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Abstract – The past decade has witnessed a marked increase in 
distributed system complexity. This was driven by a maturing 
technology that steadily decreased the number of faults. 
Unfortunately these fewer faults have become exponentially more 
costly. It becomes mandatory to detect faults prior to taking effect 
on the network. Such an early detection requires a new test 
detection and fault containment strategy, of which the outline and 
some basic ingredients are sketched here. 
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I. Introduction 
Modern society is foremost characterized by an 

increased sharing of information and communication in 
networks (or Grids). Of early date are the Transportation, 
Electricity, Water and Natural Gas Grids. Newer is the 
Information Grid (or Internet), quickly followed by 
information carrying networks for specific applications. 
This counts not only in support of the former named 
classical networks, but also in stimulating new sensory 
ones in Home and Industry [1]. 

Most of these networks grow without an overall 
architectural vision but rather by means of a local 
preferential attachment. This lack of predetermined 
structure does not mean that there is no structure at all. On 
the contrary, it has been noted that the seemingly chaotic 
self-organisation leads to a clear structure with distinct 
properties, though different from designed networks [2]. 

The default distribution of a programming error as part 
of the maintenance procedure, that in 1992 caused the 
New-Jersey blackout, may have seemed just that: an 
exception. But the problems kept coming back. The 
Allston-Keeler (July 1996) and the Galaxy-IV (May 1998) 
disasters gave rise to a concerted research activity on Self-
Healing Networks [3]. In general the probable cause is a 
lack of investment on ensuring proper working conditions. 
A series of three disasters on the Electricity Grid in autumn 
2003 (in respectively America, Sweden and Italy) shows 
that little progress has been made. And these are only the 
top of the iceberg [4]. 

Classical abnormality detection starts from the single 
fault assumption. Faults are detected at the output, but can 
hardly be distinguished from other faults on the same path 
to the system output. This makes the single fault a suitable 
representation for a chain of events, where one fault 
dominates the other. Such is not true in a network, where 
the information flow is not restricted to the forward path. 
Network faults command a new model, based on the 
cascaded consequences of the fault cause [5]. 

Such fault chains are characteristic for problem sources 
within and outside a network. They have become notorious 
for outside attacks, like in case of viruses. Hence protection 

against fault chains is often outward-bound leaving the 
interior largely unguarded. Hackers & viruses have known 
characteristics by which they can be identified, isolated and 
eliminated. Sometimes they are as easy as a suspect source 
address; sometimes the threat is coded deeper into the 
message [6]. In order for firewalls and similar measures to 
become also applicable to internal network causes, fault 
characteristics need to be determined before the cause starts 
spreading around. 

The paper discusses the concept of and means for fault 
compartimentation. In section II the need for a separate 
detection view on a process is neurally motivated. Ensuing 
section III treats the notion of sensitivity, which is 
subsequently put in a neural perspective. This is illustrated 
by a limited experiment in section V and further concluded 
by a treatise on compartment. This sets the case for 
restraining fault dissemination in a network context. 

II. Taking a proper view 
The classical approach to Fault Diagnosis and Isolation 

(FDI) is based on the availability of a model for the 
working process. This model should be robust enough to 
provide reliable results despite noisy, irreproducible and 
incomplete measurement data. On the other hand, it should 
be sensitive enough to handle even unknown faults. Such a 
built-in conflict between model robustness and fault 
sensitivity cannot be completely resolved and must be 
balanced. 

Inserting a single fault in the model and recording its 
effect brings a signature of the faulty process. Having a 
signature for the fault-free model and for models with a 
known fault (the fault dictionary) allows characterizing the 
process for the potential presence of such faults. Unknown 
faults cannot be handled, but should be off-line analysed 
and added to the fault dictionary for later usage. As the 
world of potential faults is unknown, the dictionary may 
grow in the course of time to uncomfortable dimensions. 

The critique of the Self-Healing [3] approach is that a 
straight FDI turns the world upside down by directly 
classifying the fault instead of by detecting the abnormality 
first, followed later by an analysis of the nature of the 
cause. For a real-time network, the elimination of possible 
infections is needed immediately while the strategy for 
curing the network may come at a more appropriate time. 

