LUND UNIVERSITY

LISP -- A One-Week Course

Arzén, Karl-Erik

1986

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Arzén, K.-E. (1986). LISP -- A One-Week Course. (Technical Reports TFRT-7310). Department of Automatic
Control, Lund Institute of Technology (LTH).

Total number of authors:
1

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.

* You may not further distribute the material or use it for any profit-making activity or commercial gain

* You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00


https://portal.research.lu.se/en/publications/4fd89758-4cc2-440a-a9a4-4b33140ea80b

CODEN: LUTFD2/(TFRT-7310),/1-144/(1986)

LISP - a one-week course

Karl-Erik Arzén

Department of Automatic Control
Lund Institute of Technology
January 1986



Department of Automatic Control
Lund Institute of Technology

P.O. Box 118
$-221 00 Lund Sweden

Document name

INTERNAL REPORT

Date of issue
January 1986

Docuntent Number
CODEN: LUTFD2/(TFRT-7310)/1-144/(1986)

Author(s)
Karl-Erik Arzén

Supezvisor

Sponsoring organisation

Title and subtitle
LISP — a one-week course.

Abstract

This report contains the material handed out during a one week course in Lisp given at the Depart-
ment of Automatic Control Dec. 19th 1985 — Jan. 10th 1986.

The material consists of copies of the viewgraphs, exercises with solutions and project suggestions.
The course has been hold as close to Common Lisp as possible with some minor Franz Lisp extensions.

Key words

Classification system and/or index terms (if any)

Supplementary bibliographical information

Security classification

ISSN and key title ISBN
Language Number of pages Recipient’s notes
English 144

The report may be ordered from the Department of Automatic Control or borrowed through the University Library 2, Box 1010,

S-221 03 Lund, Sweden, Telex: 33248 lubbis lund.




CONTENTS

1. INTRODUCTION

2. ENVIRONMENT

3. FUNCTION DEFINITIONS

4. DATA ABSTRACTION

5. MACROS

6. OBJECT-ORIENTED PROGRAMMING

7. SCHEME

EXERCISES

PROJECT SUGGESTIONS

SOLUTIONS



LISP

5.0 1977 United Feature Syndicate, Inc

T
"

C3C3 L1
1 A R

atiwis oy

I'M PRACTICING MY
BRACKETS..

DID YOU KNOW THAT
BRACKETS ARE ALWAYS

UP TO NO GOOD!

[F YOU EVER SEE A
BRACKET BY ITSELF
YOU CAN BE SURE IT'5

© 1977 United Feature Syndicate. Inc




1. INTRODUCTION

Motivation

Interpretation and evaluation

List functions

Predicates

Function definitions

Conditionals

Recursion



LISP

LISt Programming

The most used language for symbolic processing.

Computing with representations of information inside
a computer that are closer to the way a programmer,
or the person specifying the problem, thinks about the
problem than those representations used in Fortran-

style ”computing with numbers”.



Why Lisp?

The interaction argument. Oriented toward pro-
gramming at a terminal with rapid response.

The environment argument. Sophisticated com-
puting environment makes it possible to write big,
complicated programs.

The features argument. Lisp was designed for
symbol processing and has been developed in that
direction.

The uniformity argument. Lisp procedures and
Lisp data have the same form.



Myths

Lisp is slow at arithmetics.
Lisp is slow.
Lisp programs are big.

Lisp is hard to read and debug because of all the
parentheses.

Lisp is hard to learn.



The interpreter

The interpreter works in a read-eval-print loop.
->(+ 8 3)

11

->(max 2 4 3)
4

Lisp evaluates everything.

->8
8

Expressions always return a value.



Basic data objects

Expression

/N

Atom List
Number Symbol
Integer Floating-poiut

S-expression: Symbolic expression as opposed to Meta
expressions used by John McCarty.

Form: An expression is called a form if it is meant to
be evaluated. If it is a list, the first element generally is
the name of a procedure that is used in the evaluation

process.



Binding

Atoms play the role of variables.

Binding is another name for assigning a value. The
functions is called setq.

->(setq x 5)
5

->x

5

->(plus x 8)
13

_>y

Error: Unbound variable: y
<1>:

<1>: (reset)
->

When an atom is bound to a value with setq this
value is returned as the value of setq. As a side-effect
the atom is bound to the value.

Reset is used to return to the top-level from an error.
Using Ctrl-D or Ctrl-Z is equivalent.



Quoting

Evaluation can be stopped by quoting.

->(setq x 5)

5

->%

b

->’'x

X

->(setq y '(a b c))
(abc)

'x is syntactic sugar for (quote x).

Lisp distinguishes between the name of an atom and
its value.



Evaluation

Yes Yes
Is S an atom? —><Is S a number? >—>< Return the number.

No
\
Return value of S.
No
Y
Is QUOTE the first \Yes Return second
element of S? | element of S.
No
\
Is the first element Do not evaluate
of S a name indicating \Yes the arguments—
that special handling treat as a
is needed? special case

- ;

Use EVAL on all of the
elements of S other
than the first.

\ 4

Apply first element of
S. a procedure. to the
resulting values and
return the new value
computed.

:

Special forms are treated specially by the evaluator.
An example is setq



Eval can be used explicitly. It then causes an extra
evaluation.

->(setq a 'b)
b

->(setg b ’c)
c

->(eval a)

c



Arithmetics

Always prefix notation.

Add, plus, sum, 4 returns the sum of the argu-
ments. + takes only fixnums.

Diff, difference, - subtracts from the first argument
all subsequent arguments. - for fixnums.

Times, product, * returns the product of all the
arguments. * for fixnums.

Quotient, / divides the first argument by succeeding
ones.

Sin, cos, asin, atan, abs, expt, log, max, sqrt ...

Very large numbers possible.



Taking lists apart

Car returns the first element of a list.

->(car '(a b ¢))
a

->(car ’"((a b)))
(a b)

Cdr returns the list with its first element missing.

->(cdr *(a b ¢))
(b ¢)

Car and cdr are non-destructive.

->(setq x '(a b ¢))
(a b c)

->(cdr x)

(b c)

->x

(a b c)

The names come from the original IBM 704 imple-
mentation: Contents of address or decrement register.



Car and cdr can be composed.

(car (cdr x)) = (cadr x)
(cdr (car x)) = (cdar x)
(car (car x)) = (caar x)

->(cadr '((abc) (de £)))
(d e f)

->(cadadr ((a bc) (de £)))
e



List construction

Cons adds a new element to the front of a list. It is
the inverse of car and cdr.

->(cons ’'a (b c))

(a b c)

->(setq x ’(a b ¢c))

(a b c)

->(cons (car x) (cdr x))
(a b c)

Append takes any number of lists and creates a new
list by sticking them together.

List makes a list out of its arguments.

->(append ’'(a b) ’(c d) (e £))
(abcde f)

->(1list '(a b) ’(c d) ’e)

((a b) (c d) e)



List functions

Length returns the length of a list.
Reverse turns the top-level of a list around.

->(length (append (1 2) ’(3 4)))
4

->(reverse '(a b c))

(c b a)

Subst substitutes all occurences of an atom in a list
for a new expression.

Last returns a list that contains the last element of
the list given as argument.

->(subst ’a 'b ‘(a b (b c)))
(a a (a c))

->(last '(a b c))

(c)



Predicates

A predicate is a functions that returns either t or nil.
Everything that is not nil is considered to be true. The
empty list is denoted (). It is treated the same way as
nil.

Type predicates

In conventionnal programming langauages types are
associated with variables and the type checking is per-
formed during compile time. In Lisp, types are asso-
ciated with Lisp data objects and the type checking is
performed during run-time.

Atom returns t if the argument is an atom.
Listp returns t if the argument is a list.

->(atom 'a)

t

->(atom 3)

t

->(1listp 'a)

nil

->(listp '(a b ¢))



t
->(atom nil)
t
->(listp nil)
t



Equal tests if two expressions look alike.
Null returns t if its argument evaluates to t.

->(equal ’a 'b)

nil

->(setq a b5)

5

->(equal a b)
t

->(null *Q))

t

Member tests if the first argument is a member of
the top-level of the second. If so it returns the list
beginning with this argument.

->(member 'b '(a b c))

(b c)

->(member ’(a b) ’(a b ¢))
nil

->(member 'y '(x (y) 2z))
nil

Numberp, zerop, evenp, oddp, greaterp, lessp,
minusp do what you would expect.



Defining functions

Procedure abstraction is the process of constructing
new procedures by combining existing ones.

(defun <procedure name>
(<parameter 1> ... <parameter n>)
<procedure body>)

-> (defun cube (x)
(times x x x))

cube
-> (cube 2)
8

The evaluation of (cube 2) starts with the evalua-
tion of the argument 2. Then the formal parameters
are bound to the value of the corresponding actual pa-
rameters. Next, Lisp evaluates each form in the proce-
dure body and returns the value of the last. Also, the
previous values of the formal parameters are restored.



A normal Lisp function is called by value. Call by ref-
erence is impossible. All output values from a function
are returned as the result of the function. It is impos-
sible to return results through the arguments.



Conditionals

The standard conditional function in Lisp is the cond.
The syntax looks like

(cond
(<test 1> ... <result 1>)
(<test 2> ... <result 2>)
(<test n> ... <result n>))

The arguments to are called cond-clauses. Each
cond-clause consists of a series of expressions. The
first of the expressions is treated as a test and the rest
is the things to do if the test is t. Lisp returns the
value of the last expression in the first cond-clause
which test is t. If no successful clause is found cond

returns nil.



(cond ((null 1) ’empty)
(t 'not-empty))

(cond (1 ’'not-empty)
(t ’empty)

-> (defun enter (e 1)
(cond ((member e 1) 1)
(t (cons e 1))))

If does also exist. This is expanded to a cond.

(if a then b ¢
elseif 4 then e £
elseif g thenret
else h i)



Logical operators

Not returns t if its argument evaluates to nil. The
same as null.

And takes any number of arguments, which are evalu-
ated one after each other. The evaluation goes on until
some argument evaluates to nil in which case and re-
turns nil. If it reaches the end without any nil then
and returns the value of its last argument which is
guaranteed non-nil.

Or works similarly. It stops before the end only if some
argument evaluates to true. If any does, or returns the
value of that argument; otherwise it returns nil.

Cond can be used instead of both and and or. The
code, however becomes difficult to read.



Recursion

Lisp is built around recursion.
Example: Factorial

->(defun factorial (n)
(cond ((equal n 0) 1)
(t (times n (factorial (subi n))))))

Algorithmically this is called a linearly recursive pro-
cess.

->(defun factorial (n)
(fact-iter 1 1 n))

->(defun fact-iter (product counter max-count)
(cond ((greaterp counter max-count) product)
(t (fact-iter (times counter product)
(add1l counter)
maxcount))))

Algorithmically this is not a recursion. It is an iterative
process. It is also called tail recursion. Some Lisp
interpreters and most Lisp compilers detect this and
do not generate new stack entries.



