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1.1

1. Introduction

Polynomial matrices were introduced into the theory for linear multivariable
systems by Rosenbrock (1970). A system, described by linear differential or
difference equations as well as static relations, may be written

T(n)g = U(n)u (1.1 a)
y = V()& + W(n)u. (1.1 b)

Here T(u), U(n), V(u), and W(n) are polynomial matrices in the operator y,
which is the differential operator for continuous time systems and the shift
operator for discrete time systems. In Rosenbrock (1970) systems of the type
(1.1) are analysed in detail.

During the last few years it has been shown that many design problems can be
solved with a polynomial matrix approach. In Wolovich (1974) state estimation
and state feedback have been expressed in terms of polynomial matrices. The servo
problem is treated in e.g. Wang, Davison (1973), Anderson, Scott (1977), and
Pernebo (1978 ) and the output regulation problem is treated in e.g. Bengtsson
(1977), Cheng, Pearson (1978), and Pernebo (1978). Polynomial matrices have
also been used to solve the feedback realization problem, Pernebo (1978)
Practical use of the design theory requires computer programs which allow

the user to utilize the results without knowing the whole theory. Such programs
must be based on good numerical algorithms. The purpose of this report is to
show how algorithms for polynomial matrix design methods can be constructed. In
Pernebo (1980) it is shown how these algorithms may be incorporated in an inter-
active computer program for analysis and design of linear systems.

In chapter 2 of this report some basic algorithms are given. There are some
mathematical problems that occur in most design procedures, e.g. the problem

of finding the greatest common divisor of two polynomial matrices or of solving
certain polynomial matrix equations. Algorithms for solving this kind of problems
are given in chapter 3. In chapter 4, finally, algorithms for analysis and trans-
formation of dynamical systems are given. It is also shown how some design problems
may be solved.
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Some Notational Remarks

The algorithms in this report will be written
[A], Rys «uvs Ak] = ALG[B], Bys «ues Bh],

where ALG is the name of the algorithm. Furthermore, B]""’Bh are the input
data, e.g. polynomial matrices or real numbers, and A],...,Ak are the output
data. If the algorithm is used by another algorithm and not all the output data
are needed then the Ai’ that are not needed, are replaced by dots. Analogously,
the B.,. that are not needed to be specified in a particular case, are replaced

i
by dots.
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2. Basic Algorithms

In this chapter two different algorithms will be presented. They both solve
essentially the same problem, but give the result in different forms. In many
applications it does not matter which of the algorithms is used.

2.1 Background

Let A(s) be an nxm polynomial matrix in the indeterminate s. If r is the rank
of A(s) then there is an nxr polynomial matrix L(s) and an mxm unimodular poly-
nomial matrix N(s), such that

A(s)N(s) = [L(s) O] (2.1)

This is shown in e.g. Pernebo (1978). It will be shown that many problems,
involving polynomial matrices, can be solved with an algorithm which computes
L(s) and N(s) such that (2.1) holds.

The matrix [L(s) 0] can be obtained by performing elementary column operations
on A(s), since N(s) is unimodular. The following three types of elementary

column operations on A(s) are needed.

Interchange columns i and j.

—
w N
—

Multiply column i by a nonzero real number c.
Add column j, multiplied by a polynomial a(s), to column 1i.

Now, suppose that there exists a scheme of column operations which brings A(s)
to [L(s) O] in (2.1). The transformation matrix N(s) and its inverse N_1(s)
can then be obtained in the following way. Let D(s) be an arbitrary polynomial
matrix with m columns. For every column operation, applied to A(s), apply the
same column operation to D(s). The result is a polynomial matrix E(s), given by

E(s) = D(s)N(s). (2.5)

The matrix N(s) is obtained with the choice D(s) = I. In many cases, however,
the product D(s)N(s) is of interest rather than N(s) itself.
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Let F(s) be an arbitrary polynomial matrix with m rows. To each of the column
operations (2.2) - (2.4) define a corresponding row operation in the following

way.

Interchange rows i and j. (Corresponds to (2.2)). (2.6)
Divide row i by ¢ in (2.3). (Corresponds to (2.3)).

Subtract row i, multiplied by a(s) in (2.4), from row j.

(Corresponds to (2.4)). (2.8)

For every column operation, applied to A(s), apply the corresponding row
operation to F(s). The result is a polynomial matrix H(s), given by

(s)F(s). (2.9)

The polynomial matrix N"](s) is obtained with the choice F(s) = In many cases,

I;
however, the product N_](s)F(s) is of interest rather than N_](s) itself.
Two different schemes of column operations which bring A(s) to [L(s) 0] will
be given in the following two sections. They will thus give rise to two different

algorithms for computation of L(s), E(s), and H(s) from A(s), D(s), and F(s).

2.2 Column Proper Matrices

The concept of column proper matrices was defined in Wolovich (1974). A slightly
modified definition will be used here.

Definition 2.1 The column degree of column i in the polynomial matrix A(s) is
equal to the highest power of s occurring in column i.

Definition 2.2 Let B(s) be the matrix formed by the nonzero columns of A(s) and
let di be the column degree of column i in B(s). Then A(s) is column proper if

the matrix 1im B(s)diag(s 91,
S>t+o

..s_dk) has linearly independent columns.

Any polynomial matrix A(s) can be made column proper via a series of elementary
column operations. Such a scheme of column operations is given in the proof of
Temma 4.6.1 in Pernebo (1978 ). Consequently, there exists a unimodular matrix
N(s), such that
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A(s)N(s) = [L(s) 01, (2.10)

where [L(s) 0] is column proper. The nonzero columns are here collected in the
matrix L(s), which by definition 2.2 has Tinearly independent columns. It follows
that L(s) has r = rank A(s) columns and (2.10) is a relation of the type (2.1).

An algorithm, which makes a given matrix column proper, is given below. The
following two algorithms are assumed to be available.

(i) A matrix W = (V U) is given. The matrix V is either empty (has no columns)
or has linearly independent columns. A basis for the column space of W is
selected so that it contains all the columns of V and some of the columns
of U. Let n be a vector with the same number of components as U has columns
and such that

0 if column i of U belongs to the basis.

1 otherwise.

The algorithm will be written
n = LD[V,U] .

(ii) The matrices P and Q are given. The range space of Q is included in the
range space of P and P has linearly independent columns. The unique solution
to the equation PX = Q should be found. The algorithm will be written

X = SOLV[P,Q].

Let the matrix A(s) with column degrees {di} be given. If a column is zero then
defigf its degree as dj = -1. Furthermore, let aj be the vector of coefficients
of s°J in column j of A(s). The following algorithm uses the method of the proof
of lemma 4.6.1 in Pernebo (1978) to make a polynomial matrix A(s) column proper.
The idea behind the method is the following. If A(s) is not column proper, then
there is a column, whose column degree can be reduced by addition of a linear
combination of columns with lower degree. This procedure can be repeated until

the matrix is column proper.
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k:=k+1 and go to 3.

Let the matrices U0 and U] be formed from the columns of Vk corresponding

to n=0 and n=1 respectively.