Faulty or abnormal behaviour can simply be defined as 
behaviour reaching outside the known good world. This 
implies that the model of known behaviour covers all 
aspects of the real world, which might not always be 
achievable, as the unknown world defies proper modelling 
by lack of data. Moreover, not every slight deviation of the 
modelled world needs to raise the alarm flag. With the 
usual noisy character of measurement data as caused for 



instance by the simultaneous switching of some large 
servers or machines, abnormal values can easily occur 
without having relevance to system faults. Simple methods 
are sufficient to clean up the network from the consequent 
alarm flood [7]. 

In this paper we assume that the measurement data are 
already cleaned from false indications. Only actual faults 
exist and will become noticeable as either change in the 
structure and/or in the complexity of the system function. 
We see these as the result of parameter variations over 
dimensions not included in the model. Such extra 
dimensions cover a number of related models, of which the 
fault models are discrete samples. This brings the need for 
two essentially antagonistic views on the same reality: (a) 
the process model reflecting the proper operation of the 
network, and (b) the detection model reflecting the 
occurrence of abnormalities. 

Figure 1. The parameter space for novelty detection 
and isolation (NDI). 

The former relies on the extraction of physical 
coefficients from model parameters [8]. The aim is to find 
the Degrees of Freedom (DoF) in the model that describe 
the process in full complexity while minimizing the least 
square error (risk minimization). Domain experts usually 
add as constraint that the model can be humanly 
interpreted. The relevance of a known disturbance can be 
built-in by ensuring that the error on desired behaviour is a 
measure of the "faultiness" of the observed behaviour. 

To handle unknown faults, the generic sensitivity 
(universality) needs to be improved by increasing the DoFs 
in the model. However increasing the DoFs conflicts with 
risk minimization. Simplifications may be called for to 
reach the desired separation of concerns. The justification 
for simplifications comes from properties on the 
independence of local processes allowing for modular 
models and linear behaviour. Indeed, if a system composed 
of multiple processes is in a stable equilibrium in its state 
space, linearization is allowed [9] and will break the 
dependence between sub-processes. Unfortunately these 
properties are insufficient as soon as the system drifts from 
the desired stable equilibrium. 

The alternative proposed here is to break the 
dimensional dependence between model complexity and 
model risk to improve both overall sensitivity as well as 
confidence in the relevance of detected faults. Models used 
for detection must therefore extend beyond the desired 
process behaviour, intrinsically augmenting the model by 
extending the capabilities of the model beyond the DoF 

needs for describing the normal systems behaviour. The 
underlying philosophy is the multi-version technique, as 
popularized with great success in other technological fields. 
We argue that splitting the demands over two models 
seriously reduces (if not eliminates) the bias-variance 
problem that in the FDI era was an undividable part of 
abnormality detection. Such models need to match two 
opposing worlds by creating two different but 
dimensionally overlapping views on the same reality. 

The question then remains what these dimensions are 
and how such effects can be brought to bear on the 
available model? To this purpose we introduce model 
capture by means of neural networks. A neural network 
extracts a model from presented data by means of a 
learning algorithm. By lack of an explicit model, learning 
will automatically establish the dimensions (or hidden 
features) that are needed to fit the process at hand and 
augment the mathematical model for detection purposes. 

Detection
model

sensitivity

promptness

robustness

universatility

Process
model

Any change in the structure and/or in the complexity of 
the system will affect the selection of the hidden features. 
In the following, we will elaborate on this theme. For the 
sake of clarity, we will refer in the following to the neural 
structure by its full name “neural network” instead of by 
the short hand “network” which we reserve for the 
information-processing commodity in general, being the 
process we need to monitor. 

III. Sensitivity 
For the purpose of our discussion we will use only fully 

connected feed-forward neural networks with a single 
hidden layer of neurons. The input neurons provide a direct 
mapping on the synaptic connections to the hidden layer. 
This layer reorganizes the problem space into a feature 
space that lies at the core of the neural model. Aiming at a 
minimal error for learning and recall, such hidden features 
may often not be physically plausible. Subsequently they 
are mapped on the synaptic connections to the output layer, 
which combines into the output result. These two synaptic 
connection layers (before and after the hidden neuron 
layer) have a clearly different meaning (Figure 2). 