Tree recursion

Example: Fibonacci.

->(defun fib (n)
(cond ((equal n 0) 0)
((equal n 1) 1)
(t (plus (£ib (- n 1))
(fib (- n 2))))))

Much redundant computation.

->(defun f£fib (n)
(fib-iter 1 0 n))

->(defun fib-iter (a b count)
(cond ((equal O count) b)
(t (fib-iter (+ a b)
a
(subi count)))))



List Recursion

The most common form of recursion in Lisp.

Example: Increment all the elements in a list with 1.

->(defun increment (list)
(cond ((null l1list) nil)
(t (cons (addl (car list))
(increment (cdr list))))))

Example: Member

->(defun member (e 1)
(cond ((null 1) nil)
((equal e (car 1)) 1)
(t (member e (cdr 1)))))



2. ENVIRONMENT

e Loading files

e [Editing and Emacs

e Debugging



Using Franz Lisp

Do the following definitions in your login.com.

$ lisp:== $eun_root: [usr.ucbllisp /usr/ucb/lisp
$ emacs:== @scr:[karlerik.slask.anders.newemacs]emacs

Lisp is started by typing $ lisp.

Lisp starts with loading the file lisprc.l from your
home directory. This file allows you to set up your
own defaults, read in files etc. This file should contain
the following forms.

(icad ’dcl)
(load ’'functions)

These files contains some utility functions and they are
loaded from the lisp library directory, /usr/lib/lisp.
Load is the standard way to load in files into Lisp.
It first searches for the file in the current directory
and then in /usr/lib/lisp. When no file extension is
given it first searches for .o files and then for .1 files.
Compiled lisp files have the extension .o.



Utility Functions

Functions returns a list of user defined, non-compiled
Lisp functions.

Dcl makes it possible to do most DCL commands
from inside Lisp. Another possibility is to do Ctarl-
Y, spawn, your own command, logout and continue.

Peve calls the Peve editor with the given filename.
The file is loaded when Peve 1s left. This function does
not evaluate its argument.

Emacs the same but with Emacs.

->(dcl ’'print ’testil.l)

->(emacs test1.1)



Editing

It is a good habit to use a screen-oriented text editor
when you write your programs. The other possibility is
to enter your functions from the top-level, edit them
with Lisp’s expression-oriented structure editor and
to write them out with the pp (pretty-print) function.
The editor is however very difficult to use and I don’t
recommend it.

The parenthesis may feel disturbing. Some rules to
follow are.

e More than 8-9 parenthesis in a row means
that you have’nt structured your program
enough.

e Indentation.
e Use Emacs.

e Super-parenthesis.



EMACS

Emacs is a very powerful, extensible display editor.
It provides features like several windows and buffers,
user programmable keyboard and structure editing
facilities. When Emacs is entered with a .l file it is
automatically changing to Lisp-mode. Emacs is always
in insert char mode.

Start by copying use:|[karlerik]emacsinit.pro to your
home directory.

Necessary commands.

The arrow keys work.

“L Redisplay screen

“X-"F Write out files and exit

LF Indented Return

DEL Delete left char

“A Move to beginning of line

“E Move to end of line

“K Delete rest of line (°Y gets it back)
“Space Set the mark

W Delete region between mark and cursor
Y Yanks it pack at the cursor

“X-"X Interchange cursor and mark
°s Incremental search



Unix Emacs Referencse Canrd

SOME NECESSARY MOTATION

Any ordinavy character goes

into +the huffer (N insert
command needadl . Coama ncd s
are all caontrol characters
ar other ocharacters
prefixad by Escapa or a
control-X. Escape is some-
times callead Meta or
Altmode in EMACH.

P A control oharacter. M
means "cantrol FY.

ESC- A two-character command
gseguence where the fFfirst
character is Escape. EBC-F
means "ESCARE then F".

ESC~X string £ command  desige
nated by hand". ML x
read-fila'  mesanss Ly e
"Escape'"s  then "x"s  then
"read-File"s then {or.

dot EMACS e rm e CuPrGor
pogsition in cuyvrent butfer.

manrk A invisible s=set position
in T he buFfar wused by
regiaon commands .

regian  The area ot  the buffer
between Lhe dot and mark.

CHARACTER ORPERATIONS

MR Move left (Back?

N Move right (Fovrward?

P Move up (Previous)

TN Move down (Nexb)

D Delete right

MH or BS or DEL ov RUBDUT
Delate laft

T Transposes previous =
characters Cht. - th.)

) Literally inserts (guotas)
the next character btyped
te.g. PO—-TL3

DU Provide a numeric argument
of n tao the cowmand that
follows (n defaults to 4y
@g. Lvry PMU-TN and P-BL-bFD

M or CR newline

T or N newline followed by an
indent

WORD OPERATIONS

ESHC—h Move left (Back?

EQC~f Move right C(Forward?

ESC—-d
ESC-h
ESC-e
ESC—1
ESC—u
ESC—h

Delete word right
Deletse word left
Capitalize word
l.owercase word
Upparcase word
Invert case of word

LINE OPERATIONS

A

PE
+0
M

Move to the beginning of
the line

Move to the end of the line
Open up a line for typing
Kill from dot to end of
line MY vanks it back at
dot?

PARAGRAPH OPERATIONS

ESC-L FMove to beginning of the
paragraph

E8S-1 Move to end of the
paragraph

EBC- Justify the current
pavagraph

GETTING QUT

PX-1E Save the file being worked
(ny

X0 Write +the current buffer
into a file with a dif-
farent name

PR Write out all modifiesd
files

PR Write out all wmodified
files and exit

I or ESC-1MC or AX-1C Finish by
@xiting to the shell

(- Recursively push (escape)
to a new shell

SCREEN AND SCREEN OPERATIONS

T~ Show next screen page

80V Show previous screen page

(3 Redisplay screen

™z Soraoll screen up

ESC-2Z Goroll screen down

gsC-! Move the lime dot is on to
top af the screen

EBC—1 Move cursor to beginning of
window

ESC—. Mowve cursor to end of
window

P2 Eplit the current window in
two windows (same buffer
shown in each?

(N Resuma single window tusing

current bufferd

7?9



100

$#¥X~-d Delete the currant windows
giving space to window
belaw

AX-n  Move cursor to next window

£X-p HMove cursor to previous

window

ESC-tVDisplay the next soreeb
page in the other window

AX=1Z Shrink windaow

P¥—=z Enlarge window

BUFFER AND FILE OPERATIUNMS

Y Yank back the last thing
killed ¢(kill and delete ave
different?

PX~PY Get a file into & buffer
faor editing

AX—PR Read a file into current
buffers erasing old ocon-
tents

pX-1I Insert file at dot

rX-10 Select a different buffer

(it must already exist)

Select a different bhuffenr

(it need not pre-exist)

MX~-PB Display a list of available
buffers

ESC-MYInsert
dot

ESC—< Move to the top of the

current buffer

Move to the end of thea

current buffer

HELP AND HELPER FURNCTIONS

+G Abort anything at any time.

ESC~-? Show every command contain-
ing string (try ESC-? parad

ESC-X infoBrowse through the

Emacs manual.

Undo the effects

vious commands.

SEARCH

U= Search forward

MR Bearch backward

REPLACE

EQC—r Replace one
another

ESC-g Query Replace:
with another

REGION OPERATIONS

+a) Set the mark

AX=1¥% Interchange dot and mark
(i.e. go to the other end

PX—-B
PufFfFar at

selected

ESC-)

AX1rU of pre-

st yring wWwith

ohne string

of the regian)
Kill region
bhack at dot

1Y vyanks it

MACRO OPERATIONS

W

P~
PX=D
Dl

Start remembering
keystrokes: ie.  start
defining a keyboard macro

Stop remembering
keystrokes, ie. end the
definition

Execute remembered

keystrokes,» ie. execute the
keyboard macro

COMPILING (MAKE? OPERATIONS.

PX~IE

XN
Y=
MATL

1|\ X -
PX—mn

Execute the "make" tor
other) commands saving out-
put in a buffer

Go to the next ervor in the
File

Execute the given commands
saving output in a buffer

Read wmail.
Send mail



Trace

(trace function) starts tracing of this function.

(untrace function) stops tracing of this function.

Step

(step t) starts stepping of the evaluation.
(step function) starts the stepping when this function
is evaluated.

<ret> Continue stepping
¢ Show returned value from this level
and continue upwards
g Turn off stepping but continue
evaluation
q Quit stepping



Break

When an error occurs the evaluation is stopped and
Lisp enters a break loop. Here all variables can be
inspected.

Lisp returns to top-level with (reset), Ctrl-Z or
Ctrl-D. The evaluation is instead continued if a value
is returned with (return value).

A break loop can also be entered by the command
(break).



Stack dumps

(showstack) prints the contents of the lisp evaluation
stack in reverse order. This can be useful while search-
ing for errors.

(baktrace) 1s a less verbose version of showstack.

(debug) can be used to enter the special Lisp debugger.
This can be used to inspect and manipulate the lisp
evaluation stack in different ways. Difficult.



3. FUNCTION DEFINITIONS

Functions as arguments

Anonymous functions

Argument keywords

Fexpr and Lexpr

Scoping

Functions as returned values

Iteration



Functions as arguments

Ex: Compute the sum of the integers between a and

b.

(defun sum-integers (a b)
(cond ((greaterp a b) 0)
(t (plus a (sum-integers (addi a) b)))))

Ex: Compute the sum of the cubes of the integers.

(defun sum-cubes (a b)
(cond ((greaterp a b) 0)
(t (plus (cube a)
(sum-cubes (addi a) b)))))

Instead

(defun sum-loop (term a next b)
(cond ((greaterp a b) 0)
(t (plus (term a)
(sum-loop term (next a) next b)))))

(defun sum-cubes (a b)
(sum-loop ’'cube a ’addi b))



In standard Lisp a symbol has both a value and a
function binding.

->(setq car ’'b)

5

->car

b

->(car ’(a b ¢))

a

->(setq func ’car)
car

->(func ’(a b ¢))
a

The functions binding of the first argument is used
when a function call is evaluated. If the first argument
is a symbol and has no functions binding then this
symbol is evaluated and the returned value is used.

(defun sum-loop (term a next b)
(cond ((greaterp a b) 0)
(t (plus (funcall term a)
(sum-loop term
(funcall next a)
next
b)))))



Apply takes two arguments, which are both evalu-
ated. The first should evaluate to a function, and the
second, to a list of arguments to that function.

Funcall works like apply except that it expects the
arguments to its functions to appear one after another
directly after the function argument.

->(apply ‘cons °'(a (b ¢ d)))
(abc d)
->(funcall °‘cons 'a ‘(b ¢ d))
(abc d)



Anonymous functions

Sometimes it is desirable to define functions that have
no name, e.g. when they are only used once.

