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Abstract

Implementation for an active suboptimal dual controller ie
simplified. The controller achieves dual qualities through
combining a term which corresponds to output loss and a
term which reflects parameter uncertainty. Thus the dual
controller compromises between good control and good
parameter estimation. The result is a fifth-order loss
function. Approximation of the resulting loss function

furnishes a control law which can be determined
analytically and which gives an approximate minimum for
the function. From an implementation standpoint, the

analytic solution is superior to previous iterative
minimization algorithms. Two simple systems illustrate the
performance of the approximate analytic control 1law, and
comparisons are made with cautious control and a
near-optimal control law for a special case.

Sammanfattnin

Implementering av en aktiv suboptimal dual regulator

f8renklas. Regulatorn fAr duala egenskaper genom en
sammansittning wutav en term som svarar wmot utsignal
férlust, och en term som avspeglar osikerhet hos
parametrarna. Approximation av den erhlllna

fdrlustfunktionen leder till en styrlag som approximativt
minimerar f6rlustfunktionen och kan ber&knas analytiskt.
Fran implementeringssynpunkt utgdr den analytiska
l18sningen en f8rbattring tver tidigare iterativa
minimeringsalgorithmer. Tva& enkla system illustrerar den
approximativa styrlagens uppf&rande och styrlagen JjAwmfdrs
med cautious reglering och en approximativt optimal dual
styrlag som g#ller i sHrskilt fall.



An Approximate Analytic Control Law for an

Active Suboptimal Dual Controller

I. ITntroduction

This report summarizes the results of project work in the area of
dual adaptive control. The project aims toward simplifying
implementation of an active suboptimal dual (ASOD) regulator
first proposed by Bjrn Wittenmark in "An Active Suboptimal Dual
Controller For Systems With Stochastic Parameters" [11. By
adaptive control is meant the control of systems with unknown or
poorly measured, and therefore, stochastic, parameters. Dual
control implies that the controller both controls well and helps
provide wuseful information about the system. The latter goal
implies that +the controller disturb the system when more
information about system parameters is required. For +the ASOD
controller, the dual strategy leads to a loss function composed
of an output loss= term and a term reflecting parameter
uncertainty two steps ahead. This 1loss function is fifth order
with respect to the variable of minimization.

The goal of the project is to improve the feasibility of computer
implementation of the ASOD controller by decreasing the computing
time. The results presented in this paper are based on series
expansion of the ASOD controller’s fifth order loss function, in
order to analytically solve for a control signal which
approximately yields winimum loss. The concept of expanding the
expected loss function in a series is found for instance in "A
Linear Feedback Dual Controller for a Class of Stochastic
Systems, " by Bar-Shalom, Mookerjee, and Molusis (61l. The
mathematics involved in expanding the loss function in a second
order Taylor series are not difficult. A greater portion of the
calculations takes place in determining an appropriate point to
expand about. The thinking behind the ASOD controller will first
be covered, and an approximate analytic solution to the ASOD
control law will then be developed in detail.

Following the development of the control algorithm, simulations
performed us=ing two s=imple sgystema and the cautious controller
and a second dual control law will be presented. Statistical
comparisons of Monte Carlo simulations indicate that the new ASOD
control law performs at least as satisfactorily as the ASOD
control law solved exactly through numerical algorithms. The ASOD
controller also is shown to well outperform cautious control, as
wvell as under certain circumstances matching the performance of
dual controllers which are expected to be near optimal.



II. Problem Formulation

The system to be controlled is described as

y(t) + al(t)y(t-l) LR an(t)y(t—n) =
bl(t)u(t—l) + ... 4 bn(t)u(t-n) + e(t)

wvhere e(t) is discrete white noise with mean O and variance o .
The parameters a, and bi (i=1,2,...n) are themselves stochastic

variables.

Introducing the vector

T

x(t)=[la, (t),a (t),...a _(t),b,(t),b (t),...b _(t)1
1 n n

2 2

gives the more convenient parameter representation

1

x(t+1l) = dx(t) + v(t)

It is assumed that this stochastic model suffices for the most
general parameter variations. The known matrix ¢ is assumed for
the purposes of this paper to be a diagonal matrix of full rank.
¢ is often refered to as the "forgetting matrix" for x(t) since ¢
determines the rate at which old values of x(t) are reduced. The
discrete noise vector v(t) has zero mean and variance matrix R..
Additionally, the processes e(t) and v(t) are assumed to %e
independent.