10. Compute Z = SOLVL(W, _; Uj)s Uqjl.

11. Let m. be the index j of the aj that forms the i:th column of (wk_] U
and let n. be the index j of the aj that forms the i:th column of U].

12. i = 1.

13. To column n; in A(s) is added

1. Permute the columns of A(s) so that the nonzero columns are to the left.
2. Let W_; be an empty matrix and put k=0.

3. Llet Vk be the matrix formed by the columns {ai}d.=k

4. Compute n = LD[W, ;5 V1. 1

5. If n¥0 go to 9.

6. If k = m$x di then stop.

7. wk = (wk_] Vk)

8.

9.

o)

where A (s) is column m; of A(s).
14. Update tﬂe value of dp..
15. If i is equal to the n&mber of columns in U] go to 17.
16. i:=i+1 and go to 13.

17. k = min d_ .
i M

18. If k=-1 go to 1 else go to 3.
The algorithm will be written
[L(s), E(s), H(s)] = COLPROL[A(s), D(s), F(s)1,
where E(s) and H(s) are computed as is shown in section 2.1. The relations
between the matrices are given by (2.10), (2.5), and (2.9) for some unimodular

matrix N(s).

2.3 Matrices in Echelon Form

One method for obtaining [L(s) 0] in (2.1) from an arbitrary polynomial matrix
A(s) was given in the previous section. Another method is given below.
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Find the entry of lowest degree in row 1 of A(s) and suppose that it is in
the i:th column. Add multiples of the i:th column to the other columns so
that the other entries in row 1 get Tower degree than the i:th has. Repeat
the procedure until all entries but one of row 1 are zero. Change columns so
that the nonzero entry comes to the left. Repeat the procedure for row 2, but
exclude column 1. Continue like this for all the rows. The result is a matrix
[L(s) 01, where L(s) is in Echelon form of the type shown in figure 2.1. The
entries marked x are nonzero and the entries marked y are arbitrary.

(x 0 0 0 O
y x 0 0 0
y vy 0 0 O
L(s) = |y ¥y x 00
y yy x 0
yyyvy o
\Yy Y Y ¥y X
Figure 2.1. The form of L(s).

It follows that there exists a unimodular matrix N(s), such that
A(s)N(s) = [L(s) OI. (2.11)

This is a relation of the type (2.1) since L(s) has r = rank A(s) linearly
independent columns.

Let aij(s) = a?i k+...+a$j be the entry in position i,j of A(s) and let
ai(s) be column i of A(s). The following algorithm brings the nxm polynomial

matrix A(s) to Echelon form.

S

1. r=0, k=1,

2. r:=r+l. If r>n+l then stop

3. If arj(s) = 0, kgj<m then go to 2.

4, d = min {deg arj(s)|k<3<m, arj(s)¢0}
. d d

5. Determine £€S, such that a.p|> arj

¥ jes~{e}. Here S = {i|k<ism, deg a . (s) = dl.

If there are more than one candidate for £ choose the smallest one.
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6. p=k.
7. If p=f then p:=p+l.
8. If pzm+1 then go to 13.
9. If arp(s) = 0 then go to 12.
aﬁp e-d
10. ap(s):= ap(s) - ;HE S az(s), where e = deg arp(s).
r

11. If deg arp(s) > d then go to 10.

12. p:=p+1 and go to 7.
13. If arj(s)¢0 for some j€{j|k<jsm, j*£} then go to 4.

14. Change columns £ and k.
15. k:=k+1. If kzm then stop
16. Go to 2.

The algorithm will be written

[L(s), E(s), H(s)] = ECHELON[A(s), D(s), F(s)I,
where E(s) and H(s) are computed as is shown in section 2.1. The relations bet-
ween the matrices are given by (2.11), (2.5), and (2.9) for some unimodular

matrix N(s).

2.4 The Basic Algorithm

In many applications it does not matter which of the algorithms COLPRO and
ECHELON that is used to obtain (2.1). In such a case the algorithm will be written

[L(s), E(s), H(s)] = BASICIA(s), D(s), F(s)].
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3. Polynomial Matrix Problems

In this chapter algorithms for solving some mathematical problems involving
polynomial matrices will be given. The problems are such that occur in most
design procedures based on polynomial matrix theory.

3.1 Greatest Common Divisors

The theoretical background for this section is given in section 2.4 of part 2
of Pernebo (1978).

Let A(s) and B(s) be nxm and nxk polynomial matrices. It was mentioned in
chapter 2 that there exists a unimodular matrix N(s), such that

[A(s) B(s)IN(s) = [L(s) 0], (3.1)

where L(s) has linearly independent columns. Furthermore, L(s) is the greatest
common left divisor (g.c.1.d.) of A(s) and B(s).

Let N(s) be partitioned as

(X(s) N](s)>
N(s) = , (3.2)
Y(s) No(s)

where X(s) is mxr and r = rank [A(s) B(s)]. Observe that L(s) has r columns.
It then follows from (3.1) that L(s) can be expressed as

L(s) = A(s)X(s) + B(s)Y(s). (3.3)

Let the inverse of N(s) be partitioned as

A B
sy o o) °(S)> , (3.0
Ng(s) Ny(s)
where Ao(s) is rxm. It follows from (3.1) that
A(s) = L(s)Ao(s) (3.5 a)

B(s) = L(s)Bo(s), (3.5 b)
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where Ao(s) and Bo(s) are relatively left prime.

The following algorithm computes the g.c.1.d. L(s) of A(s) and B(s). Further-

more it computes the matrices X(s), Y(s), A_(s), and Bo(s) in (3.3) and (3.5).

o

A

1. [L(s), N(s), N(s)] = BASIC [(A(s) B(s)), I, I]
2. Let r be the number of columns in L(s) and partition N(s) as

where X(s) is mxr.
3. Partition N(s) as

where Ao(s) is rxm.
The algorithm will be written
(s)» X(s)s Y(s)1 = GCLDLA(s), B(s)I,

where L(s) is the g.c.1.d. of A(s) and B(s) and the relations between the
matrices are given by (3.3) and (3.5).

3.2 Matrix Equations

The theoretical background for this section can be found in section 2.5 and 5.4
of part 2 of Pernebo (1978). Let A(s) and B(s) be nxm and nxk polynomial
matrices and consider the equation

B(s) = A(s)X(s). (3.6)
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The algorithm, given below, finds all polynomial solutions, if there are any.
If there are no polynomial solutions the algorithm gives all rational solutions,
if there are any. Observe that the algorithm can be used to solve equations of

the type

B(S) = Ap(S)Xy(S) + on + Ay(S)Xy(S), (3.7)

if A(s) in (3.6) is chosen as A(s) = [A1(s)...AK(s)].

A1l rational (including all polynomial) solutions to (3.6) can be computed as
is shown below (see Pernebo (1978), theorem 5.4).