This is done with lambda notation. The function is
defined with a lambda form. The cube example looks
like

(lambda (x) (times x x x)) The lambda form is equiv-
alent to a function.

->((lambda (x) (times x x x)) 3)
27

->(defun sum-cubes (a b)
(sum-loop °’(lambda (x) (times x x x)) a ’addl b))



Def

The Lisp interpreter always works with lambda forms
when it comes to function application. The def func-

tion for defining functions require the user to explicitly
specify a lambda form.

(def cube (lambda (x) (times x x x)))

(defun cube (x) (times x x x))



Argument keywords

Variable number of arguments
Ex: My-plus

(defun my-plus (&rest list)
(apply ’plus list))

Optional arguments
Ex: Power

(defun power (x &optional (y 2))
(expt x y))

The parameter following &optional will be bound
to the corresponding argument if one is supplied. If
&optional is followed by a list (name value) then
name is interpreted as the optional parameter and
value is the default value.

&aux can be used to declare local variables. The sym-
bol after &aux is treated as a local variable initial-
ized to nil. If a list (name expr) is given then name
is bound to expr.

The argument keywords can only be used with defun
(or defmacro).



Fexpr and Lexpr

For historical reasons.

A lezpr is a function that takes any number of ar-
guments and evaluates the arguments. The only for-
mal parameter is bound to the number of arguments
passed.

Ex: Print-no-of-arguments

(defun print-no-of-arguments n
(patom "Number of arguments: ")
(print n)

(terpr))

->(print-no-of-arguments 'a ‘b ‘c)
Number of arguments: 3
nil

(def print-no-of-arguments
(lexpr (n)
etc.

Arg is used to reference to the individual arguments.
It takes one argument that should evaluate to a num-
ber. (arg 2) returns the second argument.

Use &rest instead.



A fezpr is a function that takes any number or argu-
ments none of which is evaluated. Functions that do
not evaluate their arguments are sometimes useful at
top-level.

Ex: consq

(defun consq fexpr (1)
(cons (car 1) (cadr 1)))

->(consq a (b c d))
(abcd)

(def consq
(nlambda (1)
(cons (car 1) (cadr 1))))

Use macros instead.



Let

Defines local variables

(let ((<par 1> <val 1>)
(<par 2> <val 2>)

(<par n> <val n>))
<exp 1> .. <exp n>)

The parameters are bound to their to initial values
and the expressions in the let body are evaluated. The
parameters are bound in parallel. Lambda notation
can be used instead.

((lambda (parl .. parn)
expl .. expn) vall .. valn)

Let* is the same as let except that the binding is
sequential.



Scoping

A collection of bindings is called an environment. A
symbol’s value is found by looking in the appropriate
environment.

Dynamic scoping means that the values of free variable
are determined by the activation environment, the
environment in force when the procedure requiring

the free variable is called. Used in most interpreted
old Lisps.

Lezical scoping means that the values of free vari-
ables are determined by the definition environment,
the environment in force when the procedure requir-
ing the free variable was defined. Used in Common
Lisp, Scheme, compiled Franz Lisp and traditional lan-
guages.



Ex: Sum of powers. Dynamic scoping.

(defun sum-powers (a b n)
(sum-loop ’nth-power a 'addi b))

(defun nth-power (x)
(expt x n))

Ex: Lexical scoping.

(defun sum-powers (a b n)
(defun nth-power (x)
(expt x n))
(sum-loop ’‘nth-power a ‘addi °b))



Functions as returned values
In practice requires lexical scoping.

Common Lisp examples:

(defun compose (f g)
#' (lambda (x) (funcall f (funcall g x))))

->(funcall (compose #°'sqrt #'abs) -9.0)
3.0

(defun deriv (f dx)

#' (lambda (x)
(/ (- (funcall £ (+ x dx)) (funcall f x))

dx)))

->(funcall (deriv #°’cube 0.001) 5)
75.15



Iteration

Dealing with lists often calls for iteration.

Mapcar maps its first element which should evaluate
to a function over the elements of second argument.

->(mapcar ‘addl °(1 2 3 4))

(2 3 4656)

->(mapcar 'oddp ‘(1 2 3 4))

(t nil t nil)

->(mapcar ’'plus ‘(1 2 3 4) °'(10 20 30 40))
(11 22 33 44)

Ex: Sum-of-squares

(defun sum-of-squares (&rest list)
(apply ’plus
(mapcar ’'sqr list)))

Can be written with list recursion.



Example: Compute the number of atoms in a list
structure.

(defun count-atoms (list)
(cond ((null list) O)
((atom list) 1)
(t (apply ’'plus

(mapcar ’count-atoms

list)))))

->(count-atoms (1 2 (a b (c)) (3 4)))
7 ;



Do

Binds parameters and supports explicit iteration.

(do ((varl initvall repvall)
(var2 initval2 repval2)

(varn initvaln repvaln))
<termination-test>

expl ... expn)

Ex: Our-expt and our-reverse.

(defun our-expt (m n)
(do ((result 1)
(exponent n))
((zerop exponent) result)
(setq result (times m result))
(setq exponent (subl exponent))))

(defun our-reverse (list)
(do ((x list (cdr x))

(res nil (cons (car x) res)))
((null x) res)))



Prog

Old-fashioned do with goto and return. Should be
avoided. '

(prog (vari .. varn)
expl .. expn)

Ex: Our-expt

(defun our-expt (m n)
(prog (result exponent)

(setq result 1)
(setq exponent n)

loop
(cond ((zerop exponent)

(return result)))

(setq result (* m result))
(setq exponent (subl exponent))
(go loop)))



4. DATA ABSTRACTION

Association lists

Property lists

Data abstraction

Rational arithmetics example

Symbolic differentiation example

Read and Write



Association lists

An assoctation list is a list of sublists, in which the
first element of each sublist is a key.

->(setq brick-a ’'((color red)
(supported-by brick-b)
(is-a brick)))
((color red) (supported-by brick-b) (is-a brick))

Assoc is used to retrieve values.

->(assoc 'color brick-a)
(color red)

->(assoc ’'is-a brick-a)
(is-a brick)



Property lists

Symbols can have properties. To describe an object,
we need property names and property values. The
properties are stored on a property list associated with
each symbol.

Putprop is used to assign properties to symbols.
Get is used to access the stored values.

Plist returns the property list of a symbol.

->(putprop ’chair3 ’blue ’color)

blue

->(putprop ’chair3 ’john ’owner)
john

->(get ’'chair3 ’color)

blue

->(plist ’chair3)
(color blue owner john)



Ex: Database of information about books in the li-
brary. The global variable Library is used to hold
the list of all books we know about.

(defun add-book (bookref title author publisher)
(putprop bookref title 'title)
(putprop bookref author ’author)
(putprop bookref publisher ’'publisher)
(setq library (cons bookref library))
bookref)

->(setq library nil)
nil
->(add-book ’book1l
*(War and Peace)
*(Leo Tolstoy)
*(Press Int))
book1
->(add-book ’book2
*(Artificial Intelligence)
*(Patrick Winston)
* (Addison-Wesley))
book2
->(add-book ’'book3
*(Data structure techniques)
*(Tim Standish)
* (Addison-Wesley))
book3



(defun retrieve-by (property value)
(remove-if-not '(lambda (x)
(equal (get x property)
value))
library))

->(retrieve-by ’'author ’'(Leo Tolstoy))
(bookl)

->(retrive-by ’publisher (Addison Wesley))
(book2 book3)



Data Abstraction

Data abstraction enables us to isolate how a com-
pound data is used from the details of how it is con-
structed from more primitive data objects.

The interface between the abstract data objects and
the actual data representation is a set of procedures,
called constructors, selectors and mutators.
Constructors create abstract data objects.

Selectors access these data objects.

Mutators make changes to them.

Together they are called access procedures.



Ex: Arithmetic operators for rational numbers

Make-rat takes two integers n and d and returns
the rational number whose numerator is n and whose
denominator is d.

Numer takes a rational naumber and returns its
numerator.

Denom takes a rational number and returns its de-
nominator.

(defun +rat (x y)
(make-rat (+ (* (numer x) (denom y))
(* (denom x) (numer y)))
(* (denom x) (denom y))))

(defun -rat (x y)
(make-rat (- (* (numer x) (denom y))
(¥ (denom x) (numer y)))
(* (denom x) (denom y))))

(defun *rat (x y)
(make-rat (* (numer x) (numer y))
(* (denom x) (denom y))))

(defun /rat (x y)
(make-rat (* (numer x) (denom y))

(* (denom x) (numer y))))

(defun =rat (x y)



(equal (* (numer x) (denom y))
(* (numer y) (denom x))))

Rational numbers implemented as a list of two ele-
ments.

(defun make-rat (n d)
(list n 4d))

(defun numer (x) (car x))
(defun denom (x) (cadr x))

(defun print-rat (x)
(princ (numer x))

(princ u/n)
(princ (denom x))
(terpr))
->(setq one-half (make-rat 1 2))
(1 2)
->(print-rat one-half)
1/2
nil
->(setq one-third (make-rat 1 3))
(1 3)
->(print-rat (+rat one-third one-third))
6/9
nil

(defun make-rat (n 4d)
(let ((g (ged n 4d)))
(list (/ ng) (/ d g))))

(defun gcd (x y)



(cond ((zerop y) x)
(t (gcd y (remainder x y)))))

->(print-rat (+rat one-third one-third))
2/3
nil



Ex: Symbolic derivation.

(defun deriv (exp var)
(cond ((constant? exp var) O0)
((same-var? exp var) 1)
((sum? exp)
(make-sum (deriv (addend exp)
var)
(deriv (augend exp)
var)))
((product? exp)
(make-sum
(make-product
(multiplier exp)
(deriv (multiplicand exp)
var))
(make-product
(deriv (multiplier exp)
var)
(multiplicand exp))))
;; More rules

)

Expressions implemented as list structures.

(defun constant? (exp var)
(and (atom exp)
(not (equal exp var))))

(defun same-var? (exp var)
(and (atom exp)
(equal exp var)))



(defun sum? (exp)
(and (listp exp)
(equal (car exp) '+)))

(defun addend (exp) (cadr exp))
(defun augend (exp) (caddr exp))

(defun make-sum (addend augend)
(list '+ addend augend))

(defun product? (exp)
(and (listp exp)
(equal (car exp) '*)))

(defun multiplier (exp) (cadr exp))
(defun multiplicand (exp) (caddr exp))

(defun make-product (multiplier multiplicand)
(list ’'* multiplier multiplicand))

(setq expr '(+ (* a (* x x)) ;a*x*x + b*x + ¢
(+ (* b x)
c)))

->(deriv expr ’'x)
(+ (+ (*a (+ (* x1) (*1x))) ; 2a*x + b
(* 0 (* x x)))
(+ (+ (*b 1) (* 0 x))
0))



Add simplifications.