For further simplification of the system representation the vector
e(t) = [-y(t-1), -y(t-2), ... -y(t-n), ult-1),u(t-2),...ul(t-n) 1
1s used and the system is then given by

x(t+1)= éx(t) + v(t)
y(t)=0(t)x(t) + e(t)

The loss function which ultimately gauges regulator performance is

(y(t+n)-yr)2 (1)

n=1
which is to be minimized for all u(t) t=1,2,...(N-1). Since no

general solution to this wminimization problem exists except in
special cases, a simplified version of V1 may be consildered:

. B 2
Vl = El(y(t+1) yr) IYt] (2)

vV, = E

[
Zi

wvhere
Yt=[y(t), y(t=-1),...,y(0),u(t-1), u(t-2),...,u(0)1]

V,’ is called the "one-stage" or "cautious" control law, which
séeks to minimize the output loss one step ahead. The expression



for Vl' can be expanded through use of standard formulas to give

2 T 2

A
vV, = (@(t+1)x(t+1)-yr) + B(t+1)P(t+1)0(t+1)" + o7,

1

wvhich 1s quadratic in the variable of minimization, and thus
analytically solvable.

The Kalman filter is used to give theg conditional dietribution of
x(t) given Y -1 The mean estimate x(t+l) and covariance matrix
P(t+1) are soived through the equations:

K(t) = #P(£)B(t) /(B(LIP(t)B(t) T + o2y
A A A
X(t+1) = dx(t) + K(£)[y(t) - O(tIx(t)]
P(t+1) = [& - K(£)O(+)IP(t)é! + R

1 .

In order to simplify the algebra for this solution, as well as
the algebra throughout this paper, introduce the vectors

O(t)=[-y(t-1), -y(t-2),...,y(t-n),0,u(t-2),u(t-3),...,ul{t-n)1]
and
£=[0,0,...,1,...,01 .

The vector & has 2n elements, all of which are zero except for a

one in the n+1Lh position, corresponding to the u(t-1) element in
T T

O(t). Assume also that & is an eigenvector of ¢, with
eigenvalue ¢b. It has already been stated that ¢T is a diagonal
matrix with full rank, and thus 1t is reasonable to assume that
&T satisfies the relation ¢T£T=¢be.
The u(t) which then minimizes Vl' forms the control law

o A A A ~

O(t+1)x(t+1)b, (t+1l) - y b, (t+1) + xP(t+1)@(t+1)T

- 1 ri1
uc(t)- = = 5 . (3)
bl(t+l) + pbl(t+l)

Implementation of this control law presents no difficulty. The

cautious controller is, however, not a dual controller. Dual
control consists of both minimizing output error and wmaking
accurate estimates of system parameters. The latter goal of

accurate parameter estimation demands that the system be
disturbed by the control signal. Since the controller 1is
responsible for excitations of the gystem, the dual control law
then must constitute a compromise between good control and good

estimation. The loss function Vl' seeks only to control output



error one step ahead, and contains no component which is rewarded
for excitation of the system. The lack of excitation often leads
to poor parameter estimation. In practice, the one-gtage control
law often 1leads to the phenomenon of "turn-off", where the
control signal tapers off to zero, and parameter estimation is
greatly retarded. Thus the controller looses its capacity to
regulate the system. The turn-off phenomenon is illustrated in
the second example presented in this paper.

A ready solution to increasing the cautious controller’s ability
to estimate parameters might be to add a disturbance to uc(t).

This has given rise to regulators which are s=imilar to the
cautious controller, and which give improved results. (See
Jan Sternby’s "Topice in Dual Control, " [21.)

The principle behind the active sub-optimal dual (ASOD)
controller is to incorporate the dual control characteristics
into the original loss function. The ASOD control law seeks to
minimize two coupled loss terms: the square of the error in the
output, and a term which 1is a function of the parameter
uncertainties. The ASOD control law, then, actively works for
better parameter estimation.

