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ON THE CONVERGENCE OF CERTAIN RECURSIVE ALGORITHMS

Lennart Ljung ¥

Abstract

This paper gives convergence (with probability one) theorems for a class of
recursive (sequential) algorithms. The class contains the Robbins - Monro

and the Kiefer - Wolfowitz schemes and also more general algorithms of prac-
tical interest. A basic idea is that a-deterministic ordinary differential
equation is associated with the algorithm, and it is shown that convergence
analysis can be performed in terms of this differential equation. When applied
to the stochastic approximation algorithms mentioned above, the theorems give

convergence results that are more general than those usually given,
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ON THE CONVERGENCE OF CERTAIN RECURSIVE ALGORITHMS

Lennart Ljung
Division of Automatic Control, Lund Institute of

Technology, Fack , S-220 07 LUND, Sweden

1. Introduction

Recursive algorithms for estimation of certain parameters, finding roots of
regression functions etc is a topic of great interest in applied mathematics.
Stochastic recursive algorithms, like stochastic approximation algorithms, have
been studied by e.g. Robbins and Monro (1951), Kiefer and Wolfowitz (1952),

Blum (1954), Dvoretzky (1956), Wasan (1969) etc., in all of which convergence is
a main concern. To prove convergence with probability one usually the martingale
convergence theorem is used, which gives elegant proofs, but introduces some ad-
ditional assumptions. When the algorithms are used in practical applications it
frequently happens that some of these assumptions are not satisfied. In this
paper convergence of recursive algorithms will be studied using a different
approach, The proofs Will be more technical, but in return a larger class of al-

gorithms can be treated.

2. A Class of Algorithms

Congsider the recursive algorithm

il 2, t ¥nn1 Qn(xn’son‘.-l) (1)

where {Xn% is a sequemce of positive scalars, such that
o . Lo
an-? 0 as n—> o= and Z’T K"' (1b)

xn€ R" is the estimate and\gqn+1 is a vector valued observation obtained at
time n+l , and Qn is a correction formed from this observation and the current
estimate x . The observation Pn+1 can be thought of as formed from a sequence
of random variables {ek§ T 1 and a sequence of parameters {bkg T , such that

bn is at the observer'’'s disposal at time n.



Example. In many cases the observations are generated recursively as

§0n+1 = A(bn)yn * eni-l (2)

where A(bn) is a matrix, which depends on the parameter bn’ chosen by the

observer, B

To denote this dependence explicitly, let

(]Dn = ?n(bn_l,bn_z,-..,bl;en,en_l,...,el) = }an(b(.))_

Introduce also

- s .
?n(b) = Pn(b,b,...,b,en,en_l,.. .,el).

In algorithm (1), the following choice of bk is made:

bk=xk.
Algorithm (1) is similar to the stochastic approximation algorithms treated e.g, in

Blum (1954), Burkholder (1956) etc. However, the results of these papers require that

= 2
Blo G, 0l X b =200 (2)
where In is the S-algebra generated by ‘lxl,. . .,xng . Condition (3) is not satisfied

for (1) if Pn+1 depends on bk , kfn. Moreover, even if SO and {ekg are

n+1=en+1
dependent, (3) is in general violated. This case is common in applications of the

Robbins-Monro scheme and the Kiefer-Wolfowitz procedure.

It is reasonable to assume that San depends on old bk’ k<< n, only to a small extent.

The following condition on Qn therefore is imposed:

m
It bk € DR, k=n-N,...,n , then

- b T 6 v, Bl aonf
lQn(bn,([”n+1(b( )) - Q (b, lon+1(b))l $ w_ | max I by bl + q@) (4)
nrken-N
where wrl is a random variable, measurable with respect to ieki;lﬂ

and q(N) 50 as N9,



Theorem 2. Suppose that assumtion (i) of theorem 1 is satisfied and that
Var Q (b.\f ) > 31 (where Var denoted the covariance matrix of Q with respect to
{elnf ). Assume that thax* with non zero probability. Then £(x* )—0 and the matrix

1

%; f(x™ has all eigenvalues in the left half plane (Re% 0), provided f(x) is twice

differentiable
The proofs are given in the appendix.

