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7. INTRODUCTION.

Linear stochastic control theory gives the potential to formulate and
solve regulation problems for industrial processes in a fairly realis-
tic manner. This has also been demonstrated in several applications,
[1]. The use of the theory does, however, require mathematical models
of the process and its disturbances. Models of the process dynamics
can sometimes be obtained from physical laws. Modeling of the distur-
bances will almost always require experimental data from the process.
To apply the theory it is thus necessary to perform plant experiments

and to make a system identification.
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Since the dynamic characteristics of the process and the disturbances
may change with time, it is necessary to repeat the identification regu-
larly to maintain the quality of the regulation. This imposes heavy
restrictions on the‘operation of the system and requires persons with

significant theoretical skills to keep the system regulating well.

From a practical point of view it is therefore highly desirable to in-
vestigate the possibilifies to obtain control algorithms which can
adapt to changes in the dynamics of the process and the disturbances.
There are many ways to formulate control problems which lead to such
algorithms. The main difficulty is to pose a problem which reflects
the practical problem sufficiently well and whose solution gives a re-

gulator of reasonable complexity.

Trhis work has been éupported by the Swedish Board of Technical Devel-

opment under contract 733546,



The changes in the process and its environment are very slow in many
cases. A possible formulation is then to consider the problem of con-
trolling a system with constant but unknown parameters. Such a prob-
lem can be solved at least for linear stochastic systems. Examples of
such solutions are found in [2), [5]. The solutions obtained are not
practical because it is necessary to introduce the conditional probabi-
lity density of the parameters as a state. Even the solution of very
simple problems will require computations which far exceed the capacity

of computers available today.

It can then be attempted to analyse more modest problems. For systems
with constant bdt unknown parameters one possibility is to construct
control algorithms, which do not require knowledge of the system para-
meters and which converge to the optimal regulator that could be de-
signed if the system parameters were known. Such algorithms are called

self~tuning or self-optimizing regulators. The approach to such regu-

lators is partly heuristic in the sense that it is necessary to develop
enough insight into the problem to propose candidates for the algorithms.
Once the algorithms are obtained there are, however, interesting and
important problems of analysing them. Mathematically the problem changes

from an optimization problem to an analysis problem.

There are many possibilities to generate the desired control algorithms.
One possibility is to analyse the properties of solutionsgto simple op-
timal control problems that can be generated numerically. See [2].
Another possibility is to exploit on-line identification methods. Such
a scheme based on least squares identification was proposed in [10].

Similar algorithms have also been investigated in [15] and [17].

This paper surveys the properties of a class of self-tuning regulators.
In Section 2 a simple example is used to explain and motivate the algo-
rithm. Some properties of the algorithm are analysed in Section 3. Li-
mitations of the algorithm are discussed in Section 4 where some exten-
sions also are given. Practical applications of the algorithm to con-

trol of industrial processes in paper and steel industry are briefly
discussed in Section 5.

2. AN ALGORITHM.

A self-tuning control algorithm will now be given. The main ideas are

illustrated using a simple example. Consider the system
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y(t+1) + a y(t) = b u(t) + e(t+1) + c e(t) (2.1)

where u is the input, y the output and {e(t)} a sequence of independent,
equally distributed,random variables. The number ¢ is assumed to be
less thanp one. Let the criterion be to minimize the variance of the
output i.e.

t

L y2(K) (2.2)
k=1

min V = min Ey2 = min E

=

It is easy to show [1] that the control law

u(t) = 2= y(t) (2.3)

is a minimum variance strategy, and that the output of the system (2.1)
with the feedback (2.3) becomes '

y(t) = e(t) (2.4)

Notice that the control law (2.3), which represents a proportional re-

gulator, can be characterized by one parameter only.

A self-tuning regulator for the system (2.1) can be described as fol-
lows: '

N

ALGORITHM (Self-TUning REgulator).

‘Step_ 1. (Parameter Estimation).

At each time t, fit.the parameter o in the model
y(k+1) + o y(U) = ulk), Kk = 1,...,t-1 (2.5)

by least squares, i.e. such that the criterion '

t

r o e2(k) ' (2.8)
k=1

where

e(k) = y(k) - y(k) . (2.7)

is minimal. The estimated obtained is denoted g to indicate that it
is a funcétion of time. -



Step_2. (Control).

At eacb time t, choose the control

u(t) = o, y(t) ‘ (2.8)
where a, is the estimate obtained in step 1.

Motivation.

There are several ways to arrive at the algorithm STURE given above.

It can be obtained as a solution to a stochastic control problem based

on the assumption that the problem can be separated into one identi-
fication problem and one control problem, which are solved separately.

The algorithm is thus not a dual control in the sense of Feldbaum. The

algorithm can also be obtained from the model reference principle. See"
e.g. [11].

Extensions.

The algorithm given for the simple example can be extended in many ways.
A generalization to systems of n:th order is given in [3] and a multi-

variable version is given in [16].

