
process. Assume that the cqntroller has full information, i.e. that the
control signal u(¢) is a function of x(¢). Now, consider a proportional
controller u(t) = —kx(t). The closed loop system is then governed by

dx(t) = (a — bk)x(t)dt + odw(t), x(0) =x

If % is chosen such that a — bk < 0, then the closed loop will be stable.
Then, for any initial value x, it is easy to show that the solution to this

7
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equation in stationarity is a Gaussian process with zero mean and co-
variance P = 02/[2(bk — a)], Astrsm (1970). By letting bk go to infinity
it follows that x(¢) can be made equal to zero in mean square. Notice
that there is no problem with respect to stability in doing this. However,
the variance of the control signal is £2202/[2(bk — a)] and it converges to
infinity as bk goes to infinity. O

In the next example it will be shown that, in order to prevent the
closed loop system to enter a critical region, infinite gain only has to be
applied at the boundary of the critical region.

ExXaMPLE 2.2——Singular Control

Consider the same process as before, but let the controller be u(t)dt =
—a/bx(t)dt + dg[x(t)], where g = g* — g~, and where g* and g~ are
defined as in Karatzas (1983)

g7 (t) = max|0, max[~x(s) + " (s) ~ xo]]

g" () = max[0, max[x(s) + g7 (s) = %o]]
The closed loop system will now be governed by
dx(t) = dg(x(¢)) + odw(t), x(0) =x

This equation and similar ones were studied already in Astrém (1961),
where it was found by solving the Fokker-Planck equation, assuming the
initial value x to be in I = (—xq, %), that the density function p(¢,&) of
x(t) has compact support on I and that’it is given by

p(t,€) = %@niwexp H— (= n)z}

where T' = 2x3/c?. This density converges, as ¢ approaches infinity, to a
uniform distribution on I. Thus the probability of x(¢) being in the critical
region R \ I is zero for each ¢. In Astrém (1961) no equations or explicit
expressions for g were given. It was only assumed that there existed a
g such that the density of x{¢) would have compact support on I. It was
later shown that such a g indeed existed, and that it was uniquely given
by the above equations. The total variation of g is given by g* + g~, and
it is bounded for all . Had g been differentiable, which is not the case,
then u(t) = —a/bx(t) + g(¢) and the total variation of g would have been

[ ieas




2.1 Nonlinear Control—Continuous Time Problems

Hence, formally, the control signal above is such that the integrated ab-
solute value of it is bounded. This type of control problems are known as
singular stochastic control problems, since the control signal is not abso-
lutely continuous with respect to Lebesgue measure, see Karatzas (1983)
for a good survey. In fact g behaves lake a Wiener-process when it is
not constant. Thus since a Wiener process is a.s. nowhere differentiable,
formally, it holds that g is either 0, +00 or —co. The deterministic coun-
terpart to this type of control is known as impulse control. a

From a practical point of view it seems strange that such good per-
formance can be obtained. This is due to the fact that infinite control
signals may be applied to the process without causing instability. In or-
der to get more interesting problems different approaches can be taken.
Considering discrete time problems often removes the pathological be-
havior encountered in the examples above. This is due to the fact that
high gain usually will cause instability. When considering continuous
time problems one attractive way of ruling out infinite control signals
is to limit the control signal to a certain set. Another way is to con-
sider optimal control problems with sufficiently large weighting on the
control signal, e.g. quadratic weighting. Sometimes, as in Heinricher
and Stockbridge (1991), non-trivial problems can be obtained by consider-
ing non-controllable processes. Another way of obtaining well-formulated
problems is to consider the case of partial information.

In this section full information continuous time optimal stochastic
control of critical processes will be treated. The processes considered will
be stochastic differential equations. For an introduction to these see e.g.
@ksendal (1989). A more complete treitment is given in Karatzas and
Shreve (1991). In order to address critical processes the notion of the
running max will be introduced as in Heinricher and Stockbridge (1991).
Different relevant control objectives will be discussed by considering fairly
general optimization problems. Sufficient conditions for these problems
in terms of Hamilton-Jacobi-Bellman (HJB) equations will be obtained.
It will be seen how it is possible to solve the HIB-equation explicitly for
an example.

Model
N

Let the open loop system be modeled by the following stochastic differen-
tial equation:

dx(t) = f[x(t), u(t)]dt + o[x(¢),u(t)]dw(t), x(0) = x (2.1)

where w is a standard n-dimensional Wiener process, and where f and
o are n-dimensional vector functions and n x n-matrix functions of the n-

9




Introductory Part Background and Motivation

dimensional state x(¢) and the m-dimensional control «(¢). The assump-
tions to be imposed on f and o for (2.1) to have a well-defined solution
can be found in e.g. Fleming and Soner (1993).

In order to be able to address critical processes, introduce the running
max of g(x(t)), which is defined as

£(t) = max{g[x(s)]: 0 < s < t}v¢, &£(0) =¢ 2 g[a]

where g is a real-valued differentiable function of the n-dimensional state
x(¢), and where v denotes max of the left and right hand side. By defining
theset A = {t € R : g(x(¢)) = £(t) ndg[x(t)] > 0} it is possible to express
dé as -

dg(t) = 14(2) {£lx(2), u(®)]dt + olx(2), u(?)]dw ()}

where 14 (¢) denotes the indicator function of the set A. In the sequel (2.1)
will be augmented with this equation. The augmented state (x(t)T 3 (t)) T

dg[x(t)]
dx

is a strong Markov process, but it is not a diffusion due to the fact that
I4(¢) is not adapted to the o-algebra F(¢) = o{w(s): 0 < s < ¢}. Notice
however, that £(¢) is adapted to 7(2); it is also increasing. These facts
will be used later on.

Control Objectives

One control objective relevant for critical processes is obtained by consid-
ering the following criterion function

-

I, &, u { / R[x(8), E(8), u(t)]dt + W[T, (T, §(T)]} 2.2)

where b and ¥ are real-valued functions of the state, the running max and
the control. Another possible control objective is the so called discounted
cost criterion

Jilm )] = B{ [ P hlxte) 20, u(0)et (23

where § > 0. The set of c})ntrols over which the minimization of the
criterion functions is to be performed will be the set of admissible controls
as defined in Fleming and Soner (1993). The former criterion function will
result in time-dependent control laws, whereas the latter will result in
control laws independent of time. The conditions that have to be imposed
on k and ¥ for the control problem to be well defined are given in Fleming
and Soner (1993).

10




2.1 Nonlinear Control—Continuous Time Problems

The Hamilton-Jacobi-Bellman Equation

Now sufficient conditions for optimality in terms of HJB-equations will
be given. The results are variants of the result in Heinricher and Stock-
bridge (1991), and they follow the path of standard verification theory as
presented in Fleming and Soner (1993).

First consider the problem of minimizing J¢. Introduce the following
partial differential equation, called the Hamilton-Jacobi-Bellman (HJB)
equation

V; + min {Vf f+ %terxO'GT + h} =0 (2.4)

for V.= V[t,x,&] on Dy = {(t,x,£) € R™? : g[x] < &, 0 < ¢ < T}
with terminal condition V[T, x,&] = W¥[T,x,¢] and boundary condition
Velt,x,&] = Ofor g[x] = £ and 0 < ¢ < T'. Assume that this equation has
a solution V on Dy that fulfills all the assumptions for a classical solution
as defined in Fleming and Soner (1993).

Since £(2) is adapted to #(¢) and increasing, it follows by the Ito-
formula, Karatzas and Shreve (1991) Theorem 3.6, that

T
VIT, %(T),&(T)] = V[0,x,&] + /O Vs VEIF+ %terxO'O'T +14Vglf|dt
T
+ / VI + L4Vl |odw
0

Noting that Vg[t,x,&] = 0 for g[x] = £ and 0 < ¢ < T, and that
VIt, x(8), £(8)]o[x(t), u(t)] is adapted to F(¢), it follows by taking expec-
tations that

E{V[T,x(T),&(T)]} = V[0,x,&] + E{ /0 ! [Vt +VIf+ %terxaaT} dt}

Now, by adding and subtracting % in the integral, using (2.4), and noting
that V[T, x(T),&(T)] = [T, x(T),&£(T)] it holds by (2.2) that

V[oyx, &] < I, & u()]

with equality for the u(-) that solves (2.4). This shows that the optimal
control can be obtained by solving the HJB-equation under the condition
that this solution fulfills the assumptions that justifies the calculations
above,.i.e. has a classical solution in the sense of Fleming and Soner
(1993). Notice that the differentiability assumption on g is not necessary,
since I4(¢) Ve[t x(2), ()] = 0.

11
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Similar techniques as above can be used to show that the existence
of a classical solution to

1
~BV + min {Vfo + EtrvmaaT + h} =0 (2.5)

for V = V[x,&] on Dy = {(x,&) € R"" : g[x] < &£} with boundary
condition V¢[x,&] = 0 for g[x] = & and terminal condition

lim e ME{V[x(6), £(0)]} = 0

is a sufficient condition for minimizing ;. In Heinricher and Stockbridge
(1991) a stopping problem is considered where the sufficient condition is
the same as the one for the discounted const criterion above with f = 0
and with the additional assumption of V[£,£] = 0.

Example

It turns out that the time-independent HJB-equations are much easier to
solve than the time-dependent. Thus a discounted cost criterion problem
will be considered.

ExampLE 2.3—Discounted LQ Control in the Running Max
Let the process be linear, i.e. let

dx(t) = [ax(t) + bu(t)]dt + odw(t), x(0)=x

and let the criterion be given by

B{ [Ter G0 pu0] )

which is a type of discounted Linear Quadratic (LQ) control problem, but
not in the state x as is usual, but in the running max . Assume that
g(x) = x. Easy calculationg show that the optimal control is given by
u = —~b/pV,, and that the HIB-equation for this control becomes

bz 2 1 2 1 2
—,BV+axVx—2—p—Vx+50' er+‘2-§ =0

Inspired by the solution to the standard discounted LQ problem the solu-
tion V = K1x?+ Kox& + K3E2+ Ky for K;, i = 1,...4 being some constants,

12
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will be investigated. Some calculations show that this is indeed a solution,
if ¢ = 0, and it is given by

K = ';)52, Ky = —-2K;3
_=pB—/p*p* +4pb2 __po’
K3 = 402 K="

The resulting control signal is given by

pB+ /p2B* + 4pb® £

2pb

u(t) = Box(e) -

and it is always negative. Strangely enough bu is increasing as a function
of the state. It is interesting to note that the standard discounted LQ-
controller is given by, Fleming and Soner (1993)

u(t) = PEXNPBE B

200

Hence the discounted L.Q-controller for the running max just replaces the
state in the standard problem with the running max and adds a new
feedback from the state. If § = 0, then the state feedback is not present
and the controller is given by

u(t) = — Sl%;lﬁb)

The assumptions that justifies the use of the HJB-equation to derive the
optimal controller for the discounted cost problem has to be shown to hold
for the solution obtained. The only assumption that is difficult to verify
for the discounted cost problem is

(1)

Jim e BV [(0), £(8)]) =

T
where [x(t) ﬁ(t)] is the state obtained by applying the candidate
optimal control law above. It might be possible to show this. O

13
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Summary

Optimal stochastic control problems for the running max have been
treated. Sufficient conditions in terms of HJB-equations have been given.
For an LQ type of problem for the running max, assuming an integrator
process, i.e. a = 0, the HJB-equation has been solved explicitly. For
more complicated processes the solution is not known. This seems to be
an inherent problem in control of the running max, see Heinricher and
Stockbridge (1991), where explicit solutions also only are obtained for
integrator processes.

The condition V¢[x,&] for g[x] = & was imposed above in order to
use Itb-calculus for obtaining the sufficient condition in terms of the
HJB-equation. At a first glance it seems to be interesting to instead
try to obtain the backward evolution operator for the Markov process

T
[ x(®)T &) ] and the corresponding Dynkin formula to derive a suffi-

cient condition for the problem. It, however, turns out that the condition
Ve[x,&] for g[x] = £ is a necessary condition for the backward evolution
operator to exist. Thus nothing is gained by this alternative approach.

In this section only full information control has been treated. The
partial information case is much more complicated. For an introductory
treatment of partial information optimal stochastic control in continuous
time see e.g. Wonham (1968). Most of the material in this section is
taken from Hansson (1993c).

2.2 Discrete Time Problems .

In this section full information discrete time optimal stochastic control of
critical processes will be treated. The processes considered will be stochas-
tic difference equations. For a simple introduction to optimal stochastic
control in discrete time see Astrom (1977). A more rigorous treatment is
given in Bertsekas (1978). As in the previous section the running max
will be introduced. In discrete time the running max will actually obey
a difference equation. This will simplify things as compared to the con-
tinuous time case. Some control objectives relevant to critical processes
will be discussed by considering different optimization problems involving
the running max. For the case of linear relative degree one processes it
will actually be possible to solve the Bellman-equation related to a special
optimal control problem explicitly. The solution will be the full informa-
tion Minimum Variance (MV) controller. In general, however, the resort
seems to be numerical computations. This will be demonstrated for a rel-
ative degree two example. It will be seen that the optimal controller is
nonlinear. This seems to be the generic case.

14
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Model

Let the open loop system be modeled by the following stochastic difference
equation:

x(k+1) = flx(k),u(k),v(k)], x(0)==x (2.6)
where u(-) is the control signal, and where v(-) is a sequence of indepen-
dent Gaussian random variables with zero mean and unit covariance, i.e.

Ev(k)vT (k) = I. Define £(%) to be the discrete time running running max
of g[x(k)] by

(k) = max{g[x(i)] : 0 i < R}ve, $(0)=¢ 2 g[x]

Notice that

$(k + 1) = max{{(k), glx(k+ 1)]} = max{éf(k),g[f[x(k),u(k),v(k)(]]} )
2.7

Due to this difference equation for the running max it is possible to de-
scribe the behavior of the augmented system with the new state %(k) =

T
[ xT (k) E&(R) ] by the stochastic difference equation

#(k+ 1) = fla(8), u(k).0(R)] 28
E(k + 1) = max{&(k), g[F[x(k), u(k),v(k)]]}
, T ,
with initial value & = (xT £ ] . This description will be used in the
sequel. It should be noted that the difference equation above defines a
discrete time Markov process.

Control Objectives

The control objectives that will be considered can all be expressed in the
general form of

N
J[x,&,u()] =\E {Zh[k,x(k),f(k),u(k)]}
k=0

where % is a real-valued function of time, the augmented state, and the
control. The admissible controls u, which J will be minimized over, will
be functions of the augmented state.
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The Bellman Equation

In this subsection the dynamic programming equation, or the Bellman-
equation, which gives a solution procedure for the minimization of the cost
function J above, will be derived. It should be noted that it is difficult to
make this derivation rigorous due to the fact that the minima computed in
the sequel may not be measurable. These questions will not be addressed
here. For a discussion about the measurability problem see Bertsekas
(1978).

Let (k) be the sequence of information available to the controller at
time k&, i.e. Y (k) = {x(i),£(): 0 < i < k} = {x({) : 0 < i < k}. Further
introduce

N
VIkx(R)LE®) = min E{ h[i,x(i),é(i),u(i)]ly(k)}
o i=k

It is now obvious that

V[0,%¢] = Jx, 8 u()]

{u(k): 0<k<N}

Further by the principle of optimality and the fact that {%(%)} is a Markov
process it holds that

Vikx(k).6 ()] = minB{ hlk, x(k), £(R), u(k)
L VIE+ Lk +1),E(k + 1)]\x(k)',5(k)}
= min { [k, 2(k), § (k). (R)]
+ E{V [k + La(k+1),E(k + 1)]‘9;(1%),5(13)}}
for 0 £ & £ N — 1 with final value

VIN,x(N),&(N)] = gg}vr)lh[N,x(N),é(N),U(N)]

This equation is called the Bellman-equation and gives a recursion for
the optimal value of the cost function . The first step in computing the
recursion is to evaluate the expectation

E[x(k), £ (k) u(®)] = B{ VIE + Lx(k + 1), £k + D][x(R).£(B) |
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and express it in terms of x(k), (k) and u(k). The second step is to
perform the minimization with respect to u(k). The expectation can be
computed as

BL(0), £, ut)] = [ p s+ 1.6+ (k). £(8)|
V[E+ 1,x(k + 1),E(k + 1)]dx(k + 1)dE(k + 1)

where p is the density function for the extended state at time & + 1 condi-
tioned on the extended state at time k. The integration is to be performed
over the value space of the augmented state. This will be illustrated more
in detail in the special case that follows.

Relative Degree One Problems

Consider the case when the loss function is given by

J = PEN) > &) (2.9)

for the critical level &y, and when the model dynamics is linear, i.e.
flx(k),u(k),v(k)] = Ax(k) + Byu(k) + Byu(k) (2.10)
Further let g[x] = |[Cx|. This is easily seen to be a special case of the
problem formulation above by taking hlk,x(k),&(k),u(k)] = 0for 0 < & <

N — 1 and A[N,x(k),E(k),u(k)] = Iig>e0p For this case the Bellman-
equation becomes ’

Vb (k). £(4)] = min [ p [x(k+ 1),£Ch+ D]k, £C0)
VIk+ L+ 1), E(k + D]da(k + 1)dE(k+ 1)

(2.11)

for 0 £ B £ N — 1 with final value

V[N, xQN),f(N)] = Ievyseo
Assume that there exists a solution such that V{k,x(%),&(k)] is not a

function of x(%). Note that this assumption holds for # = N. Then by
integrating out the state variable x(% + 1) the Bellman-equation reads

VIE ) = min [ p 50k 2, £
[k + 1,6k + 1)]d§(k +1)
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Some calculations show that the conditioned density in the equation above
is

[f(k +1) - m(k)} N éqo [f(k + 13+ m(k) |

[5(k +1)[a(R).E(R)| = =

if £(k) < £(k + 1) and that it is zero if £(k) > £(k + 1), where

m(k) = C[Ax(k) + Byu(k)]
o? = CB,BfC”

and where ¢ is the standardized normal density function. Some further
calculations show that the optimal choice of u(k) is given by m(k) = 0 if
there exist a solution to this equation. It is easily seen that the resulting
V[k,&(k)] is indeed independent of x(%). Thus by induction the optimal
control law is given by the equation above for all 0 < 2 < N. The
existence of a solution to m(k) = 0 is e.g. in the case of a single-input
system implied by C B, # 0, and for this case the solution is given by

u(k) = —(%;—ux(k)

If, however, CB, = 0, then u(k) can be taken arbitrarily, and the as-
sumption made above about V[k, & (k)] being independent of x(%) may not
hold. It should be noted that the resulting control law above is the same
as the MV control law for the full information case when minimizing the
variance of Cx.

A Special Relative Degree Two Problem

Consider the same problem setup as in the previons subsectlon and let
the system in (2.10) be described by
(1)
1

A=[1 1]; 5,
(1 0)

0.1
B, = [c] o, C

The process is a double integrator influenced by colored noise, i.e. with

2(k) = x1(k) = Cx(k) and w(k) = ov(k) it holds that

1

1

(¢ - 1)%2(k) = u(k) + (cq + 1 - c)w(k)

18



2.2 Nonlinear Control—Discrete Time Problems

where q is the forward shift operator. Further (2.11) can be reformulated
using the system equations in (2.8) as

VIk, (k). (k)] = min / p(W)V[k+ 1Lk +1),E(k+1)]do  (2.12)

where p(w) is given by

(w)——l——ex _w
PR = Tom P\ T 207

which is the density function for w(k). Since the optimization defined
above cannot be solved analytically, numerical methods have been used
based on the integral in equation (2.12), see Andersson (1993). Notice
that the &(%)-dependence in V and the optimal control u(k) is a function
only of I(g(s)>¢,) see Andersson (1993) Appendix A. This can be proved by
induction. Since the values of V and the optimal control u(%) are trivial
for £(k) > &g, these values will not be discussed in the sequel.

The optimal control law is time varying but depends only on N — %
and not on N due to the recursive property of the Bellman equation. Also
note that the output up to time N cannot be affected by neither u(N)
nor u(N — 1), since the system is a double integrator. The control law at
time N — 2 as a function of the state x, for different values of x1 is given
in Figure 2.1. The control law as a function of the state x; for different
values of xy is given in Figure 2.2. The standard deviation of the noise
o and the parameter ¢ have been taken to 0.5 and 0.7, respectively. The
figures show that the control law is almost linear when %1 +xp < & = 1. It
is in fact very close to the minimum variance controller for the variance
of z, see Astrém (1970). However, near the line x; + x2 = &, = 1 the
optimal control law becomes nonlinear.

The optimization has also been done for other parameter values and
values of 2. These solutions show that the deviation from the MV solution
is greater for £ = N —3 thanitis for k. = N—2. For 2 > N —3 the control
law has converged to a control law almost identical to that for # = N — 3.
The solutions show that the nonlinearity begins at lower values of the
states for higher noise variances than it does for lower noise variances.
The same is recognized when the parameter ¢ is increased, but then the
slope of the nonlinearity decreases as well.

The loss function at time 2 = N — 2 is shown in Figure 2.3. At
x1 = 1 there is a discontinuous behavior corresponding to Equation 2.7,
which describes the way in which the maximum is updated. There is
also a smooth edge in the loss function at the line x; + x3 = 1. These
characteristics are typical also for other parameter values.
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Figure 2.1 The control signal u as a function of x5 for the x; values 0—solid,
0.25—dashed, 0.5—dash dotted, and 0.75—dotted line.

In general it is impossible to solve the problem analytically. For the
case with N = 2, however, much insight can be gained by analyzing the
equations. It holds that the loss function (2.9) becomes

J =P{5(2) 2 So}

This-expression can be reformulated using z(k) = x¢(%) and (27.7 ). It holds
that
J = P{|x1(2)] > So vz (1)] > So v [x1(0)] > So} (2.13)

To simplify the analysis introduce the following notation

N
A = {x1(2): |x1(2)] > So}
B = {x1(1): |x1(1)]| > &o} (2.14)
C = {x1(0): [x1(0)] > &o}

Using this notation the loss function (2.13) can be written as

J=P{AuBuUC}
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X1 ’

Figure 2.2 The control signal u as a function of x; for the x; values 0-—solid,
0.2—dashed, 0.4—dash dotted, and 0.6—dotted line.