Definition 3.1 Let Z(s) be an nxm rational matrix with rank r. The mx(m-r)
polynomial matrix Q(s) is a prime polynomial basis for the nullspace of Z(s)
if Z(s)Q(s) = 0 and the Smithform of Q is (I 0)T.

m-r

Let (Y1(s) YZ(S))T, where Y.(s) has k rows, be a prime polynomial basis for

]
the nullspace of (B(s) -A(s)) and let M(s) be a unimodular matrix, such that
Y1(s)M(s) = (D(s) 0), (3.8)

where D(s) has linearly independent columns. Define K(s) and H(s) through

(Y1<S>) M(s) = (D(S> 0 ) . (3.9)
Y, (s) K(s) H(s)

A1l solutions to (3.6) are given by

X(s) = Q(s)P "(s) (3.70 a)
P(s) = D(s)R(s) (3.10 b)
Q(s) = K(s)R(s) + H(s)Z(s), (3.10 c)

where R(s) and Z(s) are arbitrary polynomial matrices with R(s) square and non-
singular. It follows that there exists a rational solution if and only if D(s)
is square and a polynomial solution if and only if D(s) is unimodular.
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It remains to be shown how a prime polynomial basis for the nullspace of
(B(s) -A(s)) can be computed. Determine a unimodular matrix N(s) such that

(B(s) -A(s)IN(s) = (L(s) 0), (3.11)

where L(s) has r = rank (B(s) =A(s)) linearly independent columns. Partition
N(s) as

N(s) = (N;(s) Ny(s)) (3.12)

T, since

where N2(s) has m+k-r columns. The matrix N2(s) has the Smithform (I 0)
it is a part of a unimodular matrix. It follows from definition 3.1 that N,(s)

is a prime polynomial basis for the nullspace of (B(s) -A(s)).

The following algorithm computes ail polynomial solutions to (3.6), if there exist
any. Otherwise it computes all rational solutions in the form (3.10), if there

exist any.

1. [L(s), N(s), -] = BASIC[(B(s) -A(s)), I, -]
2. Let r be the number of columns in L(s)

If r=m+k then there exists no rational solution. Stop.
3. Partition N(s) as

where E](s) is kxr.

[D(s), C(s), -] = BASIC[Y](s), Yo(s), -]

Let £ be the number of columns in D(s).

If £#k then there exists no rational solution. Stop.
6. Partition C(s) as

where K(s) has k columns.
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7. If D(s) is not unimodular then stop.
(If COLPRO is used in step 4 then D(s) is unimodular if and only if D(s)
is independent of s. If ECHELON is used in step 4 then D(s) is unimodular
if and only if the diagonal entries are independent of s).

8. K(s):=K(s)D™'(s).
(If COLPRO is used in step 4 then write

K(s) = K0 + K]s + ... KJ.sJ and compute
P M T T T T
(KO K1 .NKj) = SOLVID ,(Ko K]...Kj)]
K(s):=Ky + K]s + ...+ st.

If ECHELON is used in step 4 then perform the following column operations

on (D'(s) K'(s)) for izk, k-1,..., 1.

a) Divide column i with the i:th diagonal entry of D(s).
b) Add suitable multiples of column i to the other columns so that all other

entries of row i become zero.

This gives a new K(s) and D(s) matrix, where the new D(s) is equal to I).
9. D(s):=I

The algorithm will be written
[D(s), K(s), H(s)] = POMEQ[A(s), B(s)]

and the solution to (3.6) is given by (3.10).
Observe that it follows from (3.6) and (3.10 a) that this algorithm can be used
to compute P(s) and Q(s), such that

“1(s), (3.13)

if A(s) is square and invertible. This is a computation often required in

design theory.

3.3 Factorization of Polynomial Matrices

The theoretical background to this section is found in section 2.3 of part 2 of
Pernebo (1978 ). Let an arbitrary nxm polynomial matrix A(s) with rank r be given.

Then A(s) can be factorized as

~

A(s) = A(s)A(s), (3.14)



3.6

where K(s) and R(s) are nxr and rxm polynomial matrices. Let A be an arbitrary
symmetric (w.r.t. the real axis) subset of the complex plane. Then the factori-
zation can be made such that the zeros of the invariant factors of R(s) are the
zeros of the invariant factors of A(s) that belong to A. Furthermore, the zeros
of the invariant factors of A(s) are those of the invariant factors of A(s) that
do not belong to A.

The flactorization can be obtained in the following way. Apply the scheme of :section
2.3 to A(s) to obtain

A(s)N(s) = [L(s) 01, (3.15)

where L(s) has the form shown in figure 2.1 and r columns. Apply an analogue
scheme to the rows of L(s) to obtain

M(s)L(s) = [T(s)}, (3.16)

where M(s) is unimodular and T(s) is an rxr lower left triangular matrix. From
(3.15) and (3.16) it follows that

A(s) = M‘1(s)[T{L) 8]N'1(s). (3.17)
Partition M-](s) and N_](s) as
-1 -1 Ny (s)
M7 (s) = [My(s) My(s)], N '(s) = g (3.18)
N2(S)

where M2(s) has r columns and N](s) has r rows.
Then it follows that

A(s) = My(s)T(s)N¢(s). (3.19)
The zeros of the invariant factors of A(s) are the zeros of the diagonal entries

of T(s). The factorization (3.19) is a rank factorization of A(s). It remains to
make a spectral factorization of T(s) as



S d

T(s) = T(s)T(s), (3.20)

where all the zeros of det?(s) belong to A and none of the zeros of detT(s)
belong to A. This can be done in the following way. Write

t]'t] 4 . : ‘ " . ‘ . . 0
T(s) = ' g - ; (3.21)
‘ tr-2 tr-Z R 0 . 0
. tr—],r—2 tepter 0,
tr,] tr,r—z tr,r-] teet,

where ti has all its zeros in A and ti has all its zeros outside A.
Obviously, tr can be factored out to the right directlyi leaving only tr in
position (r,r). It is not possible to do the same with ta_1s because tr el
does not in general contain the factor t ;. A multiple of column r can, however,
always be added to column r-1 so that the new entry in position (r,r-1) contains
the factor t_ ..
r-1

The equation

t =tXx+t. gy (3.22)

has a solution because t. and t are relatively prime. Now, add -x times

r-1 ~
column r to column r-1. This gives t._qy in position (r, r-1). It is now possible

to factor out t . too to the right.

A multiple of column r-1 can now be added to column r-2 to get an entry, includ-
ing the factor Er-2’ at position (r-1, r-2). Then a multiple of column r can be
added to column r-2 to get an entry, including tr:Z’ at position (r, r-2). Now
all the entries of column r-2 include the factor t._, and it can be factored out
to the right.

It is obviously possible to continue 1ike this and factor out all {%1} to the
right. The result is a factorization of the type (3.20).
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A factorization algorithm will be given below. An algorithm for finding the
unique solution, with deg x < deg b, to the polynomial equation

c = ax + by (3.23)
is assumed to be available.

The following algorithm makes a spectral factorization of an rxr lower left
triangular polynomial matrix T(s). The right factor T(s) in (3.20) is multiplied
by an arbitrary rx£ polynomial matrix B(s) giving C(s), i.e.