The ASOD loss function has the form

v, =E{ly(t+1) - yr]2

5 + AELP(£+2)11Y, } (4)

In general, the function £(:) must be pos=itive, monotonically
increasing, and twice continuously differentiable. The choice of
f(-) will be treated shortly. The constant A weights the
identification term in V2 against the output loss term.

Using the vectors =x(t) and ©(t) the 1loss function V2 can be
wvritten in the form

A
V= (@(t+1)x(t+1)-yr)2 P OE+IP(E+1)0(t+1) ] + o2
T T
e f[ ¢P(t+1)¢T+Rl+ SP(t+1)B(t+1) @(t+1%P(t+;)¢ ] =)
(B(t+1)P(t+1)®(t+1) + o)

vhich is to be minimized with respect to u(t).

A
It has been shown that b1 is the most critical coefficient to

identify correctly (see Wittenmark (1975) [11). A suitable choice
for the function fI[P(t+2)] then is found to be xP(t+2)&T so that
f(+) yields a result which is a function of the variance of the

A
coefficient b, (t+1), (t+1).

1 Ppy

The expression for V is then fifth order in u(t), and has no
analytical s=olution. %igure 1l below shows the typical appearance



for the function. Previously, numerical algorithms have been
employed with help of knowledge about V. and search procedures to
solve for a wu(t) which exactly minImizes The following

Vo
analysis leads to a second order approximation f%r V., which makes
possible an analytical solution for a wu(t). This u(t), denoted
u__(t) closely minimizes the loss function V_,. The same knowledge
aBdut the behavior of V. used in numerical a gorithms aids in the
derivation of the approximate control law.

I1I. Approximation of V2

Approximation of +the loss function V is carried out through
expanding the function in a series, keeping only terms linear and
quadratic in u(t). The approximated loss can then be minimized
analytically.

5. V2(u)

Figure 1. The typical appearance of the loss function V2.



The loss function can now be rewritten, using f(P), ©(t), and 2,
as:
V2 = [(B(t+1)+2u(t))Ix(t+1l) - yr]
+ (@(t+1)+ku(t))P(t+l)(®(t+l)+xu(t))T + 02 + AL(u(t))
with

L(u)= x[ SP(t+1)81 + R,

@P(t+1)(@(t+1)+£u(t))T(G(t+1)+£u(t))P(t+1T¢T ]kT
((@(t+l)+£u(t))P(t+l)(®(t+l)+£u(t))T + 02

T

2 (p, , (t+1) [B(t+1IP(t+1)B(t+1]+021 - [4P(t+1)0(t+1) 1 12]
—sp o7 + —b'Pp2

! pbl(t+l)u2(t)+2&P(t+l)®(t+1Tu(t)+®(t+l)P(t+1)®(t+l)T+ 02

Series expansion about the point ¥, gives the approximation
1 82V2(7) >
(u(t)-y) + 5 ———— (u(t)-y)° . (6)

2 au2

The partial derivatives of V2 on the right hand side above are given
by

8V2(7)

2

av &
2 % ‘ b, (t+ = b, (t+1)
3u 2[ (O(t+1l)x(t+1) + bl(t+l)u(t) yr) 1
£ T aL
+ AP(E+1)@(t+1)" + p . (£+1) ]+ g
and
2
v a 2
—2 = 2(b 2(t+1) + p L,(t+1)) + A 3 L
2 1 bl 2
du du
For convenience introduce the notation
d1 = xP(t+1)®(t+1)T
d, = p (t+1)(6(t+1)P(t+1)6(t+1)T+ 02) —2d
2 bl 1

The partial derivatives of the function L(u) are then given by

2(p,, (£+1)ult) + d)
[Ppy (t+1 0% (t)42d u(£)+8(L+1IP(£+1)B(t+1) T+ o2)2

and



2 6(p,, (t+Lhuct) + d )7 - 2d

1 2
2

(t)+2d u(t)+®(t+l)P(t+1)®(t+1)T +

; o2]3

au [pbl(t+1)u

Taking now the partial derivatives of V_, and substitute back into
the second order Taylor expansion (6). %inimizing this expression
leade to the solution for an approximate u(t).