By mutual exclusion it holds that

J=P{ABC}+P{BC}+P{C}

As explained above the control signal at time 2 = 1and £ = 2 cannot affect
the loss function. Therefore the loss function only has to be minimized
with_respect to the control z(0). By similar arguments it holds that the
control u(0) cannot affect the outputs x1(0) and x1(1). Therefore the
minimization problem can be written as

m%)r)lP{ABC} mln/ f(x)P{ABC|x} dx

= / f(x) minP {ABC|x} dx
R? u(0)
= n‘l(%)l)lP {ABC|x}

where f(x) is the density function for the initial value x. The first equality
follows from the formula of total probability. The second equality holds
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Figure 2.3 The loss function V in one quadrant when £ = N — 2

since x cannot be affected by ©(0). The third equality follows from the
fact that f(x) = §(x), since the initial value x is known. Further it holds
that

7

Illtfl(%r)lP {ABC|x} = Iun(%l)lP {AB|x}
= n:%ior)lP {B}P{A|B,x}
u
=P {B}m(%r)lP {A|B,x}
where the first equality holds since C is known vs}heﬁ x is known. The
second equality follows from the conditional probability formula. The last

equality holds since the output x1(1) cannot be affected by u(0). The
problem can therefore be reformulated as
N

rz%l)lP{AIB,x}

It has now been shown that the minimization of (2.13) with respect to the
control signals {u(0),u(1),u(2)} is equivalent to the minimization of

P {lx1(2)] > o [lr1(D)] € £o.x1(0),22(0)}
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with respect to ©(0). It should be noted that this probability is closely
related to the upcrossing probability in (1.3).
The reformulation can be interpreted in the following way. The con-

T
trol u(0) is based on the state [ x21(0) x2(0) ) , and since the system is

a double integrator it can only affect the state x1(2) and not x;1(1). This
means that there is nothing to be done about a level crossing appearing
before k = 2. If a level crossing appears, the loss is equal to one indepen-
dent of x1(2). This means that it can be assumed that the level has not
been crossed before £ = 2 when the control z(0) is chosen.

From (2.6) it is seen that the given information about x1(1) is equiv-
alent to information about the noise, i.e.

x1(1)] < So & [21(0) + x2(0) + cw(0)] < Go

Assume that the noise level is low, i.e. co « &p. Then it is seen that only
little information about the noise w(0) is obtained, when x1(0) + x2(0) is
near zero. Near the line |x1(0) + x2(0)| = &o a lot of information about
the noise is obtained. The system output at time 2 = 2 is given by

%1(2) = x1(0) + 2x2(0) + u(0) + (1 + ¢)w(0) + cw(1)

which shows that information about w(0) can be used to chose ©(0). The
MYV strategy as well as the optimal control strategy for small values of
x1(0) + x2(0) is to make x;(2) small by taking

u(0) = —x1(0) — 2x2(0) ’
" implying
x1(2) = (1+ c)w(0) + cw(1) (2.15)

When x1(0) +x2(0) is not small the optimal controller will make use of the

information about w(0) to further decrease its influerice in (2.15). This
explains why the optimal control strategy is nonlinear. In the discussion
above N = 2, which is a special case easy to analyze. When N is larger
the analysis is more complicated.

Simulations have been done to compare the optimal control strategy
with the MV controller. The parameters ¢ and &, has been takentoc = 0.7
and &y = 1, respectively. In order to compare the optimal controller with
the MV controller the influence of the initial state and the noise level
has been studied. As a measure empirical loss values have been used.
For simplicity only the case with N = 2 was studied. This means that
only one control, u(0), can affect the maximum &£(2) and therefore also
the loss. The simulations have been done for different initial conditions
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a a

X1 X2 Jopti.mal J minvar Joptimal

0 0 0.2780 0.2780 0.2767
0.1 0.1 02818 0.2818 0.2766
0.2 0.2 02760 0.2761 0.2778
0.3 0.3 02992 0.3051 0.2989
0.35 0.35 0.3231 0.3439 0.3320
0.4 0.4 0.3833 0.4242 0.3861
0.45 0.45 04587 0.5254 0.4605
0.5 0.5 05511 0.6391 0.5493
0.3 0.5 03871 0.4274 0.3861
0.5 0.3 0.3871 0.4238 0.3861

Table 2.1 Table showing the true loss function Joyime; in (2.9) and estimates
of it for the optimal controller—jgptimal, and the MV controller—d inpar for
different values of the initial state.

and different values of the noise level 0. The loss values joptimal obtained
when o = 0.5 are presented in Table 2.1. Also presented are the simulated
loss values o ninpar for the MV controller and the computed optimal loss
values J,psima for the optimal controller. Every estimated loss value is
based on 20000 simulations. The conclusions that can be drawn from the
table is that the optimal controller performs better than the MV controller
near the line x; + 22 = 1. Far from the line the two controllers behave
almost identically. This result agrees well with the result of the previous
analysis. The same simulations were al§o done for the noise level o = 0.2,
and in that case the loss was almost the same for the two controllers.

The estimated loss, based on 1000 simulations, as a function of N is
shown in Figure 2.4 for the noise level ¢ = 0.5. The solid line corresponds
to the optimal controller whereas the dashed line corresponds to the MV
controller. The figure shows that the optimal controller has a lower loss
than the MV controller when the minimization horizon is short. The loss
has also been estimated for o = 0.2. In this case the two curves are almost
identical. This shows that the optimal controller has an advantage only
when the noise level is high as compared to the bounds within which the
output is to be kept.

Figure 2.5 shows an example of how realizations of the state x; and
the control signal uz may look like when ¢ = 0.5. The solid lines corre-
spond to the optimal controller whereas the dashed lines correspond to
the MV controller. The noise sequence is the same for both controllers.
The reference signal is zero, and it is seen that the noise level is high
as compared to the critical levels given by & = 1. Therefore it may be
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Figure 2.4 The loss as a function of N, MV controller—dashed, and optimal
controller—solid.

expected to be advantageous to use the.optimal controller. In this partic-
ular simulation this is seen to be the case. The MV cortroller passes the
critical level already at & = 6. The violation at £ = 29 also points out that
the high noise level makes it impossible also for the optimal controller to
avoid the bounds over a longer period of time. It is also seen that the
control signal of the optimal controller is smaller than the one obtained
from the MV controller.

Summary

In this section discrete time stochastic optimal control of the running max
has been discussed. Only the full information case has been treated. In
a special case an explicit solution of the Bellman equation was obtained.
The resulting controller for this linear relative degree one case was the
same as the MV controller. However, in general the resort seems to be nu-
merical computations, and the optimal controller is generically nonlinear.
This has been demonstrated in a relative degree two example. Analysis
showed that the criterion function was closely related to the upcrossing
probability. This will be elaborated more in the next chapter, where the
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Figure 2.5 Simulation example with optimal controller—solid, and MV
controller—dashed.

approximation of the criterion in (2.9) by means of the upcrossing crite-
rion is described. The material in this.section was taken from Hansson
(1993c), Andersson (1993), Andersson and Hansson (1994).

2.3 Concluding Remarks

In this chapter nonlinear continuous and discrete time formulations of
control of critical processes in a stochastic context have been given. Op-
timal continuous time stochastic control problems for the running max
have been treated. Sufficient conditions in terms of HJB-equations have
been given. For an LQ type of problem in the running max, assuming
an integrator process, the HJB-equation has been solved explicitly. Also
discrete time optimal stochastic control of the running max has been dis-
cussed. Only the full information case has been treated. In a special case
an explicit solution to the Bellman equation was obtained. The result-
ing controller for this linear relative degree one case was the same as
the MV controller. However, in general the resort seems to be numerical
computations, and the optimal controller is generically nonlinear.
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CHAPTER 3

PROBLEM FORMULATIONS

HE generic controller for critical processes was in the previous chap-

ter shown to be nonlinear. It was, however, difficult to find general
easily implementable solution procedures. In this chapter the criteria
and controllers considered in parts I-IV will be defined. The goal is to
formulate problems which are possible to solve, at least approximately,
with standard numerical routines. To this end only linear controllers will
be considered. One of the criteria, the risk criterion, can under the con-
straint of linear controllers be shown to be the same as the one in (2.9).
Only discrete time will be treated. The continuous time upcrossing crite-
rion is treated in an analogous way in Part I. The continuous time risk
and MTBF criteria have been described and approximated in Hansson
(1991¢).

In Section 1 the model of the process to be controlled will be defined.
It is a linear time-invariant Gaussian stochastic difference equation. The
admissible controllers will be linear time invariant causal feedbacks from
the measurement signal. This implies that the case of partial informa-
tion also will be treated. Then the different control objectives will be
discussed. In Section 2 the upcrossing criterion is defined. The equations
for deriving the controller minimizing the objective function are given. It
will be seen that the solution can be obtained as a one-parametric opti-
mization over a set of LQG problem solutions. In sections 3 and 4 the
risk and MTBF criteria are defined. Approximations of these criteria by
means of the upcrossing criterion are investigated: Finally, in Section 5
some concluding remarks are given.

3.1 Model N

Let the process to be controlled be described by

X(k + 1) A Bw Blt x(k)
z(k) =|C, D, D, w{k) (3.1)
y(k) Cy Dyy Dy u(k)
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where w(k) € R is a sequence of independent zero mean Gaussian ran-
dom variables with covariance I, u(k) € R™ is the control signal, x(k) €
R"™ is the state, y(k) € R? is the measurement signal, and z(k) € R is
the signal to be controlled. It will be assumed that D,, = 0. Denote by
02 and m, the variance and mean of z(k) in stationarity. Let the control
signal be given by

&(k+1) = Agé(k) + Bry(k)

u(k) = ~Cu&(k) - Dy (k) + Dyr(k) (82)

where r(k) € R is the reference value, where ¢ is the finite dimensional
state of the controller, and where Ay, By, Cy, Dy, and D, are matrices
of consistent dimensions. Since only constant reference values will be
considered, it is no loss in generality to assume that (k) = 0 by a change
of coordinates. This implies that m, = 0 provided a stabilizing controller
is used. Introduce the notation H = {Ay, By, Cg, Dy} for the controller
defined by (3.2). Further denote by D the set of all H as defined in (3.2),
i.e. the set of all linear, causal, and time-invariant controllers, and by D,
the subset of D which stabilizes (3.1), i.e. the set of controllers which are
such that the eigenvalues of the closed loop system have absolute values
strictly less than one. Further denote by D, the set of controllers for
which the closed loop standard deviation of z satisfies o, < 2.

3.2 The Upcrossing Criterion

Introduce the following performance index evaluated in stationarity:
U(H;zo) = P{2(k) <zonz(k+1)>20}, H €D (3.3)

where 2z is the critical level that should not be upcrossed by z. The
quantity 4 will in the sequel be called the upcrossing probability, and it
is equal to the mean number of upcrossings during a sample interval, see
e.g. Cramér and Leadbetter (1967) p. 281. Another good references to
crossing problems is Leadbetter et al. (1982). The solution to

N\ pin p(H) (3.4)

will in the sequel be called the MU controller. This most probably exists
under very weak conditions.

In Part IV it will be assumed that (A, B,) is stabilizable, that (C,, A)
is detectable, that

zl-A -B,

rank,-1 [ c D
P-4 2u

] =n+1

28



3.2 Problem Formulations—The Upcrossing Criterion

and that
2I-A -B,

C, Dy ] nrp
Under these conditions it holds that there exist a solution to (3.4) if and
only if there exists a MV controller for z with closed loop standard devia-
tion of z smaller than or equal to zg. Notice that the first rank-condition
implies that the control signal must be scalar,i.e. m = 1,since C, € R Ixn
The optimal controller can be obtained by performing a one-dimen-
sional optimization over a set of LQG problem solutions parameterized by
a scalar. To this end introduce the independent variables

ok =z2(k)+2(k-1)
B(k) = z(k) —2(k - 1)

ranky,-; [

(3.5)
It then holds that
00 xu(y)
= ["o0) [ o@adsdy
0 2 ()

where ¢(x) = (275)_1/2 exp(—x%/2), x(y) = (220 — 08y)/0a, and x,(y) =
(220 + 0py)/0a, and where o) and o} are the variances of o and j
in stationarity. Hence the upcrossing probability can be computed from
knowledge of the closed loop variances of o and B and the value of zo.
Not all variances of & and f corresponding to controllers in D, have to be
considered, but only the ones obtained by solving a set of LQG-problems
parameterized by a scalar p € [0,1]. To this end introduce

i (o6 ) 2= [)
bC, 0 “ " \bD,y
C. = (aC. 1] ¢ = (¢ 0]
_ o B,
D,, = aD,, B, = [szw}
Dyw = Dy, D, = aD,,

where a(p) = vV1—p +/p and b(p) = V1 —p — /p. Further let S, L,
L,, and L,, be the solutions of

Gs = BI'SB, + DL D,, (3.6)
GS[L L, Lw) - (BuTsA BTS DzTu]
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and let P, K, K., K,, and K,, be the solutions of
P=(A-KC)P(A-KC,)" + (By— KDy,)(Bw— KDy,)"
Hp = Dy,DL, + C,PC)
EANT B,DL, + APCT\T

7. | & pPCT
le | B,DT,
K, D.,DT,

(3.7)
where S and P should be the maximal symmetric real-valued positive
semi-definite solutions. Further let

A, =A-B,L-KC,+ B,D.C,
B, = K - B,D,
C. = L-D.C,
D. =LK, +L,K,
and let H(p) = {An,By,Cu,Dp} be a minimal realization of the con-

troller {A., B;,C¢, D.}, which can be shown to be the controller that
makes the LQG-criterion

J = E{(1-p)a’(k) + pp2(R)} (38)

attain its infimal value. Then it is sufficient to minimize 4 over the closed
loop variances of o and 8 obtained whefi H(p), p € [0,1] are used. These
variances are given by

o2(p) = Ce(Ar+ DX (A + I)TC] + (C:B; + Gi)(CiBy + G)" + GG
o5(p) = Ci(A:— DX (A, - D)TC] + (C:B, — G:)(C:B; = G)" + GG

where X is the minimal solution of the Lyapunov equation

X = A XA, + BB}

and where N
A-B,L B.C,
A= [ 0 A—Kc"y]
B.D,,
Bt: [Bw_KDyw]
= (e 0) -2t} {0 0) -pacs))
G; = Dy, — Dzchl_)yw
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3.2 Problem Formulations—The Upcrossing Criterion

In Part II other equations for computing the LQG controllers and the
closed loop variances of o and 8 are given. Those equations are only
valid for the case when D,, = 0. They are sometimes easier to work
with, since they are of the same dimension as the original process model.
However, they are no good when analyzing the MU controller, as in Part
IV, and they cannot be extended to cover the case D, # 0.

The algorithm for minimizing the upcrossing probability can be sum-
marized as: (1) solve the associated LQG-problems, and (2) minimize the
upcrossing probability over the variances obtained in the first step. It
must be stressed that if ¢, > z¢, then no solution exists. In order to ob-
tain a solution, the distance between the reference value and the critical
level zo must be sufficiently large.

It has been seen that the computation of the variances is not more
complicated than solving a linear system of equations. Further the up-
crossing probability can easily be obtained with some numerical integra-
tion routine. The complexity of this latter problem does not depend on the
size of the process model. Thus the computations performed for each value
of p is not significantly larger than for an ordinary LQG-problem. More-
over by adopting some numerical routine for minimizing the upcrossing
probability, it may not be necessary to solve that many LQG-problems. A
good choice of starting value for p is 0.5, which corresponds to MV control.
In this sense the computational burden for obtaining the MU controller
is not significantly larger than for the LQG controller that corresponds to
MV control. Further it should be noted that it can be shown that the min-
imizing value of p is always greater or equal to 0.5. This follows from the
fact that it is possible to show that 0 <.0u/002 < du/ BG/%, and that the

slope of the curve (62(p), O'/%(p)), defined by the values of the variances
of o and B that minimizes (3.8), is given by 1 — 1/p, which is smaller or
equal to —1 for for p < 0.5. An illustration of this is shown in Figure 3.1,
where level-curves of 4 are shown together with a curve (03(p), 05(p))
for an example. Also is drawn the tangent of the latter curve for p = 0.5.
A stringent proof will not be done in this presentation. It is nowhere
utilized that the optimal value of p is greater or equal to 0.5.

3.3 The Risk Criterions
Consider the following control problem

in P k 3.9
PR { )7 ) @9

where zg > 0 is the critical level. The probability should be evaluated
in stationarity. The time horizon N and the critical level zo have to be
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Figure 3.1 Plot showinglevel-curves of 1—dotted lines, a curve (o7, (p), 05 (p))
for an example—solid line, and the tangent of (03(p), 05(p)) for p = 0.5—
dashed line.

chosen in such a way that the probability in (3.9) is small, otherwise the
failure rate will be too high. The larger N is, the larger zo must be.

To simplify the problem upper bounds for the probability in (3.9) will
be given. It will be shown that these bounds are tight, if N and z4/0, are
large and the probability in (3.9) is small. The tighter bound is obtained
by considering level crossings.

If z(%) is a stationary random sequence, then

N-1
P{Ozgix z(k) > zo} = {Z(O) > 20 | (2(k) S zonz(k+1) > zo)}
k=0
< P{z(0) > zo} + NP{z(0) < z0n2(1) > 20} < (N + 1)P{2(0) > 20}
Hence 4it holds that

P{ max z(k) > zo} < P1(H;z0) < Po(H;z) (3.10)
0<ks<N

where
Pi(H;zo) = P{2(0) > 20} + Nu(H;z)

Pz(H;Zo) = (N-I— 1)P{Z(O) > Zo}
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3.3 Problem Formulations—The Risk Criterion

Notice that for large values of N and large values of zo/0, the first term
in Pjp is negligible. Further notice that Py is minimized by MV control.
The bound P; is well known in the context of continuous time extreme
value analysis, see e.g. Leadbetter et al (1982) Lemma 8.2.1. There the
bound P, is infinite, and thus not usable for investigating the behavior
of extreme values as the time horizon and the critical level approaches
infinity. However, the bound P, is good enough for investigating this
behavior in the discrete time domain, but for the purposes in this work—
focused on finite time horizons and levels—it is interesting also to consider
a tighter bound such as P;.

It will now be shown that the bounds described above are tight. Sup-
pose that z(k) is a stationary Gaussian sequence with covariance function
satisfying

lim r,(t)Int =0
T—00

which can be shown to hold if the closed loop system is stable. Further
take z(()N) such that

Y o (A) = 1

It then holds that
M) -p ol M (2~ p, (2
i <OM)(ng>l)< )] tim <OM)(ng>2)( ") <L

where M (x) = P{maxo<r<n2(k) > x}. -The first inequality follows from
(8.10). Since by Leadbetter et al. (1982) Theorem 4.3.3

Jim Po (") = 2

if and only if
lim 1-M <z(()N)) =el

N—-oo

it follows that

lim

M (ZSN)) P (ZSN)) 1-el-L| L
N M (207 ) ‘ ‘ =2

1-eL

which proves the second inequality. Now the bounds are tight if L is
small. This is obtained by taking N and zy/0, large and in such a way

that M (zéN)) is small.
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Related problems of convergence have been investigated for other
approximations of extremal-probabilities, see e.g. Leadbetter et al. (1982)
Chapter 4.6, but these approximations are not upper bounds as the ones
discussed here.

Now by the inequalities proven above it is obvious that the probability
in (3.9) can be approximately minimized for large values of N and zo/0,
and small values of the upcrossing probability in (3.9) by minimizing ei-
ther the variance or the upcrossing probability y. However, for moderate
values of N and zp/0, it is tempting to believe that the upcrossing prob-
ability is a better criterion to minimize. In Chapter 4 this approximation
will be justified in an example, where it is seen that the MU controller
performs up to 10% better than the MV controller with respect to the risk
criterion.

3.4 The Mean Time Between Failures Criterion
Consider the following problem formulation:

Ir?eaéE {T} (3.11)

where T is the time between two consecutive upcrossings of z¢ by z. The
expectation should be evaluated in stationarity.

To simplify the problem, approximations for the expectation in (3.11)
are given in Part II. These rely on asymptotic results relating the mean
number of exceedances to the mean number of upcrossings. They imply
that the expectation in (3.11) for large values of zo/0, can be approxi-
mately expressed as

1 1
P{2(0) > 20} ~ p(20)

E{T}~

which is maximized by minimizing either the variance of z or the upcross-
ing probability i#. However, for 29/0, < oo it holds that

AN
1 1

P{2(0) > 20} £(z0)

and it is tempting to believe that the upcrossing probability is a better
criterion to minimize for moderate values of zo/0,. In Part II this approx-
imation will be justified in an example.
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3.5 Problem Formulations—Concluding Remarks

3.5 Concluding Remarks

In this chapter the control problems that will be considered in the re-
maining parts of the thesis have been mathematically formalized in a
stochastic framework. It has been discussed how both the risk criterion
and the MTBF criterion may be approximated by both the variance crite-
rion and with the upcrossing criterion. It has been made plausible that
the upcrossing criterion is a better approximating criterion than the vari-
ance criterion. This will for the MTBF criterion be justified in an example
in Part II, and for the risk criterion in Chapter 4. The material in this
chapter is based on Part IV, Hansson (1991d), Hansson (1994).
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CHAPTER 4

EXAMPLES

IN this chapter two examples will be investigated. The first one is an
example that shows that the MU controller is advantageous as com-
pared with the MV controller when evaluating them with respect to the
risk criterion. It is the same process model, the same MU controller, and
the same MV controller as in the example of Part II. However, there the
comparison is done with respect to the MTBF criterion. The presentation
is based on Hansson (1991d). The second example is concerned with con-
trol of an active automotive suspension. The objective in this example is
to show how it is possible to cast an application example as a stochastic
critical control problem. The example is very special in that the infimum
of the upcrossing criterion is not attainable by any stabilizing controller.
However, the machinery used for computing the MU controller, i.e. LQG
controller design, makes it possible to consider also other criteria than the
upcrossing criterion. By adding a suitable weighting on the control sig-
nal to the LQG criterion corresponding to the MU controller, a stabilizing
controller is obtained.

4.1 Illustrative Example

To evaluate the performance of the MU controller obtained by minimizing
the upcrossing probability a first order process will be investigated. In
this section the equations in Part II for computing the LQG-controllers
will be used, since it is easier to get an analytic expression for the optimal
controller with these equations than with the ones presented in Chapter 3.
In the first subsection the process is defined. The set of LQG-solutions is
calculated analytically in the.second subsection. In the third subsection
the MU controller is computed and compared with the MV controller, It
is seen that the MU controller causes a lower upcrossing probability and
smaller probability for the largest value of the controlled signal of being
above the critical level. Further it is seen that it has a control signal that
is more well-behaved. In the fourth subsection the results of the previous
sections are summarized.
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Process

Let the process be given by

(b + 1) = x(k) + 0.04u(k) + 0.2v(k)
y(k) = x(k) + be(k) (4.1)
2(k) = x(k)

where v and e are zero mean Gaussian white noise sequences with Ev? =
Ri = 1,Ee? = Ry = 1 and Eve = Rjs = 0. The signal y is the mea-
surement signal, and u is the control signal. This process can be obtained
approximately by fast sampling of a continuous time integrator process.

LQG-Controllers

The weighting-matrices in Part II are
Q1= 4(1-p)
Q12 = 0.08(1-p)
Qs = 0.0016

and the solutions to the Riccati-equations in Part IT are

S =24/p(1-p)

p _ 0.04+ 40016
=

/

Some more tedious calculations will give the LQG controller H(g) to be

_ __ 80q
H(q) = —

where

s0 = [2 pA—p)+ 2(1—p)] [o.o4+ \/H)ﬁé]
ro = 0.04 [2 pA-p)+ 1} [50.04+ \/ZOFIE]
r = 2(1- 2p)

Tt is interesting to note that for p = 0.5—MV control—the controller is a
proportional controller.

MU and MV Controllers
The MU controller will now be compared with the MV controller.
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Figure 4.1 The variances of z—left, and u—right, as functions of p.