(defun constant? (exp var)
(or (and (atom exp)
(not (equal exp var)))
(and (listp exp)
(constant? (operand-1 exp) var)
(constant? (operand-2 exp) var))))

(defun operand-1 (exp) (cadr exp))
(defun operand-2 (exp) (caddr exp))

(defun make-sum (al a2)
(cond ((zerop al) a2)
((zerop a2) al)
((numberp al)
(cond ((numberp a2) (plus al a2))
(t (make-sum-1 al a2))))
((numberp a2) (make-sum-1 a2 a1))
(t (make-sum-1 al a2))))

(defun make-sum-1 (al a2)
(l1ist '+ al a2))

(defun make-product (al a2)

(cond ((zerop al) 0)
((zerop a2) 0)
((onep al) a2)
((onep a2) al)
((numberp al)
(cond ((numberp a2) (times al a2))

(t (make-product-1 al a2))))

((numberp a2) (make-product-1 a2 al))
(t (make-product-1 al a2))))

(defun make-product-1 (al a2)



(list '* al a2))

->(deriv expr °'x)
(+ (* a (+ x x)) b)
->(deriv expr ’'a)
(* x x)

->(deriv expr 'b)
X

->(deriv expr ’‘c)

1



Read and Write

Read is a function of no arguments that causes Lisp to
wait for a s-expression being typed in. This expression
is returned.

Print prints its argument on the terminal and returns
the value nil.

Terpr starts a new line.

The escape character \ allows the following character
to escape from its normal Lisp interpretation. This
means e.g. that parentheses can be used in symbol
names. If more than one escape character is needed
in a name it is possible to instead embed the name
in vertical bars, |. These are sometimes called symbol
delimaters.

Print prints out symbol names surrounded with ver-
tical bars when needed.

Patom or princ prints out symbol names without
vertical bars. Patom returns its argument and princ
returns t.



->'ab\ (cd

| ab(cd|

->'| ab(cd|

| ab(cdl

->(print "ab\(cd)

| ab(cd| nil

->(princ 'l a b c dl)
abcadt

More on I/O in section 3 in the Appendix.



5. MACROS

Macros

Read macros and Backquote

Internal representation

Strings

Arrays



Macros

Macros expands into a Lisp form which is then evalu-
ated.

Macros do not evaluate their arguments.

(defmacro demo-macro (par)
(patom par))

(defun demo-fun (par)
(patom par))

->(setq this ’value-of-this)
value-of-this

->(demo-macro this)
thisvalue-of-this
->(demo-fun this)
value-of-thisvalue-of-this

&rest, &optional and &aux are allowed.



Suppose you often use cond in the following way:

(cond (<test> <result if success>)
(t <result if failure>))

You might then want to define a function our-if that
behaves in this way.

(our-if <test> <result-if-success>
<result-if-failure>)

(defun our-if (test success failure)
(cond (test success)
(t failure)))

->(our-if (atom x) x (car x)) ;Bugged
(defmacro our-if (test success failure)
(list 'cond (list test success)

(list 't failure)))

->(macroexpand ’(our-if (atom x) x (car x)))
(cond ((atom x) x) (t (car x)))



Read Macros

Through read macros the user can designate special
characters to behave in unusual ways.

Suppose that the special character ’ did not exist.
We could then attach the following function to the
’ character.

(lambda () (list (quote quote) (read)))

Typing ’a would then result in (quote a). The ex-
pansion is performed during the read phase of the
read-eval-print loop.

The user can define new read macros.



Backquote

The backquote ‘ behaves in the same way as the
normal quote ’ except that any commas that appear
within the scope of the backquote have the effect of
unquoting the following expression.

->(setq variable ’example)

example
->'(This
(This is
->‘(This
(This is

is an variable)
an variable)

is an ,variable)
an example)

If an expression within the backquote is preceded by
,@ then the value of the expression is spliced into the
list rather than inserted into it.

->(setq a (1 2 3))

(1 2 3)

->‘(,a b ¢c)
((1 23)Dbc)
->‘(,0a b ¢)
(123D c¢)

->'*‘(,0a b c)
(append a *(b ¢))



The backquote is very useful in macro definitions.

(defmacro our-if (test success failure)
‘(cond (,test ,success) (t ,failure)))

(defmacro pop (stack)
‘ (progi
(car ,stack)
(setq ,stack (cdr ,stack))))

(defmacro push (element stack)
‘(setq ,stack (cons ,element ,stack)))

(defmacro my-load (file)
‘(load (quote ,file)))



Def for macros

Franz Lisp has two other ways to define a macro.

(defun our-if macro (arg)
‘(cond (,(cadr arg) ,(caddr arg))
(t ,(cadddr arg))))

(def our-if (macro (arg)
‘(cond (,(cadr arg) ,(caddr arg))
(t ,(cadddr arg)))))

The single formal parameter is bound to the entire
s-expression.



Dotted pairs

Lists are internally represented using dotted pairs.

A dotted pair or a cons cell is a data structure with
two entries; the car and the cdr pointer.

Lists are represented as binary trees of dotted pairs.

->(setq x '(a b ¢))
(abc)



->’(a . nil)

(a)

->(car ’(a . b))
a

->(cdr '(a . b))
b

->(cons ’a 'b)
(a . b)

The list construction functions you have seen before
they all create new cons cells.

Nconc behaves like append but alter the memory cell
contents.

->(setq x '(a b c))

(a b c)

->(setq y '(d e 1))

(d et)

->(setq z (append x y))
(abcdef)

->X

(abc)

->(setq w (nconc x y))
(abcdef)

->x

(abcdef)



Rplaca takes two arguments, the first of which must
be a list. It alters the list by replacing the car pointer
of its first cell by a pointer to the second argument.

Rplacd behaves like rplaca but manipulates instead
the cdr pointer.

->(setq x "(a b ¢))
(a b c)

->(rplaca x 1)

(1 bc)

->x

(1 boc)

->(rplacd x '(2 3))
(12 3)

_>x

(12 3)

Eq is used to test if two structures really are the same.
It returns t if the two arguments evaluate to the same
internal Lisp pointer.

->(setq y (cdr x))
(2 3)

->(equal (cdr x) y)
t

->(eq (cdr x) y)

t

->(setq z (2 3))



(2 3)
->(equal y 2z)
t

->(eq y 2)
nil

Garbage Collection

->(setq x (1 2 3))
(1 2 3)
->(setq x '(a b c))
(abc)

The unused cons cells must be returned to the free
storage list so they can be used again. They can not be
immediately returned because other structures may be
pointing to them. The garbage collection is performed

when the system runs out of space.

Typical garbage collectors work with a mark-sweep
algorithm. During the mark phase all used structures
are marked and during the sweep phase the unmarked
structures are returned.



Strings

A sequence of characters surrounded by double quotes.

Concat concatenates the values of its arguments into
a new atom name. It accepts both atoms and strings.

Explode returns the list of characters that print
would use to print the argument.

Get_pname returns the print name of an atom.

Substring returns a substring of a string.

->(concat ’'abc "xyz")

abcxyz

->(explode ’'abc)
(abc)
->(get_pname ’abc)
n abc n

->(substring "abcdefghij" 5)
"efghij"



6. OBJECT-ORIENTED PROGRAMMING

Complex arithmetics example

Data-directed programming

Message passing

Flavors



Ex: Complex Arithmetic

(defun +c (z1 22)
(make-rectangular
(plus (real-part z1) (real-part z2))
(plus (imag-part z1) (imag-part z2))))

(defun -c (z1 z2)
(make-rectangular
(diff (real-part zi) (real-part z2))
(diff (imag-part z1) (imag-part z2))))

(defun *c (z1 z2)
(make-polar
(times (magnitude z1) (magnitude z2))
(plus (angle z1) (angle z2))))

(defun /c (z1 z2)
(make-polar

(quotient (magnitude z1) (magnitude z2))
(diff (angle z1) (angle z2))))

Complex numbers can be represented in rectangular
or polar form.

(defun make-rectangular (x y) (list x y))
(defun real-part (z) (car z))
(defun imag-part (z) (cadr z))

(defun make-polar (r a)



(list (times r (cos a)) (times r (sin a))))

(defun magnitude (2z)
(sqrt (plus (square (car z)) (square (cadr z)))))

(defun angle (z)
(atan (cadr z) (car z)))

or

(defun make-rectangular (x y)
(1ist (sqrt (plus (square x) (square y)))
(atan y x)))

(defun real-part (z)
(times (car z) (cos (cadr z))))

(defun imag-part (z)
(times (car z) (sin (cadr z))))

(defun make-polar (r a) (list r a))
(defun magnitude (z) (car z))
(defun angle (z) (cadr z))

Both representations. A type rectangular or polar is
associated with each number.

(defun attach-type (type contents)
(cons type contents))

(defun type (datum)
(cond ((not (atom datum)) (car datum))
(t (error "Bad typed datum " datum))))

(defun contents (datum)
(cond ((not (atom datum)) (cdr datum))



(t (error "Bad typed datum " datum))))

(defun polar? (z)
(equal (type z) ’polar))

(defun rectangular? (z)
(equal (type z) ’'rectangular))

(defun make-rectangular (x y)
(attach-type ’'rectangular (list x y)))

(defun make-polar (r a)
(attach-type ’'polar (list r a)))

Now

(defun real-part (z)
(cond ((rectangular? z)
(real-part-rectangular (contents z)))
((polar? z)
(real-part-polar (contents z)))))

imag-part, magnitude, angle in the same way.

(defun real-part-rectangular (z) (car z))
(defun real-part-polar (z)
(times (car z) (cos (cadr z))))

imag-part, magnitude, angle divided in the same
way.



Data-directed programming

A weakness is that the generic interface procedures
real-part, imagpart ... must know all the differ-
ent complex number representations.

Two-dimensional table.

Represent the table explicitly.

(putprop ’'rectangular ’'real-part-rectangular
‘real-part)

(putprop ’rectangular ’imag-part-rectangular
*imag-part)

(putprop 'rectangular ’'magnitude-rectangular
'magnitude)

(putprop 'rectangular ’angle-rectangular
’angle)

(putprop ’'polar ’'real-part-polar ’real-part)

(putprop ’'polar ’imag-part-polar ’imag-part)

(putprop ‘polar ’'magnitude-polar ’magnitude)

(putprop ’'polar ’'angle-polar ’angle)

(defun operate (op obj)
(let ((procedure (get (type obj) op)))
(funcall procedure (contents obj))))

(defun real-part (obj)
(operate ’real-part obj))
(defun imag-part (obj)
(operate ’imag-part obj))
(defun magnitude (obj)
(operate ’'magnitude obj))
(defun angle (obj)



(operate ’angle obj))

Message Passing

In the traditional style of programming the operator-
type table was decomposed into rows, with each gene-
ric operator representing a row of the table. An alter-
native is to decompose the table into columns. Instead
of using ”intelligent operators” that dispatch on data
types we work with ”intelligent data objects” that dis-
patch on operator names.