The derivative of (6) 1s

av_(u)

2 ~ A A
3u R 2[[(®(t+1)+xy)x(t+1) = yr]bl(t+1) + cl1 + pbl(t+1)y]
2
A
o aSkipy 2(b2(t+1) + p,_ > + A2 B vy .
Au 1 b1 52

Setting the above equal to zero, gives the contreol law sought
for the approximated loss function

& " & AL (y)
o 2(Cc@ct+1+ayIxCtrlr-y Tb (£+1) + d, +p,,¥] + AT
as N 2
20b2(t+1) + p, (t+1)] + A 2L
1 bl 5

The point y is so far any point. It is critical that ¥ be chosen
in the appropriate region of V_,. Knowledge about the control
law’s behavior can lead to an ¥ which lies near the desired
minimum. Jan Sternby’s "Topics 1in Dual Control" [21, offers
useful insight into the behavior of V2.

Going back to equation (S) for V (not approximative), it can be
seen that the function has a quadratic part and an additional
term. These parts will be called h(u) and g(u), respectively, and
have the form

A
h(u) = [b2(t+1) 2

. + pp, (41 Tu (o)
~ A AD ~ '}'
+ 2[00+ 1Ix(E+1) = y IBT(E+1) + RP(£+1)0(t+1) Ju(t)
ot A 2 2 el A
+ IO+ 1IX(E+1)17 + y© - 20(L+LIx(t+1)y_

+ @(t+1)P(t+1)®(t+lT + 02+ %lleT

(7)



2
A ¢b d2

pbl(t+l)u2(t) + 2d ult) + B(L+1IP(t+1)8(t+1) + g2

g(u) =

Figure 2 depicts h(u) and g(u) together with the loss function.

Typically, V2 has two local minimums and one local maximum. Using

the reasoning presented in Sternby [2], Appendix B, two important
attributes of V2 are known immediately. First, the global minimum

of V2 lies on the same side of the origin as h(u)’s minimum. This

minimum point is given also by the cautious input, u_- The point
u_ however, often does not give a satisfactory approximation;

Since u, can fall at a point where V2 is concave downward,

approximation leads to the local maximum, which always lies close
to zero. We may then utilize a second important characteristic of

V2, that V2 1s concave upwards for all IuIZIuAI vhere uA

satisfies g"(u)=0 and saign(u )=sign(uc). The point u is easily

A
determined analytically. Expansion about the point u

A
wvill always

A
give an approximated loss with a local minimum. However, u, is
also inappropriate for approximation; we may still seek a point
6..
S. V_(u)
4
v (uA)
/]
i h(u_)
3. h(a) H,/’// B
L
2 —
1. g(u)
\““Hﬁﬁ__
0. o —
-1. i -0.5 ) 0. 3 i £
Ya  Ymin? B

Figure 2. The loss function V_ together with its quadratic and
nonlinear parts, marked respectively h(u) and g(u).



nearer umin' There are two cases to be considered: the case that
>
IuminI_IuAI and that Iuminl<luAI. The case vwhere umin has

absolute value greater than IuAl will first be discussed.

A point ug is then determined (see Figure 2). It 1s reasonable to

assume that h(uB)%Vz(uB) g8ince at uB the function g(u) can be
neglected. In typical cases Uiin lies somewhere in between U, and

ug. Since this sgsection of the curve approximates a quadratic,

take the point to be expanded about to be

_ A B
¥ = 2 -
The point u, is obtained through solving the equation
h"(u)+g"(u)20. Since h"(uw)20 for all  u, solving the equation
g"(u)=82L/3u2=0 leads to
6¢( (t+1)u(t) + d )2 - 2d, 2 O
Pp1 1 2 = =4

This gives that h"(u) + g"(u)20 for

/dz/a - d, 3
ult)2 ST
b1l
u_(t)20
-/d_73 - d, N
ult)< e
bl

Assuming chO, then u(t) must be chosen greater than zero, giving

Jd2/3 = d1

(t+1)

u =
o Ppi

The point u is easily obtained through solving h(uB)—Vz(uA)=0.

B
Appendix 1 gives a summary of the steps used in this algorithm.