A main result of the theorems is that a deterministic ODE (F) can be associated
with the reeursive stochastic algorithm (1). According to theorem 2 the algorithm
can only converge to stable stationary points of (53). If a stationary point is
globally asymptotically stable then xh will converge w.p.1l to this point according
to theorem 1, It can also be shown that the trajectories of (F) are in a certain
secse the expected paths of (1) and the probability of deviation from the tra-

jectories can be estimated, see Ljung (1974a).

Remark. Theorem 1 basically does not deal with convergence in a stochastic setting.
A fixed realization for which (i) and (ii) hold is considered throughout the proof,
Convergence of (1) is shown under these conditions. The theorem thus also can be
applied for each realization athd the convergence concept "with probability one™
can be omitted, In particular, this means that the 1limit function f(x), as well

as the convergence point might be random variables: f(x) = £(x,W). Then in con-
dition (iii) the ODE %¥ x = f(x,w) should be asymptotically stable with statio-

nary point % () for almost every W, i.e, (iii) must hold with probability one.

The three conditions (i).(ii) and (iii) in theorem 1 for convergence can be called

the noise condition, the boundedness condltlon and the stablllty cond1t10n respec-

tively, cf Ljung (1974b). In the standard convergence theorems on the Robbins-Monro
and the Kiefer-Wolfowitz procedures it is possible to find similar interpretations
of the conditions, see Lijung (1974a). Here, however, we have sought an explicit

separation between the conditions. so that each one can be studied separately, and,

if necessary., applied to specific problems using specially designed tools .

The stability condition concerns only the deterministic ODE (5). It can be checked
using standard Lyapunov stability theory, see e.g. Krasovsjij (1963) . In practical

situations, valuable insight into the stability properties of (35) may be obtained

/
by numerical solution.



The boundedness condition (ii) is discussed in more detail in Ljung (1974a). It

can be violated even if the ODE (5) is globally stable, either if \Qn(b,?)l in-
creases too rapidly with]b| or if the variance of the noise increases so fast,

that the random walk effect in (1) becomes predominating. Therefore, some conditions
must be imposed that assure (ii) and hence rule out such cases, In e.g. Blum (1956)
and Aizerman et al (1970) such criteria are based on functions that can be under—
stood as Lyapunov functions for (3%). Another approach, which is studied in e.g.
Albert and Gardner (1967) and Ljung (1974a), is to consider algorithms where the
estimates are projected into a bounded area.

From gﬁractical point of view, the question of boundedness can be considered as
uninteresting if the area Do can be taken as any bounded area. No implementation

of (1) will allow that xn tends to infinity. A simpleminded approach to solve the
problem is to restart the algorithm in the origin,say, if (xh\ becomes unrealisti-
cally large. say P%J)C' If the trajectory of the ODE (Ff) from the origin to x* does
not pass the arealxh]ZC , then this solution assures that the boundedness condi-

tion is satisfied.

The noise condition (i) is a pureiy stochastic criterion, which can, assuming the

expectation exists, be rewritten

hn 50 as n — o with probability one (6)
and
. 0 = 0. 0
7YY — 7
l'1’2;m§.E Qn(b '(fn+1(b')) £(b) 0
where
= - h ’ h = )
hn+1 hn * ¥ ne1 ( “n n) ! 0 0 (@
with
0 - 0 0 -— 0
vo=Q (b, P (b)) - EQUb, p (b)),
n-1
The variable hn thus defined is a weighted sum of random variables ev%kl with

zero mean values Convergence of such sums is relatively easy to treat, and a varia-
ty of results in the present case are given in [11] and [12]. Here two results will

be quoted

(a) 1f ah=1/n: (wh¥ch easily extends to the common case Xn: an/n = }ig a_ = A) a

| & vT v ,_4_ C(np-i- nf Y/(1 + fn - m!i) s 052ﬁ<-(<1
n m j )

then (6) holds.



This is an ergodicity result due to Cramer and Leadbetter (1967) .
(b) If v can be represented on the form

=
v :Z g n Snok where ‘gk' nl<°Ln )\k ,],\kl and iek% is a sequence
K = L] 1

n [+]
> (9)
of independent random variables such that E lek| < C, andt’a[,ni
is a non-drecreasing sequence of scalars,
} . ] . . a -
ar:i if tlxnk is decreasing with 1im sup [1/Xn+1 l/b/n 1< and
p/2 ,Dp
2y Tl < e (10)

then (6) is satisfied.
This result is shown by estimating the moments of hn and applying Chebysjev 's

inequality and the Borel-Cantelli lemma., It is consequently possible to trade off

conditions on the sequence {Xnk against conditions on the moments of Qn.