Neuron 
layer 1

Neuron 
layer 2

Neuron 
layer 3

Synapse 
layer 1

Synapse 
layer 2

Inputs

Figure 2. Layers in a neural network. 

The hidden-to-output connections construct a solution 
with the hidden features as given; any modification that is 
possible on basis of the hidden features involves only a 
slight modification of the synaptic weights. Such could 
happen to accommodate innocuous variations in 



measurement data and takes a negligible amount of 
learning time to execute the small adaptation. 

The input-to-hidden connections construct the basis for 
the neural model. When the basis is unusable for the neural 
model, a new one must be built by learning new values for 
the synaptic weights. This is a clear sign for the inadequacy 
of the model as captured from previous data and will 
consume an appreciable amount of learning time. 

Such poses a crude indication for the presence of an 
abnormality by looking at the length of the learning period. 
An excessively high learning time clearly indicates the 
presence of a fundamental process change; a short time is 
merely adaptation (Figure 3). However, it appears that the 
two phases are not fully separable. Some of the hidden 
features are already being re-established while the others 
are still being accepted. In this phase, learning becomes 
slower but also unpredictable of duration [10]. 

Figure 3. Adaptation vs. learning domination. 

The hidden features do not identify the problem 
dimensions fully, but build a non-orthogonal base for 
combinatorial compositions to minimize the recall error. 
This provides the neural network with functional 
redundancy (degrees of freedom) as a number of different 
feature compositions can give the same overall 
functionality. By virtue of the non-orthogonal 
representation major input features can also be found as 
2nd-order effects on various hidden ones. This observation 
can be extended to dimensions that do not appear in the 
mathematical model. If such effects appear in the presented 
learning examples, they will be learned. In other words, 
process aberrations, that are not primarily targeted for 
model capture, can still appear as higher-order effects on 
the hidden features. 

Figure 4. (a) regressive and (b) universal 
approximated modeling v.s. risk estimation. 

The supporting reasoning on the (mis)match between 
the DoFs in the model and the complexity of the process is 
as follows. A process y = a0 + a1 x+ a2 x2+ … anxn can be 
successively approximated with best fit parameters b as yest 
= b0 + b1 x+ b2 x2+ … bmxm. If m not equals n, we have a 
problem, as the model cannot be made more precise 

without affecting the risk (or error, see Figure 4a). When in 
contrast the process is universally approximated as yest = 
ϕ(∑wkj ϕ ( ∑wjixi)) by for instance a neural network, the 
basis is formed by generic kernels, allowing the 
introduction of variables without changing the risk, 
provided the assignment can be solved. The inherent 
degrees of freedom provide a choice of target points 
(Figure 4b). 

The first layer of synaptic weights determines the 
required selection of generic kernels. Model changes will 
therefore be directly reflected by such values. Hence it has 
been proposed to monitor model development by looking at 
the mapping on the hidden features. By nature of the 
learning method, such changes represent Brownian 
movements in the error space. This makes them unsuitable 
as a reliable and robust indicator. The alternative is the 
correlation between weights. On the network level, this 
method has received much acclaim to indicate that a signal 
variation is in line with others and therefore of chronic 
significance. Unfortunately the error landscape is very 
curvy; simple weight correlation will only characterize the 
scenery and not the itinerary. Additional attention on 
robustness is needed. 
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IV. Neural Robustness 
The success of neural abnormality detection depends 

strongly on the ability to create a model for normality. On 
first sight, this may seem an impossible task as for several 
reasons the classification will never be accurate. Such is 
true but only in a numerical sense. Because of the non-
linear curvature in the error space and the incomplete, 
irreproducible and noisy character of the learning data, a 
specific sample will almost never be 100% correctly 
reproduced. In a functional sense, this negative expectation 
is ill founded where clustering rather than approximation is 
being performed. Rather do we find here yet another 
occurrence of abstraction: a principle that rules universally 
in engineering. 

