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1. INTRODUCTION

There are several ways to design adaptive regulators based on pole
placement. This paper is based on Astrom, Westerberg and Wittenmark
(1978), where the problem is formulated as a deterministic servo
problem. It is assumed that the reader is familiar with that paper.
The basic concept of the self-tuning regulator is used. The starting
point is thus a pole-placement design method for a system with known
parameters. When parameters are unknown they are estimated using a
recursive estimator. The design method is then applied assuming that
the model parameters are substituted by their estimates. A straight-
forward application of this idea leads to the algorithms based on
estimation of an explicit process model. The algorithm can be
simplified if the parameters of a transformed model are estimated.

The parameters obtained are then an .mplicit modef of the process. The
explicit methods will often require that fewer parameters are estimated.
The implicit methods are, however, often simpler. In many cases the
structure of the implicit model can be chosen so that the regulator
parameters are estimated directly. This means that the design calcula-
tions are avoided. In Astrom, Westerberg and Wittenmark (1978) it was
shown that efficient pole-placement algorithms could be obtained for
minimum phase systems. In this case (Algorithm IT) the structure of the
implicit model was such that it was Tinear in the parameters. The
identification could thus be done by simple least squares. In this
paper it is shown that simple implicit algorithms also can be obtained
for nonminimum-phase systems, provided that the implicit model is
allowed to be nonlinear in the parameters.

The paper 1is organized as follows. A brief description of the design
method for known parameters is given in Section 2. In Section 3 it is
shown that an explicit model which contains the regulator parameters
can be constructed. The particular model is such that the prediction
error is bilinear in the parameters. A recursive estimator for the
nonlinear model is then given. The complete algorithm is then easily
obtained. The discussion in Sections 2 and 3 was purely deterministic.
Disturbances were thus totally neglected. In Section 4 it is analysed



how the algorithms behave when it is assumed that the controlled
process is subject to stochastic disturbances. It is demonstrated that
the algorithm given in Section 3 will give biased estimates. It is
shown that the algorithm can be modified to give unbiased estimates

if the correlation of the disturbances are known. Other algorithms
which do not require this assumption are then presented in Section 4.



2. POLE-ZERO-PLACEMENT DESIGN

A brief description of the pole-placement design problem is given
here. More details and references are given in Astrom, Westerberg and
Wittenmark (1978).

Problem Formulation

Consider a process characterized by the rational operator

G =

) , (2.1)

|

where A and B are polynomials in the forward shift operator. It is
assumed that the polynomials A and B are relatively prime and that Gp
is causal i.e. deg B < deg A. It is desired to find a regulator such
that the transfer function from the command input u, to the process
output is given by the rational operator

G, =3, (2.2)

where P and Q are polynomials in the forward shift operator. It is
assumed that P and Q are relatively prime and that Gy is causal.

Design Procedure

The desired result can be obtained with the regulator
Ru = Tu, - Sy. (2.3)

The closed Toop system is then characterized by the operator

B
G = ———— .
AR + BS

Since G should be equal to the desired operator GM the following
equation is obtained:

B
AR + BS

_ 0
=3 - (2.4)



The design problem is thus equivalent to the algebraical problem of
finding polynomials R, S, and T, such that (2.4) holds. Since deg P is
normally less than deg (AR +BS) it is clear that there are factors in
(2.4) which cancel. The canceled factors must of course be stable. In
particular, if the polynomial B is factored as

B = BB,,
where the zeros of B] are well damped and the zeros of B, are unstable

or stable but poorly damped, then the specifications must be such that

Q =08, .

The design procedure can be described as follows:

Step 1: Determine the desired observer polynomial T such that
deg T] > deg A-1T - deg Bi- Introduce

T = T-IQ'].

Step 2: Solve the equation
ARy + B,S = PT, (2.5)
with respect to Ry and S.

Step 3: The regulator which gives a closed Toop system with the

desired response is then given by (2.3) with R = RyBy» S
and T = T]Q].

Certain aspects of the design problem are seen more clearly if the
calculations are carried out using the backward shift operator. For
this purpose the reciprocal polynomials defined by

px(z) = 2989 A a7y (2.6)
are introduced. It is natural to normalize the polynomial A so that

A(z) = ag 2969 A, a 2deg A1 3geq A



with ag # 0. The reciprocal polynomial A* then becomes

N deg A
A¥(z) = ag+ag ¢ ...+ adeg A G

with ag # 0. The process model (2.1) can then be written as

-1
-k B*
y(t) = q ——LE:Tl u(t),
A*(q™ ")

where

k = deg A-deg B (2.7)
is the pofe excess. The following abbreviated notation will also be
used

- *
y=q By (2.8)

A*

Notice that the pole excess appears explicitly when the backward shift
operator notation is used. Similarly the desired closed loop system is
characterized by the operator

_ E 3
G; - q* _S_* (2.9)

where
% = deg P - deg Q. (2.10)

If it is assumed that there are no computational delays, the control
law (2.3) can be written as

R¥U = Txu, - S*y, (2.11)
where

R¥(0) # 0

T*(0) # 0

S*(0) # 0.