VARIANCE AND UPCROSSING PROBABILITY. The variances of z and u have
been calculated numerically for values of p with a step of 0.01in the range
of 0.01 to 0.99. It is seen in Figure 4.1 that the variance of z does not
depend so much on p as does the variance of u. ’

The probability # has been calculated for the values zo = 2,3 ,4 and 5
of the critical level. The result is seen in Figure 4.2. The minimum value
of the probability u is obtained for p greater than 0.5. The variance of the
control signal is smaller the larger p is, and the controller obtained for
p = 0.5 is the MV controller. Thus the MU controller not only minimize
the upcrossing probability, but it also has a control signal that is more
well-behaved than that of the MV controller.

SIMULATIONS. The controllexs have also been compared by simulations.
The same noise sequences were used for both controllers in all cases. Fig-
ure 4.3 shows plots of z and u as functions of time for the MV controller
and the MU controller for zp = 3. It is seen that that the MU controller
manages to keep the signal z below the critical level, while the MV con-
troller does not. Further it is seen that the variance of v is smaller for
the MU controller than for the MV controller. Note that z is not white
noise for the MV controller although y is, since y is correlated with e.
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Figure 4.2 The probability ¢ as function of p for zg = 2—top left, 29 = 3—
top right, zp = 4—bottom left, and 2o = 5—bottom right. Notice the different
scales.

RoBUSTNESS. To investigate the robustness against unmodeled non-
linearities the process-dynamics was changed to ,

x(k + 1) = 0.33x%(k) + x(k) + 0.04u(k) + 0.2v(k) (4.2)

Thus the process for which the controllers are designed can be thought
of as. a linearization of the non-linear process round x(k) = 0. If v(k) is
zero, and if the minimum variance control strategy is applied, then the
nonlinear process is stable for initial values of x that are smaller than
approximately 3. Therefore it is interesting to compare the MU controller
designed for zg = 3 with the controller. Plots of v, z, and u for the two
different control strategies with the same noise sequences are shown in
figures 4.4 and 4.5. It is seen that the signals start to diverge to infinity
earlier for the MV controller than for the MU controller.

TRANSFER FUNCTIONS. The MU controller for 2o = 3 (p = 0.92) is given
by:
0.4901q

H(9) = - 04802
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Figure 4.3 The signals z(f)—top, and u(¢)—bottom, as function of time for the
optimal controller—solid line, and the minimum variance controller—dashed
line, when controlling the linear process (4.1).

and the MV controller is given by: -
H(g) = —0.9802

It is interesting to note that the difference between the MV controller and
the MU controller is that the MU controller has a 3 times lower gain for
high frequences (g = —1). The MU controller is a first order system while
the MV controller is only a proportional controller. This explains why the
variance of the control signal is much smaller for the MU controller. Some
calculations give that

(g — 0.9608)z = 0.2v — 0.196e
for the MV controller and
[(g — 1)(g — 0.4804) + 0.0196]2 = 0.2(g — 0.4804)v — 0.098e

for the MU controller. It is seen that the main difference in the closed
loop behavior between the MV controller and the MU controller is the
lower high frequency gain (¢ = —1) from e to z for the MU controller.
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Figure 4.4 The signals y(¢), z(t) and u(?) as functions of time for the MU
controller, when controlling the non-linear process (4.2).

APPROXIMATION-VALIDITY. The validity of the assumptions made in the
approximation of the problem formulation in Section 3.3 will now be in-
vestigated further; one positive indicatién has already been seen in Figure
4.3. In Figure 4.6 it is seen how the optimal value of p, and how the rel-
ative decrease of upcrossing probability between the MV controller and
the MU controller decreases as zp increases. This indicates that the MU
controller and the MV controller are approximately the same for large
values of zo. . '

To investigate the behavior of the controllers for moderate values of
20, Monte Carlo simulations have been performed to estimate the proba-
bility P {max0< r<n 2(k) > 2o} for the MU controller—P,;, and for the MV
controller—P,,,. The estimated values all have 90 % confidence intervals
that are smaller than plus minus 2.2 % (20 = 2), 9.5 % (20 = 3), and 17
% (20 = 4) of the estimated values. These intervals have been computed
as in Waerden (1969) p. 33. In Figure 4.7 these estimates of the proba-
bilities are compared with the bounds P; and Py of Section 3.3, where for
short reference

Pi(z9) = P{2(0) > 20} + N (z0)
Py(z0) = (N + 1)P{2(0) > 2o}
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Figure 4.6 The optimal values of p as function of zo—left, and (Umv—opt) / imv
as function of zg—right, where iy is the upcrossing probability for the MV
controller and gy 1s the upcrossing probability for the MU controller.

MYV controller is only a proportional controller. The latter has a higher
high-frequency gain. The variance of z is slightly larget but the variance
of u is much smaller for the MU controller as compared with the MV con-
troller. Further it has been seen in simulations that the probability for
the largest value of z of being above the critical level is smaller for the MU
controller. It has also been seen that the MU controller is more robust
against unmodeled non-linearities than the MV controller. When com-
paring the differences between the MU controller and the MV controller
for varying distances to the critical level, it has been seen that these are
larger for moderate values of the distance and smaller for larger values
of the distance. N\

4.2 Active Automotive Suspension Control

In this section MU active control of suspensions for cars will be investi-
gated. Active suspension control has been described in e.g. Hrovat (1982),
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Figure 4.5 The signals y(¢), 2(¢) and u(¢) as functions of time for the the MV
controller, when controlling the non-linear process (4.2).

The bound P;, which is approximately minimized by the MU controller,
has been computed for the MU controller. The bound Pj, which is min-
imized by MV control, has been computed for the MV controller. The
values of N and zg has been chosen such that the bountd Py is about 0.1.
The values are (29, N) = (2, 10), (3,100) and (4,1000). The result is shown
in Figure 4.7. Tt is seen in the left plot that the bound P; is much lower
than the bound P, and that the estimate Popt is lower than estimate Ppy.
The latter is seen more clearly in the right plot, where the relative de-
crease of the probability of being above the critical level between the MV
controller and the MU controller— (va opt) /va——1s plotted versus
z9. Thus the MU controller performs about 5% to 10% better than the
minimum variance controller for moderate values of the critical level in
this example. N

Summary

The theory presented in the previous chapter has been evaluated using
a first order process. In spite of the simplicity of the process many in-
teresting features of the MU controller have been demonstrated. It has
been shown that the MU controller is a first order system whereas the
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Figure 4.7 The left plot shows the bound Py for the MV controller—'+, the
bound P; for the MU controller—*', Pry—'0’, and Popt —%’, as functions of zq.
The values of N has been 10 for zg = 2, 100 for 2z = 3 and 1000 for 29 = 4.
The right plot shows (Pmy — Popt) /Py as function of zo.

#

Yamashita et al. (1990), Ando et al. (1993), Cai and Konik (1993), Ti-
tli et al. (1993), Obinata et al. (1993), Roukieh and Titli (1993). Here
control of the normal force of the road acting on the wheel will be inves-
tigated. This is of special interest for sports cars. It will be seen that
this type of control problem is difficult, since it is -not_possible to change
the normal force of the road in stationarity by applying a constant control
force between the wheel and the car body. This difficulty will also show
up as a theoretical problem in terms of a zero on the unit circle in the
transfer function from contrgl signal to normal force.

In the first subsection the process model together with the control ob-
jectives will be given. The process model is a linear discrete time stochas-
tic difference equation with four states describing the dynamics of the
road and a quarter model car, i.e. a car with one wheel. The control ob-
jective is to prevent the normal force between the road and the wheel from
upcrossing zero, i.e. the wheel should not lose its contact with the road.
In the second subsection the MU controller is computed for different vari-
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Figure 4.8 Process model of a car with one wheel and active damping.

ability in the road. It will be seen that there exists no optimal controller,
since the infimal value of the upcrossing probability is attained for a con-
troller that does not stabilize the closed loop system. This is due to the
zero on the unit circle. Simulations are performed to evaluate the design.
One of the infimal controllers is compared with a suboptimal controller
that stabilizes the closed loop system. Finally, in the last subsection some
concluding remarks are given.

Process Model and Control Objective

A car with one wheel can be modeled as indicated in Figure 4.8. The
differential equation describing the motion of the distance p(¢) between
the wheel and the car body due to the influence of the road profile v(¢)
and the damping force u(¢) used for control is:

AN

2 2v
220+ T2 — u() - 519 = o] - g~ a B2

where m is the mass of the car body, % is the spring coefficient, pg is the
unsprung length of the spring, g = 9.81m/s? and where d is the damping
ratio of the passive damper. The normal force N(t) from the road acting
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on the wheel is given by

N(t) = u(®) - klp(z) - po] - 422
The control objective is to prevent this signal from downcrossing 0. Notice
that the motion of the car body and the normal force are not described
by the equations given above in case the car leaves the road. This will,
however, not be addressed in the presentation given. Had this been done,
then the model would have been nonlinear, and it would not have been
possible to apply the available theory about MU controllers which assumes
linear processes.
Introduce the following states for the differential equation:

a() =p0)-p% () = 220

where p° = po — mg/k is the stationary value of p(t) for u(t) = 0 and

T
d*>v(t)/dt* = 0. With x.(¢) = (xl (t) x2(2) ] the equation for the mo-
tion of the car body can be written

dozt(t) _ [_kO/m —dl/m] % () + [1/0m] u(t) + [—01] di;;gt)

Notice that the normal force can be expressed in terms of the states and
the control signal as N(t) = mg — kx1(¢) — dxa(t) + u(¢). Hence the
downcrossing of zero by N(¢) is equivalent to the upcrossing of mg by

z(t) = ( k d ) x0(¢) — u(t). Furthermore it is now seen that the transfer
function from u to z is given by

ms?

ms2 +ds+k (4.3)

which has two zeros at the origin. Let the measurement signal y(¢) that
will be used for control be the state x1(¢), which can be expressed as

y(t) = ( 10 ] x.(t). It nownonly remains to model the road profile v(z).

If the vehicle is moving with constant speed along the road it can be
modeled as a locally stationary Gaussian process with spectral density

S(CD) = C/Cl)a, 2<a<383 Onpn< |wl < Wmax

and zero otherwise, see e.g. Bormann (1978), Lindgren (1981). In this
presentation @y, = 0 and a = 2. Furthermore to be able to model the
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Figure 4.9 The spectral density of v(¢) for the parameter values @Wmax =
157sand ¢ = 0.08—solidline, 0.10—dashed line, 0.12—dotted line, and 0.14—

dash-dotted line.

road profile as a linear filtration of a standard Wiener process, the spectral
density will not be taken to be zero outside the cutoff frequency @Wmayx, but
instead it will just asymptotically decay two times faster than before the
cutoff frequency. This can be accomplished by the following equation

dx, (£) = [g _wmax] () dt + [cwmax] de(t)
: v(t) = (1 o] % (2)

T
where x,(f) = [x3 (%) x4(t)] , and where e(¢) is a standard Wiener
process. The spectral densi{ies for different values of ¢ are plotted in

Figure 4.9. Let x(t) = [ xI(t) xI(z) ] " Then it holds that
dx(t) = Ax(t)dt + B,du(t) + Byde(t)
2(t) = Cox(t) + Dyu(t)
v(t) = Cyx(2) (44)
y(t) = Cyx(2)
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Figure 4.10 The upcrossing probability and the standard deviations of z, ¢,
and S for the LQG controllers as functions of p for ¢ = 0.08.

»

where /
0 1 0 0 0
A= —k/m —d/m 0 Omax B, = 1/m
0 0 0 1 0
} 0 0 0 —nax Lo
0
—CWmax
B, = | C¥me C.=(# d o o]
0
AN
CWmax
c,=(0 0 1 0) Do = -1

cy=[1 0 0 0)

Now some reasonable parameter values are needed. From Ando et al
(1993) the values m = 240kg, £ = 16000N/m, and d = 980Ns/m have
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Figure 4.11 The optimal values of p for different values of c.

been taken. Furthermore assume that the car is moving with the con-
stant speed of 90km/h = 25m/s, and that the shortest period-length of
variations in the road is 1m. Then the corresponding period measured in
seconds is T = 1/25s = 0.04s. Hence it would be reasonable to choose
Omax = 27/ T = 157s~L. Notice that mg = 2354N, which is the level that
the signal z should not upcross. :

In order to make discrete-time synthesis a sampled version of the
above model is necessary. A reasonable choice of sample interval is ob-
tained by considering the distance of the eigenvalues of the the system
matrix to the origin. These distances are given by /k/m = 8.1650s77,
0s~!, and @max = 15751, In order to be able to see the influence of Wmax,
a reasonable choice is to take the sample interval to & = 27/ ®max/50 =
0.0008s, see e.g. Astrém and Wittenmark (1990) Chapter 3 for upper
limits. A sampled version with sample interval A of the equation above
can be obtained by computing a matrix exponential as described in van
Loan (1978), also see Astrom and Wittenmark (1990) for the relation to
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Figure 4.12 Bode-diagram for the transfer function of the MU controller—
solid line, and the suboptimal LQG controller—dashed line, for ¢ = 0.08.

sampling. To this end introduce the matrix

-AT B,BI 0
C = 0 A B, ’
0 0 0
and let
. Fl Gl H1
Ch=10 Fo G
0 0 Fs

Furthermore let ® = Fy, T, N Gg, let T, be a matrix that solves I',I'L =
FI Gy, and let x(k) be governed by

x(k+1) = ®x(k) + Tyu(k) + Tyo(k)

where w(k) is a sequence of independent Gaussian random vectors of
appropriate dimension with zero mean and covariance I. Then it holds
that x(%k) has the same mean and covariance as x(t) defined by (4.4) at
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Figure 4.13 The open loop—solid line, and closed loop (MU controller)—
dashed line, spectral densities of 2z for ¢ = 0.08.

the sample instances. The overall discrete time model becomes

x(k + 1) = ®x(k) + Tyu(k) + Tyw(k)
z(k) = C,x(k) + Dyu(k)
v(k) = Cyx(k)
y(k) = Cyx(k)

where.for sample interval A = 0.0008s and parameter value ¢ = 0.08 it
holds that

/

1 0.0008 0 0.0000
—-0.0532 0.9967\ 0 0.1179

It

0 0 1 0.0008
0 0 0 0.8819
0.0001 0.0093 -0.0058 0.0001
_5 | 0.3328 —0.3547 0.0118 0.0000
r, =10 N Iy =
0 0 0 0
0 0.3132 0.0135 0.0000
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Figure 4.14 Simulation of open and closed loop system for the MU controller
for ¢ = 0.08.

C;

i

(16000 980 0 o).; Do = -1
c,,=(o 0 1 0); cy=(1 0 0 0)

The zero entries that are written 0 are not only approximately equal to
zero, but exactly equal to zero due to the structure of the model. The
same goes for the one entries. Especially notice that the state x3 is not
stabilizable. However, it is not influencing any other state, and it is
only observable in the signal v. Hence this state can be removed when
designing controllers for objectives related only to z. A reduced order
model is given by N
E(k+1) = ®E(R) + Tu(k) + TLw(k)
z(k) = C,&(k) + Dyu(k)

y(k) = Cy5(k)

where T (k) = [xl(k) xg(k) x4(E) ] T, and where
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Open loop simulation
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Figure 4.15 Simulation of open and closed loop system for the suboptimal

controller for ¢ = 0.08.

1.0000 0.0008 0.0000

® = | —0.0532 09967 0.1179
0 0 08819
) 0.0001 0.0093 —0.0058 0.0001
r,=10°]03328|; T, =|-038547 00118 0.0000
0 03132 00135 0.0000
c,=(100); ¢ = 16000 980 0);  Du=-1

Notice-that it is trivial to compute v(k) from the recursion v(k + 1) =
v(k) + h&3(R), h = 0.0008. Thus there is no need to use any other model
than the reduced order one with three states. This is the model that will

be used from now on.

The control objective to be considered is the MU criterion. Notice
that the assumptions on stabilizability and detectability are fulfilled, but
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that one of the rank conditions on the unit circle is not. The zeros of
2 -® -T,
( C. D,y ]

are located at 1, 0.99998, and 0.8819, which implies that the rank condi-
tion is violated for z = 1. The zero at 1 comes from the zeros at the origin
of (4.3), see Astrém et al. (1984). This implies that the theoretical results
of Part IV may not be valid. In Part III there is no direct problem with
zeros on the unit circle, and hence it will still be possible to compute the
L.QG controllers, which may only be infimal and not optimal. Also notice
that the necessary condition of Part II still is valid. i.e. if there exists
a MU controller then it can be obtained by performing one-dimensional
optimization over the set of LQG optimal variances of & and f. From a
practical point of view this is not an inherently difficult control problem.
The zero at z = 1 just means that it is not possible to change the normal
force of the road acting on the wheel in stationary by applying a constant
force between the wheel and the car body. The theoretical formulation is,
however, ill-posed, because the zero at z = 1 may turn up as an eigenvalue
of the closed loop system, and then there will be no optimal controller, only
an infimal controller. The result is still useful because it states the limit
of achievable performance, i.e. no stabilizing controller can do better. It
is most likely possible to obtain a stabilizing controller that is arbitrarily

close the infimal one with respect to the upcrossing criterion, but that is
not yet formally proven.

Computations and Simulations -

Now the MU controller will be computed for different values of the road
parameter ¢. This parameter is closely related to the variability of the
road—remember Figure 4.9. The values of the upcrossing probability and
the standard deviation of z for the LQG controllers are in Figure 4.10
plotted versus p for ¢ = 0.08. It is seen that the infimal value of the MU
probability is attained for a value of p > 0.5. However, the difference in
upcrossing probability between the MV controller and the MU controller
is not significant—only about 0.1%. To obtain a larger difference larger
values of ¢ have to be considered, but then the value of the upcrossing
probability will be too high from a practical point of view—remember that
an approximate value of the mean time between upcrossings is given by
h/u, which implies the value 420s for ¢ = 0.08. In Figure 4.11 the optimal
values of p are plotted versus c¢. It is seen that the infimal value of the
upcrossing probability is attained for higher values of p the larger c is.
In Figure 4.12 the transfer function of the MU controller for ¢ = 0.08 is
plotted. The controller is unstable and has negative low frequency gain.
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Figure 4.13 gives the open loop and closed loop spectral densities of the
normal force. It is seen that the controller has lower gain for higher
frequences than for lower frequences. Furthermore it is seen that this
controller moves some of the higher frequency content in the spectral
density to lower frequences. Especially the open loop peak at about 10s~!
is removed , i.e. the eigenvalues corresponding to the spring have been
damped by the MU controller. In Figure 4.14 the results of open loop and
closed loop simulations for the MU controller with ¢ = 0.08 are presented.
Notice that the infimal controller is not stabilizing. It is intuitive that
there is no reason for the control signal to remain bounded when only
considering the normal force as control criterion. This follows from the
fact that when the control signal has changed in order to compensate for
a normal force that was different from the reference value, then the mean
of the normal force will in stationarity not be affected by this change in
control signal. Hence there is no reason to move the control signal back to
zero after a compensation has been done. In order to obtain a stabilizing
controller an LQG controller with extra weighting on the control signal
in the performance index has been computed, i.e. a term 0.01u?(k) has
been added to the LQG criterion corresponding to the MU controller. Its
transfer function is seen in Figure 4.12. It is close to the MU controller. In
Figure 4.15 simulation results are presented, which are not too far from
the ones obtained in Figure 4.14 with respect to normal force. Notice that
the closed loop system is stable for this suboptimal controller. This was
not the case for the infimal MU controller in Figure 4.14. Further notice
that the measurement signal y(%) is also more well-behaved.

»

Summary ’

The theory presented in the previous chapter was evaluated on an ap-
plication example concerned with active automotive suspension control.
The control objective was to prevent the car from losing its contact with
the road. It was seen that this problem is possible to cast as a MU con-
trol problem. There is no solution to the optimization problem in terms
of an optimal controller. However, it is possible to obtain the limit of
achievable performance in terms of an infimal controller. Also a subopti-
mal controller was computed\which stabilizes the closed loop system. To
summarize, in this example it has been seen that the MU controller may
have the same draw-backs as the MV controller, i.e. large variations in
the control signal. However, it is possible by modifying the associated
LQG problem with extra weighting on the control signal to obtain prac-
tically usable controllers, and it is of course also possible to compute the
upcrossing probability for this suboptimal controller in order to evaluate
its performance.
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4.3 Concluding Remarks

The theory presented in the previous chapter has been evaluated using
two examples. In spite of the simplicity of the examples many interesting
features of the MU controller have been demonstrated. It has been seen
that the infimal value of the upcrossing probability is always obtained
for a value of p that is greater or equal to 0.5. Furthermore it seems
to be the case that the difference between MU control and MV control
with respect to the upcrossing criterion is larger the closer the distance to
the critical level is. Also it has been seen that the MU controller usually
has a smaller variance of the control signal than has the MV controller.
However, some times the MV and MU controllers share the same bad
properties.
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CHAPTER 5

OUTLINE

THE rest of the thesis consists of four parts. They are published in
international journals or have been submitted to such a journal for
possible publication. The scope of this outline is to give a brief description
of what is treated in each part and how the different parts are related. The
parts have been written independently of one another, and the notation
is not fully consistent.

Part I—Control of Level Crossings in Stationary Gaussian
Random Processes

In this part the continuous time upcrossing criterion in minimized. The
solution is given as a one-parametric optimization over a set of LQG-
problem solutions. It can sometimes be thought of as finding optimal
weightings in an LQG-problem.

This part has been published in Hansson (1993a). It is a revised
version of Hansson (1991a). Related work is Hansson (1991c).

/

Part II—Control of Mean Time Between Failures

In this part the discrete time MTBF control problem is treated. It is
shown that this control problem is closely related both to the problem
of minimizing the variance of the signal—MV control—and to the prob-
lem of minimizing the so called upcrossing probability—MU control. It is
made plausible that the upcrossing probability is a better approximating
criterion to minimize than the variance criterion. The problem of min-
imizing the upcrossing probability can be thought of as finding optimal
weighting-matrices in an LQG-problem.

This part has been published in Hansson (1994). It is a revised
version of Hansson (1991d). Related work is Hansson (1991b), Hansson
(1992a).
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Part III—Existence of Discrete-Time LQG-Controllers

In this part existence results for the discrete time LQG-controller are in-
vestigated. Assuming left and right invertibility gives a unique Riccati
equation based controller, potentially with closed loop eigenvalues on the
unit circle. It is shown that this controller is optimal if and only if it stabi-
lizes the system after removal of all its unobservable and uncontrollable
modes. This condition is a considerable simplification of the more gen-
eral geometric condition recently derived by Trentelman and Stoorvogel,
Trentelman and Stoorvogel (1993).

This part will appear in Systems & Control Letters during 1995. It is
coauthored with Dr. Per Hagander, and it is a revised version of Hagander
and Hansson (1994b). Related work is Hagander and Hansson (1994a).

