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Friction Generated Limit Cycles

Henrik Olsson and Karl Johan Åström

Abstract—This paper treats limit cycles caused by friction.
The goal has been to explain phenomena that have been observed
experimentally in mechatronic systems. Experiments have shown
that oscillations of qualitatively different types can be obtained
simply by changing controller specifications. Stiction is important
in some cases but not in others. Necessary conditions for limit
cycle are given for the case where stiction is important. Conditions
for local stability of the limit cycles are also presented. The results
give insight into phenomena observed experimentally.

Index Terms—Friction, limit cycle, relay oscillation, stability.

I. INTRODUCTION

FRICTION is present in all control systems involving me-
chanical motion and it may cause large steady-state control

errors and oscillations. Intuitively oscillations are generated by
a combination of friction which counteracts motion and some
instability mechanism. In stick-slip motion the mechanism is
caused by the desired motion which increases the energy stored
in the friction interface. The controller or the process may also
be unstable.

This paper was written in order to explain some phenomena
that was observed experimentally in [1]. Friction generated
limit cycles can be divided into two categories, namely limit
cycles with and without sticking. Friction is a very complicated
phenomena. Many models of widely different complexity have
been developed to describe friction phenomena. A review of a
number of models that are appropriate for analysis of control
systems are described in [2]. To make the analysis tractable
we will consider the situation when there is only one interface
where friction occurs. The system can then be described as
an interconnection of a linear system and a nonlinear system
representing the friction. A particularly simple case is Coulomb
friction where the friction model is a static nonlinearity of
relay type. This can well describe limit cycles without sticking
where the velocity is zero only at isolated time instants. In
this case limit cycles can be explained with the theory of
relay oscillations [3]–[5]. For oscillations where sticking is
important it is necessary to generalize this analysis. This paper
is organized as follows. Friction generated limit cycles are
discussed and illustrated by an example in Section II. Theory to
compute and analyze them are given in Section III. The theory
is applied to the example in Section IV. Finally, conclusions are
given in Section V.
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II. FRICTION GENERATED OSCILLATIONS

In this section we will give some examples of oscillations that
are generated by friction. Stick-slip motion is a common phe-
nomena that occurs in slow motion. It can easily be generated in
the laboratory by connecting a mass to a spring which is pulled
with constant velocity. Stick slip is a jerky motion composed of
periods where the surfaces stick and slide. A similar phenom-
enon can be observed when controlling the position of a sliding
mass with a PI controller.

To get some insight into how oscillations are generated we
will consider the case when there is only one interface where
there is friction. Such a system can be modeled as an intercon-
nection of a linear system and a nonlinear system describing
friction. The linear system has the friction force as the input
and velocity and possibly the external force as outputs and the
friction model has the velocity and possibly the external force
as inputs and the friction force as the output. See Fig. 1. The
friction interface has an associated relative velocity, relative
position , friction force , and external force. The equation
of motion is given by

(1)

The motion at the friction interface has thus only one degree of
freedom. The friction model we use is

if
if and
otherwise.

(2)

Viscous friction can be included in the process model and is
therefore omitted. The model suffices to analyze most limit cy-
cles qualitatively. In the case of Coulomb friction the friction
force is a function only of the velocity as is indicated in Fig. 1(a).
In a system with stiction the friction force also depends on the
external force, as shown in Fig. 1(b).

Describing function analysis [6] is a simple approximate
method that can be applied to systems of the type shown in
Fig. 1(a). [3] has made an exact analysis which is a natural
extension of describing function analysis. The only difference
is that the describing function is replaced by another curve
called the Tsypkin locus. In this way it is possible to obtain
necessary conditions for a limit cycle for the case when friction
only depends on velocity.