Lets look, for example, at the clustering of analogue 
voltage values on the output of a logic gate. Though the 
“high” voltage levels will hardly ever be equal to “Supply” 
and the “low” voltage levels will hardly ever be equal to 
“Ground”, the cluster based detection by a next gate will 
not see the difference between the many different values 
represented by “high” or between the many different values 
represented by “low”. This learns that clustering is the 
basis for abstraction in the sense that any example 
represents the set. 
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The same principle can be applied in understanding 
neural networks. Each neuron builds a vector in the n-
dimensional space, aiming to separate the data points into 
two parts with respect to one feature; a set of neurons 
separates the data points with respect to all features. 
Conversely, the data points are divided into clusters, 
separated by non-linear vectors. In order to understand this 
phenomenon, we take a short excursion into the physical 
prototype of force-directed clustering: the Earth/Moon 
gravity system ( 2.. rMmgF = with g being some constant, 
m and M attributes of respectively the attracted and the 



attracting body (say mass, heat capacity or electrical 
charge), and r the distance between the bodies). Objects 
within the attractive force field of the Earth will only reach 
the Moon when the velocity is high enough, while objects 
that leave the Moon with a too low velocity will never 
reach Earth. Apparently, somewhere between the two 
bodies the total force will be zero: a meta-stable point in 
which the body will not move (see Figure 5a), but for any 
infinitesimally small displacement it will immediately 
leave in the direction of the field. 

This is not actually what happens in every neural 
network. In self-organizing architectures, the winner-takes-
all principle dictates an attraction mechanism that reflects 
the mass analogon, as discussed above; but in supervised 
feed-forward architectures the mechanism is more 
complicated, balancing both positive and negative 
influence. In other words, compromising between attraction 
and distraction. A typical example of such a mechanism is 
the model shown in Figure 5b. 

This model originates from the physical behaviour of 
the micro-electronic diode. It assumes that the problem 
space is filled with many small particles of an either 
positive or negative attribute (say positive and negative 
examples). The intrinsic space is filled with the material in 
an evenly spread. This neutralizes the individual 
contributions within the overall effect. In fact, a natural 
tendency for global neutrality might be discerned where 
any disturbance will be dishevelled into the natural 
equilibrium. The effective field as shown in Figure 5b is 
what we would like to create by design in the neural 
network. 

Figure 5. Attraction fields according to (a) the mass 
and (b) the diode analogon. 

Where contradicting examples (positive and negative 
examples for the same context) are presented to a feed-
forward neural network and no averaging compromise can 
be found, learning may momentarily halt or even 
definitively stopped [10]. Such error plateaus show by an 
almost Brownian movement to find an eventual escape. 

It has been found that the detector quality is greatly 
influenced by redundancy appearing in many disguises. In 
coarse division one may distinguish between functional and 
structural ways. Most, if not all, of the functional 
redundancy scheme, read to a mass-oriented clustering, and 
will therefore not be interesting for this paper. For instance, 
a change in the presence of specific examples within the 

presentation set will only influence the field values but will 
not produce a diode-oriented scheme. 

Structural redundancy is far more interesting for our 
purposes. It is based on having multiple neurons in the 
network structure for identical functionality. The impact of 
such structural redundancy has already been shown in 
experiments on reduction of the word width representing 
values in a hardware implementation [11], pointing out that 
by suitable measures the word width can be reduced to less 
than 8 bits. This gives further credibility to the observation 
that the detection robustness of the neural network can be 
enhanced by purposely introducing structural redundancy. 

V. An experiment 
VanVeelen has earlier introduced a technique [12] that 

combines the methods discussed at the close of section III 
by looking at the correlation between weight changes. The 
idea is that a persistent change needs to show up from the 
size and direction of the adaptations independent of the 
actual path taken. Apparently the first synaptic layer 
determines largely the detection quality of the derived 
model. Both its robustness and its sensitivity are relying on 
the judicious structural design and vice versa a careful 
examination of the weight changes may allow us to grasp 
the potential on-set of model changes. 