Part IV—Existence of Minimum Upcrossing Controllers

In this part the existence of the discrete time MU controller is investi-
gated. As in parts I and II the optimal controller can be obtained from a
one-parametric optimization over a set of LQG control problem solutions.
However, in this part the LQG formulation is slightly different, and find-
ing the MU controller can be interpreted as finding an optimal costing
transfer function. The existence of the MU controller is investigated in a
constructive way. To this end rank-conditions on the unit circle are im-
posed, and the results of Part III are used extensively. It is shown that
the existence of the MU controller is equivalent to the existence of a MV
controller with sufficiently small closed loop variance. *

This part has been submitted for possible publication. It is coau-
thored with Dr. Per Hagander, and it is a revised version of Hansson and
Hagander (1994). Related work is Hansson (1992b), Hansson (1993b).

¥
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Part I

Control of Level-Crossings in
Stationary Gaussian Random
Processes

new optimal stochastic control problem that minimizes the intensity

for a signal to upcross a level is solved by rewriting it as a one-
parametric optimization problem over a set of LQG-problem solutions.
The solution can sometimes be thought of as finding optimal weightings
in an LQG-problem.

©1993 IEEE. Reprinted with permission
from IEEE Transactions on Automatic Control
Vol. 38, No. 2, February 1993, pp. 318-321.
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1. Introduction

There are a lot of control problems where the goal is not only to keep
the controlled signal near a certain reference value, but also to prevent it
from upcrossing a level. The distance between the level and the reference
value is normally not small, since otherwise the upcrossing intensity will
be intolerably high. However, there may be other control-objectives that
make it undesirable or impossible to choose the distance large. Examples
of problems of this kind can be found for example in sensor-based robotics
and force control, Hansson and Nielsen (1991).

The controller designed below is obtained by solving a one-parametric
optimization problem over a set of LQG-problem solutions, and it can
sometimes be interpreted as choosing optimal weighting matrices in an
LQG-problem. In Hansson (1991b) and Hansson (1991c) the problem is
solved for the discrete time case; here the continuous time case is treated,
which previously has been described in Hansson (1991a).

In Section 2 the control problem is formulated. It is an optimal
stochastic control problem. In Section 3, the problem presented in Sec-
tion 2 is solved. In Section 4, the optimal controller found in Section 3 is
computed for a second order process. Finally, in Section 5, the results are
summarized.

2. Control Problem

#

s/

Let 2 be a stationary Gaussian process defined by

dx =Axdt + B1du + Badv

dy =Cixdt + Dde \ (1)
- z =Cox '
where v and e are zero-mean Wiener-processes with Edvdv? = R,dt,

EdedeT = Rydt and EdvdeT = Ry3 = 0. The results below are easyly
generalized to R1s # 0. Thesignal y is the measurement, of which the
control signal u is constrained to be a linear time-invariant feedback. It
is assumed that the mean m, = E{z} of z is equal to a predescribed
constant reference value. Further, it is assumed that the covariance
r.(7) = E{(z(¢+7) —m,(¢+ 7)) (2(t) — m,(¢)) } has a finite second derivative
at the origin. This implies that CsBg must be equal to zero.

67




Part I Control of Level-Crossings in Stationary Gaussian ...

LEMMA 1—Rice’s Formula
If r,(7) has a finite second derivative for 7 = 0, then the mean number
of upcrossings of the level zy per unit time is given by

1 o; (20 — mz)2
H=9r o, exp <_ 202 (2)
where 02 = r,(0) and ¢ = —r/(0).
Prooff  See Theorem 7.3.2 in Leadbetter et al. (1982) or Chapter 10.4 in
Cramér and Leadbetter (1967). O

Remark. The quaintity u in (2) will be called the upcrossing intensity.

Let D be the set of linear time-invariant stabilizing feedbacks of (1),
and let D, be the set of linear time-invariant stabilizing feedbacks of (1)
for which o, < 29 — m, holds.

The control problems mentioned in Section 1 are captured in the
following problem formulation:

min 4 (3)

where y is given by (2). The restriction on o, will exclude the trivial
solution ¢, = oo for minimizing 4.

3. Regulator Design

In the first subsection, the problem of minimizing the upcrossing inten-
sity is rephrased to a one-parametric minimization proplem over a set of
solutions to LQG-problems. The equations for solving the LQG-problems
are given in the second subsection. In the last subsection, the results are
summarized.

Solution

It will be seen that the minimization of 4 in (2) over D, can be done by
first minimizing
J = E{z% + p%*} (4)

for p € [0,00] and m, = ONover D, and then minimizing 4 over the
solutions obtained in the first minimization, i.e. over ¥y N V,, where

Vy = {(GZ(H),O'Z-(H)) = R2!H e @J}
vV, = {(O'z,oé) € RQ!O <0, < 20 = M, 0< O'z‘}

Dy = {H € Q)‘H = argmin J(H,p), p € [0, oo]}
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3. Regulator Design

Note that it is only assumed that m, = 0 when o is minimized, not when
M is minimized.

In the following lemma J is rewritten to fit into the usual LQG-
problem formulation.

LEMMA 2
The loss-function <J in (4) can be written

J = E{a" Qux + 25T Quott + 0T Qqit}

where
Q1 = CTCy +p2ATCLCoA
le = ,OQATCZTCQBl
Qe = p?B{ CJ C3B;

Proof:  The result follows immediately by using the definition of z in (1).

G

The next lemma shows how all jointly minimal variances 62 and o2

can be obtained by minimizing J. But first a precise definition of jointly
minimal will be given.

DEFINITION 1—Pareto optimality
Let X denote an arbitrary nonempty set. Let f; : X —- R*, [ esbhes
nonnegative functionals defined on X. Then a point 0 is said to be Pareto

optimal with respect to the vector-valued criterion f = (f1, fs, -, fs) if
there does not exist x € X such that f;(x) < fi(x°) for all i € s, and
fe(x) < fr(x°) for some % € s. , O
LEMMA 3

Suppose that (A, By) is stabilizable, and that (C1, A) is detectable. Then
the set Dp of Pareto optimal controllers with respect to (02, 02), where
02:D - R*, i=2z3,isa subsetof Dj. ’

Pmoz:.z Let

<P11 P12) _ ((CQ(SI—A)_lBg 0) Cg(SI—A)_lBl>
Py Py ) (Ci(sT - A)'By D) Ci(sI-A)"'B

and let Pyy = N,D;* = D;1N, be right- and left-coprime factorizations of
Pzg with
(v )0 w)=( 1)
-N; Dy N, V) \o I
Then, by Theorem 1, p. 38 in Francis (1986), all stabilizing controllers
U = HY of (4), where U and Y are Laplace transforms of & and y, can
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Part I Control of Level-Crossings in Stationary Gaussian ...

be written H = H1H;*, where

H, _ (Ul -—D,.)(I

HZ B Vl -N r Q
with @ being a stable transfer-function matrix. Thus, the minimization
of J over D can be rephrased to a minimization over @, where @ belongs

to the linear space of stable transfer-function matrices. By Theorem 1 p,
43 in Francis (1986)

\%4
Z = (Puy + P1oD,U, Py — P1oD, @D, Pyy) ( E)

where Z, V and E are Laplace transforms of z, ¢ and é. It is seen that the
transfer-function matrices from V and E to Z are affine in @, and since
the variances of z and 2 are convex in the transfer-function matrices, it
follows that the variances are convex in @. The result now follows by
Theorem 1 in Khargonekar and Rotea (1991). O

Remark 1. Al controllers obtained by minimizing J for p € (0,00) are
Pareto optimal by Lemma 17.1 in Leitmann (1981). If the solutions ob-
tained for p = 0 and p = co are unique, then they are also Pareto optimal
by Lemma 17.2 in Leitmann (1981).
Remark 2. Remark 1 and Definition 1 implies that ¥ can be parame-
terized by a scalar. This is not necessarily the case for Dy.
Remark 3. Remark 1 implies that if the controllers obtained by mini-
mizing J for p € [0,00] are unique, then a parameterization of Dp = Dy
by p is obtained, Khargonekar and Rotea (1991), p. 16.

It will now be shown how the minimization of y in (2) can be re-
phrased to a minimization over a set of LQG-problem solutions.

THEOREM 1
Suppose that (A, By) is stabilizable, and that (Cy,A) is detectable. Then

{He@z

H = argmin 4t (0,(H),0:(H))} € Dp 1D,

and N

{(o:(8), 0:(11)) < ¥,

H = argmin u(c,(H), G,;(H))} VA,

Proof: Assume that the minimum of # on D, is attained for some H ¢
Dp N ’DZ._ For all H ¢ Dp N D, there exist by Definition 1 H € D, such
that 0;(H) < o;(H) for at lest one of i = z,2. Since y is differentiable
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3. Regulator Design

and has strictly positive partial derivatives with respect to o, and o; for
O, < 2o — My, it follows that u(o.(H),0:(H)) < u(c.(H),o:(H)). This
is a contradiction, and thus the minimum of x4 is attained on Dp N D,,
if it exists on D,. Further, by Lemma 8, Dp < D, which concludes the
proof. a

Remark 1. Note that the minimization of i can be done over ¥; N V,.
This is a one-parametric optimization problem by Remark 2 of Lemma 3.

Remark 2. 1If for each p € [0, 1] the minimizing H of J is unique, then
by Lemma 2 and Remark 3 of Lemma 3 the minimization of z can be
thought of as finding optimal weights in an LQG-problem.

LQG-equations

For short reference the equations for deriving the LQG-solution when
Qo and Ry are invertible are given below. The transfer function from
measurement to control is

H(s)=-L(sI-A+BL+KC))'K (5)
where L and K are given by

L =@;"(Q%, + BTS)

6
K =PC{R;' ©

and where S and P are the solutions to the Riccati-equations, Andersson
and Moore (1990) p. 56-58, and p. 168, ’

(A~ B1@;'QL)"S + S(A- B1@; Q1)
~SB1@7'BfS + Q1 - Q12Q;'QT; = 0 (M
. AP + PAT + B3R1BT — PCT(DRyDT)"'CyP = 0

To calculate o, and o; the following Lyapunov-equation for the closed loop
system should be solved, Astrom (1970) p. 66 and pp. 290-291,

N
AX+XAT+R, =0, (8)
where
A _(A-BL  BiL
. 0 A-KCy
R - B:R,BY B:RBf )
© " \BoRiBf ByR:Bf + KDR,DTKT”
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Then o, and o; are given by

o2 =(Cy 0)X(Ca 0)F
02 =Cy(A-BL BL)X(A-BL B,L)'cf

Due to the block triangularity of A, it is possible to split up (8) into
three equations, where one of the solutions is P in (7), which reduces the
complexity of the problem.

Summary

It has been shown how the minimization of the upcrossing intensity can
be rephrased to a minimization over a set of LQG-problem solutions pa-
rameterized by a scalar, regardless of the uniqueness of the solutions to
the LQG-problems. However, if the solutions to the LQG-problems are
unique, then the problem of minimizing the upcrossing intensity can be
thought of as finding optimal weightings in an L.QG-problem. Note that
the Lyapunov equation (8) is linear, and thus does not add any significant
complexity compared to an ordinary LQG-problem.

4. FEvaluation

To evaluate the performance of the optimal controller obtained by mini-
mizing (2) a second order process will be investigated., The set of LQG-
solutions is calculated analytically, and then u(p) is calculated numeri-
cally and plotted.

Let the process be given by

. 01 b1 0\,
dx = xdt+< >du+< >dv
0 0 by 1
dy =(1 0)xdt+de
z=(1 le

R = O'f > 0, and Ry = 0‘22 > 0. The solutions to the Riccati-equations in

(7) are
s=(5 0)

P <02\/20'10'2 0107 )
B 0102 0'1\/20'10'2
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4.  Evaluation

0.025 r : . . . ; ; r
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Figure 1. The crossing intensity £ as a function of log(p).

By using (6) it is found that
' 1 7
L= (5% %) '

oL
[

Somé more tedious calculations will give the controller H(s) in (5) to be

H(s) = —[(\/20102 + poi)s + 01]/
[(blpazsz —K(blo'z + blp\/20'10'2 + bz,DO'Q)S

+ bg(0g + pr/201039)]

It is interesting to note that if by # 0, then the controller is proper for
all values of p. For p > O the controller is strictly proper. When b1 = 0
and by # 0, the controller is proper only for p > 0. It is also seen how an
integrator can be forced into the controller by having a Wiener process as
load-disturbance, i.e. b; # 0 and b, = 0.
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The intensity i has been calculated numerically for values of p in
the range of 107% to 103, m, = 0,20 = 5 and by = by = 01 = 03 = 1. The
result is shown in Figure 1. The intensity has a minimum for p = 0.1,
which is g = 1.1334- 1074,

5. Conclusions

A new optimal stochastic control problem that minimizes the intensity for
a signal to upcross a level has been solved.

The new controller is obtained as the solution to a one-parametric
optimization problem over a set of LQG-problem solutions, and thus the
complexity is not significantly larger than for an ordinary LQG-problem.
Further it can sometimes be thought of as finding optimal weightings in
an LQG-problem.

The optimal controller has been computed for a second order process.
It has been seen that it is fairly easy to compute.
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Part II

Control of Mean Time

Between Failures

new optimal stochastic control problem is posed. The criterion is to

maximize the mean-time-between-failures criterion given a certain
reference value. It is shown that this control problem is closely related
both to the problem of minimizing the variance of the signal—minimum
variance control—and to the problem of minimizing the so-called upcross-
ing probability—minimum upcrossing control. It is made plausible that
the upcrossing probability is a better approximating criterion to minimize
than the variance criterion. The problem of minimizing the upcrossing
probability can be thought of as finding optimal weighting-matrices in an
LQG-problem. The new controller is compared with the minimum vari-
ance controller for a first-order process. It is seen that the new controller
causes a lower upcrossing probability and a larger mean time between
failures. The improvement in the example is up to about 25%. This
makes it possible to choose the reference value closer to the critical level
without causing smaller mean time between failures, Further, it seen
that the control signal is more well behaved.

©1994 Taylor & Francis Ltd.
Reprinted with permission from International Journal of Control
Vol. 59, No. 6, 1994, pp. 1485-1504.
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1. Introduction

There are many control problems where the goal is not only to keep the
controlled signal near a specified reference value, but in addition to pre-
vent it from upcrossing a critical level. The word critical is used in the
sense of a severe failure, which may imply that the process has to be
repaired and restarted. The distance between the critical level and the
reference value is normally not too small. Otherwise the failure rate will
be intolerably high. However, there may be other control-objectives that
make it undesirable or impossible to choose the distance large. An ex-
ample of problems of this kind can be found in the work of Borisson and
Syding (1976), where the power of an ore crusher should be kept as high
as possible but not exceed a certain level, in order that the overload pro-
tection does not cause shutdown. Another example is moisture control of
a paper machine, where it is desired to keep the moisture content as high
as possible without causing wet streaks. Yet another example is control
of wind power plants, where the supervisory system initiates emergency
shutdown if the generated power exceeds 140% of rated power, Mattsson
(1984). Further examples can be found in sensor-based robotics and force
control, Hansson and Nielsen (1991), and control of nonlinear plants in
which the stability may be state dependent, Shinskey (1967).

An appealing criterion to maximize for the problems described above
is the ‘mean-time-between-failures’ (MTBF) criterion, i.e. the mean time
between upcrossings of the critical level. This type of problems can intu-
itively be solved by minimum variance (MV) control, Astrom (1970) pp.
159-209, Astrém and Wittenmark (1990) p. 203, and Borisson and Syding
(1976). The gain of the MV controller depends critically on the sampling
period. Too small a sampling period leads to large variations in the control
signal, Astrom and Wittenmark (1990) pp. 316-317. This problem has
been solved by introducing weighting on the control signal—LQG-design.
There are, however, no good criteria for choosing the weighting.

The proposed controller can be interpreted as a’choice of optimal
weightings in an LQG-problem, chosen in such a way that they minimize
the mean number of upcrossings of the critical level per unit time—the
upcrossing probability. The idea of considering upcrossing probabilities
originates from continuous tdme extreme value analysis, where initial re-
sults were given in Rice (1936), Rice (1939), and Rice (1944). Rice’s
celebrated formula for the mean number of upcrossings of a level z per
unit time by a stationary gaussian process z, with zero mean value and
covariance function r, is given by

o= () = ()
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Part II  Control of Mean Time Between Failures

It has been shown that the number of upcrossings for large values of zg is
approximately a Poisson process with intensity u, Leadbetter ef al. (1982)
Section 9.1. Thus, the time between failures is exponentially distributed
with mean 1/u, which is maximized by minimizing u. In discrete time,
the corresponding formula is

1 = P{2(0) < zonz(1) > 2o}

where P{-} denotes probability measure, Cramér and Leadbetter (1967).
It will be seen that it is possible to obtain similar Poisson results in
discrete time.

The present author has previously, Hansson (1991a, b), Hansson
(1993a), solved the problem of minimizing the mean number of upcross-
ings per unit time in the continuous time case; he also solved it in the
discrete time case, Hansson (1991c). He also, to some extent, described it
in other work, Hansson (1992) and Hansson (1993b). Here, the relation
to maximizing the MTBF criterion will be discussed. Only the case of a
linear process controlled by a linear controller will be treated since, then,
if the disturbances acting on the process are gaussian the closed-loop sys-
tem will also be gaussian. It is very likely that a nonlinear controller will
do better. However, the analysis would then be much harder since the
signals are not gaussian.

In §2, the problem of maximizing the MTBF criterion given a certain
reference value is related to the MV controller and to the controller that
minimizes the upcrossing probability—the minimum upcrossing (MU)
controller. It is also made plausible that the upcrossing probability cri-
terion captures the control-objectives better than the minimum variance
criterion. ’

In §3, the MU controller is determined. It is obtained by solving
a one-parametric optimization problem over a set of LQG-problem solu-
tions. The complexity is thus only one order of magnitude larger than
for an ordinary LQG-problem. It can be interpreted as choosing optimal
weighting-matrices in an LQG-problem, provided that the solutions to the
LQG-problems are unique.

In §4 the MU controller found in §3 is compared with the MV con-
troller for a first order process. It is seen that the new controller causes
a lower upcrossing probability and larger MTBF. Further, it is seen that
the control signal is more well-behaved. Both theory and simulations
show that the MU controller and the MV controller are approximately
the same for large values of the distance between the reference value and
the critical level. However, in an example it is seen that the MU controller
can have up to about 25% better performance for moderate values of the
distance. This is the interesting case for the examples described above.

Finally, in §5 the results of the previous sections are summarized.
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2. The Control Problem

The control problems described in §1 is mathematically formalized in a
stochastic framework. The control criterion is defined such that the con-
troller should maximize the MTBF criterion given a certain reference
value. Two approximations for the criterion are derived. One of them
is maximized by MV control, and the other is maximized by MU con-
trol. The favorability of the approximate control criterion to minimize the
uperossing probability is made plausible.

Problem Formulation

Let the controlled signal z be a stationary gaussian sequence with con-
stant mean
m, = E{z(k)}

and with covariance function
ro(t) = B{(z(k + 7) — m;)(2(k) — m;)}

Denote the variance of z by o2, i.e. let 62 = r,(0). Consider a time-
invariant controller H, linear in both the measurement signal y and in the
constant reference value r. The problems mentioned in §1 are captured
in the following problem formulation:

mI?XE {T'} (1)

/

subject to m, = r and to a stable closed-loop system, where E{-} denotes
expectation, and where T is the time between two consecutive upcrossings
of zg by z. The reason for constraining the minimization to m, = r is that
it may be profitable not to have m, — 2o too large; e.g. in the paper
machine example it was desired to keep the moisture content as high
as possible without causing wet streaks. Without loss of generality, it
may be assumed that m, = r = 0, which can be obtained with a change
of coordinates. To simplify the notation, this will be assumed in what
follows. A

_Poisson-Convergence

To simplify the problem, approximations for the expectation in (1) will
be given, but first some asymptotic results relating the mean number of
exceedances to the mean number of upcrossings will be derived.
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LeMmA 1

Let z be a stationary gaussian random sequence with covariance function
r, satisfying |p| < 1, where p = r,(1)/r.(0). Then

lim P{zp41 < 20|22 > 20} = 1

Zo—>00

Proof: . The case when p = 0 is trivial. Suppose 0 < |p| < 1 and let
¢h = Zpe1 — p2p. Then

P{Zk+1 < Zolzk > Zo} = P{ék < 20 —pzk|zk > 20}

ZP{fk SZo—kaﬂ20<Zk < Z—Ol—p_l—gzk >z0}

Z2o— & 20— &
ZP{Akazo—p | m20<2k5_0|’TZk>ZO}

lo
— £ }
zZp > 20

20
> P <€l lzo<2zp £ —
82N z
where 0 < € < (1 - |p|)zo. Now, choose € = (1 - |p|)zo — €', where
0 < & < (1-|p|)zo. Notice that & is independent of z;. Thus it follows
that

P{zp+1 < 20l21 > 20} 2P{&, < (1-|pl)20— €'}
xP{z§ < zp < 20 + €'/|pll2 > 20}

It is obvious that it only remains to be shown that the last factor con-
verges to 1 as zo approaches infinity. The last factor can be written as
D(z0)/N(z0), where

= (825121 o )

N(zo) = I @ (59>

O¢
oF = (1-p*)r.(0)

and where
D(x) = /~ ¢()dt and ¢(x) = ﬁexp(—x /2)
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2.  The Control Problem

By 'Hospital’s Theorem, it follows that

%) 1/x+€&/|pl 1/x
fim 260 _ iy DA/ S (=) -0 (%)
200 N(zg)  xj0 N(1/x)  xp0 —Jll—l x40 —¢ (ﬁ)
LE
1 /2¢ e? )
= lim |1—ex ———(—z + = =1
zo»w[ p( 202 \ o™ " IpP ﬂ
This concludes the proof. |
Remark 1. Thus exceedances of an infinitely high level will almost surely
last for only one time-instant. O
LEmmA 2

Let 2 be a stationary gaussian random sequence with covariance function
r, satisfying |p| < 1, where p = r,(1)/r;(0). Then

lim nP( ")> L

n—eo

if and only if
lim nu ( {n )> L
where

P(x) =P{z(1) > x} } @)

U(x) = P{z(0) < xf\z(l) > x}

Prooff Since lim,_,c zg") = 00, it follows by Lemma 1 t/hat

fim [P (:57) - e (257)]

. = lim [nP (z(()")) (1 P{z(O) < 2§

n—00

mz(1) > 28 >})]= 0

)

if lim, oo NP (z " ) = L. Similar arguments can be used for the necessity

part of the proof. N O

Remark 2. Notice that nP (z(()”)) and ny (z( )) are the mean number of
exceedances and upcrossings, respectively, of z by 2¢ in the time interval
[1,n). m

The quaintity ¢ in (2) will be called the upcrossing probability, and
it is equal to the mean number of upcrossings in the time interval [0, 1),
see e.g. Cramér and Leadbetter (1967) p. 281.
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THEOREM 1
Suppose that z is a stationary gaussian sequence with covariance function
r, satisfying

lim r,(z)In7t = 0

To00

and suppose that z(()n) (L) is chosen such that

lim nu (zo (L)) =L, vL>o0
Let the time normalized process {,(¢),¢t = k/n,k = 1,2,..;n = 1,2,... be
defined by {,(k/n) = z(k), and let N, (¢) be the number of upcrossmgs of
z(() by ¢ in (0,¢]. Then, for any fixed L > 0, N,, converges in distribution
to a Poisson process with intensity L on (0, oo) as n approaches infinity.