T(s)B(s) = T(s)C(s). (3.24)

The choice B(s) = I thus gives C(s) = T(s). Let b, be row k of B(s) and tij

the entry at position (i,j) in T(s).

Compute the zeros of the diagonal entries {tii}'
2. Factorize {tii} as t11 = ti'ti for i=1,...,r, where all zeros of ti belong
to A and no zeros of E1 belong to A (see remark below). If ti; has no zeros

in A then choose ti = 1 and ti
k=r

tii' Otherwise ti is chosen monic.

5. bk:=tkbk

If k=1 then go to 16.
k:=k-1
If deg t
J=k+1
0. Solve Fik = tjjx + tky with deg x < deg tk.

k=0 then go to 6.

— W 0 ~N O

12. b, :=b.+xb
J J

13. If j=r then go to 4.
14. tik:=t1k-Xtij for i = j+1, ..., r.

15. j:=j+1 and go to 10.
16. Let T(s) and C(s) be the results of the transformation on T(s) and B(s).
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The algorithm will be written
[T(s), C(s)] = FACTRILT(s), B(s)],

where the matrices are related via (3.20) and (3.24).

Remark In step 2 all the zeros of {tii} are displayed to the user, who marks
the ones that belong to A.

An algorithm for permutation of the columns of an nxm polynomial matrix A(s)
is assumed to be available. The resulting matrix B(s) is obtained as

by = a 5410 i=1,..., m, (3.25)
where a; and bj are columns j in A(s) and B(s). The algorithm is written

B(s) = PERM[A(s)].

The following algorithm makes the rank and spectral factorization, shown in
(3.14), of an nxm polynomial matrix A(s).

1. [L(s)s+» N(s)] = ECHELONIA(s), =, II
2. Ly(s) = PERMIL(s)]
3. [T](S)s ‘s M](S)] N ECHELON[L¥(S), ., 11

4. Ty(s) = PERMIT,(s)]

=7
—
w0
~—
|

= PERM[M; (s)]

—
—~
[72)
o
1l

PERMIT,(s)]

5. Let r be the number of columns in L(s).
N](s) is the r first rows of N(s)
M2(s) is the r last columns of M(s).



N
~
—
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o
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el
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el
[72]
S
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——~
(%]
o
ed

The algorithm will be written

[A(s), A(s)] = RASPFA[A(s)],

~N

where A(s), A(s) and R(s) are related via (3.14).

If only the zeros of the invariant factors of A(s) are of interest the algorithm
can be simplified considerably as follows.

1. [L(s), -, <1 = ECHELON[A(S), =+, *]

2 L](s) = PERM[L(s)]

3. [Tq(s)s » » +1 = ECHELONIL](S), =, ]

4. Compute the vector z of zeros to the diagonal entries of T1(s).

The algorithm will be written
z = INVZER[A(s)].
Observe that if A(s) is square and nonsingular then the zeros of the invariant

factors are the zeros of detA(s). The algorithm can thus be used to calculate
the zeros of detA(s).
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4. Linear Dynamical Systems

In this chapter dynamical systems of the type

T(u)g = U(u)u (4.1 a)
y = V(u)g + W(nu (4.1 b)

will be considered. Here T(u), U(n), V(n) and W(n) are polynomial matrices of
dimension rxr, rxf£, mxr and mx£ and T(u) is nonsingular. The operator u is the
differential operator p for continuous time systems and the forward shift operator
q for discrete time systems. Systems of this type are analysed in detail in
Rosenbrock (1970).

Algorithms to analyse and transform the system (4.1) will be given. An algorithm
to find the inverse system will also be presented.

4.1 Transformation to State Space Form

Any system of the type (4.1) can be transformed to a system in state space form.

It was shown in Rosenbrock (1970) that this can be done with transformation of
strict system equivalence (s.s.e.). In this section it is assumed that the
equations (4.1) are obtained from basic physical relations. Therefore, the

internal vaiable £, the input u and the output y are assumed to have physical
interpretations. Furthermore, it is assumed that it is desirable to have a simple
relation between £ and the obtained state variable x. In such a case it is possible
to give x a physical interpretation as well. A state space system, which is s.s.e.
to a system of the type (4.1), can be computed with the method of this section.
Furthermore, the state variable x can be chosen such that it is related in a very
simple way to the internal variable £. In the description of the method the system
is assumed to be a continuous time system so that u = p, the differential operator.
The method can of course formally be applied to discrete time systems as well.
Derivatives should then be interpreted as forward time shifts. For discrete time
systems, however, the equations obtained from basic physical relations are likely
to contain the backward shift operator q-]. The system will then not be in the
form (4.1). It can be brought to the form (4.1), but not with transformations of
s.s.e. Therefore it is questionable whether a method based on s.s.e. should be
used on a discrete time system. This topic is discussed in detail in part 1 of
Pernebo (1978 ). The method for transformation to state space form is described

below.
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There exists a system of the type
(Ep - F)z = Q(p)u (4.2 a)
y = P(p)z + W(p)u, (4.2 b)

which is s.s.e. to (4.1). The matrices E, F, Q(p), P(p), and W(p) and the
internal variable z are given below.

Let dj be the column degree of column j in T(p). Suppose for the moment that
all dj are nonzero and let

. ode .. da-d y
t'(p) = tgdp I+ tP p et (4.3)
J J

be the element at position (i,j) in T(p). Write the (i,j) element of V(p) as

. s d.-1 .. d.-2 .
vi(p) = v;q_](p)p Iy vé?_zp b V;J, (4.4)
-J J

where v;J_1(P) is polynomial but v;j_z,..., VZJ are real numbers. If all dj>0
j J

J
define the real matrices E and F as

K | 0 o |
i |
| |
1 | o I
0 té]l 0 0 tlz | (4.5)
1 2 |
0 0 |1 0 |
| |
E = | I
oL 22 |
0 t¢' 0 t
d1| d, |
_.__._._._._____I___.____l_._...
|
1 ol e e
9
I
|
|
1
{
| tq |
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0 1 10 . . ... 0 I |
| - |
| I
0 1 :o ..... 0 |
R R I V: £12 )
t td1-1| N d2'1|
Falflas s s o mmmm s ais s, oo o oo 2ot i (4.6)
0w o nsmn 0 |0 1 |
. | |
{ I
Oww o5 835w 3 0 ! 0 1 |
21 21 22 22
SN 8 2 s e )y t5' .l -t -t5¢ |
B 0 d] 1| ) d2-]|
| N T
0o 1
|
[ 0 1
| P '
0 d -1
L | ro]

where block row (and column) i in both E and F contains di rows (columns).
Define the polynomial matrices P(p) and Q(p) as

11 11 11

o L1
VR e Vd]-2 vd1_1(p) } v vdz_](p)l...lv0 Vg -1(P)
! ||
f P
P(p)= | | (4.7)
| | |
ml m1 ml : m2 | : mr
_Vo ....vd]_2 vd]_](p) : Vg rrenmennens r...i ....... Vy _](p{
|
0
0
Yy )
o(P)=|° (4.8)
Yp(P)
;Ur(p{
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where block row i in Q(p) contains d. rows. Define the internal variable
21 = (g edD o el e, gl T, where £9) 45 the j:th deriva-

tive of component i in &.