4, Applications

Theorem 1 and the results discussed above can be combined into a variety of con-
vergence results. Suitable versions of the different conditions in theorem 1 can

be chosen for specific applications. Various applications in the field of parameter
estimation for dynamical systems and automatic control have been reported in e.g.
(37,021 and [13].

In this section the results will be applied to the Robbins-Monro scheme and the

Kiefer-Wolfowitz procddure, These algorithms are of the type

a1l T *n  * Xn-l-lQ(xn’end) 1)

which means that condition (4) takes the simple form

[o (x e ) - q (e < e ) |x - %] (12)

i, e, it means that Qn should be Lipschitz-continuous in x € D.

The Robbins-Monro scheme is designed to solve the equation

Ee Qlx.e) = f(x) =0



when observations Q(x,ék) are available for each x. The conditions on the noise
Q(x.ek) - F(x%)

and on the gain sequence ib’nk for convergence with probability one are then weaker
according - to theorem 1 and result (b) than reported in e.g. Blum (1954). The noise
sequence may very well be dependent as long as it can be represented as in (9). If

the p:th moment of the noise exists it is required that
bgd
2
igp/ & oo
n

' Y

which is satisfied e.g, for Kn =Cn 2/p<d € 1 . The condition usually
given allows just 1/2<o £ 1, Notice that slowly decreasing sequences{lfn% are of
interest in practice to achieve fast convergence of the estimate sequence,

On the other hand, more regularity of the function Q with respect to x is required

in order to apply theorem 1 than in Blum (19°4),

The same result holds for the Kiefer=Wolfowitz procedure: :Consider the problem to
minimize a function P(x) (assumed to be three times differentiable and such that

P(x) - sup P as [x{-—se)when only noise corrupted measurements are available :

J(x.v) =P+ v
n n

where {Vn§ is a sequence of random variables with zero mean values and uniformly
bounded 2p moments and such that it can be represented as in (6). The Kiefer-

Wolfowitz procedure , [7], (See also Kushner (1974)) gives

v ,oa)
m+m’ T n

*ne1 T % Xn+1 AJ(xn’vmn"

d
where 4J is an approximation of I= P(xn) based on measurements J(xn + anui’vmnf-’i) .

iui\ being the unit vectors in Rm, Applying the corollary of theorem 1, theorem 2 and

result (b) for the noise, gives that with probability one xn tends either to a local
d

dax
infinity as n - o , provided

d
minimum point of P(x) ( P(x) =0 and az P(x) is positive (semi) definite) or to

o
Z [a’ /az Pe oo and a_ —0 as n — 0o (1°)
1 n n n

The conditions (13) are weaker than the ones usually given, Blum (19549:



"
< 00 ‘>:Z(K/a )Z.Loo and a_ -0 asn - %,
n XII ' ) n n n

o
1 a
!

and notice also that the results hold for dependent sequences {vni.

6. Conclusions

Recursive stochastic algorithms of a certain type have been considered in this paper,
The class of algorithms contains stochastic approximation-algorithms of the Robbins~
Monro and the Kiefer-Wolfowitz type, but it includes also other types of estimation
algorithms, It should, for example, be possible to treat algorithms for constrained
optimization problems, recently introduced by Kushner [9],I0] in the same framework.
Since the classical results for stochastic approximation algorithms are not applicable
in many practical cases, it is believed that there is a need for general results

valid for more complex approximation schemes. | i.::

A main idea in this paper has been to associate an Ordinary differential equation
to the convergence problem. This technique gives results on convergence with pro-
bability one that in some respects extend previocusly given results for stochastic
approximation algorithms and also have a wider applicability. It also gives a tool
for analysing the properties of the algorithms, since the ODE can be investigated
heuristically and numerically. The possibility of using theorem 2 to prove non-

convergence for specific schemes is of particular interest, cf {3].



Appendix

Proof of theorem 1

Introduce a denumerable subset of the set in which (i) holds,

D = 1" x(z)...-§ C D

which is dense in D.
Let 5y denote the sample space and denote the elements of - by w,

(1)

) converges w.p.1, i.e. for all W &n, .