Assume lexcial scoping. A data object, such as a
rectangular number, is represented as a procedure
that takes as input the required operation name and
performs the operation needed.

Make-rectangular could be written as

(defun make-rectangular (x y)
#' (lambda (message)
(cond ((equal message ’'real-part) x)
((equal message ’imag-part) y)
((equal message ’'magnitude)
(sqrt (plus (square x)
(square y))))
((equal message 'angle)



Data-directed programming

A weakness is that the generic interface procedures
real-part, imagpart ... must know all the differ-
ent complex number representations.

Two-dimensional table.

Represent the table explicitly.

(putprop ‘rectangular ’'real-part-rectangular
‘real-part)

(putprop ’rectangular ’'imag-part-rectangular
’imag-part)

(putprop ’'rectangular ’'magnitude-rectangular
‘magnitude)

(putprop ’'rectangular ’angle-rectangular
’angle)

(putprop ’polar ’real-part-polar ’'real-part)

(putprop ’polar ’imag-part-polar ’imag-part)

(putprop ’'polar ’'magnitude-polar ’magnitude)

(putprop ’'polar ’angle-polar ’angle)

(defun operate (op obj)
(let ((procedure (get (type obj) op)))
(funcall procedure (contents obj))))

(defun real-part (obj)
(operate ’'real-part obj))
(defun imag-part (obj)
(operate ’'imag-part obj))
(defun magnitude (obj)
(operate ’'magnitude obj))
(defun angle (obj)



(atan y x)))))

The corresponding operate procedure becomes very
simple.

(defun operate (op obj)
(funcall obj op))

The name message passing comes from the image that
a data object is an entity that receives the requested
operation name as a message. This is the programming
style used in Object-oriented programming which
we will return to later.

The complex package can easily be expanded to a
generic arithmetic that work on ordinary numbers,
rational numbers and complex numbers.

Ordinary numbers

(defun +number (x y)

(make-number (plus x y)))
(defun -number (x y)

(make-number (difference x y)))
(defun *number (x y)

(make-number (times x y)))
(defun /number (x y)

(make-number (quotient x y)))

(defun make-number (n)
(attach-type ’number n))



(putprop ’'number ’+number °add)
(putprop 'number °-number °’sub)
(putprop 'number ’*number ’'mul)
(putprop ’number ’/number ’div)

The actual generic operators are defined as follows:

(defun add (x y) (operate-2 ’add x y))
(defun sub (x y) (operate-2 ’sub x y))
(defun mul (x y) (operate-2 ’'mul x y))
(defun div (x y) (operate-2 'div x y))

The general procedure operate-2 dispatches to the
procedure that was installed in the table for the given
type and operator.

(defun operate-2 (op argl arg2)
(let ((t1 (type argl)))

(cond ((equal t1 (type arg2))

(let ((proc (get t1 op)))
(cond ((not (null proc))
(funcall proc (contents argl)
(contents arg2)))
(t (error "Undefined op")))))
(t (error "Operands not of same type")))))

Interfacing the complex number package.

(defun make-complex (z)
(attach-type ’complex z))

(defun +complex (z1 z2)
(make-complex (+c z1 22)))



(defun -complex (z1 z2)
(make-complex (-c z1 z2)))

(defun *complex (z1 z2)
(make-complex (*c zl1 z2)))

(defun /complex (z1 z2)
(make-complex (/c z1 z2)))

(putprop ‘complex ’'+complex ’add)
(putprop ’complex ’-complex ’sub)
(putprop °‘complex °'*complex ’'mul)
(putprop 'complex °/complex ’div)

The operators real-part, imag-part, magnitude
and angle are available only inside the complex num-
ber package. These can easily be exported so they can
be applied directly to objects of type complex.

(defun real-part-complex (z)
(make-number (real-part z)))

(defun imag-part-complex (z)
(make-number (imag-part z)))

(defun magnitude-complex (z)
(make-number (magnitude z)))

(defun angle-complex (2z)
(make-number (angle z)))

(putprop 'complex ’real-part-complex ’'real-part)
(putprop 'complex ’'imag-part-complex ’imag-part)
(putprop ’'complex ’'magnitude-complex ’'magnitude)
(putprop ’'complex ’angle-complex ’'angle)



Flavors

Object-oriented package on top of Lisp.

Versions for different Lisp dialects.

Object: an instance of a flavor. Consists os a local
state and some behavior.

Flavor: corresponds to the Simula, Smalltalk class
concept.

The objects communicates by sending messages to
each other that are taken care of by procedures called
methods.

This paradigm permits implementation of generic al-
gorithms. A set of messages (sometimes called a proto-
col) is defined that specifies what the external behav-
jor must be if an object is to implement the protocol.



The protocol does however not define the internal im-
plementation.

Supports multiple inheritance

Mixing flavors.

(load ’'flavors)



(defflavor flavor-name
(instance-variables)
(component-flavors)

options)

(defflavor moving-object
(x-position y-position
x-velocity y-velocity
mass)

0)

(defflavor ship
(name
(engine-power 100))
(moving-object))

(defflavor cargo-freighter
(capacity
deadweight)
0)

(defflavor tanker

O
(ship cargo-freighter))

Options to automatically generate methods for access-
ing and retrieving instance variables, define default
handlers for messages etc..



Instantiation.

(setq titanic (make-instance ’ship
*x-position 20
*y-position 45
*x-velocity O
'y-velocity 0))

Method definitions.

(defmethod (flavor [messagetypel messagename)
(arguments) body)

(defmethod (moving-object :speed) ()
(sqrt (plus (square x-velocity)
(square y-velocity))))

->(<- titanic ’:speed)
0

If the option gettable-instance-variables is given
then methods are automatically created for retrieving

the values of the instance variables.

If the option settable-instance-variables is given
then methods are created for setting the values of the

instance variables.



->(<- titanic ’'x-position)

20

->(<- titanic ’'set-x-position 30)
30



Inheritance

The instance variables of an object is the union of
all the variables of the components. If different com-
ponents have the same name of an instance variable
then all methods referring to this name will refer to
the same variable.

When a flavor is defined a list of all the components
are computed. This is done through a depth-first, left-
right tree traversation with elimination of duplets.
This list determines the order in which the system
searches for methods.

Message types:
e primary

e before

e after

e wrapper



Vanilla

All flavors contain the component Vanilla as a de-
fault.

Vanilla has methods for the following messages;
e pretty-print

e describe

e which-operations

e describe

o etc.



7. SCHEME

Introduction

Assignment and local state

Constraints example

Streams

Other Common Lisp features

Lisp history



SCHEME
Gerald Sussman and Guy Steele MIT

”The structure and interpretation of computer pro-
grams” Abelson and Sussman

Lexical scoping.

Full funarg capabilities i.e. possible to have functional
objects as returned values in a nice way.

No difference between the value and the function bind-
ing of a symbol.

->(define pi 3.14159)

pi

->(define radius 10)

radius

->(* pi (* radius radius))
314.159

->(car (1 2 3))

1

->car

<primitive-procedure 123456>
->((car (list cdr car)) '(1 2 3))
(2 3)



->(define (sum-of-squares x y)
(+ (square x) (square y)))
sum-of -squares

When a functional form is evaluated all the elements
of the list are evaluated including the first.

(define (sum-loop term a next b)
(if (> a b)
0
(+ (term a)
(sum-loop term (next a) next b))))

i.e. no funcall or apply needed here.

(define (deriv f dx)
(lambda (x)
(/ (- (£ (+ x dx)) (£ x))
dx)))

->((deriv cube 0.001) 5)
75.15

The first element of the list is evaluated.



Newtons method for finding the roots of a differen-
tiable function.

(define (newton f guess)
(if (good-enough? guess f)
guess
(newton £ (improve guess £))))

(define (improve guess f)
(- guess (/ (£ guess)
((deriv £ 0.001) guess))))

(define (good-enough? guess f)
(< (abs (f guess)) 0.001))

->(newton (lambda (x) (- x (cos x))) 1)
0.7391



Assignment and Local State

Ex: Withdrawing money from a bank account

A procedure withdraw takes an argument amount
to be withdrawn. If there is enough money in the
account then withdraw should return the balance
remaining after the withdrawal. If we begin with 100
dollars in the account, the following responses should
be obtained.

->(withdraw 25)

75

~>(withdraw 25)

50

->(withdraw 60)
Insufficient funds
->(withdraw 15)

35

Notice that the two expressions (withdraw 25) both
executed in the same context, yield different values.

Withdraw 1.
(define balance 100)

(define (withdraw amount)
(if (>= balance amount)
(sequence (set! balance (- balance amount))



balance)
"Insufficient funds"))

Problem: The global variable balance is freely acces-
sible to other procedures.

Withdraw 2.

(define withdraw
(let ((balance 100))
(lambda (amount)

(if (>= balance amount)

(sequence (set! balance
(- balance amount))

balance)

"Insufficient funds"))))

Let establishes an environment with a local variable
balance bound to the initial value 100. Within this en-
vironment, we use lambda to create a procedure that
takes amount as an argument and behaves correctly.

Withdraw 3. ”withdrawal processors”

(define (make-withdraw balance)
(lambda (amount)
(if (>= balance amount)
(sequence (set! balance (- balance amount))
balance)
"Insufficient funds")))

(define wi (make-withdraw 100))



(define w2 (make-withdraw 100))

->(wl 60O)
50
->(w2 70)
30

wl and w2 are completely independent objects, each
with its own local state.

We can create objects that handle deposits as well as
withdrawals and thus represent simple bank accounts.

(define (make-account balance)
(define (withdraw amount)
(if (>= balance amount)
(sequence (set! balance
(- balance amount))

balance)
"Insufficient funds"))

(define (deposit amount)
(set! balance (+ balance amount))

balance)
(define (dispatch m)
(cond ((eq? m 'withdraw) withdraw)
((eq? m ’'deposit) deposit)
(else (error "Unknown request"))))
dispatch)

Each call to make-account sets up an environment
with a local state variable balance. Within this envi-
ronment two procedures, deposit and withdraw are



defined which access balance. An additional proce-
dure dispatch, which takes a "message” as input and
returns one of the local procedures is returned as the
value that represents the account.

->(define acc (make-account 100))
acc

->((acc ’withdraw) 50)

50

->((acc ’deposit) 40)

90



Constraints

Programs are traditionally organized in terms of one-
directional computations. They perform operations on
pre-specified arguments to produce desired outputs.
On the other hand, we often model systems in terms
of relations among quantities.

Such an equation is not one-directional.

In this example we design a language that enables us
to work in terms of relations themselves. The primitive
elements of the language are primitive constraints. For
example;

(adder a b ¢)

(multiplier x y 2)

(constant <number> x)

The constraints are combined by constructing a con-
straint network in which constraints are joined via con-

nectors. A connector is an object that "holds” a value
that may participate in one or more constraints.