If some of the column degrees, say dk’ is zero then the definitions of E, F,
P(p) and Q(p) are valid with the following modifications. Write the elements
in column k of T(p) and V(p) as ¢k and vik(p) respectively. Block row k of E,
F and Q(p) will contain one row each and is defined as in (4.5), (4.6), and (4.8).
Block column k of E, F, and P(p) will contain one column each. A1l elements in_

block column k of E will be zero. Block column k of F will, for all i, have -t1k
in the Tast row of block row i and zero in the other rows of block row i. Block

column k of P(p) will have v1k(p) in row i for all i. The internal variable z

will have gk as the only element in block row k.

The system (4.2) can now be brought to state space form using the following
operations of s.s.e.

Multiply Ep - F from the Teft by a unimodular matrix N](p), such that the result
becomes row proper and multiply Q(p) by the same matrix. This gives

Ny (0 (E,-F) & (F1P

! 1) mwae « (§1F))- (4.9)

If E is nonsingular then F2 and Qz(p) disappear. In the sequel it is assumed
that E is singular. If E is nonsingular then it is easy to see how the method
can be simplified.

Let H be a permutation matrix and make the change of variables
oy
v=H 'z (4.10)

so that F22 in

<E1p - F])H N (5119 " P BpeP - F12> (4.11)
F2 Fo1 Fa2

becomes square and nonsingular. This is possible because the rows of F2 are
linearly independent.
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P(p) will then be transformed to

P, (p) = P(p)H. (4.12)
Multiply (4.11) and N](p)Q(p) from the left by the unimodular matrix

-1
I =(Eypp-Fyp)Fap

-1
0 F22

Nz(p) ~

This gives

-1
\ Ev1P-Fyr EqoP-Fra)  [EqqP-Fyq - (Bqpp-Fyp)Fop Fyq 0
z(p) = . s

-1
Fap 22F21 I

A (Ep - f °> (4.13)
G I
and
(Q3(p)) (Q](p))
e ny0) (4.14)
04(p) 0, (p)

It follows that E = Eqp - E]2F£;F21 is nonsingular since

-1
E i -E ,F,,F E
detfdeth2 = det( 1 "2 2z 21 ]2) =

E E E
=det{” 12) =det< 1)#0
Fa1 Faz F2
E4P-F4
because F is row proper.
2
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Muttiply (4.13) and (4.14) from the left by

-1
it oo
Ny = <o 1)

This gives
Ep-F 0 I-A 0
N3< 5 I) 2 (pe 1) (4.15)
(05(p)) . N3<Q3(p)> (4.16)
Qa(p) Qq(pP)

where the partitioning in (4.16)is compatible with that in (4.15). If P](p)
is partitioned as P](p) = (P,(p) P3(p)) it follows that

; Q (p)>

pI-A 0\/v.) (Y

(P I)(v%) - (o4<p) “ (4.17.2)
v

v = (Pp(p) PeN(J1) + Hip)w (317 )

which is s.s.e. to the original system.
Use the division algorithm to obtain Y(p) and B such that
Qs(p) = (pI-A)Y(p) + B (4.18)

and make the change of variables

() -6 69+ ()



Introducing (4.19) into (4.17) gives

(" 1)G,) - @

Pa(p) = Po(p) - P5(p)G

Wy(p) = W(p) + Po(p)Y(p) + P3(p)Qy(p) - P3(P)GY(p)

Define X(p) and C through

Pg(p) = X(p)(pI-A) + C.

Add (-X(p) -P3(p)) times (4.20 a) to (4.20 b).

This gives
X
y = 0% )+ o)
0
D(p) = Wy (p) + X(p)B.
It follows that the system

(pI-A)x = Bu
y = Cx + D(p)u

is s.s.e. to (4.1). The state variable x is given by

x = (I O0)Hz" - Y(p)u

4.7

(4.20 a)

(4.20 b)

(4.21)

(4.22)

(4.23)

(4.24)

(4.25)

(4.26 a)
(4.26 b)

(4.27)
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The inverse of (4.27) is obtained from (4.19)

! Y(p)
Z = H(_G>x + H<Q4(p)-GY(p)>u a Kx + L(p)u (4.28)

because X, = 0 by (4.20 a).

It is shown in Rosenbrock (1970) that x is the state variable of a system
in state space form which is s.s.e. to (4.1) if and only if there is a non-
singular T such that

X = Tx. (4.29)

Introduce (4.29) into (4.28)

k™!

x =2 - L(pu (4.30)
This means that any state variable for a system s.s.e. to (4.1) must fulfil
(4.30) for some nonsingular T. From (4.30) it follows that a component of
-L(p)u is the Tinear combination of u and its derivatives that must be added to
the corresponding component of z in order to make it a state variable.

Now, suppose that it is desirable that each component of the state variable x
is equal to one component of z plus, if necessary, a linear combination of u
and its derivatives. This is obtained by the choice procedure described below.

:
i:th component of z. Choose one of the zi-Li(p)u with K1¢o as the first state
variable. Say that the i]:th zi-Li(p)u was chosen. Any of the zi—Li(p)u with Ky
outside the row space of Ki can now be chosen as the second state variable.

1

Say that the 12:th was chosen. Any of the zi—Li(p)u with Ky outside the row space
of Ki

Let K, and Li(p) be the i:th row of K and L(p), respectively, and let z. be the

and Ki can then be chosen as the third state variable, and so on.

1 2

Let n be the dimension of x. Then it is possible to choose n zj-Li(p)u in this

way since K by (4.28) has rank n. A1l the chosen K, are linearly independent.
J
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It follows from (4.30) that

Ki _Z-l L'i (p)
1 1o 1 1
T x =|. = | u (4.31)
K z. L. (p)
n i n n
K.
Choosing T = " gives the desired state variables
K.
Ht
'z L. (p)
o 1
X = |. - u (4.32)
Z. L. (p)
n n

The corresponding state space system is obtained by making the coordinate
change (4.29) on the system (4.26).

Other choice procedures are possible. If the state varijables are allowed to
contain linear combinations of the z;:s then (4.30) can be multiplied by a
nonsingular matrix M

RT'% = Mz - ML(p)u (4.33)
where K = MK. The same procedure can now be used with (4.33) substituted for
(4.30). The matrix M can for instance be used to decrease the row degrees of

L(p).

An algorithm for transformation to state space form is given below. It is assumed
that an algorithm, which makes the transformation

1 =

,B=TB,C=cr]

A = TAT

of a state space system, is available. This algorithm will be written

i

[A, B, C1 = TSYSI[A, B, C, TI.



Furthermore, the division algorithm is needed. Let P(s) be an nxm polynomial
matrix and A an nxn real matrix. Then there is an nxm polynomial matrix Q(s) and
an nxm real matrix Z, such that

O
—
w
~—
il

(sI-A)Q(s) + Z.