(1)

Assumption (i) implies that zn(x

(1)

where has measure 1, Let
* A (1)
= 19 no,
|

where llA is the set of all realizations for which r  converges, and condition
(ii) holds Then also L)' has measure 1. In the rest of the proof only such rea-

lizations W are considered that belong to‘Ji?,

The basic idea of the proof is that the sequence of estimates ixn§ obtained from
algorithm (1) behaves like solutions of the ODE (5) asymptotically and locally,

This result is shown in the following lemma:

- S ~
Lemma A.1 : Let x€& Dd and W ED Let t¢ tO’ where to does not depend on x and® .
Define the sequence m(n,t) so that .
m(n,t)
Xl- -t as n— oo ,
k
k=n

Then, if xnﬁu) belongs to D,

Xm(n.t)(w) = xn(w) + tf(X) + Rl(t.n.w,x) + Rz(t’n’c"’x) (A.1)
where

lRl(t.n.w.;z)[ <tK [ x (@) - ;‘E' + A2
and

!Rz(t,n,w‘x)/—ao as n —aoé.



Proof of lemma A 1

10,

Consider the sequence {zn(;c'.w)§ defined in the theorem (boz;(‘).

Let n £ j(n,w) £ m(n,t) Then
L - ¥nw) . o _
Zj(n.w)(x'w) = zn(x.w) + ' Z ¥i {Qi_l(x. Yi(x)) - zi-l(x’w)t

M4y

Let now n tend to infinity. Since

Illl)mm Zj (n w)

it follows that

(x,w) = nl)i;n: zn(x,to) = (%)

j(n.w) o - 3w -
B ¥ GLE RN - @ 2y s RUGM ek ——
where R3(j(n)_,.n,u5'<) -0 asn —» >,
Analogously
m(nt)
lim a',w, 1(Q)) = r L , where r = 1im r (A.3)
n—so0 hn+li St < nsoe o
Consider now
)}(nlw)
%jenw) (@ = K@) nZ: Fi Qalx @ p NI =
+1

Fnw ¥nw)
= x W + ZEiQi.(x, ﬁoi(x)) + rgl_ Ki {Qi—l[xi—l(w)’ Yi(X('))] - Qi_l(x,yi(x))t

bl (A.4)

The first sum of the RHS of (A.4) can be approximated using (A.2), To approximate

the second sum, use condition (4) with N= i - n :

max
nejei

Ay I35, @, P GONT = 4 (R, §,G)| & wi_l_«»)l |, - 3|+ ati-m

0
(Assume for the moment that X n¢<i¢ j(n,w) belong to D, This assumption is

removed below,)



11,

Hence
niw) |
X4 {01_1 [Xi_1 (w), Pi(x('))] = Qi_l(l-c, ?i(i))§ <
n+i
M(ﬂ,"’) M(nl‘l) :
< max { xi(w) - ?cl Z_Kiwi—l (%) I Z Xiwi_lq(i-n) <
Nn<i<} N+ | N+
< max (X.(‘») - -}El {r t + R4(‘t,n,w)j' +'Re'(‘;t‘,n,w). £
neiem(n,t) N . .
¢ [ max :,:xi(w) - xn(w), + lxn((») - ?{‘1 [ rct + R4(t,n,l.o)] +R8,(t;n,w) (A.5)

v ngigm

where R4(t,n,(u) — 0 as n 35 according to (A.3) and ’R&,(t',n-,w) -0 askhn = ®as N s
since ¢g(N) -0 as N s .

Assume that

max xi((.o) - xn(fo)‘ = 8(n,t,w)
ngi<m(n,t)

is attained for i = j*(n,bo). Then taking j = j* and inserting (A.5) and/(A.2) in
(A.4) for this j gives

S(n,t,w) [ 1 - r t - R4(t,n.w)]$ |f(>‘<)[ t + Rs(j(n),n,m,?() + ]x - xn((u)} [rct+R4‘(]f+LR8\

For sufficiently small t, t<t0, and sufficiently large n, rct + R4(t,n,l~) < 1/2 and

since xn(w) and X €D we have
lxn(t.u) - X '( C1

Hence

S(n,tw) € 2[ J£()] + rclt+ R(3(n),n,0,%) + O R, + Ry = Cyt + R(j(n),n,wD

where R5(j(n),n)u,)3'<) -0 as n soe,

Now choose j(nw) = m(n,t) in (A.4) which gives, using (A.2) and (A.5),
- . -— - pucs

