LUND UNIVERSITY

Drawbacks of a Method for Calculationg Pseudoinverses

Soderstrom, Torsten

1971

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Soéderstrom, T. (1971). Drawbacks of a Method for Calculationg Pseudoinverses. (Research Reports TFRT-
3035). Department of Automatic Control, Lund Institute of Technology (LTH).

Total number of authors:
1

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.

* You may not further distribute the material or use it for any profit-making activity or commercial gain

* You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00


https://portal.research.lu.se/en/publications/68185aa4-8511-4264-ae5c-57655b3e4f0f

DRAWBACKS OF A METHOD FOR
CALCULATING PSEUDOINVERSES.

TORSTEN SODERSTROM

REPORT 7113(B) SEPTEMBER 1971

LUND INSTITUTE OF TECHNOLOGY
DIVISION OF AUTOMATIC CONTROL




" DRAWBACKS OF A METHOD FOR CALCULATING PSEUDOINVERSES.

ABSTRACT - An iterative method for computing pseudo-
inverses given by Ben-Israel and Cohen is proved to
be unstable if the rank of the given matrix is not

maximal. The unstable case is illustrated by numeri-

cal examples.

This work was supported by the Swedish Board for Technical
Development (contract 71-50/U33.




1. INTRODUCTION.

The pseudoinverse of a matrix may be defined in dif-
ferent (but equivalent) ways [6]. There are several
algorithms for computing pseudoinverses. In [5] and
[6] some comparisons between different methods are

made. The purpose of this paper is to analyze a me-

thod given by Ben~Israel and Cohen [1].

2. THE ALGORITHM.

In [11 the following iterative algorithm is given.

The pseudoinverse of A is denoted by At

Yi,q = Y (2I-AY)) K= 0, 1, «.. (1)

Y, = oAl | (2)

If

0 < a < 2 i (3)
max ACATA)

it is shown that Yk > A+ as k » o,

Further it is shown

2
Sl Al -1 a" -y | (1)
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In [1] there is also a corresponding method for com-

puting AAT,




k=0, 1, ... (5)
7 = gAA (6)

If (3) is fulfilled 7, » AA" as k » =. Further tr 7,
is a monotone increasing sequence which converges to

rank A,

3. SOME QUESTIONS ABOUT THE ALGORITHM.

Some practical questions concerning the method are

not quite satisfactorily answered.

1. How difficult is it to determine the rank A cor-
rectly? It is well-known, [5], that the problem
of determining the rank of a matrix may be dif-
ficult when uncertainties and/or roundeff errors

have to be considered.

2. The method involves numerous matrix multiplica-
tions. What will this mean in terms of computing

time and accuracy?

3. How critical is the choice of o? The optimal

value of o is shown to be

-1
a = 2{max A(ATA) + min A(ATA)
20

but the computation of this quantity seems to re-
quire roughly as much work as the computation of
the singular value decomposition [4]. This latter
method is believed to be one of the best avail-
able. A comparison between this method and another

is given in [6] by numerical examples.




It is believed that the numerical examples toward the
end of this paper will shed some light upon these

questions.

From (4) one could expect that (1) could be used for
improvements of a solution. However, this is not true
since the algorithm is unstable if rank A is not maxi-

mal.

4. A TRANSFORMATION OF THE EQUATIONS.

In order to demonstrate the unstability of the solu-

tions of (1) and (5), introduce
x, = A" -y (7)

k k

T, = AA" - 7 (8)

Equations (1) and (5) are then transformed to

Xypq = Ay + XAy + XyhXy (9)
T = A.T. + T.A. + T2 (10)
k+1 27k kK2 k
+
Ay = I-A'A (11)
-l-
Ay = I - AA (12)

It is interesting to examine the stability properties

of the solutions Xk = 0 of (9) and Tk = 0 of (10).

The starting values corresponding to (2), (6) are

(13)

B
n
>.
.
§
Q
>

Ty = AA' - oAA (14)




5. SOME LEMMAS.

In the following the singular valve decomposition

will be used.

LEMMA 1., Let A be a real mxn matrix. Then there is

a factorization

A = UsvT (15)

U mxm orthogonal matrix, V nxn orthogonal matrix,

2 mxn diagonal matrix. I :'diag(o1... op)9 p = min(m,n).

