A handbook formula for the inductance of a single-layer circular coil

Lundin, Richard

Published in:
Proceedings of the IEEE

1985

Link to publication

Citation for published version (APA):
REFERENCES

FIG. 3 for Several Values of their Length and d/\lambda = 0.5

<table>
<thead>
<tr>
<th>2h/\lambda</th>
<th>Z_1 and Z_2 (Z_1 = Z_2)</th>
<th>Middle Dipole</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25</td>
<td>17.1 + j521.6</td>
<td>16.7 - j626.7</td>
</tr>
<tr>
<td>0.50</td>
<td>87.3 + j71.6</td>
<td>73.3 + j128.6</td>
</tr>
<tr>
<td>0.75</td>
<td>394.5 + j837.3</td>
<td>365.2 + j1063.4</td>
</tr>
<tr>
<td>1.0</td>
<td>472.1 - j652.6</td>
<td>401.2 - j1538.7</td>
</tr>
</tbody>
</table>

A Handbook Formula for the Inductance of a Single-Layer Circular Coil

RICHARD LUNDIN

A compact six-figure approximation formula for the inductance of a cylindrical current sheet is presented. The formula displays the correct asymptotic behavior in the respective cases of very long and very short coils. The efficiency of the approximation formula is due to a thorough analysis of the exact formula.

INTRODUCTION

A single-layer circular coil can be idealized to a cylindrical current sheet [1]. The exact formula for the inductance of such a current sheet was first given by Lorenz and more recently by Wheeler [2] in a letter to the PROCEEDINGS OF THE IEEE. Wheeler states that the exact formula, involving elliptic integrals, is too complicated for practical use. He subsequently presents three different approximation formulas. They all differ in accuracy and structure from the approximation formula presented in this letter.

ANALYTICAL PROPERTIES

Introduce

a = radius of coil,
b = axial length of coil,
n = number of turns,
\mu_0 = permeability of vacuum,
L = inductance of current sheet.

Then

\[L = \mu_0 n^2(a^2/b) f\left(\frac{2a}{b}\right) \]

where 2a/b is the shape ratio. The function f was tabulated by Nagaoka [3]; see Fig. 1.

It is obviously possible to rewrite (1) as

\[L = \mu_0 n^2 a g\left(\frac{b}{2a}\right) \]

The following statement is now made. The Nagaoka coefficient f can be expressed as

\[f\left(\frac{2a}{b}\right) = f\left(\frac{4a^2}{b^2}\right) - \frac{4}{3\pi} \frac{2a}{b} \]

and the function g can be written

The author is with the Department of Electromagnetic Theory, Lund University Institute of Science and Technology, S-221 00 Lund, Sweden.

PROCEEDINGS OF THE IEEE, VOL. 73, NO. 9, SEPTEMBER 1985
Equations (3) and (4) are valid for all current sheets and the same function \(f_i \) appears twice. The latter, somewhat unexpected, fact is of practical value. It is possible to prove the simultaneous validity of (3) and (4) through using the theory of homogeneous linear differential equations in combination with the formulas of Butterworth [4].

The inductance of a long current sheet \((2a < b)\) is preferably calculated through (1) and (3) while the inductance of a short current sheet \((2a > b)\) is preferably calculated through (2) and (4). In order to cover the whole range of possible current sheets it is thus sufficient to approximate \(f_i(x) \) and \(f_2(x) \) on the interval \(0 \leq x \leq 1\). It is possible to demonstrate that these functions are highly suited for polynomial approximation on this interval.

An explicit expression for \(f_i \) is

\[
g_i(x) = \frac{1}{\sqrt{1+x}} f_i \left(\frac{1}{2} \cdot \frac{1}{2} ; x ; \frac{1}{1+x} \right) = \frac{1}{\sqrt{1+x}} \sum_{n=0}^{\infty} \frac{(\frac{1}{2})_n (\frac{1}{2})_n}{(n+1)!} \left(\frac{x}{1+x} \right)^n.
\]

where \((\cdot)_n \) is Gauss' hypergeometric function. Pochhammer's symbol is defined as

\[
(c)_n = \frac{\Gamma(c+n)}{\Gamma(c)}.
\]

An explicit expression for \(f_2 \) is

\[
f_2(x) = \frac{1}{2} \ln (1+x) f_i(x) + \frac{1}{\sqrt{1+x}} \sum_{n=1}^{\infty} \frac{1}{3+\psi_n} \left(\frac{x}{1+x} \right)^n
\]

where

\[
\Psi_n = \frac{-47}{60} - \frac{12n+6}{(2n-1)2^n(2n+2)(2n+3)},
\]

The range of the independent variable in (5) and (6) is \(0 \leq x < +\infty\). Numerical function values are given in Table 1.

APPROXIMATION

The following “handbook formula” is asymptotically correct and yields the inductance with a maximum relative error less than \(0.3 \times 10^{-5}\).

If \(2a < b\) then

\[
L = \frac{\mu_0 n^2 2^2}{b} \left(f_i \left(\frac{b^2}{4a^2} \right) - \frac{4}{3\pi b \cdot 2a} \right)
\]

else \(2a > b\) and

\[
L = \frac{\mu_0 n^2 2^2}{b} \left(f_i \left(\frac{b^2}{4a^2} \right) + f_2 \left(\frac{b^2}{4a^2} \right) \right)
\]

where

\[
f_i(x) = \frac{1 + 0.383901 x + 0.017106 x^2}{1 + 0.258952 x}, \quad 0 \leq x < 1
\]

\[
f_2(x) = 0.093842 x + 0.0002029 x^2 - 0.000801 x^3, \quad 0 \leq x < 1.
\]

The coefficients in (11) and (12) minimize the maximum relative error of the inductance.

DISCUSSION

The inductance is calculated to six-figure accuracy through the “handbook formula” (9)–(12). The same degree of accuracy is obtained by interpolation in Nagaoka’s table [3]. Thus Nagaoka’s table (160 function values) is contained in the “handbook formula.”

In order to facilitate design work, a number of nomograms of the Nagaoka coefficient have been published in the electrotechnical literature. A compact approximation formula like the “handbook formula” can be considered as a powerful alternative to a nomogram.

CONCLUSION

The result presented is the simultaneous validity of (3) and (4) in which the functions \(f_i \) and \(f_2 \) are highly suited for polygonal approximation. An easy to use six-figure “handbook formula” for the inductance of a cylindrical current sheet has, as a consequence, been computed and presented.

REFERENCES

Comments on “Reference Node r Model”

ALI M. RUSHDI

Certain ambiguities and inconsistencies in the above titled letter1 are pointed out.

The reference node \(r \) model in the above letter1 is claimed to be a focal point for development of circuit diagnosis concepts. The Roytman and Swamy (R-S) method of circuit diagnosis [1] is claimed to be one of the many available results found within this model. However, the contents of the letter1 indicate that this model is one

Manuscript received May 1, 1984.

The author is with the Department of Electrical Engineering, King Abdul Aziz University, Jeddah 2143, Saudi Arabia.