[%uen. 9 @ — % () - t2()| ¢ Ry(t,nw3 + lf(x?'[ );2& - t] +

+é-{czt + R(t.n w3 + [x - xn(m)]Hrct + R4(t,n,w)} - C rctz + r t|x - Xn(l'u)l +

5 2

+R2(t,n,m,?c)
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where Rz(t.n,w.i) -0 asn - o

It remains now only to remove the assumption xiE;DO , nfigcm(n,t). If this as-
sumption does not hold, let i = E(HJO) be the first time xi¢ DO, Then apply the
results above to j(n,w) = H(nxo) . which gives

- x |4c,t + R where R, -0 as n — o,
n'> "4 6

lxf(n,w) 6

For sufficiently small t,this-contradicts the definition of 3 .

It follows from the converse stability theorem ( see Krasovskij(1963) ) that

assumption (iii) implies the existence of a function V(x) with properties

V(x) is infinitely differentiable

0<V(0)$1 < x €D and V(x) = 0 & x = x™

%; Vix) = V'(x)f(x) is negative definite in D1

Consider from now on a fixed realization hiéifﬁ All variables below depend on

W ,but this argument will be suppressed. From condition (1i1) there exists at
least one cluster point % to the sequence ﬂxkk in D. Hence there is a subsequen-

ce {xnki that tends to ¥ as k —eo. Since Dd is dense in D, there is for arbitrary

€30 an: element X = x(%X,€) € D such that | - ¥|<e/2.

d
Consider now
vlx 1 - vlx 1
m(nk‘t) n,
where m is defined as in Lemma A 1, Denote n = x' and m(nk,t) = X" , and use the

mean value theorem. This gives

b, - =T e
Vio) = V(x,) = v’(;k) (e = X)) = V(D (gamx,) * (0 -0V ‘f;{""k"‘xk" (A.6)

kl
where
/
Py =ma AT VDR I P VA —txk') i 058,61
Now apply Lemma A.1 to x ,~% , which gives

k k
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o - X, =t E(R) 4 Rl(t‘nk.i) + Ry(t.n, %)

Insert this in (A,7):

V(x ) = V(x,) = tvI(R) £(%) + R (t,n %)

where

R (t,n %) = (gk—'x)Tv"(j’;xxk,.—xk,) t VI@®[R (t,n,9 + Ry(t,n ,B)]

Now suppose that the cluster point Q is different from the desired convergence

point x¥*, Then V(X)) f£(%) = -§ , 8>0, By choosing €,t and K properly, it follows:
that

V(%) - t&/2 k? K .7
V[xm(nk.'t)J < V(%) / (A.7)

Lemma A 2 Suppose (A.7) holds for any subsequence {xnk§ that converges to a

point different from =  Then
lim inf V(xn) =0 : i.e, x*®is a cluster point (A&
N0

Proof : Consider inf V(x) taken over all cluster points in D Let this value be U.

A
Since the set of cluster points in D is compact, there exists a cluster point x,
ot
such that V(X ) = U. If now U>0 . V'(%)f(%) will be strictly negative (==J ) and
from (A.7) V(xk) takes a value less than U - Jt/2 infinitely often, which con=

® is a cluster point,

tradicts U> 0 being the infimum., Hence U = 0, which means that x
To conclude the proof of the theorem it now remains only to prove the following 1emma:

Lemma A,3. From (A.7) and (A.®) it follows that

=0 i *

1lim sup V(x , i.e. x” is the only cluster point and xk —)X*'as n — e,

)
N> n

Proof: If xneD the difference

| = ) {
lxn*'l B Xn' :l xn+1 Qn[xn' ?n+1(x('))],£Xn+l‘Qn(xX' Pnﬂ("*))“ n+1‘.'Vn{lxn—x*l+Q(1)( <

¢ 2y 8 = 2 GO ] gl GOl e s a b i - ] e
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tends to zero as n increases, since zn(x*) and r, converge, Suppose that

lim sup V(xn) =A >0

n—soe

Consider the interval I = [A/3, 2A/31. (If A>1 take I = (1/3, 2/3].) This
interval i¢ then crossed "upwards" and "downwards" infinitely many times. Since
the step size xn+1 - xn tends to zero when X €D , there will be a subsequence
of V(xn) that belongs to I. Consider now such a special convergent sequence of

"upcrossings"; Let {xnks be defined as follows:

V(x , _4) L A/3 V(xnl )2 A/3 vix_, ;) 7 2A/3
K k k¥ %k

where ) is the first s for which V(xnk+ s) f I. Let Xnf, =X as k —»e* Clearly

V(%) = A/3 Now, from (A.7),.