An illustrative experiment is the one-step-ahead 
prediction of the sine function vn = sin(n.2πf/Ts )+N(0, 0.01) 
with Ts = 32 using 1024 data points with f = 75/64. The 
model contains 7 delay elements and 10 hidden neurons 
with linear output, 25 cross-validation models have been 
trained to stopping on the stable train error C ≡ |RSE(wn, 
ξtrain ) - RSE(wn+1, ξtrain ) | < 10-4

 for 10 subsequent epochs. 
The final RSE on the test sets ξtest is 1.46 · 10-2

 ± 3.2 · 10-3. 
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Figure 6. (a) Boundary gradient and (b) difference 
gradient correlation test for prediction of sine. 

The disturbances are: (1) gauss - original sample; (2) 
noise; (3) double - N(0, 0.02) replaces N(0, 0.01) ; (4) saw-
tooth - 0.02/Ts (n mod Ts)-0.01 replaces N(0, 0.01) (5) shift 
– f’ = 1.05 f; (6) sin - 0.01 sin(n.2π/Ts) replaces N(0, 0.01). 
We will apply the boundary test: fraction of gradients of 
possibly disturbed samples ξ outside the 2σ boundary, 
which is the standard deviation of gradients in response to a 



reference sample. The results are shown in Figure 6a. The 
additive chronic disturbances saw-tooth en sin are not 
significantly out of bound (around and below 5% as 
expected for random disturbances using 2σ boundary), 
while the internally changed process shift causes the 
gradients to go out of bound indicating a chronic 
disturbance. However the double disturbances would also 
suggest a chronic disturbance if this metric would be used, 
thus it lacks robustness. 

The differences in a correlation test do not suffer from 
this robustness problem, as can be observed in the 
simulation results in Figure 6b. The largest observed 
fraction of different correlations in the 25 cross-validation 
models over all connections barely tops the minimal 
observed fractions of different gradient-correlations for the 
saw-tooth and does not even come close to the minimum 
fraction of different correlations for the shifted sine! 

The question remains whether these disturbances are 
also observable by inspecting the recovery times. 
Unfortunately, in the shown example, the differences 
between the recovery times in all 25 cross-validation 
models are not larger than 1 epoch. As small chronic 
disturbances do change the model’s gradient dependencies 
sufficiently to create havoc, this test has apparently missed 
the detection. 

The robustness and sensitivity of gradient-dependency 
based detection relies on the presence of many related 
gradients. Figure 7 shows the distribution of the correlation 
coefficients for all connections to hidden neurons in an 
experiment on Volterra-Lotka models. Sufficient 
dependency seems to be present for detection.  

The conclusion seems therefore justified that 
monitoring the recovery time of a learning system gives a 
quick glance, but needs for the present moment to be 
augmented by more elaborate scheme such as gradient 
analysis. This opens the door to in-line abnormality 
detection schemes, as discussed next. 

Figure 7. Distribution of correlations between 
gradients from connections to hidden neurons on a scale 
[0 1]. 

VI. Putting the picture together 
In the previous sections we have discussed the need for 

a separation between process and detection model, and 
discussed some ingredients for an effective early detection 
of faults. We will now advocate the integration of such 
concepts in what we will call containment: an overall 
structuring that allows separation of concerns in all views, 
including on-line fault detection. In [13] it has been 
proposed that object oriented programming brings all the 
necessary ingredients. The classical control of actuator 
systems is based on hierarchical layers [14], where the 

higher layers can bridge defective units that are placed 
lower in the hierarchy. V.d.Klugt gives the example of 
Rudder Control, where functional redundancy is needed to 
safeguard the vessel and its passengers at all times. 

This solves, however, only part of the problem. The 
early detection of process aberrations lies at the other 
extreme. In [15] it has been discussed that a system 
theoretical attractor must be constructed. Time-series of a 
single process parameter are cut into small overlapping 
series, called time-delay vectors (with a history of m tabs), 
and subsequently mapped into an m-dimensional space. 
This builds an attractor that will sizeably change shape if 
the process characteristics are slowly but fundamentally 
changing. 