The design identity (2.4) then becomes

g Brre gt g (2.12)
F*R¥ 1 B*S*  P*

and the equation (2.5) can be written as



A*R¥ + q_k

: BXS* = pHT* | (2.13)

2 1

The closed loop system has the characteristic equation

B](z) T](Z) P(z) = 0.

It thus follows that the polynomials Bys Tqs and P must have all their
zeros inside the unit disc for the closed loop system to be stable. It
also follows from (2.12) that the design problem has a causal solution
only if

L >k

deg A - deg B < deg P - deg Q.

Since A and B are relatively prime, A and By are also relatively
prime. Equation (2.5) or equivalently (2.13) will then have solu-
tions. There are in fact infinitely many solutions. If Ro and Sy are
solutions, and if F is an arbitrary polynomial, then

Ry =Ry - B,F

S

1 SO + AF

is also a solution. The different solutions will all give the same
transfer function from command signal to output. The transfer function
from process disturbances to the process output will, however, be
different for the different solutions. If we do not wish to specify
the disturbances in detail, there are two natural choices:

(1) deg R? < k + deg BE

or
(11) deg S* < deg A*.

The first choice corresponds to the situation when the number of
delayed control signals appearing in the control Taw is made as small
as possible. The other choice corresponds to choosing the number of
delayed process outputs appearing in the control Taw as small as
possible.
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The polynomial T] can be interpreted as the characteristic polynomial

of the observer. The choice deg T] = deg A-1 corresponds to a Luenberger
observer and deg Ty = deg A corresponds to a Kalman observer. In special
cases there may be solutions to the design problem even if T is

chosen so that deg T] < deg A-1. It follows from the design procedure
that the polynomial By is cancelled. It must then be required that

this polynomial corresponds to zeros that are .sufficiently well damped.
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3. THE ALGORITHM

To use the pole-placement design procedure described in the previous
section the parameters describing the process operator Gp must be
known. An algorithm, which will work even if the model parameters are
not known, will now be derived.

Equation (2.13) gives
P¥TFy = MR*y + q_k B* S*y. Py
Since the process was described by (2.1) it follows that

Aty = q_k B*u.

Combining this with equation (3.1) gives

PFT*y = q K B*R*u + g7

B S*y = q K B (BFR¥u + S¥y)

or

PFTXy = B (R*u + S*y). (3.2)
This equation can be considered as a transformed process model. The
basic process model (2.1) can be recovered from (3.2) if the regulator
(2.3) is known. Notice that the model (3.2) contains the polynomials R
and S which characterizes the regulator explicitly. Also notice that
the model contains the polynomial B, i.e. the largest factor which is
common to B and Q or equivalently the process zeros which are retained
in the closed-loop transfer function.

A self-tuning algorithm can now be obtained as follows.

ALGORITHM 14 (General implicit algornithm for deterministic sysitems)

Data: Given the desired closed loop poles,the additional closed loop
zeros, and the observer poles specified by the polynomials P,
Q'l, and T-I.
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Step 1: Estimate the parameters of the prediction model

P¥T¥y(t) = BS [R*u(t-k) + S*y(t-k)J.

Step 2: Normalize the polynomial Q1* as follows:

Q0 (z) = Q¢ (2) P*(1) / [ (1) - BS* (1)1

Step 3: Choose T* =1}*5f* and compute the control signal from

R¥u = T*ur-S*y.

The Steps 1, 2, and 3 are repeated at each sampling instant. o

This algorithm is similar to the algorithm I3 in Astrom, Westerberg

and Wittenmark (1978) but Steps 1 and 2 in that algorithm, which involve
finding common factors of polynomials, are now replaced by the nonlinear
estimation problem associated with the implicit model (3.2).

If the parameter estimates converge to their correct values the algo-
rithm I4 will give a closed loop system with the rational transfer
function Q]BZ/P. This means that the zeros 82 of the closed loop system
may change if the process changes. This situation can, however, not be
avoided when using the pole-placement design, because the poorly damped
process zeros must by necessity also be zeros of the closed loop
system.