Proof: Notice that the condition of Lemma 2, i.e. that |r,(1)| < |r.(0)],
follows from lim; o 7,(7)In7 = 0, since if |r,(1)| = |r,(0)|, it holds that
[r2(7)] = |r2(0)], for all 7, which is in contradiction with lim; ., 7,(7)Inz
= 0. The proof for the case when N,, is the number of exceedances can be
found in the work of Leadbetter et al. (1982) Theorem 5.2.1, by noting that
the conditions in that theorem are fulfilled by Lemma 2 and Leadbetter
et al. (1982) Lemma 4.4.1. Further, by Lemma 2 and by examining the
proof in Leadbetter et al. (1982) Theorem 5.2.1 it follows that the Poisson
convergence result also holds for N, being the number of upcrossings O

Remark 3. The time T}, between two consecutive upcrossings of z(()n) by &
converges in distribution to an exponential distribution with mean value
1/L as n approaches infinity. v O

Approximation of the Problem Formulation

Now by Theorem 1 it is obvious that the expectation in (1) for large values
of 29/0, can be approximately expressed as

*

oL
P(z0) ~ pi(z0)

which is maximized by minimizing either the variance of z or the upcross-
ing probability 1. However, Yor zo/0, < oo it holds that

E{T} =

1 < 1
P(z0) ~ p(z0)
and it is tempting to believe that the upcrossing probability is a better

criterion to minimize for moderate values of z9/0,, which is the inter-
esting case for the problems described in § 1. Therefore, the following
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2. The Control Problem

approximation of the criterion (1) will be considered from now on:
min i (z0) (3)

subject to a stable closed-loop system. There may be some problems with
this approximation, since there are two ways of making x small—either
by keeping z well below zg or by keeping it well above zg. To exclude the
latter possibility, the minimization of u will also be restricted to o, <
zp. The validity of the approximation of the problem formulation will be
investigated further in § 4.

It is interesting to note that the approximate criterion could also have
been obtained by approximating another interesting criterion:

P{ max z(k) > zo}

0<ks<N

The present author has previously, Hansson (1991c), described how this
criterion can be approximately minimized by minimizing the upcrossing
probability.

Summary

The control problems described in § 1 have been mathematically formal-
ized in a stochastic framework. The control criterion has been defined
such that the controller should maximize the MTBF criterion given a
certain reference value. Two approximations for the criterion have been
investigated. One of them is maximized by MV control, and the other one
is maximized by MU control. It has been made plausible that minimiz-
ing the upcrossing probability is a better approximation to the original
problem than MV control.

3. Regulator Design

The problem of minimizing the upcrossing probability will now be solved.
The problem is reformulated as a one-parameter minimization over so-
lutions to LQG-problems. Thus the complexity is not significantly larger
than for an ordinary LQG-problem. The solution can be interpreted as a
choice of optimal weighting-matrices in an LQG-problem. The equations
for solving the LQG-problems are then given.
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Solution

Let the stationary gaussian sequence z be defined by

x(k + 1) = Ax(k) + Biu(k) + Bav(k)
y(k) = C1x(k) + De(k) (4)
z(k) = Cox(k)

where v and e are zero mean, gaussian, white noise sequences with
Evv?T = Ry, EeeT = Ry and Eve” = Rz = 0.f The signal y is the
measurement signal and u is the control signal. The signal z is the signal
that is desirable to control. The reason for not having C1 = Cs can be
motivated by the examples in § 1, where, for example, in the ore crusher
example, the measured power y is not the desired signal to control, but
instead some filtered version z of it, due to the filtering behavior of the
thermal overload protection. More general process models than (4) may
be considered, see Hansson (1991c). Introduce

k) = 2(k+ 1) — 2(k) ®)

a(k) = z(k+ 1) + z(k)}
which are independent variables due to the stationarity of z. Let D be
the set of linear time-invariant stabilizing controllers of (4), and let D,
be the set of linear time-invariant stabilizing controllers of (4) for which

»

1/

g, £ 2o (6)
holds, where o2 is the variance of z. Note that the sets D and D, may be

empty, if the process is not stabilizable or if z¢ is too small. It will be seen
that the minimization of 4 in (2) over D, can be done by first minimizing

J =E{(1-p)a®+pp*} (7)

for p € [0,1] over D, and then minimizing u over the solutions obtained

t The condition lim;—, 7,(7) In7 = 0 of Theorem 1 is easily shown to hold if the closed
loop system is stable. The covariance function of z is then given by ,(7) = C2 AR, CY
where A, is the closed loop system matrix and R, is the covariance matrix of x. Let
[|- 1| be any self-consistent matrix norm. Then it holds that |r;(7)| < M||A]]| for some
finite M. Further there exist r satisfyingp < r < 1, where p is the spectral radius of
A.. Tt can be shown that [|[A7|| < Nr?, where N is finite. Since lim; 7" In7 = 0,
the result follows.
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3. Regulator Design

in the first minimization, i.e. over ¥y N V,, where
Vy = {(O‘a(H),O'ﬂ(H)) e Rle € QDJ}
v, = { (0, 0p) < R?

Dy ={H e @]H = argmin J(H,p), p [0,1]}

O‘ZSZQ,O'O,ZO,O'/}ZO}

and where o, and o are the variances of o and §.
In the following lemma o/ is rewritten to fit the standard LQG-prob-
lem formulation.

LEMMA 3
The loss function J in (7) can be written
J = J +E{v"BJCJ CyBsv}
where )
J = E {7 Qx + 2x" Quou + 1" Qou}, (8)

and where

@1 = CFCy + ATCTCoA + (1= 2p) (CTCoA + ATCEC,)

Q12 = (AT + (1-2p)I) C5 C3By A (9)

Q2 = B CJ C3By

Proof The result follows immediately from the definitions of z in (4),
and o and f§ in (5), and by noting that v is uncorrelated with x and u,

since u is a functional of y(k), y(k—1),..., and since Ry = 0. O
Remark 4. For p = 0.5 it follows that J = E {z(k + 1)? + z(k)?}. This
case thus corresponds to minimum variance control of z. : O

Next it will be shown that all jointly minimal variances of « and S
can be obtained by minimizing JJ in (7) for p € [0, 1], but first a precise
definition of joint minimality due to Pareto (1896) will be given.

DEFINITION 1—Pareto Optinﬁlity
Let X denote an arbitrary nonempty set. Let f; : X - R*, 1<i <sbe
s nonnegative functionals defined on X. A point x° is said to be Pareto

optimal with respect to the vector-valued criterion f = (f1, /2., fs) if
there does not exist x € X such that fi(x) < f;(x°) for alli, 1<i <s,
and fi(x) < fi(x°) for some B, 1<k <s. O

The concept of Pareto optimality is illuminated in Figure 1. The
set of achievable variances of o and f is the set of points in the plane
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0.3 . T T .

0.25+

0.2

V() 0.15

0.1

0.05+ i

O 1 L
3.95 4 4.05 4.1 4.15 4.2
V(o)

Figure 1. Tllustration of Pareto optimality.

that are above and to the right of or on the solid curve. The controller
corresponding to the variances at B is,not Pareto optimal, since there
exist, for example, controllers corresponding to strictly lower variance of
B without having larger variance of o—the controllers with variances on
the line connecting A with B. Moreover, it is seen that the controller
corresponding to the variances at A is Pareto optimal, since by picking
any other point to the right of, above or on the curve will either increase
the variance of o or the variance of #. This reasoning holds for all points
on the curve, and thus they are all Pareto optimal. Equivalent definitions
of Pareto optimality can be found in the work of Leitmann (1981) p. 292.

LEMMA 4 .

Suppose that (A, By) is stabilizable, and that (Cy, A) is detectable. Then
the set Dp of Pareto optimal controllers with respect to (o2, o‘g) is a subset
of Dy,

Proof Using the Youla parametrization, Boyd and Barratt (1991)

Chapter 7.4, it follows that all stabilizing controllers of (4) can be pa-
rameterized by a stable transfer-function matrix @. Thus, to minimize J
over D is equivalent to minimize J over @, where @ belongs to the lin-
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3. Regulator Design

ear space of stable transfer-function matrices. Further it follows from the
work of Boyd and Barratt (1991) Chapter 7.4 that the transfer-function
matrices from v and e to z are affine in @. Since the variances of o and
B are convex in the transfer-function matrices, it follows that the vari-
ances are convex in @. The result now follows by Khargonekar and Rotea
(1991) Theorem 1. O

Remark 5. All controllers obtained by minimizing J for p € (0,1) are
Pareto optimal by Leitmann (1981) Lemma 17.1. If the controllers ob-
tained for p = 0 and p = 1 are unique, then they are also Pareto optimal

by Leitmann (1981) Lemma 17.2. O
Remark 6. Remark 1 and Definition 1 imply that Vs can be parameter-
ized by a scalar. This is not necessarily the case for D;. O

Remark 7. Remark 1 implies that if the controllers obtained by mini-
mizing J for p € [0,1] are unique, then a parameterization of Dp = Dy
by p is obtained, Khargonekar and Rotea (1991) p. 16. O

The next lemma gives an expression for the upcrossing probability u
in (2) in terms of a double integral.

LEMMA 5
It holds that

p=PRO) <200z > b= [ 90) [ pG)dudy

where

Vi

¢(x) = (2m) Vexp(~2/2), w1 = (220 - 0py)/0a

and
%y = (220 + OpYy)/Ca

x

Proof Since o and f are independent it holds that ‘

H -P{la—%l < ﬂ}

//h 220l<y Oar (5;) —¢< )dxdy

from which the result follows by a change of variables. O

In the following lemma it will be shown that the upcrossing proba-
bility u# in (2) has strictly positive partial derivatives with respect to o,
and opg.
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LEMMA 6
Let
V(1) = {(0,0p) € B¥0. <1 00 > 0, 0 > 0}

where r > 0. Then the upcrossing probability ¢ in (2) has strictly positive
partial derivatives with respect to both ¢, and o on ¥/ (r), if and only if
r < zp.

Proof: It holds that

56% = A ¢(y) ( ¢ (xu) + —¢(xz)> dy > 0

Further let x; = (220—0py)/0a, and x, = (220+03y)/0q. Using Lemma 5
gives
ou *© x| Xu
— = —¢(x)) — —¢(x,) | d
o= [To0) (Zote - i) )y
By completing the squares in the exponents and by a change of coordinates

it is possible to express the integral in terms of ®(x) = [*_¢(¢)dt, and
= (05 +0})/4

- () -5

do, 8no? 2

where n = y+/&, & = (03/0a)% and y = zo/0, > 0. It is seen that
Ou /80, > 0 if and only if

So if /8o, > 0 on V(r), then the inequality above holds for all values
of 7 > 0, since y > 0, and since it must hold for all values of £E>0. A
Taylor expansion round 77 = 0 gives

\/4n> \[—+O(n2)

So, for the inequality to hold\for small values of 77, it must be that y > 1,
which is equivalent to r < zg.
Now suppose that r < 'zg, which implies ¥ > 1. Then

. @) - 1) 2 1—exp (_.2_7’;) ?%_53_),74(3@ (_yj)

2

v
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3. Regulator Design

where the first inequality follows from Abromowitz and Stegun (1968)
Formula 26.2.25 and the second one from y > 1. Further,

(@.;l exp (%)) < 2¢exp(-¢)

To show 911/80, > 0, it is now sufficient to show L > R for & > 0, where

_ ¢
L =exp <2
2 s 1 2 2(m —3)
R -—;fexp (—2> + exp <<2 - ﬂ_) §> =52 ¢
Some calculations give

1, 1,
L21+§§+§§

1 1 1),
< = .
R < 1+2§+ <8 3”>§
From this it follows that L > R for £ > 0, so 8u /80, > 0. 0

Remark 8. The largest region V(r) in which both 81/80, > 0 and
du/dog > 01is V(z0). So, if the constraint o, < 2y is not considered,
then it may well be that g is minimized by ¢, = . O

It will now be shown how the minimization of 4 in (2) can be re-
phrased to a minimization over a set of LQG-problem-solutions. Figure 2
illuminates the proof of the following theorem.

THEOREM 2
Suppose that (A, B;) is stabilizable, and that (C1, A) is detectable. Then

{He@z

H = argmin u (O'a(H),O'ﬁ(H))} cDp D,

and N

{(aa(H),oﬁ(H)) e V,|H = argmin u(0u(H), 0p(H)) } < V5 .

Proof:  Assume that the minimum of ¢ on 9, is attained for some H ¢
DpND,. For all H ¢ Dp D, there exist by Definition 1 H € D, such that
0,(H) < 0;(H) for at lest one of i = ar, 8. Since y is differentiable and by
Lemma 6 has strictly positive partial derivatives with respect to o, and
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0.3 T . . .

0.25k.
0.2t
V() 0.15}

0.1+

0.06

0 . .
3.95 4 4.05 4.1 4.15 4.2
V(a)

Figure 2. The solid line is ¥, and the dashed line is 0, = 2o for zo = 1.05.

op on V(z0), it follows that u(ca(H),08(H)) < u(ce(H),05(H)). This
is a contradiction, and thus the minimum of u is attained on Dp N D,
if it exists on P,. Further Dp < D; by Lemma 4, which concludes the
proof. ’ O

Remark 9. Note that the minimization of i can be done over VY.
This is a one-parametric optimization problem by Remark 6 on Lemma 4.
O

Remark 10. 1If for each p € [0,1] the minimizing H of J is unique, then
by Lemma 3 and Remark 7 on Lemma 4 the minimization of 4 can be
thought of as finding optimal weights in an LQG-problem. This is appar-
ent from the following explanation of the optimization procedure: in the
first step, the weightings in the LQG-problem, as well as the solutions to
them together with the resulting closed-loop variances, are all parame-
terized by p; in the second step the optimal controller, together with its
corresponding optimal weighting, is found by minimizing the upcrossing
probability over the closed-loop variances obtained in the first step. O
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LQG-equations

For short reference, the equations for deriving the solution that minimizes
J in (8) in Lemma 3 when the controller H is allowed to have a direct-
term are given below. More stringent proofs of the results can be found in
previous work of the present author: Hansson (1991c), which also covers
a more general process model. The transfer function from measurement
to control is

H(q) = —~Ly(qg] — A+ B:L. + KC1) 'K, - L, (10)

where L., L, and K are given by

L.=L-L,C,
y = LKf
= (@ + BTSB;) ™" (BISA + Q)
K, = K - B,L,
K = AK;

K; = PCT (DRyD” + C1PCT) ™

where S and P are the solutions to the Riccati-equations, Astrom and
Wittenmark (1990) Chapter 11.4, and Gustafsson and Hagander (1991),

ATSA - S — (ATSB; + Q12)(Qz + BI'SB1) Y(Q% + BYSA) + Q1 = 0
APAT — P — APCT (DR3yD? + C1PCT)™'C1PAT + BoR1BY = 0
(11)
and where @i, @2 and @12 are given by (9) in Lemma 3. To calculate o,
Ou; Oa and oy the followmg Lyapunov-equation for the closed:loop system
should be solved, Astrom (1970) p. 49,

AXAT +B.RBf = X (12)
where N
A A-BiL BiL, ]
¢ 0 A-KCy
B - ( B, —BlLyD]
°~" \By, -KD
R, 0
R=|1 ]
L 0 R,
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Then oy, 03, 0, and o, are given by

Q
R
Il

2 [02 o] ((AC+I)X(AC+I)T+BCRBCT)[C2 o)T

<%
Il

[02 o) (A - )X (A, - I)T + B.RBT) (c2 o] ! 9

o2 = (c2 o]X(C2 0)”
o= (-L L)x(-L Lx]T+LyDR2DTL§

Since A, is block-triangular, (12) can be split up into three equations, one
of which has P in (11) as its solution. This reduces the complexity of the
problem.

Summary

It has been shown that the minimization of the upcrossing probability
can be expressed as a minimization over a set of LQG-problem solutions
parameterized by a scalar, regardless of the uniqueness of the solutions to
the LQG-problems. If the solutions to the LQG-problems are unique, then
the problem of minimizing the upcrossing probability can be thought of as
finding optimal weightings in an LQG-problem. Note that the Lyapunov
equation (12) is linear, and thus does not add any significant complexity
compared to an ordinary LQG-problem.

The algorithm for minimizing the upcrossing probability can be sum-
marized as: (1) solve the associated LQG-problems and (2) minimize the
upcrossing probability over the variances obtained in the first step. It
must be stressed that if o, > z¢, then no solution exist. In order to obtain
a solution, the distance between the reference value and the critical level
zo must be sufficiently large.

It has been seen that the computation of the variances is not more
comphcated than solving a linear system of equations. Further, the up-
crossing probability can easily be obtained with some numerical integra-
tion routine. The complexity of this latter problem does not depend on
the size of the process model. Thus the computations performed for each
value of p is not significantly larger than for an ordinary LQG-problem.
Moreover by adopting some numerical routine for minimizing the upcross-
ing probability, it may not be necessary to solve that many LQG-problems.
A good choice of starting value for p is 0.5, which corresponds to the MV
controller. In this sense, the computational burden for obtaining the MU
controller is not significantly larger than for the LQG controller that cor-
responds to MV control.
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4. Example

To evaluate the performance of the MU controller obtained by minimizing
the upcrossing probability, a first order process will be investigated. The
process is defined, the set of LQG-solutions is calculated analytically, and
the MU controller is computed and compared with the MV controller. It
is seen that the new controller causes a lower upcrossing probability and
a larger MTBF. It is also seen that it has a control signal that is more
well-behaved.

Process

Let the process be given by

x(k + 1) = x(k) + 0.04u(k) + 0.2v(k)
y(k) = x(k) + Be(k)
z(k) = x(k)

where v and e ar zero mean gaussian white noise sequences with Ev? =
Ry = 1, Ee® = Ry = 1 and Eve = Ry = 0. The signal y is the mea-
surement signal, and u is the control signal. This process can be ob-
tained approximately by sampling a continuous time integrator process
with sampling interval 0.04.

LQG-Controllers

The weighting-matrices in (9) are

Q1 =4(1-p)
Q12 = 0.08(1-p)
- Q. = 0.0016

and the solutions to the Riccati-equations in (11) are

S 2[p(1-p)]?
0.04 + 4.0016/2

P = 2

Some more tedious calculations will give the controller H(g) in (10) to be

8049

H(q) = —
(q) m—
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wher
) So = (2[p(1—p)]1/2+ 2(1—p)) (o.o4+ 4.00161/2)

ro = 0.04 (2[p(1~p)I"* + 1) (5004 + 4.0016")
r1 = 2(1-2p)

It is interesting to note that for p = 0.5—minimum variance control by
Remark 4 to Lemma 3—the controller is a proportional controller.

MU and MV Controllers
The MU controller will now be compared with the MV controller.

VARIANCE AND UPCROSSING PROBABILITY. The variances of 2 and u have
been calculated numerically for values of p with a step of 0.01 in the range
0.01 to 0.99. It is seen in Figure 3 that the variance of 2 does not depend
so much on p as does the variance of u.

The probability z has been calculated according to Lemma 5 for m, =
0 and for values of the critical level given by zo = 2, 3 ,4 and 5. The
result is seen in Figure 4. The minimum values of the probability u are
obtained for values of p greater than 0.5. The variance of the control

1.11 : 250 ,
1.1k
1.09 - 200 1
1.08
150
1.07
V(z) V(u)
1.06 H
100
1.05 .
1.04 N - 50
1.03 .
1.02 : 0
0 0.5 1
p ‘ p

Figure 8. The variances of z—left, and yu—right, as functions of p.

96




4.  Example

0.02 : 1.5X107 :
0.015
M u 1+ d
0.01
0.5}
0.005 :
0 0 0.5 1
)
g x107° . 10 %1077 .
5
4
u p
3
2
1 ) L
0 0.5 1 0 0.5 1
P p

Figure 4. The probability i as function of p for zg = 2—top left, 2y = 3—top
right, z9 = 4—bottom left, and 2y = 5—bottom right.

signal is smaller the larger p is, and the controller obtained for p = 0.51is
the MV controller by Remark 4 to Lemma 3. Thus the MU controller not
only minimizes the upcrossing probability, but it also has a control signal
that is more well-behaved than that of the MV controller.

SIMULATIONS. The controllers have also been compared in simulations.
The same noise sequences were used for both controllers in all cases. Fig-
ure 5 shows plots of z and u as functions of time for the MV controller and
the MU controller when zy = 3. It is seen that that the MU controller
manages to keep the signal z below the critical level, while the MV con-
troller does not. Further, it is seen that the variance of u is smaller for
the MU controller than for the MV controller. Note that z is not white
noise for the MV controller although y is. This is due to the fact that y
is correlated with e.

TRANSFER FUNCTIONS. The MU controller for 2o = 3 (p = 0.92) is given
by ‘

0.4901q
Ha) = - 04804
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time
Figure 5. The signals z(¢)—top, and ©(t)—bottom, as function of time for: (1)

the minimum upcrossing controller—solid line; and (2) the minimum variance
controller—broken line.

and the MV controller is given by: -
H(g) = —-0.9802

It is interesting to note that the main difference between the MV controller
and the MU controller is that the MU controller has a three times lower
gain for high frequences (¢ = —1) owing to the MU controller being a first-
order system while the MV controller being only a proportional controller.
This explains why the variance of the control signal is much smaller for
the MU controller. Some calculations show that the closed-loop system is
governed by N
(g — 0.9608)z = 0.2v — 0.196¢

for the MV controller and
[(g — 1)(g — 0.4804) + 0.0196]z = 0.2(q — 0.4804)v — 0.098¢

for the MU controller. It is seen that the main difference between the
MV controller and the MU controller is the lower high frequency gain
(g = —1) from e to z for the MU controller.
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Figure 6. The optimal values of p as function of zo—left, and (mv — Hmu)/ my
as function of zp—right, where iy is the upcrossing probability for the MV
controller and [, is the upcrossing probability for the MU controller.

APPROXIMATION-VALIDITY. 'The validity of the assumptions made in the
approximation of the problem formulation in § 2 will now be investigated
further; one positive indication has already been seen in Figure 5. In
Figure 6 it is seen how the optimal value of p, and how the relative
decrease of upcrossing probability between the MV controller and the MU
controller decreases as zg increases. This indicates that the MU controller
and the MV controller are approximately the same for large values of 2.