This provides the same sort of sensitivity, as discussed 
before. The learning process creates a sense of history, but 
taking care of a non-linear dependence and without the 
need to reduce the number of observed parameters. This is 
of interest, where the process interacts with its 
environment. In our case there will be different structures 
in different views. Another difference is the fact that the 
neural network evades the need to perform an m-
dimensional mapping and matching. Instead we have a 
simple mechanism that can be easily added to an existing 
software object as a guard mechanism. We have to 
distinguish between two types of guards: off-line and in-
line. The in-line guards are as discussed in [13] and are 
directly related to an existing software object. The off-line 
guards are required to handle faults that creep into the 
system from a non-functional part of the environment. This 
is depicted in Figure 8 as V-chart for the Power Grid 
control case discussed at length in [3] and are usually 
shaped as distributed agents. This picture has a striking 
resemblance to model separation shown in Figure 1. 

Fault
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Signal
Sanitation

Sensor
Reading

Actuator
Control

Loop
Execution

Function
Interpretation

Process

Figure 8. V-chart for separated process and 
detection modeling. 

Most often, off-line network problems have a very basal 
cause. For instance, the quality of the electricity supply 
leaves nowadays much to be desired. Regularly, the supply 
is interrupted for a short time [16]. If this time remains 
below 10 ms, the human operator will not even notice it but 
the machines get affected at least to the degree of a 
noticeable reduction in lifetime. If the supply elapse takes 
longer, the electronic equipment gets deregulated. A much-
advocated solution is the insertion of an UPS to bridge such 
gaps. This has caused a consequential problem in an 
Internet router, where the electronic equipment kept 
functional but the ventilator stopped, causing overheating 



of the system followed by a melt down. Future local supply 
systems can remedy this fault category, but still leaves 
other issues such as simultaneous switching untouched. 
Apparently, the network faults can become inserted at 
almost any time and place from other technologies than the 
mere electronic design. This makes multi-level modelling 
[17] a necessity to create a real robust operation. 

We will use the name “compartment” for the 
integration of functional and non-functional objects over 
multiple views on the process in order to guarantee proper 
operation. As the compartment is loosely coupled to the 
functional hierarchy, there is a lot of choice in where 
exactly the compartment should be logically placed. In fact, 
the compartment is part of a detection hierarchy, logically 
linked to the functional hierarchy. It uses linked neural 
networks for early detection to integrate the respective 
views. 

VII. Discussion 
Abnormality detection was originally developed to 

monitor the control of industrial processes, but information 
networks have provided a natural extension. Though some 
niche successes have been claimed (for instance the 
detection of snooping attacks), the general breakthrough 
still has to come. The reason is on one hand the reliance on 
designed measures against outside attacks, and on the other 
hand the lack of distinguishable signatures for the 
unstructured internals.  

In the meantime, network technology has broken 
through in industrial automation. Production lines with 
many sensors and actuators in distributed processes have 
emerged. This permits to extend the implementation 
whenever new technological possibilities and new insights 
in fault conditions become available. The historical 
development has often accumulated into a patchwork rather 
than into a physics-oriented blue print. Concepts like multi-
level modelling [17] and automated configuration are much 
needed.  

In a typical sensory network, a process part is measured 
and controlled. Sensors may be of a fixed, adaptive or 
configurable functionality. Despite such differences, the 
total effect is meant to provide predictable behaviour. It 
would be of advantage if such a functional behaviour can 
be handled without interference from other equipment. This 
both underlines the necessity to create compartments, but 
also forces to add a degree of autonomy to the concept. 

For FDI purposes, the compartment will house both a 
formal process model and a data-driven detection model 
[18]. The detection model operates in conjunction with the 
configuration unit to identify the individual sensory 
components and their operational settings. This is partly 
because sensors may constantly be configured to different 
functions. Potential alarms are first filtered and 
subsequently diagnosed using the techniques described in 
this paper. Live alarms will then receive a classification by 
the mathematical model and accordingly be operated upon. 
Vice versa, the detection model may point to a need to 
update the mathematical mode for maintenance purposes. 
In this way the compartment provides linkage to the 
models we separated in the beginning of the paper. 
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