Details of the Parameter Estimation

To obtain a complete description of the algorithm it is also necessary
to give a recursive method for estimating the parameters in the model
(3.1). Since no explicit assumptions have been made concerning the
disturbances, it is simply assumed that the parameters are determined
in such a way that the error defined by

e = PXT*y - BFq “(R¥u + S*y) (3.3)

is as small as possible in the least squares sense. A recursive
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estimation algorithm can then be constructed as follows.

Introduce the explicit polynomial notations

o)
*
—
Y
~
|
=
o
+
=
—
oY
+
+
=
=
=~
oY
>
=

S*g) =sq+Sq T +...+5 gns (3.4)
0 1 ng

Notice that it can always be assumed that ro # 0. Furthermore SQ # 0,
because it was assumed that the computational delay could be neglected.
The coefficients Nps Ngs and Ngo have the following interpretation:

np number of delayed control variables in the control Tlaw

Ng number of delayed outputs in the control Taw

Ngo = number of process zeros which are also zeros of the closed
loop system.

Furthermore introduce
Yg = Dy(t) y(t-1) ... y(t-ng) |
up = [u(t) u(t-1) ... u(t-nR) ] (3.5)

vi = [v(t) v(t-1) ... v(t-ng,) |

where
v(t) = R¥(q) u(t) + s*(q7") y(t) (3.6)
and
( %, =1
Bo"(q ) vy
() = | By*(a7) uy (3.7)
Vi

Let the vectors r, s, and b be defined by
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s=1[sy s7... Sng N
_[ ]T 3 8
r = ro P1 00 rnR ( i )
B T
b"‘ [ bO b-l LY anz]
and let 8 be the vector
S
8 =1]r|. (3.9)

b

The following algorithm is proposed for estimating the parameters of
the process (3.2):

0(t+1) = 6(t) + P(t+1) Y(t-k+1) e(t+1), (3.10)
where ¢ is given by (3.3) and

PrH(t+1) = aPTT(8) + p(tokel) ol (tokel). (3.11)

The following recursive equation can also be obtained for P:

P(t+1) =.% (P(t) - P(t) P(t-keT) [A+yT (t-k1) P(t) p(t-ke1)] T«

e ol (t-k+1) P(t)).
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4, STOCHASTIC CONSIDERATIONS

Additional insight into the properties of the algorithm can be obtained
by considering the stochastic aspects. This will also make it possible
to obtain algorithms which work for the combined servo and regulator
problem.

Assume that the process to be controlled is governed by the model

A*y = B"‘q_k u + C*e. (4.1)
Equation (2.13) gives
P*T]*y = A*Rl*y + q_k B s*y.

Using (4.1) to eliminate y in the first term of the right hand side we

get
P*Tfky = B*R]* q_k u + BZ* S*q_k y + R]* C*e =
-k
= q Bz* (31* R]*u + S*y) + Ry* C*e
or
P*T]*y = q_k BZ*(R*U + S*y) + R'I* C*e. (4.2)
Analysis

Equation (4.2) makes it possible to understand what happens if the
algorithm of Section 3 is applied to a process with random disturbances.
If C* # 1 the residual Rf‘C*e(t) will in general be correlated with the
regressors u(t-k), u(t-k-1), ..., y(t-k), y(t-k-1), ... and the
estimates will consequently be biased. This is also true if T1* = G

It can thus be expected that the algorithm will in general give biased
estimates of By, R, and S. Consequently it can never converge to the
correct control law in the presence of coloured disturbances (i.e.
C#1). It is, however, possible to modify the algorithm so that there
is a possibility to obtain unbiased estimates. The modification
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discussed below is based on the same arguments which led to the simple
self-tuning algorithm STURE, see Astrom and Wittenmark (1973), Astrom
et al. (1977, p. 470), Clarke and Gawthrop (1975), and Egardt (1978).

Consider the process model (4.2) and the desired response model

* _ =k ¥4 %
P Yp =4 82 Q] Up..

Hence
* k3
—k B2 Ry°C

P*(y-yr) = q P [R*u+S*y-T*u ] + "
1 B

e.

(4.3)

Since the control law is chosen so that the term in the square brackets

is zero, this term can be operated upon by a stable operator without

changing the model. The following implicit algorithm can thus be

constructed.

ALGORITHM 15

Data: Given the desired closed loop poles and the additional desired

closed loop zeros specified by the polynomials P and Q.

Step 1: Estimate the parameters of the prediction model

P*Ly(t)-y,.(t)] =BJIR*u(t-k) + S*y(t-k) - Ty u (t-K) 1,

(4.4)

where u  is the command input and y,. the desired output, by

r

nonlinear recursive least squares as was described in Section

3. One of the coefficients of the polynomials R*, S*, or Tf

can be fixed in the estimation.

Step 2: Compute the control signal from
R*u = T *u, - S*y,

where T* = Td*Q]*.