Neither describing functions analysis nor Tsypkin’s exten-
sion is appropriate when there is sticking because the velocity is
zero for intervals of finite lengths. In this case there may be limit
cycles of a different nature. Two simple cases are illustrated in
Fig. 2. The upper curve represents an oscillation around a de-
sired equilibrium and the velocity changes sign. This type of
limit cycle which typically occurs in position control with in-
tegral action is called an odd oscillation. The lower curve rep-
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(a)

(b)

Fig. 1. Describing function analysis where only friction is considered in the
nonlinear block.

Fig. 2. The characteristics of the velocity for friction limit cycles with sticking.
The upper curve shows an odd (bidirectional) limit cycle and the lower curve an
even (unidirectional) limit cycle.

resents another type of oscillation where the motion is unidi-
rectional. This type of limit cycle is called an even oscillation.
Stick-slip motion is a typical example.

More complicated oscillations where there are several periods
of sticking and slipping with different durations have also been
observed, see [7]. The analysis in this paper is limited to the
types shown in Fig. 2.

There is also a possibility to distinguish between limit cycles
that require and those that exist also for .
Stick-slip motion requires that while the limit cycle
in the example below exists also when .

There are dynamic friction models that are more complicated
than the simple models with Coulomb friction and stiction, see,
e.g., [2]. The simple friction model can, however, explain the
limit cycles observed experimentally as discussed in [1] and
[8]–[11].

Fig. 3. A schematic picture of the flexible servo.

Fig. 4. Simulation of the flexible servo for� = 10. No limit cycle occurs for
this design.

A. An Example

Before proceeding with the analysis we will consider a partic-
ular example in more detail. This example is a simulated model
which was developed in order to reproduce experiments in [1].
The simulation model described faithfully reproduces the exper-
imental findings. A servo consisting of a motor, a flexible shaft
and a load is shown in Fig. 3. The angular velocity of the motor
is denoted and the velocity of the load .

We will use numerical values for a system used in the control
laboratory, see [12]. The moments of inertia are
and , the viscous damping coefficients are

and , and is the stiffness of
the shaft. The friction is given by (2) with
and where corresponds to , to and to . We assume
that there is friction only on the motor side. The objective is to
control the velocity on the load side, i.e., . The only avail-
able measurement is the velocity of the motor . The
system can be controlled with state feedback and integral ac-
tion using an observer. The controller gains are chosen to get
the desired closed-loop poles which are placed in a Butterworth
patterns. The design is specified by the variable, which deter-
mines the radius of the Butterworth patterns. The characteristic
polynomial is given by

.
The behavior of the system changes drastically with the de-

sign parameter. Simulations of the responses of the system for
and are shown in Figs. 4–7. The diagrams

show , , and the signal which is de-
fined by , where is the torque
generated by the controller. The reference velocity is
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Fig. 5. Simulation of the flexible servo for� = 11. A limit cycle with periods
of sticking occurs.

Fig. 6. Simulation of the flexible servo for� = 12. The limit cycle is a
pure relay oscillation with no sticking, i.e., the friction force switches instantly
between the levels�F .

Fig. 7. Simulation of the flexible servo for� = 15. The limit cycle is a pure
relay oscillation, i.e., the friction force switches instantly between the levels
�F . The velocityy = k ! is almost sinusoidal.

between and and zero otherwise. The controller
works properly in all cases until the reference is brought back to

Fig. 8. Close-ups of the oscillatory behavior of the flexible servo for different
values of the design parameter�. For� = 10 there is no limit cycle. If� = 11

we get a limit cycle that includes periods of sticking. For� = 12 and 5 the
velocity is zero only for single time instants.

zero at . Various limit cycles are then initiated. The mea-
surement of the velocity for are shown in Fig. 8.
The behavior obtained in the different cases can be summarized
as follows:

For , the motion of the motor stops soon after .
The velocity of the load is then a decaying oscillation. There are
no limit cycles.

With , a limit cycle with small amplitude is slowly
built up after . Fig. 8 reveals that motion stops completely
during parts of the limit cycle period.

If , the limit cycle becomes an oscillation where the
friction force switches instantly between the levels . The
external force at the times when the velocity becomes zero is
sufficiently large to overcome the stiction. The acceleration is,
however, quite small immediately after the zero crossings.