Example: Conversion between Centigrade and Fahren-
heit temperatures.

9C=56 (F - 32)

This can be thought of as a network.

Cc
mi " mi Al F
" D P = . S
m2 m?2 A2
9 5 32

The computation proceeds as follows: When a con-
nector is given a value, it awakens all of its associ-
ated constraints to inform them that it has a value.
Each awakened constraint box then polls its connec-
tors to see if there is enough information to determine
a value for a connector. If so, the box sets that connec-
tor which then awakens all of its associated constraints
and so on.




(define C (make-connector))
(define F (make-connector))
(centigrade-fahrenheit-converter C F)

(define (centigrade-fahrenheit-converter c f)
(let ((u (make-connector))

(v (make-connector))
(w (make-connector))
(x (make-connector))
(y (make-connector)))

(multiplier ¢ w u)

(multiplier v x u)

(adder v y £)

(constant 9 w)

(constant 5 x)

(constant 32 y)))

This procedure creates the internal connectors and
links them as shown in the figure using the primitive
constraint boxes.

To watch the network in action we can place probes
on the connectors C and F using a probe procedure.
Placing a probe on a connector will cause a message
to be printed whenever the connector is given a value.

(probe "Centigrade temp" C)
(probe "Fahrenheit temp" F)

Next we set the value of C to 25.

->(set-value! C 25 ’user)
Probe: Centigrade temp = 25



Probe: Fahrenheit temp = 77
done

The probe on C awakens and reports the value. C
also propagates the value through the network which
sets F to 77.

->(set-value! F 212 ’user)
Error! Contradiction (77 212)

->(forget-value! C ’user)
Probe: Centigrade temp = 7
Probe: Fahrenheit temp = 7
done

->(set-value! F 212 ’user)
Probe: Fahrenheit temp = 212
Probe: Centigrade temp = 100
done

Implemenation using procedural objects with local
state.
The basic operations on the connectors are

(has-value? <connector>)
tells whether the connector currently has a value.

(get-value? <connector>)
returns the current value

(set-value! <connector> <value> <informant>)
tells the connector that some informant is
requesting it to set its value to a new value



(forget-value! <connector> <retractor>)
tells the connector that some retractor is
requesting it to forget its value

(connect <connector> <new-constraint>)
tells the connector to participate in a new
constraint

Connectors communicate with constraints using the
procedures inform-about-values which tells the con-
straint that the connector has a value and inform-
about-no-value that tells the constraint that the con-
netor has lost its value.



(define (adder al a2 sum)
(define (process-new-value)
(cond ((and (has-value? al) (has-value? a2))
(set-value! sum
(+ (get-value al)
(get-value a2))
me))
((and (has-value? al) (has-value? sum))
(set-value! a2
(- (get-value sum)
(get-value al))
me) )
((and (has-value? a2) (has-value? sum))
(set-value! al
(- (get-value sum)
(get-value a2))
me))))
(define (process-forget-value)
(forget-value! sum me)
(forget-value! al me)
(forget-value! a2 me)
(process-new-value))
(define (me request)
(cond ((eq? request ’'I-have-a-value)
process-new-value)
((eq? request 'I-lost-my-value)
process-forget-value)
(else (error "Unknown request"))))
(connect al me)
(connect a2 me)
(connect sum me)
me)

(define (inform-about-value constraint)
((constraint ’'I-have-a-value)))

(define (inform-about-no-value constraint)
((constraint ’'I-lost-my-value)))



The multiplier is very similar.

(define (multiplier m1 m2 product)
(define (process-new-value)
(cond ((or (and (has-value? mi)
= (get-value ml)
(and (has-value? m2)
(= (get-value m2)
(set-value! product O me))

((and (has-value? mi) (has-

(set-value! product
(* (get-value
(get-value
me) )
((and (has-value? product)
(set-value! m2
(/ (get-value
(get-value
me))
((and (has-value? product)
(set-value! mi
(/ (get-value
(get-value
me))))
(define (process-forget-value)
(forget-value! product me)
(forget-value! mi me)
(forget-value! m2 me)
(process-new-value))
(define (me request)

0))
0)))
value? m2))

mi)
m2))

(has-value? m1))

product)
mi))

(has-value? m2))

product)
m2))

(cond ((eq? request ’I-have-a-value)

process-new-value)
((eq? request 'I-lost-my-va
process-forget-value)
(else (error "Unknown reque
(connect mi me)
(connect m2 me)

lue)

st"))))



(connect product me)
me)

(define (constant value connector)
(define (me request)
(error "Unknown request"))
(connect connector me)
(set-value! connector value me)

me)

(define (probe name connector)
(define (process-new-value)
(print "Probe: ")
(princ name)
(princ " = n)
(princ (get-value connector)))
(define (process-forget-value)
(print "Probe: ")
(princ name)
(princ " = ? "))
(define (me request)
(cond ((eq? request 'I-have-a value)
process-new-value)
((eq? request 'I-lost-my-value)
process-forget-value)
(else (error "Unknown request"))))
(connect connector me)
me)

Representing connectors: A connector is represented
as a procedural object with local state variables value,
the current value of the connector, informant, the
object that set the value and constraints, a list of
the constraints in which the connector participates.



(define (make-connector)
(let ((value nil)
(informant nil)
(constraints nil))
(define (set-my-value newval setter)
(cond ((not (has-value? me))
(set! value newval)
(set! informant setter)
(for-each-except setter
inform-about-value
constraints))
((not (= value newval))
(error "Contradiction"
(list value newval)))))

(define (forget-my-value retractor)
(if (eq? retractor informant)
(sequence
(set! informant nil)
(for-each-except retractor
inform-about-no-value
constraints))))

(define (connect new-constraint)
(if (not (memq new-constraint constraints))
(set! constraints
(cons new-constraint constraints)))
(if (has-value? me)
(inform-about-value new-constraint)))

(define (me request)
(cond ((eq? request ’'has-value)
(not (null? informant)))
((eq? request ’'value) value)
((eq? request ’'set-value!)
set-my-value)
((eq? request ’'forget)



forget-my-value)
((eq? request ’connect) connect)
(else (error "Unknown operation"))))

me))

(define (for-each-except except proc list)
(define (loop items)
(cond ((null? items) ’'done)
((eq? (car items) except)
(loop (cdr items)))
(else (proc (car items))
(loop (cdr items)))))

Syntax interface

(define (has-value? connector)
(connector ’'has-value?))

(define (get-value connector)
(connector ’value))

(define (forget-value! connector retractor)
((connector ’forget) retractor))

(define (set-value! connector newval informant)
((connector ’set-value!) new-value informant))

(define (connect connector new-constraint)
((connector ’connect) new-constraint))

And that’s it.



Streams

Ex: A procedure that takes as argument a binary tree,
all of whose leaves are integers and computes the sum
of the squares of the odd ones.

(define (sum-odd-squares tree)
(if (leaf-node? tree)
(if (odd? tree)
(square tree)
0)
(+ (sum-odd-squares (left-branch tree))
(sum-odd-squares (right-branch tree)))))

Ex: A procedure that constructs a list of all the odd
Fibonacci numbers Fib(k) where k is less than or
equal to a given integer n.

(define (odd-fibs n)
(define (next k)
(if (> k n)
")
(let ((£ (£ib k)))
(if (odd? f)
(cons £ (next (+ 1 k)))
(next (+ 1 k))))))
(next 1))



A common pattern. The first program

e Enumerates the leaves of a tree;
e filters them, selecting the odd ones;
e squares each of the selected ones;

e accumulates the result by adding, starting with
0.

The second program

e Enumerates the integers from 1 to n;
e computes the Fibonacci number for each integer;
e filters them, selecting the odd ones;

e accumulates the result into a list, using cons,
starting with the empty list.

ENUMERATE - FILTER - MAP - ACCUMULATE

View this as a signal or stream that flows through a
cascade of stages.

The strems are defined abstractly as a constructor
cons-stream and two selectors head and tail. They
are related through as follows.



e For any objects a and b, if x is (cons-stream a
b) then (head x) is a and (tail x) is b.

There also exists an objext called the-empty-stream
and a predicate empty-stream?.

Example 1.

(define (enumerate-tree tree)
(if (leaf-node? tree)
(cons-stream tree the-empty-stream)
(append-streams
(enumerate-tree (left-branch tree))
(enumerate-tree (right-branch tree)))))

(define (append-streams si s2)
(if (empty-stream? si)
s2
(cons-stream (head si1)
(append-streams (tail s1) s2))))

(define (filter-odd s)
(cond ((empty-stream? s) the-empty-stream)
((0dd? (head s))
(cons-stream (head s)
(filter-odd (tail s))))
(else (filter-odd (tail s)))))

(define (map-square s)
(if (empty-stream? s)
the-empty-stream
(cons-stream (square (head s))
(map-square (tail s)))))



(define (accumulate-+ s)
(if (empty-stream? s)
0
(+ (head s)
(accumulate-+ (tail s)))))

(define (sum-odd-squares tree)
(accumulate-+
(map-square
(filter-odd
(enumerate-tree tree)))))

(define (odd-fibs n)
(accumulate-cons
(filter-odd
(map-£ib
(enumerate-interval 1 n)))))

Higher order procedures for streams.

(define (accumulate combiner initial-value stream)
(if (empty-stream? stream)
initial-value
(combiner (head stream)
(accumulate combiner
initial-value
(tail stream)))))

(define (map proc stream)
(if (empty-stream? stream)
the-empty-stream
(cons-stream (proc (head stream))



(map proc (tail stream)))))

(define (filter pred stream)
(cond ((empty-stream? stream) the-empty-stream)
((pred (head stream))
(cons-stream (head stream)
(filter pred (tail stream))))
(else (filter pred (tail stream)))))

Inefficient. Example: Compute the second prime in
the interval 10000 to 1000000.

(head
(tail
(filter prime?
(enumerate-interval 10000 1000000))))

The problem is solved by arranging for cons-stream
to construct a stream only partially and to pass the
partial construction to the program that consumes
the stream. If the consumer attempts to a access a
part of the stream that has not yet been constructed,
the stream will automatically construct just enough
more of itself to enable the consumer to access the
required part, thus preserving the illusion that the
entire stream exists. This is called lazy evaluation.

This is done by arranging for the tail of a stream to
be evaluated, not when the the stream is constructed



by cons-stream but rather when the tail is accessed
by the tail procedure.

The special form (delay expression) is used which
does not evaluate th expression but rather returns a
so-called delayed object, which we can think of as a
”promise” to evaluate the expression at some future
time. To evaluate this delayed object the operator
force is used.

(cons-stream a b) == (cons a (delay b))

(define (head stream) (car stream))
(define (tail stream) (force (cdr stream)))

Example: Prime computation.