3. ANALYSIS. - !

The properties of a closed loop system controlled by a self-tuning re-
gulator will now be discussed. Since the closed loop system is nonli-
near, timevarying and stochastic, the analysis is not trivial. In this
section the major results will be stated for the simple example. For

details we refer to the references [3], [12] and [13].

It is fairly obvious that the regulator will perform well if it is ap-
plied to a system (2.1) with b = 1 and ¢ = 0, because in this case the
least squares estimate a4 will be an unbiased estimate of a. The re-
gulator (2.8) will thus converge to a minimum variance regulator if the
parameter estimate e, converges. It is surprising, however, that the
regulator will also converge to the minimum variance regulator if c #0

as will be demonstrated below. h

The least squares estimate is given by the normal equation
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Assuming that the estimate @, converges towards a value which gives a

stable closed loop systemy, then it is straightforward to show that

1 2

™t

k=1

Thus the closed loop system has the property

lim %
Tt k

y(t+1)y(t) = 0 (3.1)

t
z
=1

Furthermore, assuming that the system to be controlled is governed by
(2.1), the output of the closed loop system obtained in the limit is
given by

y(t) + [a - ably(t) = e(t) + c e(t-1) (3.2)

The covariance of {y(t)} at lag 1 is then given by

E y(t+1)y(t) = -f(a) = {ezatab)(i-actabo) (3.3)
1 - (a-adb)

The condition (3.1) gives
f(a) = 0 y

This is a second order equation for o which has the solutions
: ;

- _.a-=o6
@ = oy = 5 _ (3.4)
_ _a - 1/c ‘
o -(12 -‘—b-——- . (3.5)
‘The corresponding poles of the closed loop system are Ay = C and Ay =

1/c respectively. Since c was assumed less than one, only the value
ay corresponds to a stable closed loop system. Notice that a, corre-

sponds to the gain of the minimum variance regulator (2.3).

Hence, if the parameter estimate @, converges to a value ‘which gives a
stable closed loop system, then the closed loop system obtained must
be such that (2.7) holds. This means that the algorithm can be thought

e v - - P 2 » L e X



of as a regulator which attempts to bring the covariance of the output
at lag one, i.e. ry(1), to zero in the same way as an integrating re-

gulator brings the integral of the control error to zero.

If the system to be contrdlled is actually governed by (2.1), then the
self-tuning regulator will converge to a minimum variance regulator if
it converges at all. These properties of the self-tuning regulator are
easy to extend to arbitrary n:th order systems. This is done in [4].

Simulations of the regulator are given in [4], [15] and [18].

As was already pointed out by Kalman [10], the regulator has strong
stabilizing properties; because if the output assumes large values,
then the terms containing u and y in (2.1) will dominate the stochastic
terms, and the estimate o will become close to a/b. This will bring
the closed loop poles close to the origin. Hence, if the values of the
output becomes very large, they will quickly be reduced to the level of

the disturbances again. A rigorous analysis is provided in [13].

The convergence of the algorithm is of course a key problem. This prob-
lem has been analysed in [12], [13], where necessary and sufficient .

conditions are given. The differential equation

-l f(a) ‘ (3.6)

where the function f is defined by (3.3), plays a crucial role in the
stability anaiysis. It follows from the previous discussion that o =

= oy is a stationary solution. It is shown in [12] that the parameter
estimates will in a.certain sense be close to the trajectories of (3.6).
One condition required for convergence of the estimates is that the
solution o = P is a stable solution to (3.6). In the particular ex-

ample the estimate will converge if 0 < b < 2, [13].

Since the inputs to the system are generated by feedback from the out-
put, it may conceivably happen that there will be many values of a
which give the same values to the loss function. To understand the be-
haviour of the self-tuning algorithm it is easy to show that a is iden-
tifiable. Conditions for identifiability of systems under closed loop

experimental conditions are discussed in [9].



L. LIMITATIONS AND EXTENSIONS.

Consider a system described by the n:th order difference equation
-1 _ -1 . -1 -

A(q ) y(t) = B(q ') u(t) "+ C(q ) e(t) (4.1)

where A(q_1)a B(q_1) and C(q_1) are polynomials in the backward shift

operator q_1 i.e.

-1 -1 -
ACq ') =1 + a;q t ... +agq n
-1 -1 -n
B(q ') = bjg  + ... +Db.gq
-1 -1 -n
C{q ) =1 + c4q. * ... *cq

u is the input, y the output and {e(t)} a sequence of uncorrelated,
random variables. It has been found by simulation [18] that the self-
tuning regulator will not necessarily converge when applied to the sys-
tem (4.1) when the polynomial B*(x) = an(x—1) has zeroes outside the
unit circle, (non-minimum phase systems). There are also minimum phase

systems for which the regulator does not converge,[13].

Several properties of the self-tuning regulator do also depend on a de-
licate balance of a bias in the least squares estimate and a modeling
error. This balance is upset, if extra perturbation signals are intro-
duced, or if the criterion (2.2) is changed e.g. to include weighting
of the controi signal. There are various modifications to the algo-
rithm which can be introduced to overcome some of the difficulties. In
[4] it was shown thét the difficulties associated with non-minimum
Phase systems could sometimes be eliminated by modifying the control
law.