When , the shape of the velocity is almost
sinusoidal. In this case, the external force is much larger than
the friction at the times when the velocity is zero.

The behavior of the flexible servo is thus very different for
the different values of the design parameter. The mechanism
which sustains the oscillation is the controller which is unstable
for and but not for , in which case no limit
cycle was observed.

III. A NALYSIS

In this section we develop an analysis method that permits
exact calculation of the shape and the stability of limit cycles
with sticking as described in the previous sections. The problem
is similar to analysis of limit cycles in systems with relay feed-
back. The tools developed for that problem in [5] are now gener-
alized to give necessary conditions for oscillations with sticking.
The conditions will then be applied to the example. The idea is
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to assume that there is an oscillation and investigate the condi-
tions that must hold for limit cycles with sticking.

The technique applies to general linear systems where fric-
tion occurs at a single interface where the motion at the friction
interface is given by (1) The complete system can be written in
the following form:

(3)

where is the feedback from measured and estimated states
and the state vector partitioned as

(4)

where
position;
velocity at the friction interface;
includes all other states of the system, i.e., both con-
troller and process states.

The corresponding partitions of the system matrices are

(5)

Since the complete state vectorincludes both process and con-
troller states, the signal contains both control (or actuator)
forces and forces from the process itself. The referenceis
assumed to be constant and the friction model is given by (2).

A. Odd Limit Cycles

We start by investigating odd limit cycles. Fig. 9 shows the
principal behavior of the velocity and the external forcefor an
odd limit cycle. The velocity is zero at the beginning of the pe-
riodic solution. The signal temporarily overcomes the friction
force at and motion begins. It continues until time
when the velocity becomes zero. At this point motion stops and
the velocity then remains zero until the signalexceeds the
static friction force again. This time motion starts in the oppo-
site direction. A complete period consists of four phases, two
periods of sliding and two of sticking. By symmetry it is suf-
ficient to study half a period. Between and the
velocity is positive and the motion is given by

(6)

The following boundary conditions hold:

Furthermore it must be required that for
. If this condition is not fulfilled, the velocity becomes zero

before .

Fig. 9. Velocity and control signal for an odd limit cycle.

In the time interval the motion is con-
strained by the static friction force, which cancels the signal,
see (2), such that the velocity is retained at zero and the position
at some constant value. The equation governing this motion is
hence

(7)

with the boundary condition

The condition must also hold for
; otherwise motion would be initiated before .

For an odd limit cycle we also require that
because of the symmetry. Necessary conditions for a limit cycle
can now be given. The next theorem states conditions in terms of

and that are necessary for the existence of limit cycles of
the type shown in the upper curve of Fig. 2. Candidate values of

and can be found by solving a nonlinear equation system.
Two further constraints on the system solution must also
hold. A procedure for applying the theory is given later. We first,
however, need to define the following variables:

Note that , , are functions of and that and are
functions of .

Theorem 1: Consider the system (3) and friction force (2).
Assume that there exists an odd periodic solution with period

and that the matrix is nonsingular.
Assume further that the motion is unconstrained in the interval

, but that the friction force keeps the velocity at zero
in the interval as in Fig. 9. The following
nonlinear equations then hold:

(8)

(9)
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The solution must satisfy

for (10)

for (11)

The state vector is for given by

and for by

where

The periodic solution is obtained with the initial condition

(12)

and further the state at time is given by

(13)

Proof: Integrating the system (6) during the slipping
phase with the initial condition gives

(14)

At time the velocity should be zero, i.e.,
. The constrained motion with zero velocity then continues

until time when the external force overcomes the
friction force. Integrating (7) we get

(15)

since the periodic solution is odd. Solving the equations yields
the initial condition (12). The conditions and

are equivalent to (8) and (9). It is further required
that for , and for

, which gives (10) and (11).
Remark 1: Conditions (8) and (10) imply that the derivative

of the velocity at is negative, i.e,

and conditions (9) and (11) imply that the derivative of the con-
trol signal at is negative, i.e,

This is also clear from Fig. 9. If these conditions are not satis-
fied, then (10) and (11) cannot be fulfilled.