To investigate the behavior of the controllers for moderate values of
2o, Monte Carlo-simulations have been performed to estimate the distri-
bution function for the time between failures. The result is seen in Fig-
ure 7. The x-axis is time-normalized as in Theorem 1 in such a way that
nu(zf(L)) = L = 0.1 for the MU controller. Notice that the distribution
function of the MU controller is always below that of the MV controller.
Tt is also seen that the deviation from the limiting distribution function is
smaller the larger is zg, and that the convergence is better the larger are
the values of 2/n. Notice further that the larger is 2o, the smaller is the

99




Part I Control of Mean Time Between Failures

0.8 T r T T T T T T

0.7

0.6

0.5

P(T < k/n) 0.4
0.3

021

0.1}

O 1 Il Il 1 L
0 1 2 3 4 5 6 7 8 9 10

k/n

Figure 7. The distribution function for the time between failures. The x-axis
is time-normalized as in Theorem 1 in such a way that L = 0.1 for the MU
controller. The solid line is the theoretical limiting distribution function. The
dashed lines correspond to zg = 2, the dash-dotted to z9 = 3 and the dotted to
2o = 4. The lines with the higher values within each group corresponds to MV
control, and the lines with the lower values correspond to MU control.

difference between the distribution functions for the different controllers.
The mean values of the distributions, i.e. the MTBF are given in Ta-
ble 1. Here time is not normalized. It is seen that the relative increase of
MTBF between the MV controller and the MU controller decreases as zg
increases, and that the MU controller in this example performs up to 25%
bettér than the MV controller for moderate values of the critical level.

zo MTBFmy MTBFyy MR tbin

MTBFyv
2 151 190 0.256
3 1845 2216 0.201
4 61050 68664 0.125

Table 1. Estimates of the MTBF for different values of z5. The right-most
column shows the relative increase in MTBF between the MV controller and
the MU controller.
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Summary

The theory developed in the previous chapters has been evaluated us-
ing a first-order process. In spite of the simplicity of the process, many
interesting features of the new controller have been demonstrated.

It has been shown that the MU controller is a first-order system
whereas the MV controller is only a zero-order system—a proportional
controller. The former has a lower high-frequency gain. The variance
of z is slightly larger but the variance of u is much smaller for the MU
controller as compared with the MV controller. The simulations have
given further insight into the consequences of the approximations made
to derive the new controller. When comparing the MU controller and the
MYV controller with respect to the MTBF criterion for varying distances to
the critical level, it has been seen that the difference in MTBF is larger
for moderate values of the distance and smaller for larger values of the
distance. For the examples in the introduction the distance is typically
moderate, and thus it has been justified that the MU controller may well
be a good alternative to the MV controller for this class of problems.

5. Conclusions

A new optimal stochastic control problem has been posed. The solution
maximizes the MTBF criterion. There are many examples of control prob-
lems for which this approach is appealing, i.e. problems for which there
exist a level such that a failure in the controlled system occurs when the
controlled signal upcrosses the level. One important class of such prob-
lems is processes equipped with supervision, where upcrossings of alarm
levels may initiate emergency shutdown causing loss in production.

It has been seen that the control problem posed is closely related both
to the problem of minimizing the variance of the signal—MV control—and
to the problem of minimizing the upcrossing probability—MU control. The
latter relation is novel, whereas the former relation has been known for
a long time, but the motivations given here are believed to be new. It has
been made plausible that the upcrossing probability is a better criterion
to minimize than the varianc? criterion.

The problem of minimizing the upcrossing probability over the set of
stabilizing linear time-invariant controllers has been rephrased to a mini-
mization over LQG-problem solutions parameterized by a scalar, and thus
the complexity is only one order of magnitude larger than for an ordinary
LQG-problem. If the solutions to the LQG-problems are unique, then the
problem of minimizing the upcrossing probability can be thought of as
finding optimal weighting-matrices in an LQG-problem. The key to the
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new method is the reformulation using the independent variables o and
B making it possible to quantify by Lemma 5 the upcrossing probability
in terms of the variances of o and S.

The new controller has been compared with the MV controller for
a first-order process. It has been seen that the new controller causes a
lower upcrossing intensity and a larger MTBF. Further, it has been seen
that the control signal is more well behaved.

Both theory and simulations have shown that the MU controller and
the MV controller are approximately the same for large values of the
dangerous level. However, in the example it has been seen that the MU
controller can have up to about 25% better performance for moderate
values of the critical level. This is the interesting case for the examples
in § 1. Thus MU control makes it possible to choose the reference value
closer to the critical level without causing smaller MTBF. This will in
many cases increase profit.

To summarize the advantages of the new controller, the following
features should be mentioned—larger MTBF, a control-signal that is more
well behaved, and an interpretation as weighting-optimal LQG. The only
drawback is the slightly larger computational burden in computing it.

This concludes the work of proving the raison d’étre of the MU con-
troller and demonstrating its advantages as compared to the MV con-
troller for control of processes with critical levels.
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Part III

Existence of Discrete-Time

LQG-Controllers

XISTENCE results for the LQG-controller are investigated. An infi-

mal Riccati equation based controller may potentially give closed loop
eigenvalues on the unit circle. Assuming left and right invertibility it
is shown that there exists an optimal controller if and only if the Riccati
equation based controller stabilizes the closed loop system after removal of
all its unobservable and uncontrollable modes. Furthermore this reduced
controller is the optimal controller, and its transfer function is unique.
This existence condition is a considerable simplification of the more gen-
eral geometric condition recently derived by Trentelman and Stoorvogel.

#
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1. Introduction

The LQG- or Hj-controller has a long history. The topic is treated in
many text-books, among others Kucera (1991). The singular cases were,
however, not fully described. When people started to work on the optimal
Hyo-controller the subject got renewed interest. A good understanding
of singular LQG controllers also facilitates the analysis of the so called
minimum upcrossing controller, as in Hansson and Hagander (1994).

Two different types of singularities are encountered in Hjy-problems.
The first type is related to non-uniqueness due to redundant control or
measurement signals. This type of singularity will not be discussed here.
For LQ-problems it has been discussed in e.g. Hagander and Hansson
(1994). The second type of singularity is related to closed loop poles
on the stability boundary. In most such cases there exists no optimal
controller corresponding to the infimal cost. It will, however, be shown
that if and only if all the unstable modes of the closed loop system are in
the controller and such that they are canceled by zeros of the controller,
then this reduced order controller is indeed an optimal controller. This
was actually discussed already in Kucera (1980), and it is illustrated by
an example:

EXAMPLE 1—Minimum Variance Control
Consider the process model

A(q)y(k) = B(q)u(k)+ C(q)e(q)

where y(k) is the measurement signal, u(k) the control.signal, e(k) is a se-
quence of independent zero mean Gaussian distributed random variables,
and A(q), B(q), and C(q) are polynomials in the forward shift operator
q. Assume that C(q) has all its zeros inside or on the unit circle, that
degA(q) = degC(q) = n, and that degB(q) = n—~d. It is well-known, see
Astrsm and Wittenmark (1990), that the controller that minimizes

E {y(%)}

in stationarity is given by u(k) = —S(q)/R(q)y(k), where S(q) and R(q)
satisfy the following Diophantine equation

A(q)R(q) + B(g)S(q) = P(q)C(q)
with R(0) = S(0) = 0, and P(q) = ¢J[;_1(q —2:) [T/, (g — 1/2)), where

z; are the stable and unstable zeros of B(q) respectively. If in addition
B(q) and C(q) have no zeros on the unit circle, then the controller will
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also be stabilizing. The converse is, however, not always true, as the
following example shows. Consider

A(q) =gq% B(g) = (g-1(@-2% C(g) =q(g—1)(¢"+8/21q+4/21)

There are two closed loop poles at ¢ = 1 due to the presence of a factor
(g — 1) in both B(q) and C(g). The Diophantine equation

¢*R(q)+(a—-1)(g-2)>S(q) = a(q—1/2)*(g—-Dglg—1)(¢° +8/21q +4/21)

has the solution R(g) = q(q —1)%(g +51/84) and S(q) = —1/84¢%*(g - 1)
Here the two closed loop poles at ¢ = 1 appear in the controller, ie.
(g — 1)? are factors of R(q), and they are canceled by the same factors in
S(q). The reduced order controller

u(l) = ~g7- 7517 ®) (1)

is thus optimal. O

The cancellation of the factor in B(g) can be interpreted as loss of
controllability in the controller, and the cancellation of the factor in C(q)
can be interpreted as loss of observability in the controller.

It is straight forward to see that the presence of all unstable closed
loop poles in the Hg-controller together with cancellation is a sufficient
condition for it to be stabilizing. That it is also a necegsary condition, is
more tricky. The derivation will rely on a general version of the separation
principle. In Trentelman and Stoorvogel (1993) a geometric approach
utilizing Stoorvogel and van der Woude (1991) is taken to give necessary
and sufficient conditions for a stabilizing Hy-controller. It will be seen
thatthe conditions given there are closely related to the more explicit one
given in this paper.

In Chen et al. (1993) an algorithm is given for constructing all stabi-
lizing Ho-controllers. There the modes of the controller are not canceled,
but instead moved to an arkitrary position inside the unit circle. Then
the use of Q-parametrization gives a necessary and sufficient condition
for uniqueness of the optimal controller. The specialization in this paper
implies the uniqueness.
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2. Control Problem and Sblution

Consider the following state space description

x(k +1) A B, B, x (k)
[ Z(k) ] = [ CZ DZlU Dzu ] [ w(k) ] (2)
y(k) Cy Dy Dy, u(k)

where w(k) € R! is a sequence of independent zero mean Gaussian ran-
dom variables with covariance I, u(k) € R™ is the control signal, x(k) €
R" is the state, y(k) € RP is the measurement signal, and z(k) € R9 is
the signal to be controlled. It will be assumed that D,, = 0. Let the
control signal be given by

$(k+1) = Ap&(k) + Buy(k) 3)
~u(k) = Cxgé(k) + Duy(k)

where Ay, By, Cy, and Dy are real-valued matrices of appropriate di-
mensions. The state £ may have any finite dimension. Introduce the
notation H = {Ay,By,Cq,Dg} for a controller such as (3). Denote by
D the set of all H as defined above, and by Ds the subset of D which
stabilizes (2), i.e. the set of controllers which are such that the eigenval-
ues of the closed loop system have absolute values strictly less than one.
Introduce the following performance index:

J(H) = im E{z"(k)z(k)}, H e D, (4)

Since H € D, it is no loss in generality to assume that %(0) = 0 when
evaluating J. Consider the following optimal control problem

x

in J(H) | 5)

which is known as the Hy-problem. This is a convex problem, and hence
the infimum of J(H) alwa3>s exists. However, the set D, is open, and
thus the infimum will not always be a minimum, i.e. the smallest value
of the performance index J may be attained by a controller which does
not internally stabilize the closed loop system.

Introduce the following standing assumptions:

(A1) : (A, B,) stabilizable
(A2) : (Cy, A) detectable
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If (A1) or (A2) does not hold, then D, will be empty, i.e. there is no
optimal controller either. Also introduce the matrices

P.(2) [zI—A —Bu] Py(2) {zI-A —Bw]
c\z) = > o\Z) =
C’z Dzu Cy D.’Yw

and the non-standing assumptions

(A3) : max,rankP.(2) =n+m

(A4) : max,rankP,(z) =n+p

Conditions (A3) and (A4) are actually equivalent to the uniqueness of the

optimal controller and usually referred to as left and right invertibility of

{A,B,,C,,D,,} and {A, B, C,, D,,} respectively, e.g. Silverman (1976).
It will be shown that the optimal controller, whenever it exists, can

be obtained by solving the Riccati equations

S = (A-B,L)'S(A-B,L) + (C, - D, L)' (C, — D,,L)
G = BI'SB, + D},D., (6)
G [L L, Lw] = (BfSA+DzTuCz BTS Dg;]

and

P=(A-KC,)P(A-KC,))" + (By—~ KDy,)(Bw— KDy,)"
KT (APCI+B,DL\"

yw
K . pPCT
T T x . Y
(C,PC] + Dy, D7, K, = B, D%
Ky D..DI,

(7)
These are the unique real symmetric matrices S = 0 and P > 0 such that
there exist L and K with all eigenvalues of A—- B, L and A~ KC, inside
or on the unit circle. They are also the maximal solutions. The existence
of these solutions are guaranteed by conditions (A1)—(A4). Let

Ao, =A-B,L-KC, + B\chCy; B.=K-B,D,

8
C.=L-D.C,y D, = LK, + L,K, + L,K, ®)

and define the controller

Hnom = {Anom: Bnoma C7wm> Dnom} (9)

where {Anom, Bnoms Crom, Dnom} 18 @ minimal realization of {4, B, C.,
D.}.

110




2. Control Problem and Solution

THEOREM 1

Under assumptions (Al)—(A4) there exists a solution to (5) if and only if
H,,p, as defined in (9) is in D, L.e. is stabilizing. Further, this solution
has a unique transfer function. O

The proof of this theorem will be carried out in Section 3, where the
structure of the cancellations is also further investigated. The existence
of an Hy-controller is easily investigated. Just solve the Riccati equa-
tions (6) and (7), compute the controller as in (8), and then obtain a
minimal realization as in (9). Then there exists an optimal controller if
and only if the minimal realization is stabilizing, and furthermore the
optimal controller is given by this minimal realization. The existence
conditions in Trentelman and Stoorvogel (1993) available for the general
case, i.e. also when conditions (A3) and (A4) do not hold, are much more
involved. As discussed in the next section the existence conditions in
Trentelman and Stoorvogel (1993) imply that the closed loop unstable
modes from A, = A— KC, are unobservable in C, and that the ones from
A; = A — B, L are uncontrollable from B.. This also suggests an explicit
reduced order controller.

3. Derivation of the Results

In this section Theorem 1 will be proved. Furthermore the conditions
derived in this paper will be related to the ones presented in Trentelman
and Stoorvogel (1993).

P

/

The Separation Principle

The approach taken in this paper is the classical stochastic approach
for solving LQG-problems utilizing separation. To this end introduce the
following observer

#(k+1) = AR(R) + Buu(k) + K5(k), £(0) = 0
J(k) = y(k) — Cy2(k)

where K is a solution of (7) such that eig(A - KC,) < 1. Define x(k) =
x(k) — £(k). It then holds, sthce x(0) = 0, that

#(k+ 1) = A&(k) + Byw(k), #(0)=0
§(k) = Cy%(k) + Dyww(k)

(10)

(11)

where A, = A— K C,, and By = B, — KD,,. Since there is no guarantee
for A, being stable, some care has to be taken in order to get orthogonality
between £(%k) and %(k).
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LEMMA 1

Assume that (A2) and (A4) hold. Then it holds that £(%) and (k) as de-
fined in (10) and (11) are orthogonal in stationarity,i.e. E {#(k)%7(k)} —
0, %k — oo. Further the stationary covariance of %(k) is given by the
solution P of (7).

Proof: Tt is well-known that there exists a time-varying Kalman filter,
ie. K = K(k), which computes an estimate £(k) of x(k) such that &(k)
and %(k) are orthogonal, provided that the initial value £(0) is correctly
chosen. Further if A, is stable then there also exists a stationary Kalman-
filter with the properties given above. However, if #(0) = 0, then it can
be shown that there still exists a stationary Kalman-filter, even if A, is
not stable. This follows from the fact that the unstable modes of A, are
not controllable from By, and hence these modes will be identically zero,
provided that £(0) = 0, which make them uncorrelated with the corre-
sponding &(%)-modes. That the unstable modes of A, are not controllable
from By is the dual of Lemma 7 in the appendix. ]

Remark. It can be shown that 2(k) = E{x(k)|Y(k — 1)}, where & (k —
D= (sk-1) y-2)
In order to allow for not only strictly proper controllers but also for

proper controllers, an estimate of x(%) based on 9 (%) is needed as well as
estimates of e, (k) = B,w(k) and e,(k) = D,,w(k).

LEMMA 2
Assume that (A2) and (A4) hold. Then with K., K,, and K,, from (7) it
holds that .

/

E{[ex(k)]’y(k)}-{ Kv]&(k)-l—[ 0 J}——aO, k— o0
e.(k) K, 0

Proof  The result follows by Lemma 1 and Astrom (i97 0) Theorem 3.2.
and Theorem 3.3. : |

THEOREM 2—Separation Principle
Assume that (A1)—(A4) hold Then for any H € D, it holds that

J(H) = ]}im E {[u(k) + Li(k) + D.5(B)]" G [u(k) + La%(k) + Dcy(k)]}+J*
where J* is independent of H.
Proof:  The first step of the proof'is a tedious completion of squares utiliz-

ing (6) and the fact that limy o E {27 (k + 1)Sx(k + 1) — x7 (k) Sx(k)} = 0
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for any stabilizing controller, yielding
J(H) = lim E{[u(k) + L(k) + Lyey(E) + Lye,(%)]”

- Gu(k) + Lx(k) + Lyey (k) + Lwez(k)]} +J

where J is independent of H. Then by (7), (8), Lemma 2, and the or-
thogonality between the estimates and the estimation errors the result
follows. O

Sufficient and Necessary Conditions for Existence

Let A, = A — B, L, and temporarily introduce the following assumptions
(A5) : rank,|-1P.(2) =n+m
(AB) : ranky,-1P,(2) = n+p
which are equivalent to no zeros on the unit circle. Notice that these

conditions were not fulfilled in Example 1. Then the following sufficient
condition holds:

LEMMA 3

Under assumptions (A1)—(A6) the controller H,,n, as defined in (9),is a
solution to the optimization problem (5). Further its transfer function is
unique.

Prooff Notice that by Lemma 8 in the appendix there exists only one
solution (S, P) to the Riccati equations such that A, and A, are stable.
Further by Theorem 2, and since G > 0 by Lemma 6, it holds that
u(k) = —L&(k) — D.5(k) is the unique control signal that minimizes the
performance index JJ. This is the same control signal as the one defined by
H,om. Further this controller is stabilizing, since the closed loop system
is governed by

e

[Ac BuCc] [x(k)] . [BN;B;D;V,,,

0 A &(R) By ]w(k) (12)

where A, and A, are stable ynder conditions (A5) and (A6) by Lemma 6
and its dual version. O

Now allow zeros on the unit circle, i.e assume only (A1l)—(A4), and
drop (AB) and (A6).
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PrOOF OF THEOREM 1

The proof follows ideas from Trentelman and Stoorvogel (1994). Consider
the perturbation of (2) obtained by the following replacements

Bw(—>(Bw gl]; Dywe(pyw o]

CZ Dzu
el 0

First it will be shown that the solutions S, and P, of the Riccati-equations
associated with the perturbed problem converge to limits S and P satis-
fying the algebraic Riccati equations for the original problem as & — 0,
To this end introduce the performance index V, associated with the LQ-
problem related to S, i.e. let

x(k + 1) = Ax(k) + Byu(k) + Byu(k)

CZ Dzu
ze(k) = [61] x(k) + [ 0 ] u(k)
Ve(u) = }}Lm E {2 (k)z:(k)}

where v(k) € R is a sequence of independent Gaussian random variables
with unit covariance and zero mean. Notice that the solution S, of the
Riccati-equation does not depend on B,. It holds that V,, (x) < V, (u) for
0 < &1 < g9, since 2L (k)z.(k) = 27 (k)z(k) + 2«7 (k)x(k). Further it holds
that /

0 < BIS¢By = Ve, (ul) < Ve, (ut,) < Ve, (us) = BI'S,, B,

where u;, is the control signal minimizing V,,. This control signal is well-
defined for all ¢; > 0 by (A5). By considering suitdble-B,:s it follows that
Se |l S > 0ase | 0for some S. Further it holds that G, > 0 for all
€ 2 0 by (A3). Thus the Riccati-equation is well-defined for all £ > 0,
and hence the limit S will satisfy the Riccati-equation for € = 0. Dual
arguing shows the same resylt for P;.

Now consider the LQG-problem. Denote the value of the performance
index for the perturbed system and any H € D; by J.(H). Notice that
the perturbation does not influence the transfer function from u to y, so
D is also the set of controllers that stabilize the perturbed system. This
system satisfies (A5) and (A6) and has an optimal controller H, € D, for
all £ > 0 by Lemma 3. Denote the corresponding minimal value of the
performance index by ;. Since the perturbation is linear it holds that
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J(H) < Je(H) for all H € D,. Further J(H) > J* for all H € D, by
Theorem 2. Especially this holds for H = H,, which sums up to

J* < J(H) < J?

Now S. and P, converge to S and P, which are the by Lemma 8 unique
solutions of (6) and (7) such that A, and A, have all their eigenvalues
inside or on the unit circle. Hence J} — J*, ¢ — 0, which by Theorem 2
implies that the infimal value of J is attained by

u(k) = ~L&(k) - D.j (k)
This control signal is unique, since G > 0. It can also be expressed as

#(k+1) = Awoi(k)+ Boy()
-u(k) = ch?:(k) + Dcy(k)

Relation to Trentelman and Stoorvogel

Let 7, be the invariant subspace associated with the stable eigenvalues
of A, and let S be the invariant subspace associated with the unstable
eigenvalues of A,.

THEOREM 3—Trentelman and Stoorvogel

Assume that (A1)-(A4) hold. Then there exists a solution to (5) if and
only if

(C1):ImB, c 7, - ,

(C2): 8y = KerC,

(C3): (A- B,D.C,)S, <V,

(C4): 855 =V,
Proef:  This is an immediate specialization of the conditions given in
Trentelman and Stoorvogel (1993). O

It will now be shown how these conditions are closely related to the
results of Theorem 1. To this end let U, and U, be transformations that
bring A. and A,, respectively, to block diagonal form

Jos O
0 Ju

Jes O

0 J (13)

AcUc = Uc [ ] > AoUo = Uo [

where J;; and J,; contain the stable parts. Further let

U, = (Ues Ucu); U, = [Uos U)
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be partitionings corresponding to the blocking in (13), and denote the
inverses of these transformations by

VT VT
VcT=[ cs]; V0T=[ os]
Vau Vou

LeEMMA 4
The conditions (C1)-(C4) of Theorem 3 are equivalent to :

(I):  All unstable modes of A, are uncontrollable from B,, i.e. VLB, = 0.
(I1): All unstable modes of A, are unobservable from C,, i.e. C, Uy, = 0.
(II): Im U, < Im U, ie. Vg; Uy = 0.