Repeat Steps 1 and 2 at each sampling period.

(4.5)
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Remask

Notice that there is a fundamental problem in estimating the para-
meters of a model of type (4.4) which is bilinear in the parameters.
The main difficulty is that the representation (4.4) is unique only if
it is required that all zeros of B, are outside the unit disc. There
is for example always a representation of type (4.4) with B, =1 which
corresponds to the regulator obtained when all process zeros are
cancelled. When parameters are estimated it may easily happen that

the degree of §2 may change. Special precautions will therefore have
to be taken in the details of the algorithm. o

Algorithm I5 can be expected to have interesting properties which is
seen from the following hewristic argument. Assume that the algorithm
is applied to a process described by (4.1) with C # 1. Then the correct
regulator for the process is

R*y = T*u.- S*y,
where

T* = C¥Q.*.

Let the parameter estimates, obtained from the adaptive algorithm, be
denoted by the superscript "~ ". The residual of the Teast squares
estimation is then given by

g = P*[y-yr] —\§;q_k[R*u + S*y -?*ur] = P*ly -yl (4.6)
where the last equality follows from (4.5). But it follows from (4.2)
that
-k
P*T]*[y-yr] =q " B [R*u + S*y - T*u ] + Ry*C¥e.

Hence if R =R, S =35, and T = T it follows from (4.5) that

kT % _ _ p XX

P T] ly yr] R1 Cre,
and furthermore, if T1 = C,

*r,, _ _ p.%

P*ly yr] = R*e.

Equation (4.6) thus gives
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- % _ _ *
e = P*[y yr] = R1 e.

This residual is clearlynot correlated with the regressors in the
model (4.4). The correct control Taw is consequently a possible con-
vergence point if the algorithm I5 is applied to the process (4.1). It
has thus been indicated that the algorithm I5 is an algorithm which
corresponds to STURE for the combined servo and regulator problem.

Another Algorithm

It is also possible to devise other algorithms which can be expected

to have interesting properties. Introduce the filtered signals u and y
defined by

T-I*y = Bz*y-
Equation (4.2) gives

R¥G + S*Y) +.£¥; Ry e. (4.7)

T

Py = g

Since deg R] < k it is clear that the parameters of the model (4.7) can
be estimated consistently with nonlinear least squares if Ty = C. If
the polynomial C is known it is thus possible to obtain a good esti-
mator. When C is not known the following algorithm can also be used.

ALGORITHM 16

Data: Given the desired closed loop poles and the desired additional
zeros specified by the polynomials P and Qy-

Step 1: Estimate the parameters of the model

A*y = q_k B*u + C*e (4.8)

by extended least squares or recursive maximum 1ikelihood.
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Step 2: Filter the signals u and y by 1/C* where C* is the polynomial
whose coefficients were estimated in the first step. Let the
filtered signals be

C*U = BZ*U
(4.9)
C*y =i Bz*y.
Step 3: Estimate the parameters of the model
Pry = q K(R¥G + S*Y) (4.10)

by nonlinear least squares as was described in Section 3.

Step 4: Use the control law

R*u = T*u, - S*y (4.11)
where

T* = Q *c* (4.12)
and C* is the estimate obtained in the first step. o

In this algorithm the design calculations are thus eliminated by
using a multi-step estimation procedure. There are clearly many
possible variations on this theme.
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5, CONCLUSIONS

Adaptive control algorithms based on the pole-placement design were
discussed in Astrom et al. (1978). A distinction was made between
explicit and implicit algorithms. In the explicit algornithms an explicit
process model is first estimated, then the design procedure is applied
to the estimated model. In the .implicit algorithms a modified process
model where the regulator parameters appear directly is instead esti-
mated. This means that the design calculations are avoided in the
implicit algorithms. For the general pole-placement problem the design
involves factorization of a polynomial into parts which contains well
damped and poorly damped or unstable parts, and solution of a linear
equation.

In this paper three new implicit algorithms have been proposed. The
first algorithm is for the pure servo problem when the disturbances can
be neglected. The estimated model is bilinear in the parameters. The
parameter estimation is done by nonlinear, recursive least squares.

The other two algorithms deal with the combined servo and regulator
problem. One algorithm is a direct generalization of the simple algo-
rithm STURE. The other algorithms is based on a multi-step estimation
procedure.

Heuristic arguments which indicate that the algorithms have interesting
properties are presented. Much work, both analysis and simulation,
remains before the properties of the algorithms are fully explored.
This report does, however, support the conjecture that for each
explicit adaptive algorithm it is possible to find corresponding
implicit algorithms. The report also shows that there are algorithms
for the mixed servo-regulator problems with different structures.
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