©
—
(7]
~—
i
o
(7]
+
+
O

Then Q(s) can be written

Q(s) = Qk_]sk_1 o+ Q.

The following algorithm computes Q(s) and Z.

1. If k=0 then Q(s) = 0 and Z = Py Stop.

Q-1 = Py

3. Qi E P1.+1 + AQi+1 for i = k-2,...,0.

4. 7 = P0 + AQO.

The algorithm will be written
[Q(s), Z] = DIVIP(s), Al.

The following algorithm transforms a given system of the form (4.1) to state
space form, using the method of this section.

1. Compute the column degrees {di} of T(p) and form the matrices E, F, P(p)
and Q(p) given by (4.5) - (4.8).

24 [Ezp = FZ, Ql(p), .1 = COLPROLE'p - FT, Q'(p), -1

Let n be the number of nonzero rows of Eo.

3. If all rows of E  are nonzero then put E = E , F = F_, Q3(p) = Q,(p),
Pa(p) = P(p), Y = 1 and go to 10, else put v = O.



4. Permute the rows of [Eop - F0 Qo(p)] so that it becomes

E]p = F] Q](p)
F2 Qz(p)
with E] having linearly independent rows.

5. n = LDI@, F2], where p denotes an empty matrix.

6. Let H be a permutation matrix such that F2H = [FZ] F22] where F22 consists
of the columns of F2 having n; = 0 and form

<E11p - Fyp Egpp - F12> - (E1p - F]) H and
Faos Fy

7. Write Q2(p) = Ql2<pk + waw + Qg and compute
6 0 ... Q% = SOLVIF,,, (F,. QX ... Q%]
4 0t 14 22° V21 %2 "t X2

and form Q4(p) = Qzlfpk + wan + QZ.

8. E=E;y -E F=Fpq - FrG

11 " Eio6 n - e

9. Q3(p) = Q](p) - (E]Zp = F]2)Q4(p)
. _ Ak k 0
10. Write Q3(p) = Q3p + ...t Q3 and compute
k 0, _ = ,= .k 0
(A Q5 - Q5) = SOLV[E, (F Q3 e Q3)]
and form Qs(p) = ngpk + e + Qg.
1. [¥(p), BI = DIVIQ;(p), Al. Ify=1 go to 13.

12. Partition Pi(p) = [P2(p) P3(p)], where P,(p) has the same number of
columns as F5qs and compute Pa(p) = Po(p) - P3(p)G.



13. X' (p), C'1 = DIV [Py(p), AT]

14. If vy = 0 then D(p) = W
(

p) + Po(p)Y(P) + P3(P)Qy(p) - P3(p)GY(p) + X(p)B
Ify=1 then D(p) = W(p)

(
p) + P(p)Y(p) + X(p)B.
15. If vy = 0 then

K = H(EG> and L(p) = H<Q4(p;(?)GY(P)>

If Yy =1 then K = I, and L(p) = Y(p).
The algorithm will be written
[A, B, C, D(p)» K, L(p), nl = CSTATE[T(p), U(p), V(p), W(p)I,

where A, B, C, D(p) is a state space representation of order n, of the system
(4.1). The relation between the internal variable of (4.1) and the state variable

is given by (4.28).

The algorithm CSTATE computes a state space representation and the relation
between the state variable and the original internal variable. The following
algorithm computes linear combinations of the internat variables. The Tinear
combinations are determined so that the derivatives of u, that must be added to
make them state variables, are of lower order than for each of the included
internal variables. The user of the algorithm can then, in an interactive manner,
choose state variables from these linear combinations and the original internal
variables. The user can also construct other linear combinations and it is tested
if these are valid as state variables.

In the following algorithm the internal variable z and the input u occur. They
should be interpreted as vectors of symbols, where each symbol stands for the

corresponding component of z or u. Furthermore, each component of e.g. L(p)u,

where L(p) is a polynomial matrix, is a linear combination of the symbols for

the components of u and their derivatives.

1. Let £ be the highest degree in L(p).

2. L(p):=L(p), K:=K and z:=z, where z is the internal variable of the system (4.8)



10.

11.

12.

13.

14.

15.

16.

17.

18.

ii=l

Define E(p) as those rows of L[(p) that have row degree equal to i. Let K
be the corresponding rows of K and z the corresponding rows of Z.

~

Let L be the coefficient matrix of p1 in L(p).

Compute a basis X for the orthogonal complement of the columns of L.

L(p): = ([(p) ) K:= ( ‘ ) and
- Wi T TR

jr=i-1

X1z

N1
W
TN
N
SN—

If i 0 then go to 4.
Let K; and L.(p) be the iith row of K and L(p).

Define M = {1|K1¢0}

Display the vector v = z - L(p)u to the user and mark the components that
belong to M,

The user chooses a linear combination Xy = Zajvj as his k:th state variable.
(Observe that at least one of the Vj in Xy flust have index J in M),

K, = Za.K.
K 53973
n = LD[(R-:- s e R;I;_'I)s R.Il;]

If n=1 then notify the user that this is an invalid choice of state varijable
and go to 14,

If k=n then go to 22.
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19. Compute n; = LDL(R] ... Rp), Ki1, view.

20. Delete {i|n.=1} from M.
21. k:=k+1 and go to 13.
Rn
23. [A, B, C1 = TSYSIA, B, C, TI
The algorithm will be written
[A, B, C] = CHOICE[A, B, C, K, L(p), nl.
Here the input data are the output from the algorithm CSTATE. The resulting state
space system is obtained as A, B and C from the algorithm CHOICE and D(p) from

the algorithm CSTATE.

4.2 Controllable or Observable Systems

Consider the system (4.1) and assume that the matrices T(u) and U(u) are
relatively prime. This means that the system is controllable. Introduce the
system matrix (c.f. Rosenbrock (1970))

T U
P = (] W) (4.34)

Q) I
Po(u) = (-R(u) 0) (4.35)
It will be shown how Po(u) can be computed from P(n).

Since T(u) and U(u) are relatively left prime there is a unimodular N(u), such
that

[T(u) -U(u)IN(u) = [I 0] (4.36)
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Partition N(u) as

(4.37)

where N](u) is rxr.

Form the system matrix

Compute
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/1 0 lo\ /1 o ;8

P { 0 I 1 =/0 i P

g(1) @ WTT%Bﬁﬁ {E’W@Th 5(1)

Here Q(u) = Ng(n) and R(n) = Volu) + w(u)N4(u) The system matrix P (u) is

thus s.s.e. to P(yu).
The system corresponding to the system matrix Po(u) is

u (4.38 a)
(n)E (4.38 b)

It has been shown that there are polynomial matrices H(n) and K(n), such that
Py(1) = H(W)Pg (1)K(n). (4.39)

It was shown in Perhebo (1977) that the relation between £, £ and u is given by
0\ 0

e )=k | € ). (4.40)
\ =u I.‘f =-u

1

If N '(u) is partitioned as
Mi(k) My(u)
-1 1 2
0 5 (M3(u) M4(u)> ’ e

where Ml(“) is rxr, then K(u) is given by

/My(u) My(u) = My()
. (4.42)

K{u) = Mg(u) Ma(u)  -Mg(w)
(\ 4O 30 41
It now follows from (4.40) and (4.42) that

£ = Ma(u)e + My(uu. (4.43)



The following algorithm computes a system (4.38), which is s.s.e. to a given
system (4.1). It also computes the relation (4.43) between the internal variables.
The relation (4.43) will be written

£ =Z(ueE + Y(uu (4.44)
1. [, N(u), M(u)1 = BASICI(T(n) -U(w)), I, I]

2. Partition N(u) and M(u) as

M) = Ny () Np(w) and M(y) =
W Ny (e) Ng(w) we

where ﬁl(“) and M](u) are rxr.