(define (enumerate-interval low high)
(if (> low high)
the-empty-stream
(cons-stream low
(enumerate-interval (+ low 1)

high))))

(head
(tail
(filter prime?
(enumerate-interval 10000 1000000))))



Infinitely long streams

(define (integers-starting-from n)
(cons-stream n (integer-starting-from (+ n 1))))

(define integers (integers-starting-from 1))

(define (fibgen a b)
(cons-stream a (fibgen b (+ a b))))

(define fibs (fibgen 0 1))

The sieve of Eratosthenes method for primes.

We start with the integers starting with 2, which is
the first prime. To get the rest of the primes, we start
by filtering the multiples of 2 from the rest of the
integers. This leaves a stream beginning with 3, which
is the next prime. Now we filter the multiples of 3 from
the rest of the stream and so on.

In other words, to sieve a stream S, we form a stream
whose head is the head of S and whose tail is obtained
by filtering all multiples of the head of S out of the

tail of S and sieving the result.

(define (sieve stream)
(cons-stream
(head stream)



(sieve (filter
(lambda (x) (not
(divisible?
X
(head stream))))

(tail stream)))))

(define primes (sieve (integer-starting-from 2)))

(define (divisible? a b)
(= (remainder b a) 0))

(define (print-stream stream)
(print (head stream))
(print-stream (tail stream)))

->(print-stream primes)
2
3
5
7
11

Infinite streams can also be defined implicitly.

(define ones (cons-stream 1 ones))

(define (add-streams si1 s2)
(cond ((empty-stream? s1) s2)
((empty-stream? s2) si)
(else (cons-stream
(+ (head s1) (head s2))



(add-streams (tail s1) (tail s2))))))

(define integers
(cons-stream 1
(add-streams ones integers)))

Streams can be used to model signal processing sys-
tems, representing the values of a signal at successive
time intervals as consecutive elements of a stream. As
an example we can implement as integrator or sum-
mer that for an input stream, an initial value and a
small increment dt accumulates the sum.

(define (integral integrand initial-value dt)
(define int
(cons-stream initial-value
(add-streams
(scale-stream dt integrand)
int)))
int)

Pure functional programming. Local state without
assignment.



Other Common Lisp features

Packages, different name-spaces for symbols, export-

ing and importing.

Generic operations on sequences (lists and vectors).
Ex: length, reverse ...

Complex numbers and rational numbers as standard
data types.

Hash tables as standard data types.



Short History

1960 John McCarty Lisp 1.5

Developed into two principal dialects.
Interlisp - BBN, Xerox, Stanford, West Coast

MacLisp - MIT, (Franz Lisp Berkeley).

Standardization attempts
PSL- Portable Standard Lisp

Common Lisp

1975 Lispmachines
MIT - Symbolics, LMI, ZetaLisp

Xerox — Interlisp.



EXERCISE 1.

Problem 1: Write sequences of car and cadr that will pick the symbol PEAR out
of the following expressions:

(apple orange pear grapefruit)
((apple orange) (pear grapefruit))
(({apple) (orange) (pear) (grapefruit)))

((((apple))) ((orange)) (pear) grapefruit)

Problem 2: Define rotate-left, a function that takes a list and returns a new list in
which the former first element becomes the last.

->(rotate-left '(a b c))
(b c a)

Problem 3: A palindrome is a list that has the same sequence of elements when
read from right to left as when read from left to right. Define palindrome such
that it takes a list as its argument and returns a palindrome that is twice as long.

->(palindrome '(a b c d))
(abcddcba)

Problem 4: Represent a point in the plane as a two-element list. Write a function
that takes two such lists and returns the Euclidian distance between the points.

Problem 5: One of the more complicated recursions occur in the so called
Ackermann's function.

(defun Ack (x y)
(cond ((equal y 0) 0)
((equal x 0) (x 2 y))
((equal y 1) 2)
(t (Ack (- x 1)
(Ack x
(- v 1))))))

Give a mathematical definition for each of the following functions.
(defun f (n) (Ack O n))
(defun g (n) (Ack 1 n))

(defun h (n) (Ack 2 n))

Problem 6: Express (abs x), (min a b) and (max a b) in terms of cond.



Problem 7: Write a recursive function remove that removes all occurences of an
element from a) the top-level of a list b) all levels of a list.

Problem 8: Define our-reverse, a tail-recursive version of reverse.

Problem 9: Define squash, a procedure that takes an expression as its argument
and returns a nonnested list of all atoms found in the expression.

->(squash '(a (a (a b)) ¢ (c d)))
(aaabccd)

Problem 10: Binary trees can be used to represent arithmetic expressions, as ffor
example:

(* (+ab) (-c(/de)))

Part of the work of a compiler is to translate such an arithmetic expression into
the machine language of some computer. Suppose that the target machine has a
set of sequentially numbered registers that can hold temporary results.

Further suppose that the target machine has a MOVE instruction for getting
values into registers and ADD, SUB, MUL, and DIV for arithmetically combining
values in two registers. The example could be translated as follows:

((move 1 a)
(move 2 b)
(add 1 2)
(move 2 c)
(move 3 d)
(move 4 e)
(div 3 4)
(sub 2 3)
(mul 1 2))

The result of a calculation is left in the first register. Define compile-arithmetic, a
procedure that performs this translation.



EXERCISE 2.

Problem 1: Solve problem 7 of Exercise 1 with the use of mapcar.

Problem 2: Write your own version of mapcar using list recursion. You can
assume that mapcar only takes two arguments.

Problem 3: Suppose a matrix is represented as a list of lists. For example ((a b)
(c d)) would represent the 2x2 matrix whose first row contains a b and whose
second row contains ¢ d. Write a function that takes a matrix as input and
outputs its transpose.

Problem 4: A useful function that combines flow of control and function mapping
is called some. This is a function of two arguments, which should evaluate to a
function and a list. It applies the function to successive elements of the list until
the function returns non-nil. Then it returns the elements of the list from that
point on. It returns nil otherwise. For example (some ‘numberp '(a b 2 c d))
should return (2 c d).

The function every is like some except that it stops as soon as one of the
function applications returns nil. Every then returns nil as its value. If all the
application return non-nil, every returns t.

Write the function some and every.

Problem 5: Write a version of cons called mcons that takes any number of
arguments, all of which are evaluated. The value of the next-to-last argument
should be consed onto the last; the value before should be consed onto the
resulting value, and so on. For example, (mcons 'a 'b 'c '(d e)) should return (a b
cde).

Problem 6: The functions remove-if and remove-if-not are used to do filtered
accumulations. These functions takes two arguments. The first should evaluate to
a function and the second to a list. Remove-if returns a list of all the elements in
the list for which the functions evalutes to nil and remove-if-not returns a list of
all the elements for which the functions evaluates to non-nil.

->(remove-if-not 'fruitp '(apple corn milk pear))
(apple pear)

->(remove-if 'fruitp '(apple corn milk pear})
(corn milk)

Write the functions remove-if and remove-if-not.



Problem 7: Sum-loop is a special case of the more general function accumulate
which combines a collection of terms, using the general accumulation function:

(accumulate combiner null-value term a next b)

Accumulate takes the same arguments as sum-loop together with a combiner
function of two arguments that specifies how the current term is to be combined
with the accumulation of the preceding terms and a null-value the specifies what
initial value to use when the terms run out. Write accumulate (both in recursive
and tail-recursive forms) and show how sum-loop is defined in terms of
accumulate.



EXERCISE 3.

Problem 1: In addition to IF, Common Lisp has WHEN and UNLESS, defined as
follows:

(when <test> <forms>) == (cond (<test> <forms>))
(unlesss <test> <forms>) ==(cond ((not <test>) <forms>))

Define the macros when and unless.

Problem 2: Not all Lisp systems have the backquote mechanism. Define backquote
such that it has the effect of backquote and allows for the appropriate handling of
expressions with COMMA and COMMA-AT, as in the following case.

->{backquote (a b (list 'c 'd) (comma (list 'e 'f)) (comma-at (list 'g 'h))))
(a b (list 'c 'd) (e f) g h)

Problem 3: Suppose Let did not exist. Define your own let as macro using lambda.

Problem 4: The pure Lisp system makes it difficult to keep track of which
top-level symbols you have given value with setq. Define a macro assign that
behaves like setq but also store the symbol name and the value on a global
association list called smy-variabless. Define procedures that return all the
assigned symbols with and with their values.

Problem 5: Define a macro while that can be called with expressions like
(while <test> <forms>)

As long as the expression test evaluates to true, while repeatedly evaluates the
forms.



Projects

1. Extend the symbolic differentiation example. Include rules for trigonometric and
exponential expressions. Allow for input on ordinary infix notation with the usual
precedence rules. Return the result on a nice "Macsyma" form. Allow for
substitutions in expressions and evaluation of expressions.

2. Extend the generic arithmetic package from seminar 6. Allow other data types
such as polynomials, matrices etc.

3. Build an implementation of constraints using Flavors. Find a more appropriate
example than the centigrade to fahrenheit converter. Ex. Electric network with
resistors, capacitors, solenoids etc..

4. Try to implement a general object-oriented package like Flavors in Scheme with
functional objects and message passing. The system should handle inheritance
correctly.

5. Combine the streams based Prolog interpreter from Abelscn - Sussman and the
streams based forward chaining expert system shell from Winston - Horn into an
expert system shell with both forward and backward chaining.

6. Write Adventure type game using objects that represent the entities .in the
world. Do it with Flavors or in Scheme.

7. Own ideas.



Forslag till Lisp-uppagifter

Bengt Martensson, 1986-01-05

Jag har en del forslag till mindre programmeringsuppgifter i Lisp. Dessa ir nerslingda
i all hast, men hir kommer dom. Jag bryr mig inte om att nimna datalogiska stan-
darduppgifter s& som symbolisk derivering etc. Till stor del kommer detta att vara
TgEX-relaterade ”utilities”. Jag tycker dessa ir "verklighetsanknutna” uppgifter som
kan anvindas till ninting.

Index-program for TgX

Bakgrund: Bide jag sjilv och ”adaptiva-bok-ginget” hiller p3 att skriva TEX s3 det
dundrar om det. Vi behdver bra hjilpmedel for att hantera index. Detta ska klara av:
* Vanliga referenser

* » Primary references”, dvs hir ska sidnumret sittas i fetstil

* ?span”-referenser, dvs ett sidintervall av typen 23-29.

* referenser till fotnStter

* Korsreferenser (*See ...” och ”See also...”)

* Speciall sorterings”tag” for TEX-macron. T ex ska man kunna f4 makroanropet
IMyFavoriteLieGroup insorterat som SO(n).

* Hierarkisk referenslista.

Vid forsta passet genererar TEX en textfil med osorterade referenser. Lisp-programmet
sorterar denna och gor en ny TEX-fil av den, som sen TgX-as i sin tur. Se TUG-
boat nr 1/1. Syntaxen ar dock knipp, och jag har en battre i huvudet. TUG-boaten
innehdller ocksd ett interlisp-programm som p#stis fungera. Uppgiften bestir i att
skriva Lisp-programmet. TEX-macrona kan jag och/eller Leif géra (svida ingen annan
ar intressered??). Inga TEX-kunskaper ir nédvindiga.