V(x ) L A/3 - St/2

m(nL.t)

4

This means that V(Xnk+sk) $ I where s, = m(nL.t) - n .. But, if t is sufficiently

k
small, no s, smaller than s, can have made V(Xnk%s) > 2A/3 , according to Lemma A.1
and the continuity of V. This contradicts the definition of the subsequence né, |

Hence no interval 1 can exist., A must be zero and the lemma follows.

B

Proof of Theorem 2

The assertion f(x*)=0 follows directly from Lemma A.1. To show the second assertion,

consider first the special case

where A is a m|m matrix and {enf is a sequence of random variables with zero mean
values. Suppose that A has an eigenvalue A with Red 20 , and let L be a cor—
responding 1left eigenvector. Let Tn = an, and en =%Len . The condition on Var Qn

implies that Tn is not identically zero. Then algorithm (1) can be written

= 7T - T €
Thal = Uh+1( A 0t n+1)

and
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Tory
where k
N+mn nim
T o= (1+ ) ~ ( ) d = (1+ ')—1
Fn,m H l&k exp }‘n[“&: s Bk 6 k H XKJ .

oot

Since T and the sum of “random variables is not completely correlated (according

to (i)) and I
n.,m

*

tends to infinity as m increases, it follows'that T will, with

. k
probability one, not tend to zero as k tends to infinity. Hence X, will not con-

verge to 0 (=x®) with non zero probability.

The general case is proven by linearization around x* , and the additional terns are =
taken care of using (4). Like in the proof of theorem 1, this leads to several

technicalities, and the calculations are therefore omitted,

a



16,

References

(11 Aizerman,M A , Braverman,E.M. and Rozonoer,L.I. (1970). Metod potentsial-
nych funktsij v teorii obuchenija mashin (The Method of Potential Functions

in the Theory of Machine Learning). Izd. Nauka, Moscow (In Russian).

ra21 Albert A E and Gardner,L.A. (1967). Stochastic Approximation and Nonlinear

Regression. Research Monograph 42, The MIT press, Cambridge, Mass,

(31 &strém.K.J .Borisson,U.,Ljung,L. and Wittenmark,B. (1975). Theory and app-
lications of adaptive regulators based on recursive parameter estimation.

Preprints of the 5th IFAC World Congress, Boston,

[41 Blum,J. (1954). Multidimensional stochastic approximation methods, Ann., Math,
Statist. 25, 737-744,

[5] Burkholder, D.L, (1956). On a class of stochastic approximation procedures,.

Ann. Math Statist., 27 1044-10F9

[61 Dvoretzky, A (1956). On stochastic approximation. Proc. Third Berkeley

Symp Math Statist. Prob, 1 79-FF,

[71 Kiefer,J. and Wolfowitz,J (1952), Stochastic estimation of the maximum of

a regression function, Ann,Math, Statist., 27 462-466,

(8] Krasovskij. N N. (1963). Stability of motion. Stanford University Press,

Stanford,Calif.

f9] Kushner,H.J, (1974). Stochastic approximation algorithms for constrained

optimization problems. To appear Ann. Statist.

[10] Kushner,H.J. and Gavin, T. (1974). Stochastic approximation type methods
for constrained systems: Algorithms and numerical results, IEEE Trans,

Aut., Control AC-19 No 4 349-35%,

[111] Ljung.I, (1974a). Convergence of recursive stochastic algorithms. Report 7403,

Division of Automatic Control, Lund Institute of Technology,Lund, Sweden.

[121 Ljung,L. (1974b). Convergence of recursive stochastic algorithms., Preprints

of the IFAC Symp. on Stochastic Control in Budapest.




(131

[14]

BEY

17,

Ljung,L., Soderstrdm,T. and Gustavsson,I. (1974). Counterexamples to

general convergence of a commonly used recursive identification method,
Submitted to IEEE Trans. Aut., Control.
Robbins .H

and Monro,S. (1951). A stochastic approximation method. Ann Math.
Statist.22 400-407.

Wasan,M,T, (1969). Stochastic approximation., Cambridge, University Press.