Remark 2: The analysis has to be modified slightly to deal
with even periodic solutions, see Fig. 2. For this case we have

and

which causes some sign changes in the conditions for a periodic
solution in Theorem 1. This case is discussed in detail in [8].

Remark 3: Note that if is nonsingular then
is also nonsingular. The assumption on regularity is necessary
when solving (14) and (15). The condition is trivially fulfilled
if both and are stable matrices as in [13]. However, when,
as in our example, integrators are involved, there may be more
than one solution if the condition is not satisfied. For the desired
solution, the velocity is zero at both and ,
and the position at equals that at .

B. Reduction of Velocity and Position Equations

In order to overcome the problem indicated in Remark 3 of
Theorem 1, it is necessary to include the constraint

in the solution procedure. For problems where also
the position is part of the state we must in the same manner
include . Inserting and

in the (14) and (15) and using the knowledge
of the structure of , , and , as seen in (5), we get

(16)

(17)

The matrices have been partitioned according to the system
structure. There are thus two sets of equations with the single
constraint

which corresponds to (9) in Theorem 1. The velocity constraint
, i.e., (8), has been included in the equa-

tions. The first two equations of (17) are trivially fulfilled and
the first two equations of (16) can be seen as new constraints on
the velocity and the position. We thus obtain two matrix equa-
tions for and , namely the last equation of both (16)
and (17). Notice that if then . The unknowns,

and are functions of the three variables, , and
, i.e.,

(18)

The new constraints on velocity, position, and control signal are
given by

(19)

For the reduced problem we have the following result, where
is used to denote .



634 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 9, NO. 4, JULY 2001

Theorem 2: Assume an odd periodic solution exists with pe-
riod and that is nonsingular. The
following equations then hold:

(20)

where

(21)

The initial condition is given by

(22)

and the state at by

(23)

where

(24)

Furthermore, it is necessary that

for

and

for

where is given in Theorem 1.
Proof: Equation (20) follows directly from (19). Equation

(21) and (24) can be obtained by solving (18).
Remark 1: It is necessary to have numerical procedures to

find the values of , and that satisfy (20). The partial
derivatives of these functions with respect to the three variables
are useful in this respect. These are given in [8].

Remark 2: If the position is not part of the state vector then
the following two conditions suffice:

with given by (21) with .

C. Stability of the Limit Cycle

Local stability of the limit cycle can be determined by calcu-
lating the Jacobian of a Poincaré map [14]. This map describes

Fig. 10. The Poincaré map describes how the solution changes between the
time instants when it leaves a hyperplane given byv = C � = 0. The two lines
are determined byu = �L � = F andu = �L � = �F . The figure
shows the solution when the initial state of the limit cycle is perturbed.

how the solution changes between the time instants when it
leaves the hyperplane given by . This occurs when

or . The map is shown in Fig. 10.
The symmetry implies that it suffices to study one half of the
limit cycle for an odd limit cycle. The Jacobian of this map
thus covers only half a period. For a full period the Jacobian is
given by . The following theorem gives the expression for

.
Theorem 3: Assume that an odd periodic solution as de-

scribed in Theorem 1 exists. The Jacobian of the Poincaré
map, shown in Fig. 10, is then given by

(25)

where and . The
limit cycle is locally stable if and only if the matrix has all
its eigenvalues inside the unit circle.