Konvertering av DOC-filer till TgX-format

Bakgrund: Man stéter allt som oftast p4 en massa DOC-filer med information man ar
intresserad av. Dessa dr vildigt ofta i ett format som &r olimpligt, och man kanske
skulle vilja ha det utskivet lite snyggare. Ofta har det kérts genom nigon form av ordbe-
handlingsprogram, och innehéller indenteringar, tabeller, rubriker etc. Dock inneh3ller
de inte matematik.

Uppgiften bestar i att skriva lisp-funktioner som generarar TgX-kod frin en DOC-fil.
Rubriker, tabeller, displayer etc ska detekteras och hanteras fornuftigt. Tecken som

1



betyder n4t speciellt for TEX ska "escapas” (vad siger man pi svenska?), eller s kan
man indra p3 catcoden. Eventuellt kan programmet interagera med anvindaren, t
ex friga ”Ska jag behandla detta som en tabell?”. Observera att man kan gora denna
uppgift mer eller mindre fullstindigt, och att man nog ska se utmatningen som en forsta
iteration, i varje fall om man har héga krav. Ganska goda TEX-kunskaper nédvandigt.

Report till TeX-konverterare

Rubriken talar for sig sjilv. F 6 galler kommentarerna ovan hir ocksd.

NROFF/TROFF till TeX-konverterare

Vill bara kommentera att det finns en del intressant text i nroff/troff-format pé
EUNICE-arean. T ex UNIX- och Franz-manualer.

Behandling av MACS YMA-resultat

Motivering: att kunna lisa MACSYMA output fr&n andra program, att kunna gora
ndt vettigt med det (t ex plotta grejsmojs; tyvirr saknar vi MACSYMAS plottrutiner),
att kunna plocka in det direkt i textfiler, t ex i TEX (dar kom det!).

MACSYMA ir skrivet i Franz Lisp, och man kan komma ner i Lisp-en med ctrl-Z.
Dirifrdn kan man direkt komma 4t den interna representationen av uttrycken. Jag har
gjalv skrivit tvd funktioner, matpr och polypr som skriver ut matriser och polynom
pa en textfil. Notera att MACSYMA kan fis att automatiskt generara FORTRAN-
kod. Kanske kan man generera en plot-fil, antingen i T4010-format, CANON-format
eller POSTSCRIPT. Eller varfor inte Turtlegraphics i LOGO? Referens: Macsyma-
manualen, speciellt kapitel 10.

"Kompilator” for enkelt sprak for beskrivning av block-diagram

Uppgiftern bestar i att definiera ett enkelt sprik for beskrivning av blockdiagram, och
att skriva LISP-funktioner som ur en beskrivning i detta sprak genererar antingen
T4010-, TgX- POSTSCRIPT-, eller LOGO-kod. Detta skulle fungera ungefor som pic
eller ideal i UNIX, se Kernighan-Pike sid 313. Vad det galler TgX, kolla upp TUG-
boat nr 2(1985) sid 83 och nr 3(1985). (Det senare numret innehéller ocksi makron for
listhantering i TEX, och makron som direkt satter l6sningen till > Towers of Hanoi”-
problemet. Hiftigt.) Notera ocksa att LATEX inneh8ller mdjlighet att dra sneda linjer,
vilket ir implementerat genom att man har en sirskild font for detta.

Digitalteknik

Inom digitaltekniken (eller mera allmint vad som behandlar finita automata) finns
det ett antal algoritmer som lampar sig val for listprogrammering. Jag tinker pa t ex

2



tillstAndsminimering, finna ”billigaste” implementeringen av en kombinatorisk funk-
tion med Quine - McCluskeys metod, bestimmandet av den uppnieliga delmingden
av tillstdndsrummet frin ett givet begynnelsetillstdnd, SP-kodning av tillstdnden, mm
mm. Sjalv skrev jag en ging ett lisp-program for tillstdndsminimering. Referens: Jo-
hannesson, Digitalteknik. Kolla garna ocksd ndn mera teoretisk bok, t ex Manna eller
Lewis - Papadimitriou (jag har dessa p4 mitt rum).



ANSWERS 1

Problem 1. caddr, caadr, caaddar, caaddr

Problem 2

(defun rotate-left (1)
(append (cdr 1) (list (car 1))))

Problem 3

(defun palindrome (1)
(append 1 (reverse 1)))

Problem 4

(defun euclid-distance (p1l p2)
(sqrt (plus (square (diff (xcoord pl) (xcoord p2)))
(square (diff (ycoord p1) (ycoord p2))))))

(defun square (x) (expt x 2))

(defun xcoord (p) (car p))
(defun ycoord (p) (cadr p))

Problem 5

(defun ack (x y)
(cond ((equal y 0) 0)
((equal x 0) (x 2 vy))
((equal y 1) 2)
(t (ack (- x 1)

(ack x
(-v1))))))
f(n) = 2n
g(n) =0 ns=1
2~n else

h(n) =0 n=1
2-h(n-1) else



Problem 6

(abs x) == (cond ((greaterp x 0) x)
(t (minus x)))
(min a b) == (cond ((greaterp a b) b)
(t a))
(max a b) == (cond ((greaterp a b) a)
(t b

Problem 7

(defun remove-top (e 1)
(cond ((null 1) nil)
((equal (car 1) e)
(remove-top e (cdr 1)))
(t (cons (car 1)
(remove-top e (cdr 1))))))

(defun remove-all (e 1)
(cond ((null 1) nil)
((equal (car 1) e)
(remove-all e (cdr 1)))
((listp (car 1))
(cons (remove-all e (car 1))
(remove-all e (cdr 1)})))
(t (cons (car 1)
(remove-all e (cdr 1))))))

Problem 8

(defun our-reverse (list)
(reverse-iter nil list))

(defun reverse-iter (result input)
(cond ((null input) result)
(t (reverse-iter
(cons (car input) result)
(cdr input)))))

Problem 9

(defun squash (1)
(cond ((null 1) nil)
((atom 1) (list 1))
(t (append (squash (car 1))
(squash (cdr 1))))))



Problem 10

(defun compile-arithmetic (s)
(compile-arithmetic-aux 1 s))

(defun compile-arithmetic-aux (register expr)
(cond ((atom expr) (list (list 'move register expr)))
(t (append
(compile-arithmetic-aux register (cadr expr))
(compile-arithmetic-aux (+ register 1) (caddr expr))
(1ist (list (opcode (car expr)) register (+ register 1)})))))

(defun opcode (op)

(cond ((equal op '+) 'add)
((equal op '-) 'sub)
((equal op 'x) 'mul)
({equal op '/) 'div)

(t 'err)))



ANSWERS 2

Problem 1

(defun remove-top (element 1)
(apply 'append
(mapcar '(lambda (x)
(cond ((equal x element) nil)

(t (list x))))
1)))

(defun remove-all (element 1)
(apply 'append
(mapcar '(lambda (x)
(cond ((equal x element) nil)
((listp x) (list (remove-all element x)))
(t (1ist x))))
1)))

Problem 2

(defun my-mapcar (func list)
(cond ((null list) nil)
(t (cons (funcall func (car list))
(my-mapcar func (cdr list))))))

Problem 3

(defun transpose (matrix)
(apply 'mapcar (cons 'list matrix)))

Problem 4

{(defun some (func list)
(cond ((null list) nil)
((funcall func (car list)) list)
(t (some func (cdr list))}))

(defun every (func list)
(cond ((null list) t)
((funcall func (car list))
(every func (cdr list)))

(t nil)))



Problem 5

(defun mcons (&rest arguments)
(cond ((equal (length arguments) 1) (car arguments))
(t (cons
(car arguments)
(apply 'mcons (cdr arguments))))))

Problem 6

(defun remove-if (func list)
(cond ((null list) nil)
((funcall func (car list))
(remove-if func (cdr list)))
(t (cons (car list)
(remove-if func (cdr list))))))

or

(defun remove-if-2 (func list)
(apply 'append
(mapcar '(lambda (x)
(cond ((funcall func x) nil)

(t (list x))))
list)))

(defun remove-if-not (func list)
(cond ((null list) nil)
((funcall func (car list))
(cons (car list)
(remove-if-not func (cdr list))))
(t (remove-if-not func (cdr list)))))

or

(defun remove-if-not-2 (func list)
(apply 'append
(mapcar '(lambda (x)
(cond ((funcall func x) (list x))

(t nil)))
list)))



Problem 7

(defun accumulate (combiner null-value term a next b)
(cond ((greaterp a b) null-value)
(t (funcall combiner (funcall term a)
(accumulate combiner

null-value
term
(funcall next a)
next

b)))))



ANSWERS 3

Problem 1

(defmacro when (test &rest result)
“(cond (,test ,@result)))

(defmacro unless (test &rest result)
‘ (cond ((not ,test) ,Qresult)))

Problem 2

(defmacro backquote (s)
(1ist 'backquotel (list 'quote s)))

(defun backquotel (s)
(cond ((or (null s) (atom s)) s)
((equal (car s) 'comma) (eval (cadr s)))
((and (not (atom (car s))) (equal (caar s) 'comma-at))
(append (eval (cadar s)) (backquotel (cdr s))))
(t (cons (backquotel (car s)) (backquotel (cdr s))))))

Problem 3

(defmacro our-let (argument-list &rest body)
* ((lambda , (mapcar 'car argument-list) ,@body)
,@(mapcar ‘'cadr argument-list)))

Problem 4. Assign should be used instead of setq on top-level. An association list

xglobal-variable-lists is used to keep track of the variables. (variables) returns a
list of the defined variables.

(defmacro assign (variable value)
(cond ((and (boundp 'sglobal-variable-lists)
(assoc variable xglobal-variable-lists))

‘ (progn (assign-new-value (quote ,variable) ,value)
(setq ,variable ,value)))

((boundp 'xglobal-variable-listx)

‘* (progn (assign-new-variable {quote ,variable) ,value)
(setq ,variable ,value)))

(t ' (progn (setq xglobal-variable-lists
(quote ,(list (list wvariable value))))

(setq ,variable ,value)))))

(defun assign-new-value (var val)
(let ((element (assoc var *global-variable-listx)))
(setq *global-variable-lists (cons (list var val)
(remove element sglobal-variable-listx)))))



(defun assign-new-variable (var val)
(setq *global-variable-list* (cons (list var val)
s*global-variable-listx)))

(defun variables ()
(mapcar '(lambda (x)
(car x)) =global-variable-lists))

Problem 5. This version always returns nil.

(defmacro while (test &rest body)
‘ (prog () loop (cond ((not ,test) (return nil)))
,@body

(go 1loop)))