Proof: 1t is trivial that (C2) is equivalent to (II), and that (C4) is equiv-
alent to (III). That (C1) is equivalent to (I) follows from the fact that (C1)
is equivalent to ImB, < ImU,;, which is equivalent to ImV,, < KerB7,
which is equivalent to (I). Further it holds that (A - B,D.C,)U,, =
(A; + B,C)U,, = AU, by (II) or equivalently by (C2). By (III) or
equivalently by (C4) there exist o such that U,, = U.«. Hence (A —
BuD.Cy)Uy, = A Ugsx = Ugeddosx, where the second equality follows by
the definition of U,. Hence conditions (C2) and (C4) imply condition
(C3). O

LEMMA 5
Conditions (I)—(III) of Lemma 4 are equivalent to the existence of a state
transformation T such that

-

Jeo O % /
ACOT=T[* Jou x]

0 0 qu

[Bl ] , : (14)
By .
0

[cl 0 03]

E
w
I

C.T

It

where J,, and J,, are given by (13).
Proof Assume that there exists a state transformation T as (%'eﬁned
above. Then multiply the first equation of (14) by ( 0 I O) from

T
the right. This implies that Uy, = T (o I o) . Multiplying the first
equation of (14) by (0 0 I ] T-! from the left implies that VI =
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(0 0 1) 7T Hence C.Us =0, VEB. = 0 and VA Uy = 0, which
are equivalent to conditions (I)—(III). Now assume the converse, i.e. that
the conditions of Lemma 4 hold. Condition (IIT) implies that there ex-
ists a such that U,, = U,«. Notice that the columns of & are linearly
independent, and that

VU < VIU,s a]
¢\ ViU, O
Consider
J 0
T _ T (2] _ T
VIAnU, = VI'U, { [ . J] VIB, (CCUOS o] }

1l
*

*

o Jis 0 VIR,
= -1 c,U, v\ vry,
[ 0]{[0cht][0]y"}°

¢ (Jcs - VcTsBcCy ch)a
* 0

K3

This implies that
(Jes — VEB.C,Us)ax = ad oy

Let £ be such that (,B o ] is a basis, and such that

(ﬁ “) [Jx J(:u]

(Jos — VIB,C,Us,) (ﬁ a)

Now, consider ‘
(%) - [Jcs e ) (0 ) o
0O 0 I Jeu 0 I
)
. . *
0 qu
Hence with
AN
0
T = Uc ['B 05] = (chﬂ Uou Ucu)
0 I
it holds that
Jeo O *
AcoTzT[ * Jy % ]
0 0 Ju
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and by condition (II) it holds that
cT=(C 0 C)

for some Cy{ and Cs. Further

T = {(ﬂ “)_1 O]VCT

0 I
and hence it follows by condition (I) that

B
T—ch = [Bz ]
0

for some By and Bs. This concludes the proof. O

Remark 1. In words this means that there exists an optimal controller
if and only if all unstable closed loop modes are in the controller (8) and
such that the ones from A, are uncbservable in C, and the ones from A,
are uncontrollable from B,. This can also be formalized in the following
way. Introduce the reduced order controller

q¢ = Jeoé + Bry
—u = Cl{f + D,y

and the state transformation
(v —vios) ()
““lvz viup) le) -

Then it holds that
Z = z w
7 0 Jys * .

Remark 2. The interpretation of the conditions given by Trentelman and
Stoorvogel implies that not all uncontrollable and unobservable modes of
the controller have to be removed as is the case in (9), i.e. the optimal
controller can be implemented as

Hl = {Jco’ Bl; Cls Dc}

Remark 3. It should be stressed that what is different in the approach
in this paper as compared to the approach in Chen et al. (1993) is that
the unstable modes of the closed loop system are not only moved but that
they are actually removed from the closed loop system by implementing
a reduced order controller.
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4. Conclusions

In this paper the existence of Ha-controllers has been investigated. Spe-
cial attention has been given to the case of “zeros on the unit circle”.
Intuition about cancellation in the controller from the polynomial SISO
minimum variance case has been shown to carry over to the multivariable
case.

For the case of uniqueness of the controller it has been shown that
there exists an Hs-controller if and only if all unstable modes of the closed
loop system, when applying the controller obtained by solving the Riccati
equations, are modes also of the controller and such that they are unob-
servable or uncontrollable. This condition is a very intuitive interpreta-
tion of the conditions (C1)-(C4)in Trentelman and Stoorvogel (1993), and
it is easy to check. Further it shows that the optimal controller given in
Chen et al. (1993) is nonminimal. There unobservable or uncontrollable
modes of the controller are not removed, just moved inside the unit circle.

When the controller is not unique, i.e. when assumptions (A3) or
(A4) are not fulfilled, the approach taken in this paper has not yet been
fruitful.
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6. Appendix—Some Results on Riccati Equations

Some results on solutions of Riccati equations are collected in this ap-
pendix. Consider the Riccati equation (6) which could be rewritten as

I 0)"(s o IO_(ABuT[SO][ABu
L I 0 G L 1) C, Dy 0 I C, D
(15)
Wit}} the notation A, = A — B,L and Cy = D, L - C, the 1,1-block of
(15) can be written as .

S = ATSA, + CFCy

N
LEMMA 6
Assume that (A1) and (A3) hold. Then there always exists a solution
(S,L) to (15) such that S is real, symmetric and positive semidefinite,
and such that the eigenvalues of A, are inside or on the unit circle. It
also holds that G > 0. The eigenvalues of A, are strictly inside the unit
circle if and only if assumption (A5) holds.

Proof See Hagander and Hansson (1994). ]
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For any real symmetric solution § = 0 to (15) and any corresponding
A, introduce the state transformation T = ( T Ty T, ) such that

AT = T diag(J-, Jo,J.)

where J_, Jy, and J, are blocks with eigenvalues outside the unit circle,
on the unit circle, and inside the unit circle, respectively.

LEMMA 7
For any real symmetric solution S > 0 to (15) it holds that

CN(T_ To) -0 S(T_ T0]=o

Proof: Left out due to space limitations. O

LEMMA 8

Let (S, L) be a solution to (15) such that S is real, symmetric and positive
semidefinite and such that the eigenvalues of A, are inside or on the unit
circle. Then S is unique. Under assumption (A3) the corresponding L is
also unique.

Proof: Left out due to space limitations. 0

7. Addendum—~Proofs

In this section the proofs that were omitted will be given.

s

PROOF OF LEMMA 6 ,
Define the following Kleinman-like recursion, e.g. Kucera (1991),

Si = (A - BuLz)TSL(A - BuLi) + (Cz - DzuLi)T(Cz - DzuLi)
G; = DLD,, + BIS;B, : (16)
G;L;y; = DI.C, + BI'S;A '
for i = 0,1,... with initial value Lg such that A — B,Lg is stable. It
will first be shown that the sequence of L; is well defined, and then the
question about convergence will be investigated. Assume that A— B, L; is
stable. Then there exists a unique S; > 0 that solves the first equation in

(16), since it is a Liyapunov-equation, and there exists an L,+1 that solves
the third equation in (16), since

A B,YT(s; o [A Bu]>0
Cz Dzu 0 I Cz Dzu -
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If it can be concluded that A— B, L, is stable, it thus follows by induction
that A— B, L; is stable for all i > 0. Assume that A— B, L;, is not stable.
Then there exist A and x such that |[A] > 1 and

(A= ByLj)x = xA (17)
Now rewrite (16) using A; = (L; — L;i+1)TGi(L; — L;11) to obtain
S; = (A= B,Li11)TSi{(A = ByLis1) + (Co = DouLin1)"(Co — Doy Lis1) + A
Combining (17) and (18) gives (18

(1 - |2’|2)x*SLx = x*(cz - DzuLi+l)T(Cz - DzuLi-}-l)x
+ x2"(L; — Liz1)TGi(Li — Lisy)x

Since |4] = 1 and S; = 0 it follows that x*(L; — Li+1)Y Gi(L; — Li+1)x = 0.
If it can be shown that G; > 0 it follows that L;x = L;,1x, and hence that
A is also an eigenvalue of A — B, L;, which is a contradiction. That this
actually holds will now be shown. Rewrite (16) and (18) as

[ I O]T[Si—Ai o] [ I o]
Li+1 I 0 Gi Li+1 I
_ [A Bu]T[Si o] [A Bu]
B Cz Dzu 0 I Cz Dzu
. p
Let ¥(z) = (2I — A)"'B,, and let H(z) = [Cz Dzuz) Ez)] No-
‘P(Z)]
I

(19)

tice that [A B, ) [ = —2z%(2). Thus by multiplying (19) by

¥
[ ;Z) ] from the right and its adjoint from the left the following equal-
ity is obtained
H*(Z)H(Z) + lI"J<(,Z)A,lll(2’) = [I + LHl\P(Z)]*Gl[I + Li+1‘I’(z)] (20)

Now the rank condition (AS) implies that there exists z such that
rank H(z) = m, which by (20) and A; > O implies that G; > 0. Thus
it is proven that the sequence of L; is well defined and that A - B, L; is
stable for all i > 0. '

It will now be shown that the sequence S; converges to some limit S.
Further manipulations show that the following Lyapunov-equation holds

S;—Sis1 = (A= ByLi11)T(Si — Sis1) (A= ByLit1) + A (21)

122



7. Addendum—~Proofs

Since A — B, L;,1 is stable and since A; > 0 it follows that S; — S;,1 = 0.
Thus it holds that 0 £ S;;1 < S;, which implies that the sequence of S;
converges to some limit S > 0 as i goes to inﬁnity The second equation
in (16) implies that G; —» G = DT D,, + BI'SB,. Since

A B, T[s 0}[A B,,]>O

Cz Dzu 0 I Cz Dzu -
there exists L such that GL = DI C, + BI'SA. From (21) it also follows
that (A — B,L;1)T(S; — Sis1)(A- B Ll+1) — 0 and A; — 0, since both
matrices are positive semidefinite. Thus S solves the algebraic Riccati

equation (15), and similarly to (20) it holds that
H*(2)H(z) = [I + LY (2)]"G[I + LY (2)] (22)

Now the rank condition (A3) implies that G > 0, and hence L is a unique
solution. The sequence L; therefore converges to L. Since the eigenvalues
of A — B,L; are inside the unit circle, it follows that in the limit the
eigenvalues of A — B, L are inside or on the unit circle. Now these closed
loop poles are the zeros of I + LY¥(z) = I + L(zI — A)~!B,, since

2 -A -B, I 0) (2I-A+B,L -B,
L I L I) 0 I

From (22) it now follows that any closed,loop pole on the unit circle would
also be a zero of H(z). Conversely it also follows that any zero of H(z)
on the unit circle would show up as a closed loop pole (Here is discussed
zeros before cancellations by possible poles. Notice that the poles on the
unit circle are the same on both sides of the equality in the spectral
factorization). Therefore L is stablizing if and only if H(z) has no zeros
on thie unit circle, or equivalently that .

ranky, -1 P(z) =n+m
This concludes the proof of Demma 6. O

Proor orF LEMMA 7
For any real symmetric S > 0 solving (15) it holds by
k—l . .
= (AIYSAk + > (AT)CRCnAlL k21

i=0
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that Cy ( T Ty ] = 0 and ST_ = 0. To prove that ST, = 0 notice that

the equation for L in (15) implies that BT SA, = DX Cy. Since Cy T, = 0,
it follows that BT ST, = 0. Further

TES = JITISA, + TICECy = JTTISA,

Now by the stabilizability of (A, B,) there exist Lo such that A — B, L, is
stable. Summing up gives

TS = J{ [TFS(A— ByLo) + TESB, (Lo — L)] = JIT{S(A - B,Lo)

which is equivalent to X(A—B,Lo) = JX, where X = TS and J = J;L.
Since the eigenvalues of J are on the unit circle, and since A — B, L, is
stable, it follows that X = 0. O

ProOOF oF LEMMA 8

Assume the contrary, i.e. let S; and Sy be two solutions of the Riccati
equation. Then with A; = A — B,L; and As = A — B, Ly it holds that

AL(Sy — Sp)A; = S1 - Sq

Let Ty = (Tl0 T, ] and Ty = (Tzo T, ] be transformations such

that _
ATy = Ty diag(Jy,, J1,)

A2T2 = T2 diaé(Jzo,J2+)

where oJ1,, and J;, are Jordan blocks with eigenvalues inside the unit
circle. It then holds that

7

Ty (81— 82) Ty, = (J7)*TS (S1 - Se)Th,Jf, =0, k- oo

Now, since STy, = 0 and ST, = 0 by Lemma 7, and since T} and T}
are invertible, it follows that S is unique. Further, by Lemma 6 and the
definition of L it follows that L is unique under condition (A3). O

Remark. The solution S cohsidered is actually the maximal solution.
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Part IV

Existence of Minimum
Upcrossing Controllers

AN optimal stochastic control problem that minimizes the probability
that a signal upcrosses a level is solved by rewriting it as a one-
parametric optimization problem over a set of LQG control problem so-
lutions. Finding the optimal controller can be interpreted as finding an
optimal costing transfer function. The existence of the optimal controller
is here investigated in a constructive way, and it is shown that it is equiv-
alent to the existence of a minimum variance controller with sufficiently
small closed loop variance.

Coauthored with Per Hagander
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1. Introduction

In many control problems the primary goal is to keep the controlled signal
near a certain reference value. Sometimes it is also of interest to consider
a secondary goal of preventing the controlled signal from upcrossing a
level, where the upcrossing would cause some undesirable event such as
e.g. emergency shutdown or instability. The distance between the level
and the reference value is normally not small, since otherwise the up-
crossing intensity will be intolerably high. However, there may be other
control-objectives that make it undesirable or impossible to choose the
distance large. An example of problems of this kind can be found in
bor+syd76, where the power of an ore crusher should be kept as high as
possible but not exceed a certain level, in order that the overload protec-
tion does not cause shutdown. Another example is moisture control of a
paper machine, where it is desired to keep the moisture content as high
as possible without causing wet streaks, ast70 pp. 188-209. Yet another
example is power control of wind power plants, where the supervisory sys-
tem initiates emergency shutdown, if the generated power exceeds 140%
of rated power, mat84. Other examples can be found in sensor-based
robotics and force control, han+nie91, and control of non-linear plants,
where the stability may be state dependent, shi67.

The proposed controller—the minimum upcrossing (MU) controller—
is obtained by minimizing the mean number of upcrossings of the critical
level during a sample interval.

In han93a the problem was solved in the continuous time case in
terms of necessary conditions; here the discrete time case is treated in
terms of both sufficient and necessary conditions. Necessary conditions
have previously been described in han9lc, han92, han93b, han94. In
han91c, han94 the MU controller is used to approximate the so called risk
criterion and the mean time between failures criterion. In han93b suffi-
cient and necessary conditions for the MU controller is given, when the
controlled process is a scalar ARM AX-process. It is also shown that the
optimal controller in this case can be found by solving a set of minimum
variance control problems parameterized by a scalar. Further the opti-
mal controller can be interpreted as finding an optimal costing transfer
function for the system output. For the more general multivariable pro-
cess models treated in han94 the solution can be found by solving a set of
LQG-problems parameterized by a scalar, and the solution can be inter-
preted as finding optimal weightings in an LQG-problem. The existence
of the optimal controller is more difficult to investigate for the general
case. The aim of this paper is to extend the existence results from the
scalar ARMAX-case to the case with several measurement signals. This
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paper is a revised version of han+hag94. It also covers the case with a
direct term from control signal to controlled signal. This question has not
previously been addressed.

Only the case of a linear process controlled with a linear controller
will be treated, since then, if the disturbances acting on the system
are Gaussian, the closed loop process will also be Gaussian. It is very
likely that a nonlinear controller will do better. However, then the non-
Gaussianity of the closed loop process makes the analysis much harder.
Preliminary results are given in and+han94

The paper is organized as follows. In Section 2 the control problem
is formulated. It is an optimal stochastic control problem. In Section 3
the problem presented in Section 2 is solved, i.e. a solution procedure
together with necessary and sufficient conditions for existence of a solu-
tion are given. It will be seen that finding the optimal controller can be
interpreted as finding an optimal costing transfer function for an LQG-
problem, and that the existence of the optimal controller is equivalent
to the existence of a minimum variance controller with sufficiently small
closed loop variance. In Section 4 an example is investigated. Finally, in
Section 5 the results are summarized.

2. Control Problem
Let the stationary Gaussian sequence 2z be defined by

x(k+ 1) = Ax(k) +'Bu(k) + Ee(k) )
2(k) = Cix(k) + Du(k) + Ge(k) (1)
y(k) = Cox(k) + Fe(k)

where x(k) € R" is the state, w(k) € R is the scalar control signal,
z(k)-€ R is the scalar signal to be controlled, y(k) € R” is the measure-
ment signal, e(k) € R’ is a sequence of independent zero mean Gaussian
random variables with covariance I, and where A, B, Ci, Cy, D, E, F,
and G are matrices of consistent dimensions. It will be assumed that
(A, B) is stabilizable, that (s, A) is detectable, that

I-A -B -
ranky,-; [z c, D ] =n+1 (2)
and that 1A _E
z — pa—
rank|z|=1 { Co 7 ] =n+p (3)
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Let the control signal be given by

E(k+1) = Agé(k) + Buy(k) @
u(k) = —Cgr&(k) — Duy(k) + D,r(k)

where r(k) € R is the reference value, where £ is the finite dimensional
state of the controller, and where Ay, By, Cy, Dy, and D, are matri-
ces of consistent dimensions. Since only constant reference values will
be considered, it is no loss in generality to assume that r(k) = 0 by a
change of coordinates. This implies that the mean of z in stationarity is
zero if a stabilizing controller is used. Denote by o2 the variance of z(k)
in stationarity. Introduce the notation H = {Ag,Bg,Cx,Dg} for the
controller defined by (4). Further let

D = {H as defined in (4)}
D, = {H € D | Hstabilizes (1)}
D, ={H € D; | 0, < 20}

where zg € R* is the critical level that should not be upcrossed. Introduce
the following performance index evaluated in stationarity:

U(H;z0) = P{z(k) < zonz(k+1) > 2}, HeD (5)

where P denotes the probability measure induced by the random process e.
The quantity # will in the sequel be called the upcrossing probability, and
it is equal to the mean number of upcrossings during a sample interval,
see e.g. cra+lea67 p. 281. The solution to

) Igneigr)t H(H) - ' (6)

will in the sequel be called the MU controller. It should be stressed that
/L is to be evaluated in stationarity. Since the controllers in 2, are sta-
bilizing, there is hence no lgss in generality to assume that x(0) = 0.
The restriction on o, will exclude the degenerated solution o, = oo for
minimizing y. Also assume that there exist no controller in 2, such
that o, = 0. Had this been the case, then this controller would trivially
minimize 4, and the minimal value would be zero.

The following lemma gives an expression for the upcrossing probabil-
ity & in (5) in terms of a double integral.
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LeMMA 1
It holds that

% ()

1 = P{2(0) < 20 2(1) > 20} = / 00) | owdsdy

1(y)

where ¢(x) = (27) Y2 exp(— x2/2) x1(y) = (220 — 03y) /0, and x,(y) =
(220+03y)/04, and where 02 and oﬁ are the variances of the independent

variables
o(k)=zk)+2(k-1)
{ﬂ(k) = 2(k) —2(k - 1)

Proof:  First notice that o, > 0 implies that 62 > 0 and o‘fi > 0. Assume
the contrary. Start with 02 = 0. Then

(M

0 =02 = E{(2(k) + 2(k — 1))*} = 202 + 2E {z(k)2(k — 1)}

where E denotes expectation with respect to the probability measure in-
duced by the random process e. This implies that the correlation coef-
ficient between z(k) and z(k — 1) is equal to —1. This contradicts that
z is a stable process. The proof goes along the lines of han94 Proof of
Theorem 1 and footnote on page 1491. If O'g = 0, then the correlation
coefficient between 2(k) and z(k — 1) is equal to 1, which also contradicts
that z is a stable process. Hence the expressions in the lemma involving
the inverses of 0, and o are well defined. Furthermore, since o and
are independent it holds that g

werteral<py= [ [ e () g (5) oo

from which the result follows by a change of variables; O

Thus u is easily calculated with some numerical routine. Further u
only depends on the variances of & and 8 and the critical level zy. This
dependence will be further igvestigated in the following lemma.

LEMMA 2
Let
V(r) = {(O'Z,Gg) € R*0, <1, 04 >0, 0p >'O}

where r > 0. Then the upcrossing probability x in (5) has strictly positive
partial derivatives with respect to both o, and o on ¥ (r), if and only if
r < zg.
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Proof: 1t holds that
s = [T o0) (2ot + Lo )y > 0
dog 0 log Ou
Furtherlet x; = (220—0py)/0a, and x, = (220+05y)/0s. Using Lemma 1
gives
8# o X[ Xu
e 2 L d
2= [T o0 (2ot - 2 ) v
By completing the squares in the exponents and by a change of coordinates

it is possible to express the integral in terms of ®(x) = [*_¢(¢)d¢, and
= (03 + 05)/4:

Ou _ Oa
9o, 202

) [0 - 5 - o)
where ¥ = z9/0, and 17 = y03/0,. It is seen that 841/96, > 0 if and only
if

F(n) = o(n ————rp( y> 0, forn >0.

Since F(0) = 0 a necessary condition is that

F'(0) = ¢(0)(1-1/7*) 20, ie y>1

On the other hand if ¥ > 1 then

7

/ o) t' —¢(n) > ng(m)—ne(m)/y* = 0

follows directly, since ¢ (¢) is decreasing for £ > 0. - k O

This lemma indicates that the optimal controller can be found among
all the controllers which make the variances of o and f jointly minimal.

This will be further elaborated in the following section.
AN

3. Regulator Design

In this section the problem of minimizing the upcrossing probability is re-
phrased to a minimization over a set parameterized by a scalar. It is also
shown how this set can be obtained by solving LQG control problems.
Furthermore the existence of the optimal controller is investigated. It
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is shown that the existence is equivalent to the existence of a minimum
variance controller with sufficiently small closed loop variance.
Introduce

J(H,p) = B{(1—p)o®(k) + pp*(k)}, HeDs pel01] (8
and consider the optimization problem

min J(H.p), p €[0.1] (9)

Notice that J is to be evaluated in stationarity. It will be seen that
the minimization of x in (5) over D, can be done by first solving the
optimization problem (9) for all p € [0, 1] and then minimizing 1 over the
solutions obtained in the first minimization, i.e. over Vy N V,, where

@J = {H € Q)s
Yy = {(og(H),ag(H)) e R2‘H c fDJ}
Y, = {(Gﬁ,aﬁ) € R?

H = argmin J(H,p), p € [0, 1]}

O'Z_<_zo,0'a>0,0'[3>0}

and where 02 and 0‘123 are the variances of @ and . More precisely the
following theorem holds:

THEOREM 1
Let

-

D, = {H € D,|H = argmin p (O'a(H)’O'ﬁ(H))}

V= {(0a(H), 0p(H)) €
Then it holds that

Hei)ﬂ}

DycDsnD,and YV, c VsV,

where the left hand sides are non-empty if and only if 7, is non-empty.

Remark 1. Note that the minimization of & can be done over ViV,
This will be shown to be a one-parametric optimization problem over p €
[0,1]. .

Remark 2. It will be seen that the elements of ¥y can be obtained by
solving LQG-problems.

Remark 3. Notice that an alternative formulation of the existence result
is that there exist an MU-controller if and only if there exist a minimum

132
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variance controller, obtained for p = 0.5, with closed loop standard devi-
ation satisfying o, < zo.

The remaining part of the paper is concerned with proving the above
theorem and with showing how to compute the controllers that minimize
J. The difficult part of the proof, lemmas 5-7, is to establish the continuity
of 02(H,) and o‘é (Hp) for p = 0,1 when these variances are bounded.
This is then used to show that the set ¥y NV, is connected, closed, and
bounded, from which the proof can be derived fairly easy. This way of
proof gives as a byproduct some useful properties of V.

First, however, the minimization of J will be shown to be equivalent
to solving LQG problems. Sufficient and necessary conditions for when
these LQG problems have solutions will be given. It will also be seen that
the solutions, whenever they exist, are unique with respect to the transfer
function relating the measurement signal to the control signal. This will
be done in Lemma 3 and Theorem 2.