3. Q(u) = Ny(w)
R(u) = VN, (u) + W(n)Ny(n)
Z(u) = M3(u)
Y(u) = My(u)

The algorithm will be written

[Q(H)s R(u)s Z(u)s Y(u)I = CONIT(m), U(n), V(n), W(u)l.

The algorithm can be applied to (4.1) even if it is not controllable. The result-
ing system of the type (4.38) will then represent only the controllable part of
(4.1). The systems will not be s.s.e., but only system equivalent (Rosenbrock
(1970)). The relation between the internal variables will still be given by (4.44).

If the system (4.1) is observable, then the algorithm can be used to compute
a system

A(w)y = B(wu, (4.45)

which is s.s.e. to (4.1). This is done by application of the algorithm to the
dual system. In this case Z(u) and Y(u) no longer give the relation between the
internal variables. This relation is instead given by

y = V()E + Wuu, (4.1 b)
since y is the internal variable of (4.45).



4.3 Poles, Zeros, and Decoupling Zeros

Let the system (4.1) have the system matrix

P (1) = (_T(u) U(u))_ (4.46)

The poles of the system (4.1) are the zeros of detT(u), which in turn are the
zeros of the invariant factors of T(u). Therefore, the algorithm INVZER in
section 3.3 can be used to compute the poles. Let the components of the complex
vector p be the poles of the system. Then p is given by

p = INVZER[T(n)]1.

The zeros of the system (4.1) are defined as the zeros of the invariant factors
of the system matrix P(u). Let the components of the complex vector z be the
zeros of the system. Then z is given by

z = INVZER[P(u)].

The input decoupling zeros (i.d.z.) of the system are the zeros of the determin-
ant of the g.c.1.d. of T(u) and U(u). They can therefore be computed in the follow-
ing way.

1. [L(u)s 5 +1 = ECHELONI (T(k) U(n)), =, °I

2. Compute the zeros of the diagonal entries of L(u).
These zeros are the i.d.z. of the system.

The output decoupling zeros (o0.d.z.) are computed analogously. The input-output
decoupling zeros (i.o.d.z.) are those o.d.z. that disappear when all the i.d.z.
are removed. They can be computed in the following way.

oo Loy To(W)s +5 «» <1 = GCLDIT(u), U(u)]

2. Compute the o.d.z., called {Yj}, of T(n) and V(u).

3. Compute the o.d.z., called {ei}, of To(u) and V(u).

4. The i.o.d.z. are given by {Yi}\{ei}'



4,4 Change of Operators

Consider the following change of operators in the system (4.1).
g KA ad # bc (4.47)

This includes the change from the forward shift operator g to the backward
shift operator q_] and vice versa. It also includes the change of operators
that is required in the design method of Pernebo (1978). The transformation
(4.47) may also be used in connection with stability check, like e.g. the Routh
algorithm.

ATl transformations of the type (4.47) can be achieved with repeated use of the
following two transformations

>
1

au+b, a#0 (4.48)
and

1
T (4.49)

Let the polynomial
_ ok
p(u) = e (4.50)
be given. The following algorithm computes

- k 1 b
a(A) = qA" + ..o+ q 8 p(3r - ) (4.51)

oo

1. Compute o = %-and B =

2. i:=k-1, q(A):=pk
3. If i ¢ -1 then stop.

4. q(n):=(0A-B)-q(2)+p,

5. i:=i-1 and go to 3.
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The algorithm will be written

q(x) = POTRAN[p(u), a, bl.

The following algorithm computes the polynomial

() =2%@E), d> k. (4.52)
1. rq.;i = p; for i =0, 1, ...y k
s Pqei = 0 for i = k+1, ..., d.

The algorithm will be written

r(x) = POINVIp(u), dl.
Only systems of the type

A(u)y = B(u)u (4.53)
will be considered. Here A(u) is mxm and B(u) is mx&.
An algorithm, which makes the change of operators (4.48), is obtained if the
algorithm POTRAN is applied to all entries of A(u) and B(u). The algorithm will
be written

[A(A), B(A)] = TRAN[A(u), B(u), a, bl,

where X is given by (4.48).

The following algorithm makes the change of operators (4.49) and multiplies each
row of (4.53) by a suitable power of ) to make the result polynomial.

2. Compute the row degree d; of row i of [A(u) B(w)l.

*

3. Compute aiJ

(A) = POINVIa (1), d;1 for j=1, ....m.

4. Compute b:j(x) POINV[bij(u), di] for j=1, ...,%.
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5. If 1 = m then stop.
6. i:=i+]1 and go to 2.
The algorithm will be written
%k *

[A (X)), B (X)) = INV[A(u), B()1,
where X is given by (4.49).
Remark Observe that the resulting system

A* 0y = B () (4.54)
may have i.d.z. at the origin. These i.d.z. are introduced if and only if the
matrix [A(u) B(u)l is not row proper. Consequently, they are avoided if
[A(u) B(u)l is made row proper, e.g. with the algorithm COLPRO, before INV is

applied.

4.5 Structure Matrices

The structure matrices play an important role in the design theory of part 2 of
Pernebo (1978 ). The theoretical background is found in sections 2.3 and 3.5 of

that reference.

Consider a system with two input vectors and two output vectors as is shown in

figure 4.1.
e | ¥
u S z
— >

Figure 4.1 The system.

The input u is the control input and e is the disturbance. The output y is the
output to be controlled and z is the measured output. Suppose that the system
is described by

e

D(p) = I (“} (4.55 a)
HIERI (4.5 b)
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where D(u) and E(u) are relatively right prime polynomial matrices. Introduce
the operator

) = ﬂ;i’ (4.56)

where a belongs to the stable region of the complex plane and compute the corre-
sponding polynomial matrix system in A as is shown in section 4.4.

This gives
D (M)E = I(:) (4.57 a)
(3) = e e, (4.57 b)

* *
where D (A) and E*(A) are polynomial matrices. The matrix D (A) can be made block
triangular by multiplication from the right by a unimodular matrix, giving

(D1éx) ngig)(§i>’=(é)“ * (?)e (4.58 a)
() - (6] et (4.58 b)

Let A be the image of the unstable region of the complex plane under the mapping
(4.56). Make a factorization, of the type shown in section 3.3, of E](A) as

~

Eq(A) = E(A)E(A). (4:59)

Here all the zeros of the invariant factors of E(x) belong to A and none of the
zeros of the invariant factors of E()) belong to A. The matrix E(A) is defined

as the Teft A-structure matrix of the system. It can be computed with the follow-
ing algorithm.