The numbers g;_are the singular values. Further the

pseudoinverse is given by

INER ,, (16)
where %' is the nxm matrix diag(o:, e ooy og) with

+ =1 . T
o: = os if 0. $ 0, 0O = 0.

Proof. See [2] and [u4].

LEMMA 2. Let A bean mxn matrix.

i) If rank A < min(m,n) then X = 0 is an unstable

solution of (9).

ii) If rank A < m then Tk = 0 is an unstable solution
of (192.

Proof. It is sufficient to show that the linearized

equations are unstable so the last terms of (9) and

(10) are dropped

Xk+1

1}

A Xk + X, A 17)

1 k2

41 - AZTk + TkAQ (18)

+3
!




- T ‘/_T_ ,/_T
Let A = UzV™, X7 = VXU, T/ = U'T,U.

Then from (11), (12), (16), (17), (18) one obtains

Xppq = DXy + XD, (19)

Tl = D,TL + T/D, (20)

D, = I - rty (21)
+

D, = I - 1% (22)

The diagonal matrices D, and D, have partly the same

eigenvalues namely

According to the assumption i) there is at least one

A; =1, say A = 1. The solution of (19) is
k {k
X2 = ) pl xz pk™n (23)
k “ 1770 72
n=0{(n

The element (X7) becomes
k7 rr

k
(X=) = )

k rr n=0

k

0'rr

. . akK o
}(Xo)rr = 27(X7)
n

and the unstability of (19) and consequently (9) is

proven.

Noting that the assumption ii) implies that D, has
an eigenvalue equal to 1, the proof of the second

part of the lemma is quite analogous.
Q.EODO




LEMMA 3.

i) If all eigenvalues of X

O
than one then xk = 0 is an asymptotically stable

" solution of

Kjer1 = KgAKy (24)

ii) If all eigenvalues of TO have magnitudes less

than one then Tk = 0 is an asymptotically stable

solution of

- m2
Tk+1 = TE (25)

Proof. Simple calculations (together with the assump-

tions) give

k k
25=1 2% =1 o
XO(AXO) = (XoA) Xg > 0, k ~

~
i

2k
Tk=(TD) > 0, k > «

Q.E.D.

LEMMA 4, Let A be an mxn matrix. If all eigenvalues

of X A have magnitudes less than one, and rank A = n

then Xk = 0 is a stable but not asymptotically %@able

solution of (9).

Proof. The assumption implies Ay = 0.

Introduce the sequences Rk and Sk by

Rk = XkAQ (26)
Sk = Xk(I A,) (27)
so X, = R, + S



Equations (9), (12), (26) give

Sk+1 = SkASk (28)
with SOA = XOAA+A = XOA. Lemma 3 implies that the so-
lution

2k—1
Sy = (SOA) Sy (29)

is bounded and tends to zero as k + «, Equations (9),
(12), (26), (27) give

Rk+1 = (I+SkA)Rk (30)

with the solution

R, = (I+S AY(I+S

X A) ... (I+SOA)RO (31)

k-1 k=2

Insert (29) and let F = S.,A = X A

0 0
k1 ?k~?
Rk = (I4T J(T4F ) (I+F)RO
or
-1 2k
R, = (I-F) (I-F° )R (32)
k 0

The assumptions imply that the inverse exists. Thus

the sequence Rk is bounded but does not tend to zero

as k + «», The same 1s true about Xk = Rk + Sk’
Q.E.D.




6. MAIN RESULT.

Lemma 2 - Y4 are now summarized in the following:

THEOREM. Let A be anmxn matrix. Assume that (3) holds.

i) If rank A < min(m,n) then X = 0 is an unstable

solution of (9).

ii) If rank A = min(m,n), m ¥ n then X,_= 0 is a
stable, but not asymptotically stable, solution
of (9).

iii) If rank A = m = n then Xk = 0 is an asymptoti-

cally stable solution of (9).

0 is an unstable solu-

iv) If rank A < m then T
tion of (10).

k

v) If rank A = m then Tk = 0 is an asymptotically
stable solution of (10).

Proof. Cases i) and iv) follow immediately from Lem-

ma 2.