Proof: Consider the trajectory resulting from the per-
turbed initial condition , see Fig. 10. The
perturbation is chosen such that it satisfies the conditions

and

Therefore, it lies on the line in the hyperplane
. Assume that the corresponding perturbation ofis

so that

Further
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Making a series expansion in and , we get

(26)

Since , we get

It follows from Remark 1 of Theorem 1 that , hence

Inserting this in (26) gives

The perturbation at time is thus given by

In the same way we can study how the perturbationof
affects the solution at the end of the half period, i.e., at time

. We get

A series expansion gives

Further, it holds that
and from Remark 1 of Theorem 1 we know that ,
which gives

Finally,

The Jacobian of the Poincaré map in Fig. 10 is hence given by
(25) which proves the theorem.

Remark: The matrix has two eigenvalues at the origin.
One comes from with right eigenvector

. This removes any perturbation in the velocity at time
caused by , i.e., it makes sure that at

we are on the hyperplane indicated in Fig. 10. The second
zero eigenvalue originates from with left
eigenvector . It annihilates any remaining perturbation in

, i.e., in the subsystem that is free to move during sticking
and implies that at we are on the line
on the hyperplane as indicated in Fig. 10.

D. Analysis of a Given System

Tools for analyzing a given system have been given. The pro-
cedure to determine if a system may have an odd stable periodic
solution, as seen in Fig. 2, which is caused by friction of the type
(2) is simply:

Step 1) Find , and such that ,
and .

Step 2) Compute, , , , and and check that ,
and .

Step 3) Check the conditions for
and for .

Complete procedures have now been given for the exact anal-
ysis of friction generated limit cycles of the type shown in the
upper curve of Fig. 2. In the next section they are applied to the
example in Section II-A.

IV. A PPLICATION TO SERVO SYSTEM

The results from the previous section will now be applied
to the servo example in Section I. The tools have been imple-
mented in Matlab, where the zeros of the functions are found
using a Newton–Raphson method.

The flexible servo in Section I showed different limit cycles
depending on the design parameter.

For , the simulations showed no limit cycle. Accord-
ingly, a numerical solution for , , and failed which con-
firms the simulations.

An odd limit cycle with sticking occured when simulating
the flexible servo for . A numerical solution gives

, , and . The magnitude of the
largest eigenvalue of the Jacobianis 0.618. The limit cycle is
thus stable and with moderate convergence rate. The derivatives
of the velocity and the control signal has the correct sign at times

and , respectively. Fig. 11 shows a simulated
period using initial conditions corresponding to the limit cycle.

The oscillation for is of relay type and can, therefore,
be analyzed with the tools in [5]. A numerical solution gives

, which is half the period. The largest eigenvalue of
the Jacobian has magnitude 0.573, which assures stability. A
simulation of one period with initial conditions corresponding
to the limit cycle is shown in Fig. 12.

If is increased to five, the oscillation in the velocity becomes
more sinusoidal. Half the period is given by and the
largest eigenvalue of the Jacobian has magnitude 0.5054. The
convergence to the limit cycle is thus faster with larger values
of . Fig. 13 shows the velocity and the control signal for one
period.
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Fig. 11. Simulation of the periodic solution for the flexible servo when� =

11. The initial conditions are determined numerically using the implemented
tools.

Fig. 12. Simulation of the periodic solution for the flexible servo when� =

12. The initial conditions are determined numerically using the implemented
tools.

Fig. 13. Simulation of the periodic solution for the flexible servo when� =

15. The initial conditions are determined numerically according to the procedure
for relay oscillations.

The procedure developed has thus demonstrated its ability to
analyze friction generated limit cycles. The example has shown
that in particular for limit cycles with large periods of sticking
they give a much more accurate prediction than decribing func-
tion analysis would do.

V. CONCLUSION

We have in this paper discussed limit cycles generated by fric-
tion. An example has demonstrated oscillations that may occur
and also different natures of the limit cycles. The oscillations
have been characterized. It is necessary to distinguish between
limit cycles with and without periods of sticking. If sticking
does not occur, the limit cycles are equivalent to pure relay os-
cillations and can be analyzed as such. The tools available for
relay oscillations have then been extended to limit cycles with
sticking. The tools are suitable for numerical determination of
possible limit cycles. The example has been analyzed using the
derived numerical methods.
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