G, ] = ool (E() - ]

T

2. [T(n), U(n)] = TRANIB  (u), E (1), 1, -al

*T

(A), E (M) = INIT(n), U(n)]
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Partition D*(x) as

*

where D1(x) has % rows. (& is the number of components of u).

[+, E7(A), +1 = BASICIDS(A), E (1), -]

Partition ET(A) as

* E,(0)  Ei(A)
EX(A) = 2 1
1 E,(0) E A/
where E1(x) is mx%. (m is the number of components in y).

A

[E(A), +1 = RASPFALE;(})]

algorithm will be written

N

E(A) = STRMATID(n), E(u), a, %, ml,
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where E()) is the left A-structure matrix of the system (4.55). The operator
A is given by (4.56), where a is a real number in the stable region of the

complex plane. Furthermore, & and m are the numbers of components in u and y,

respectively.

4.6

Inverses

Let G(u) be a stable and proper transfer function. Suppose that a stable and
proper transfer function K(u) should be determined so that the cascade system

in figure 4.2 has a given transfer function H(u).

—— K Gu)ppm—>

Figure 4.2 The system with compensator.
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A stable and proper K(u) should thus be found, such that

G(u)K(u) = H(n). (4.60)
It is shown in chapter 5 of part 2 of Pernebo (1978) that this 1is possible
if and only if the left A-structure matrix of G(u) is a left divisor of the

left A-structure matrix of H(u).

An algorithm to compute K(u) with the method of section 5.4 in Pernebo (1978)
will be given. Let G(n) and H(n) be represented as

6(w) = 17 ()U; () (4.61)
H(u) = T (1)Uy (1) (4.62)
Introduce the operator

A =-ﬁ}5 : (4.63)

where a belongs to the stable region of the complex plane, into (4.61) - (4.62).

This gives
6°(0) = T3 (U, () (4.64)
H () = T, () U, (). (4.65)

Let A be the image of the unstable region under the mapping (4.63). The origin
belongs to A by definition. Then a K*(A) with no poles in A should be determined
such that
T UK ) = T 00U, () (4.66)
3 3 4 AN ’

A stable and proper K(u), satisfying (4.60) is then obtained as

K () = KL, (4.67)
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There are unique polynomial matrices TS(A) and T6(AL such that
-1 -1
Te MTe(A) = T3(>\)T4 (A). (4.68)

Multiply the equation (4.66) from the left by the nonsingular polynomial matrix
TS(A)T3(A). This gives

*

TS(A)UB(A)K (A) = T6(A)U4(A), (4.69)

which has the same solutions as (4.66). The algorithm of section 3.2 can now
be used to find all solutions of (4.69).

The following algorithm computes a stable and proper K(u) satisfying (4.60).

1 [T1(n), U1(n)] = TRAN [Ty (n), U](u), 1, -al
[Ty(n), Oy(n)] = TRAN [T, (n), Up(u), 1, -al
2. [T3(2), U3(A)] = INVIT(n), Uy(n)]
[T4(A)s Ug(A)T = INVIT,(n), Uy(n)]

5. z = INVZERID(})]

6. If some Z; belongs to A then no stable and proper solution exists.

I

7. ID(n), N(n)] = INVIBT(A), RT(A)]

8. [DT(u), NT(u)] = TRAN [B(n), N(n), 1, al

The algorithm will be written

[D(n)» NI = INVERSL Ty (n), Ug(u), To(u)s Uy(n), al
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and the solution K(u) to (4.60), with G(u) and H(u) as in (461) and (4.62),
is given by

(n). (4.70)

The point a should be chosen on the real axis in the stable region of the complex
plane. The solution K(n) will in general have some poles at a.



Bad

5. References

Anderson BDO, Scott RW (1977): Parametric Solution of the Stable Exact Model
Matching Problem. IEEE Trans. Aut. Contr. AC-22, 137 - 138.

Bengtsson G (1977): Output Regulation. and Internal Model - A Frequency
Domain Approach. Automatica 13, 333 - 345,

Cheng L, Pearson JB (1978): Frequency Domain Synthesis of Multivariable Linear
Regulators. IEEE Trans. Aut. Contr. AC-23, 3 - 15.

Pernebo L (1977): Notes on Strict System Equivalence. Int. J. Contr. 25, 21 - 38.

Pernebo L (1978 ): Algebraic Control Theory for Linear Multivariable Systems.
Department of Automatic Control, Lund Institute .of Technology, Lund, Sweden,
CODEN: LUTFD2/(TFRT-1016)/1-307/(1978).

Pernebo L (1980): A Command Guide for a Computer Program for Polynomial Matrix
Systems. Department of Automatic Control, Lund Institute of Technology, Lund,

Sweden, CODEN: LUTFD2/(TFRT-7206)/1-022/(1980).

Rosenbrock HH (1970): State - Space and Multivariable Theory. Nelson,; London.

Wang SH, Davison EJ (1973): A Minimization Algorithm for the Design of Linear
Multivariable Systems. IEEE Trans. Aut. Contr. AC-18, 220 - 225.

Wolovich WA (1974): Linear Multivariable Systems. Springer-Verlag, New York.




A.1

APPENDIX
List of Algorithms

Name Purpose Def. on page

BASIC This name is used for either COLPRO or 2.6
ECHELON when it does not matter which of the
two is used.

CHOICE Interactive choice of state variables. To follow 4,14
CSTATE.

CSTATE Transformation of a continuous time system from 4.12

polynomial matrix form to state space form.

COLPRO Makes a polynomial matrix column proper. 2.4

CON Transformation of a polynomial matrix system to 4.17
controllable form,

DIV Division algorithm for polynomial matrices. 4.10

ECHELON Brings a polynomial matrix to Echelon form. 2.6

FACTRI Spectral factorization of a triangular polynomial 3.9
matrix.

GCLD Computes the greates common left divisor of a set 3.2

of polynomial matrices.

INV Makes the change of operators A = u'1 in a polynomial 4,21
matrix system in controllable or observable form.

INVERS Computes a cascade compensator. 4.25

INVZER Computes the invariant zeros of a polynomial matrix. 3.10



LD

PERM

POMEQ

POINV

POTRAN

RASPFA

SOLV

STRMAT

TRAN

TSYT

Selects a basis from a set of column vectors.

Permutation of columns.

Solves the polynomial matrix equation AX = B for X.

u_1 in a scalar

Makes the change of variables A
polynomial.

Makes the change of variables A = u+a in a scalar

polynomial.

Makes a rank and spectral factorization of a
polynomial matrix.

Solves the matrix equation AX = B for X when A and B
are real matrices.

Computes the Teft structure matrix for a dynamical
system.

Makes the change of operators A = y+a in a polynomial
matrix system.

Makes a change of coordinates in a state space system.

A.2

.20

.20

.10

.23

.20