Case 1i) follows from Lemma 4 if all eigenvalues of
XOA have magPitudes less than one. The assumption
rank A = n(A' A = I) is easily transformed to the
other possible case rank A = m by transposing (9) and
(12). (13) gives

4]

| A (XA | = | asaTamaata) | = | AL (TmeatA) | o=

| 1mao? | < 1 (33)

according to (3). A small perturbation of (13) does

not change this fact.

The cases iii) and v) follow by the same argument.
Q.E.D.




Remark. The conclusion of the theorem is that the al-
gorithms (1), (2) cannot be used if rank A < min(m,n).
If rank A = min(m,n) an ordinary QR algorithm may be

used instead.

7. NUMERICAL EXAMPLES.

Some examples illustrating the properties of the al-
gorithm are given below. Computations were carried

out on a Univac 1108. The relative precision is about

1.5 10“8. In accordance with [11 o was chosen as

o = , B = AA (34)
m
max ,Z l bij |
Tgigm 3=1

Observe that all figures have a logaritmic scale.

In the following the condition number of A denotes

the quantity

cond A = || A ||« || A" ] (35)

with

[l A ] = su [l Ax || (36)
H Xﬁ}l2=1 2

From Lemma 1 one easily obtains

cond A ='EE§~E£§2 (37)
min o(A)

0#0




10.

" Example 1

The matrix is

0.5+¢ 0.5 0.5
Ale) =

0.5 0.5 0.5
with € = 10_3. In the beginning Yk is very close to
{A(e=0)]+. In this example the convergence is slow.

The condition number of A isg 2 = 103.

Examgle 2

The matrix is

>

1]
P o R S N, SRS
U - N
o — N W
Sy N OO w o,
o2 TN e BN AN B R o

Rank A = 3 and cond A = 7. The numerical solution is
unstable in accordance with the theorem. In the in-
terval 10 < k < 25 the matrices Yk and Z}< do not

change very much. In this interval they also differ

very little from the true solution.

Example 3

The matrix is the inverse of the Hilbert matrix of
order 6. The reason for choosing the inverse is gi-
ven in [2]. The representation of the Hilbert matrix
causes necessarily roundoff errors which will give

a rather great deviation of the inverse.




11.

The theorem implies stability in this case which seems
to contradict the numerical result. The necessary re-

lation of the singular values (33) hold | 1-a0§ | < 1.

Introduce
€ = min max 1 - | 1~uc§ | (38)
o o,

If A non-singular

e = 2 > (39)
1 + (cond A)

For practical use it is reasonable to require e 2 €9

the relative precision. Thus

T
cond A < %f~" (40)
- €O

is an upper bound of cond A.

For a non-singular matrix such an upper bound ought

to be of the form

cond A ¢ = (41)
€
0

for good methods.

In the actual example cond A = 1 = 107 but /2/50
I
= 1 « 10,

Example U

The last column of the matrix of Example 3 was substi-

tuted by a linear combination of the first five columns.




12,

In contrast to Example 2 there is no interval of k
where Yk and Zk are almost constant and near the true

solution.

8. SUPPLEMENTARY COMMENTS.

What information do the numerical examples yield re-

lative to the questionsof Section 3°?

The determination of rank A may fail in the unstable
case. Only in special examples rank A < min(m,n) is
consistent with stability. So it is in the example
of [11.

1 . .
a5 = qg o L= =1, ey 10
It can be shown that including the effect of roundoff
errors Y, = AP, with some matrices Py, which implies

Xk 0 in (19).

Example 1 shows that ill-conditioned problems require

many iterations. The same is true if o is small.

For the matrix of Example 3 computing time and accu-~
racy were compared with different algorithms. SVD
and LSQ are based on the singular values decomposi-
tion. FORTRAN versions of the Algol programs given

in [3] were used.

LSQR is an ordinary QR factorization of A, that is

Q orthogonal and R upper triangular [3]. Then




13.

This method requires rank A = min(m,n).

Algorithm Time in ms | Accuracy
SVD 4y 2.1072
1.5Q 20 241072
LSQR 7 241072
Ben Israel & Cohen
No. of iterations
24 98 0.7
27 110 1.9072
30 192 241073
60 242 10”3
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