LEMMA 3

Let a(p) = V/1-p +/p and b(p) = +/1-p — /p, and introduce the

filtered output

Z_(k) - a(p)qq+ b(p)z(k) — XP;q)Z(k)

Then it holds that the loss function J in (8) can be written

J =E{z%k)}
Prooft 1t holds that
7 =& {(Vi=pe®) + (oB®)' |
- B{(VI“palh)+ vBB®) | = EZ@)

where the second equality follows from noting that E{af} = 0 in sta-
tionarity. o
Remark 1. The case p = 0.5 with J = E{22%(k)} corresponds to mini-
mum variance control.

Remark 2. Notice that the problem of minimizing the upcrossing prob-
ability can be interpreted as finding an optimal costing transfer function
for the signal z(%) to be controlled. Costing transfer functions were pro-
posed e.g. in cla+gaw79 to generalize minimum variance control. Typical
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10' [

1

10 :
107 10°
Frequency (radians/s)

Figure 1. Amplitude diagram for the costing transfer function X, (q)/q for
p =0.1,03, 05,07, and 0.9. The transfer function is low-pass for p < 0.5 and
it is high-pass for p = 0.5.

X,(q)/q are seen in Figure 1. Notice that for p > 0.5 the amplification is
higher the higher the frequency is.

Remark 3. A state space realization for Z is e.g. given by the augmented
system _ _ ~
%(k + 1) = Ax(k) + Bu(k) + Ee(k)

3(k) = Ca(k) + Du(k) + Ge(k) (10)
y(k) = Coi(k) + Fe(k) '
where %7 (k) = (xT(k) ET (k) ] and where

, A0 _ B
A= [b01 o]; B =[bD]
Cy = [a01 1]; Cy = [Cz 0]
b g (E)
F = F; G =aG
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3. Regulator Design

The equations for solving LQG problems are summarized below. Let S,
L, L,, and L, be solutions of

S =(A-BL)"S(A-BL)+ (C,-DL)'(C, - DL)
Gs = BTSB + D™D
Gs (L Lo Lo) = (B*sA&+D7¢: B"s DT)

(11)
and let P, K, K., K,, and K, be solutions of
P=(A-KC)PA-KC)" +(E-KF)(E-KPT
Hp = FFT+C_'2PC_'2T
T T AprT T
K EF +_APC2 (12)
K, pCl
Hp = _
K, EF
K, GFT

where S and P are the maximal real symmetric positive semidefinite
solutions of the Riccati equations. Introduce the control signal

u(k) = —L&(k) — Dcy(k) (13)
with %(%) defined by
Z(k+ 1) = (A— KCp)i(k) + Bu(k) + Ky(k)

and where §(k) = y(k) — CoZ(k). Equivalently it can b/e expressed as

u(k) = — [Ce(ql — Aco) B + D] y(k) (14)
where _
Ao =A-BL-KCy+BD,Cs; B,=K-BD,
C., =L - D,Cq; "D = LK, + LyK, + LK,
THEOREM 2 A

If p € (0,1) then the controller defined by (14) is a solution to (9). If p =
0,1, then there exists a solution to (9) if and only if rank ( 2l - A, B, ]

< n+1for z = —1,1, respectively. In case of existence the optimal con-
troller is given by e.g. a minimal realization of {A., B., C., D.}. Fur-
thermore the transfer-function of the optimal controller is unique for all

p €1[0,1].
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Prooff By Lemma 3 the problem in (9) is an LQG problem. This will
have a unique solution in terms of the transfer function from y to u if
(A, B) is stabilizable, (Cy, A) is detectable,

I-A -B
ranklzl:l [Z C’ D ] =n+2 (15)
1
and I-A -E
rank|z|=1[zc-; F'] =n+1l+p

see e.g. hag+han95. The matrices for the PBH rank test for stabilizability
and detectability are given by

(I i B] _ [zI—A 0 B
z |l -bc, z oD
. I-A 0
[zI—A] [z ]
é = —bCl z
2 C; 0

which have rank n + 1 for |z| > 1, since

(e1-4 B) and [ZI“A]

Co
have rank n for |z| > 1 by the stabilizability and detectability of (A, B)

and (_C2,A), respectively. This proves that (A, B) is stabilizable and that
(Cq, A) is detectable. Furthermore it holds that

i B d-A -B 0
[Z” —]N[Cl D ‘l/a]

C D :
! 0 0 X,(2)
and that I_A Z o
[zI—A —E] ZC_ "F .
) x| o X
€ F —bC, -bG =z

where ~ denotes equivalence with respect to elementary row and column
operations. Thus, if p € (0,1), the rank conditions are fulfilled by as-
sumptions (2) and (3). This implies that the conditions for existence of a
unique solution are fulfilled. Whenp = 0,1, X,(z) hasa zeroatz = —1, 1.
Then there exist by e.g. hag+han95 an optimal controller if and only if
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rank [zI —-A, B ] < n+1for z = —1,1, respectively. In case of ex-

istence, the optimal controller is given by e.g. a minimal realization of
{Aco, B¢, C;, D }. The uniqueness of the transfer function from measure-
ment signal to control signal also follows from the same reference. O

Remark 1. Notice that there always exist maximal solutions to the Ric-
cati equations, see e.g. hag+han95. Further it holds that the controller
defined above always makes the performance index attain its infimal
value. The only problem is that it may not be stabilizing for p = 0, 1.
This is due to the fact that —1,1 will be an eigenvalue of A,.

Remark 2. The condition for existence of a solution for p = 0,1 is equiv-
alent to that the unstable eigenvalue of A, at —1,1 is uncontrollable
from B,, since the same eigenvalue is uncontrollable in the controller
by Aco'= A, — B.Cs.

Remark 3. Notice that the LQG controller for p = 0,1 is a minimal
realization of {A.,, B, C., D.}. Hence the uncontrollable modes do not
have to be removed when computing variances as long as x(0) = £(0) =
%(0) = 0. Remember that x(0) = 0 was assumed in Section 2. Further
£(0) is the initial value of the controller which should be chosen to be
zero. This then implies that #(0) = 0.

Remark 4. The closed loop is governed by

(20 A () ome o
where (k) = %(k) — (), g ,

e (B 50) me ()

A, =A-BL; A, =A-KC,

The closed loop behavior of @@ and f§ is governed by

a(k+1) = CiA; + 1) {g:;] + (C:B; + Gy)e(k) + Gee(k + 1)
. ) (17)
B(k+1) = C(A, ~1I) [ig’;;] + (CiB. — Gy)e() + Gee(k + 1)

where

o= ({(e o) o) {(a o) -onas})

G, =G -DD.F
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Now, the observability in & and S of the unstable mode of A, for
p = 0,1 will be investigated. To this end the equations given above are
not suitable. Instead the following equations for « and f will be used:

a(k) = (Ca ~ DL)&(R) + (Ca = DD Cy)i(k) + (G~ DD:Fle(k)
B(k) = (Cp — DL)#(k) + (Cp — DDcCa)i(k) + (G — DD F)e(k) 1)

where Cq = (€1 1/b ] and Cp = (&1 -1/6).p #05.

LeEMMA 4

It holds that the unstable eigenvalue of A, at —1 for p = 0 is observable
in 8 but not in «. Further it holds that the unstable eigenvalue of A, at
1 for p = 1 is observable in « but not in S.

Prooff  Only the observability in o will be investigated, since the ob-
servability in f can be investigated analogously. From (16) and (18) the
matrix for the PBH-rank test for observability in « is given by

2l — A, B.Cs 2l — A, B.Cs
[ 0 2 - A, N[Ca—DL Ca—DDcC’Z]
\¢c,~-DL C,-DD.Csy 0 2l - A,

Due to the fact that the unstable eigenvalue is in A, and never in A, it
is sufficient to consider the rank of of

[zz—A;' ] , 1
C,— DL (19)

i.e. the observabilityin C,— DL of the unstable eigenvalue in A,. Further
it holds that .

2l — A, ~B]_[zI—A —B][j 0]
[Ca—DL D ) c, D -L I

and that N
- -A - I-A -B
J-A _B 2l 0 B z -0
c J ] =|-bC; =z -bD|~| Ci. - D 1/b
* C: 1/b D 0 0 z+1

By (2) it now follows that the matrix in (19) has full rank for z = 1, i.e.
the unstable eigenvalue of A, at 1 for p = 1 is observable in C,, — DL.
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Further it holds that

[zI—A o] +BL

81l o) o

(Cl 1/b) _ DL

For p = 0 it holds that & = 1 and that —1 is an eigenvalue of A;, and

hence the matrix above loses rank for z = —1, which implies that there
is unobservability in C, — DL. a
LEMMA 5

Let Hy and Hy be two controllers that solve (9) for p1 and pg, respectively,
where 0 < p; < po < 1. Let the corresponding variances of o and 8 be
0Z(H,), 02(Hy), 0’;* (H1), and 0'2 (Hz). It then holds that

o2(Hs) > 0%(H) and 05 (H:) < 05(Hy)
It also follows that
02(Hs) — 05(Hz) = 04(Hi) — 05 (Hy)
J(Hyp1) < (Ha,ps) + (pa— p1) [0%(Ha) = o} (Hy)]
J(Hyps) < J(Hy,p1) + (p1 = p2) |0%(HL) - 05(H))|

Proof: Introduce a; = 02(H;), and b; = 03(H;), i = 1,2. Then it holds
that

J(Hi,p1) = (1-p1)ar +pib1 < (1 —pi)as + p1bg = J(Hz,p1)

"J(Ha,p2) = (1—pg)ag + p2bs < (1—polas + psbs = J(Hi,ps)

ie. ~
(1-pi)(az—a1) + p1(ba—b1) 2 0
(1—-p2)(ea—az) +p2(br—b2) 20

so that (pg2 — p1) [(a2 — a1) + (b1 — bg)] = 0. Since pg — p1 > 0 it follows

that
as—a1 2 p1f(ag—a1) + (b1—bg)] 2 0

by —bg 2 (1——p1) [(ag—al) + (b1— b2)] >0

which proves the first two inequalities. The remaining ones are immedi-
ate. O
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LEMMA 6

It holds that the solutions S of (11} and P of (12) are continuous functions
of p on [0, 1].

Proof: Application of Lemma 8 in the appendix to the Riccati equations
in (11) and (12) implies that P is a continuous function of p on the closed
interval [0, 1], but since A, has an eigenvalue on the unit circle for p =
0,1 this lemma only implies that S is a continuous function of p on the
open interval (0,1). In the remaining part of the proof the continuity
of S will be shown to hold also at p = 0,1. To this end introduce the
following auxiliary L.Q-problem, which has the same Riccati equation for
S associated with it as the original LQG problem:

#(k + 1) = Az(E) + Bu(k) + Byu(k)
z(k) = Cix(k) + Du(k) + %Bzv(k)
25(k) = C1#(k) + Du(k) + %Bw(k)

for p # 0.5 with performance index V), (u) = Ez3, where v is a sequence
of scalar zero mean Gaussian random variables with covariance one, and

where
B =2
v = B2

can be chosen freely. It also holds Wlth new @ = (1+g 1)z and B =
(1- g 1)z that

/

Vo(u) = (1-p)Ea® + pES*

The performance index is to be minimized over the set of all linear time-
invariant causal stabilizing feedbacks of the system. For any u that sta-
bilizes the closed loop system it holds that

Vo (u) = E{(u(k) + L,(k))"Gs(u(k) + Lo%(k)) } + B S, B,

Hence the infimal value is V = BI'S,B,.

Consider the continuity for p = 0. By applying Lemma 5 to the
auxiliary LQ-problem it is possible to distinguish two cases: (I): There
exist £ > 0 such that 63 (Le) — 03(L;) < 0, which implies that o7 (L,) —

03(Ly) < O for allp € (0,¢&]; (I): 0Z(Ly) —03(Ly) > O for allp & (0,05).
In Case I it follows by Lemma 5 that
0<BrS, B, <BFS,,B,, 0<pi<ps<e
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and in Case II it follows by Lemma 5 and the fact that (4, B) is stabilizable
that
BFS,,B, < BI'S,,B, <K <00, 0<pi<ps<05

where K is some constant.

Now, first consider Case I. Then it holds that BT SB, is bounded
from below at p = 0 and increasing as a function of p on (0, €]. Hence
lim, , BS'S, B, exist. By considering suitable B,:s it follows that the limit
limp 10 S, exist. This limit satisfies the Riccati equation in the limit, since
Gs > 0 uniformly on [0,1]. Hence S is continuous at p = 0, since the
Riccati equation has a unique solution such that A, has all its eigenvalues
inside or on the unit circle. Similar arguing can be used to show the
continuity at p = 0 for Case II. Finally, the continuity at p = 1is shown

analogously. O

LEMMA 7
The set V; n ¥, is connected, bounded, and closed.

Proof 1t is sufficient to show that the variances of @ and S for the
optimal LQG-controllers are continuous functions of p on (0,1) and that
they are continuous at 0 and 1 in the case the corresponding variances
are both finite. Furthermore it has to be shown that there exist optimal
LQG controllers on the set where the continuity has been shown to hold.

From Lemma 6 it is known that S and P are continuous functions of
p on [0,1]. Since Gs and Hp are uniformly positive definite on [0, 1] it
holds that L, L, and L,, of (11) and K, K,, K, and K, of (12) also are
continuous functions of p on [0, 1]. This implies that P=E {&(R)2T (%)}
is a continuous function of p on (0,1). This follows from the fact that A,,
B., and Hp are continuous functions of p on [0,1], and that P by (16) is
the limit as % approaches infinity of

P(k+1) = A P(R)AT + B.HpBY, P(0)=0 (20)
which is a uniformly convergent sequence on [6,1-4J] for all0 < § < 0.5.
Notice that P may not necessarily be continuous at p = 0,1 since 4, is
not stable for p = 0,1.

It now follows that the wariances of & and § are continuous functions
of p on (0, 1), since these variances are affine in P and P by (17). It only
remains to show the continuity at p = 0,1. Remember Lemma-5. This
implies that the limits lim,_,0,1 o2(p), i = a,f exist, possibly unbounded,
and it only remains to show that the values in the limit are equal to
the limiting values. The remaining part of the proof will only focus on
proving that 63(0) = limy_0 0Z(p) and 63(0) = lim,0 05 (p). The other
two equalities are proven analogously.
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Let U, = ( Uy U, ] be a transformation defined for p € [0, €] for
some € > 0 such that A, U, = U,A,, where

(5 2)
L0 Ju
with J,, = —1 for p = 0. Such a transformation exists since A, has only

one eigenvalue on the unit circle for p = 0. Further the transformation U,
is continuous by e.g. gol+loan83 Theorem 7.2—4, since A, is continuous.

Let VT
v - (%)
[ VCQL';

be the inverse of U, which is also continuous. Define

5 - (B) - [ VIB,

‘7 \ByJ) |VLB,
With P = VTPV, it then holds that

P = APAT + B.HpBT
implying .
Py = J.,PJE + BiHpBT
Piy = —JosPisJeu+ BiHpB] (21)
Py = J%, Py + ByHpBY ‘

for the elements of P. The first and second equations have continuous
solutions P; and Pis on [0, €], since J.; is stable. The third equation is
more tricky, and will be dealt with later on. However notice.that Py = 0
for p = 0 if By = 0 by (20).

Let ¥ = C3 — DL, and define

P = [‘I’l %] = (‘?UCS ‘PUC,L]

Notice that there exist & e (0, €] such that Y2 > 0 and continuous for
p € [0,&]. This follows from the fact that U is continuous and that
¥, # 0 for p = 0 by Lemma 4. Notice that (18) can be written

oj = VPP + (Cs — DD.Cy)P(Cy — DD, Cy)"
+(G - DD,F)(G - DD.F)T
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or equivalently
oF(p) = ¥i(p)Palp) + k(p) (22)

for some continuous k(p).

Now, start with the case for which the unstable eigenvalue of A, at
—1 for p = 0 is controllable from B,, i.e. when By(0) # 0. Then it
holds that there exist ¢’ € (0, €] such that Ba(p) # 0 for p € [0,€"].
Hence lim,_,0 P2(p) = oo by (21), which implies lim, o o*f,(p) = oo by
(22). Notice that the continuity of 03 (p) and oj(p) for p = 0 does not

2
have to be investigated for this case, since 0?2 = (oﬁ + Oﬁ) /4 < 22 for

elemerits of ¥y N V,. Finally, notice that there exist optimal controllers
for p = (0,1) by Theorem 2.

Now consider the case when the unstable eigenvalue of A, at —1 for
p = 0 is uncontrollable from B, i.e. when By(0) = 0. Remember that
Py(0) = 0. Suppose that Py is not continuous for p = 0. Then (22) shows
that O'g(p) > 03(0) for some p > 0, which contradicts Lemma 5. This
together with the fact that Py, Py, and U, are continuous functions of Jol
implies that P is continuous for p = 0, and hence that 62 is continuous

for p = 0. The continuity of P now implies that o2 is also continuous
for p = 0 by (18). Finally, notice that there exist optimal controllers for
p = [0,1) by Theorem 2. O

PRrROOF OF THEOREM 1

Consider the case when D, = &. Then it is trivial that D, = & by the
definition of the optimization problem, and hence the theorem is trivial.
Now, consider the case when D, # &. Then ¥ N ¥, is non-empty, since
the controller that minimizes J for p = 0.5 is the minimum variance
controller for the variance of z. Let (o‘g(H ) O'g (H *)) be an element of

V7 ~ VY, that minimizes 1 on this set, which exist$ by Lemma 7. Denote
the corresponding minimal value by x*. It is now sufficient to show that
for any H in D, for which (a,b) = (oﬁ(H),oﬁ(H)) is not in V; N7, it
holds that x (a,b) > p*. This is implied by the existence of H, in D, for
which (a,,b,) = (0'2(1—{),0'!% (fI)) isin ¥y NV, and such that a, < a and
b, < b with at least one strict inequality, since for such an H, it holds
that u(a,b) > p (ap,b,) > u*, where the first inequality follows from
Lemma 2 and the second by the definition of u#*. Hence it only remains
to show the existence of an H, with the above properties.

Notice that ¥y NV, = {(a,,bp) | P € [Pmin: Prmax] }, Where puin = 0
and poay = Lif Vo n ¥, = v, and where Pumin > 0 OF Pumax < 1 if
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Vy NV, # V. Also notice that

_ 2
apmax + bpmax - 4Z0’ pmax <1 (23)
bpun = 428 in >0
apmin + Pmin ZO’ pmln

Furthermore the existence of an H, with the desired properties is equiv-
alent to the existence of a p € [Pmin,Pmax] such that a —a, > 0 and
b — b, > 0 with at least one strict inequality. Now assume that such a
p does not exist. This implies by the fact that ¥y ¥, is connected that
a—a, <0orb—b, <0forall p €[pnin, Pmax). Furthermore it holds for
any p € [Pmin, Pmax] by the optimality that

(1-pla,+pb, < (1=pla+pb

which can be rewritten as

(1-p)a—ap)+p(b—by) >0 (24)

Start with the case when @ —a, < 0. If pnin = 0, then there is an
immediate contradiction to (24). If ppin > 0, then by (23) it holds that
a+b < ap,, +bp.., since a +b < 422 for any H in D,. This implies that

(1 —pmin) (a - apmin) + pmin(b - bpmin) < (1 - pmin _pmln)(a - apmin) < 0

where the second inequality is implied Mby Pmin < 0.5, which follows from
the fact that the minimum variance controller for z has closed loop vari-
ances (aos, bos) which is an element of VrnY,. The case when b — b, <0
is proven analogously by using pmax. O

Remark 1. Notice that the minimization of ¢ can be thought of as finding
an optimal value p € [Pmin, Pmax] for the LQG-problem.

Remark 2. Notice that an alternative formulation of the existence result
is that there exist an MU-controller if and only if there exist a minimum
variance controller, obtained for p = 0.5, with closed loop standard devi-
ation satisfying g, < zo.

4. Example

In this section an example will be given to illuminate the sometimes de-
generated behavior of the MU controller. Let the process to be controlled
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be defined by

a [—Oa b;a]; B - 2]
(

c=[1 1); Cy = éi]
D=0 E = c;a g]
F:[; (1)]; G:(lo]

Assume thata = 7/8, 6 = 2, and ¢ = 1/2. Then it can be shown that the
LQG controllers solving (9) are independent of p and given by

w(k) = —5 (1 0) y8)

Hence the MU controller will be equal to this controller provided o, < 2.
Further it will be the same as the minimum variance controller. It should
be stressed that this behavior is not the generic one. It is also an example
of the difficult case that there may exist controllers with bounded ¢ and
0'/?; forp = 0,1.

5. Conclusions /

The existence of the MU controller has been investigated. This controller
minimizes the probability for the controlled signal to upcross a level given
a certain reference value. There are many examples of control problems
for which this approach is appealing, i.e. problems for which there exist
a level such that a failure in the controlled system occurs when the con-
trolled signal upcrosses the level. One important class of such problems
is processes equipped with supervision, where upcrossings of alarm levels
may initiate emergency shutdown causing loss in production.

The problem of minimizing the upcrossing probability over the set
of stabilizing linear time-invariant controllers has been rephrased to a
minimization over LQG problem solutions parameterized.by a scalar, and
thus the complexity is only one order of magnitude larger than for an
ordinary LQG problem. It has also been seen that the optimal controller
can be interpreted as finding an optimal costing transfer function for the
system output. The key to the method is the reformulation using the
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independent variables « and B making it possible to quantify by Lemma 1
the upcrossing probability in terms of the variances of & and f3.

The set of closed loop variances of & and 3 obtained by solving the set
of LQG problems has been characterized. This made it possible to give
a necessary and sufficient condition for the existence of the minimum
upcrossing controller, which is equivalent to the existence of a minimum
variance controller with sufficiently small closed loop variance. This point,
first solved for the scalar ARM AX-case in han93b was here generalized
to the more general state space case with several measurement signals.
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7. Appendix

LEMMA 8

Assume that A € R B € R™™, C € RP**, and D € RP™ are differen-
tiable functions of a real-valued parameter p on an interval I < R, and
that (A, B) is stabilizable on I and that

z-A -B

ranky, - [ C D

] =n+m

’

holds on I. Consider the Riccati-equation

S = (A-BL)TS(A-BL) + (C - DL)T(C - DL)
GL = BTSA+D*C
G = B'SB +D'D
Then the real, symmetric, and positive semidefinite solution S of the

Riccati-equation such that A, = A — BL is stable on I will also be a
differentiable function of p oh I.

Proof The Riccati equation has a well defined solution S(p)on I. Formal
implicit derivation with respect to p gives )
S+LTGL +LTGL + LTGL = ATSA + ATSA+ ATSA+ CTC + C*C
' GL + GL = BTSA + BTSA + BTSA + DTC + DTC
G = BTSB + BT$SB + BTSB + D"D + D™D
(25)
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Substitution of the second and third equation into the first equation gives

S = ATSA,
+(A-BL)"S(A- BL) + (A- BL)TS(A - BL)
+(C -DL)T(C - DL) + (C - D)T(C - DL)

Now, A. is stable by assumption and the equation for S is a Lyapunov-
equation. Hence it follows that S is unique. By the third equation of (25)
it follows that G is unique. Further, since G > 0, it follows by the second
equation that L is unique as well. Hence S is differentiable on I by the
implicit function theorem. I
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