In the algorithm given in section 2 no attempt is made to estimate the
parameters of the polynomial C directly. These parameters will instead
enter the procédure indirectly through the bias in the estimate of
the parameter a of the model (2.5). In some cases e.g. when extra per-
turbation signals are introduced, or when the criterion includes penal-
ty on the control actions,it is advantageous to estimate the parameters
Cqs+4+sC, too. This estimation problem is nonlinear. Approximative,
linear estimation schemes may, however, sometimes be useful. One pos-

sibility .is to substitute the estimation step of the algorithm by



Step 1 _A. (Parameter Estimation)
At each time t the parameters of the model

y(k+1) + ACg™T) y(k) = B(d™M) uk) + ¢(qg™") ex) (4.2)

where € is given by (2.7) and

A(q_1) = a, 4 azq_1 + ... 4 anq—n+1

B(q—1) = By + szq'1 + o0 4 an'n+1
- -1 -n+1

C(q 1) = ¥4 * Y,q t e+ v q n

are estimated by least squares i.e. in such a way that the criterion

(2.6) is minimal.

Since the estimation problem is linear in the parameters, it is easily

solved. Introduce the vectors

e = col[q1,...,an,61,...,Bn,y1,...,Yn] (4.3)

@(K) = [=y(K) e s=y(kon+1) 3uCk) goveulk=nt1),e(K) 0.0 elk-n+1)]  (4.4)

The prediction y defined by (4.2) can then be written as

y(k+1) = 8p(k) (4.5)

.

and the criterion (2.6) becomes

V(e) =
k

n ™t

[y(k) - ep(k-1)12 B (4.6)
1 :

The value 0, of 6 which minimizes this function is given by the normal
equations.

[ 0T (k=1)y (k) (4.7)

k

n ot

T t
© (k-’l)cp(k—‘l)]et g B

1 k=1

since

y(X) = y(k) + e(k) = O(k=1)8, + )



it follows from the normal equations that

o (k-1)e(k) + %

™+

T N
0] (k—1)w(k-1)[6t—6k] =0

1
t 1

n ™M+

k=1 k

-

If the parameter estimates converge to such values that the polynomial
x7(1+Cc(x™)) is stable, then the second term converges to zero and we

get

0 (k=1)e(k) = 0
1

1lim %

n ™t

k

or

E e®(t#)y(t) =0 £ = 1,...,n
E e®(tH)ult) = 0 2 = 1,...50 (4.8)
E e%(t+2)e°(t) = 0 £ = 1,...,n

where €° is the residual calculated from the limiting estimate.

Hence, if the parameter estimates converge, then the limiting parameter
estimates are characterized by the property that the covariances (4.8)
must vanish. The conditions (4.8) are generalizations of (3.1).
Assuming that the estimation procedure is applied to a system described
by (4.1), the conditions (4.8) give nonlinear equations for the possible
limits of the estimates. It is straightforward to show that one solu-
tion 1s given by a; = Ay, By = bi and Y; = Cio

i=1,2,...,0N.

.
For n = 1 it can also be shown that this is the only limiting point
suéh that xn(1+C(x-1) is a stable polynomial if (Z1u2(t))/t is stable.

The problem of convergence is similar to the one forthe simple algorithm.

The estimates obtained in this way are the same as those obtained by
the method proposed in [20]. An alternative is to use a recursive ver-
sion of the maximum likelihood method. When the parameter estimates

are obtained, the control strategies can be determined in many different
ways.
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5. APPLICATIONS.

The algorithm outlined in Section 2 is easily implemented on a process
computer. A program which handles systems of arbitrary order and in-
cludes tuning of feedforwafd parameters can be written using about 35
FORTRAN statements. Algorithms of this type have been successfully ap-
plied to control industrial processes., Applications to paper machine
control are described in [6] and [8). Control of an ore crusher is
described in [7)]. This application is of interest because of the ex-
treme difficulty in modeling the process using physical principles only.
It was impleﬁented using tele-processing from a computer at Lund Insti-
tute of Technology to the plant in Kiruna covering a distance of about
1800 km,

In the applications the algorithm described in Section 2 is somewhat
modified. An exponential discounting of past values is introduced in
the criterion for estimation, (2.6), to allow for timevarying process
characteristics. In the paper machine application [6] the regulator

had 6 parameters which were updated using the algorithm (4 for the feed-
back and 2 for the feedforward). To control the ore crusher a regula-

tor with 7 parameters was used.

The general conclusion that can be drawn from the applications is that
self-tuning regulators can be useful for practical control problems, In
paper machine applications it has been shown that the self-tuning regu-
lator will pefform just as well as a minimum variance regulator designed
on the basis of plant experiment and system identification. The simu-
lations shown in [3] are representative of what can be achieved in prac-

tice.
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