In the case that IuAI is greater than luminl’ the algorithm

presented above also suffices. This cage 1s 1illustrated in

Figure 3. The algorithm still calculates a point IuBI>IuAI.

By testing the first derivative of V2 at u, it may be determined

A

where |uAI lies in relation to IuminltfHowever, there are several
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6..
5.
Vo Cud
4.
] hCud
3
VZ(UA)
2-- —
y h(uB)
1.
glCud
P W
'-‘—--._______-_—-__-_‘
0. . _ : } . %
P ' -0.5 0. ul | .
Moin A| B
Y .
>
Figure 3. The typilcal appearance of V2 wvhen IuAI_IuminI.

reasons for maintaining the same algorithm even in this second
case. A primary reason is that for small values of u(t) the curve

h(u) no longer approximates V It is then possible that ¥ (as

o

calculated before) lies at a point where V_ is concave downward,

2
and if y is not corrected, there may be a period of regulator
turn off. If steps are taken to correct ¥, additional iterations
are necessary. The algorithm begins resembling an iterative

numerical algorithm.

Furthermore, even 1in this second case, expangion about y as
calculated above yields a point u_o wvhich falls close to the
exact minimum. The case that IuAI>|uaBI often occurs when the
slope of g(u) is shallow compared with the slope of h(u), giving
a lose curve which is almost quadratic; in this case V2 has only
one local (global) wminimum. Therefore the approximation leads
even in this case to a LI

It has been demonstrated through simulations that +the point
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y=(u, +u_)/2 glves results close to thoese of numerical
minimization. There remains some doubt, however, as to whether
the second order derivative of L(u) is required 1in (7). The
examples show that a control law for u which includes only the
first order derivative of L(u) also give%ssatisfactory results.

ITITI. Simulations

The approximate analytic ASOD control law was esilmulated together
with other control strategies on two simple systems. Simulations
were carried out using the interactive simulation language
Simnon. In each case, cautious coBtrolzalong with ASOD expanded
about u_, ¥, and ¥y without the 8"L/8u~ term are simulated. For
the second system an analytic solution to V1 which gives
near-optimal dual control, is also compared.

1. Simple zero-order system

The approximated ASOD was first tested on a simple system with no
dynamics, but only a time-varying gain, and a one-step time
delay. The system was chosen for the purpose of comparison, since
gimulation results are already available in "Problems of
Identification and Control™" by Karl Johan Astrdm and
Bj6rn Wittenmark [31.

The system has the form:

x(t+l1)= 0.9x(t) + v(t)
y(t) = x(tiult-1) + e(t).

The noise sequences v(t) and e(t) are Gaussian with zero mean and
variances 1.0 and 0.25, respectively. The output reference is
taken to be 1.0 .

The Kalman filter looks like:

K(t) =0.9P(t)u(t-1)/(0.25 + P(t)uz(t-l))
P(t+1)=0.9(0.9-K(t)u(t-1))P(t) + 1

A A A
x(t+1)=0.9x(t) + K(t)(y(t)-x(t)u(t-1)) .

The results of 60 simulations are sghown below 1n Table 1. The
average accumulated sum=, which are measures of average syestem
output, and average losses are given.

These results agree well with those presented in Astrdm and
Wittenmark ([3]. The results for cautious control match those
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Table 1. The results from a Monte Carlo run consisting of 60 gimulatione,
for the zero order system.

1000 1000

Control law loss = Z:(y = 1)2 sum = Z: y
n=1 n=1

Mean St. Dewv Mean St. Dewv

Cautiouse 1113.8 +77.4 133.2 +73.1

Control

|-

ASOD 845.1 +54,.2 602.8 +52.6
expansion

about u
c

N

ASOD 819.8 *51.2 588.8 +51.4
expansgion
about y >

wvith 3"L/3u

()

2

ASOD 4 819.1 +351.2 571.1 +50.8
expansion
about ¥y >

without 3 L/3u2

presented here, i.e. 0.11 average units of loss per eatep. The
results for the ASOD control law minimized with numerical
algorithms (see Wittenmark [11) give an average loss per step of
0.82 and estimated standard deviation of 0.06 units per step,
matching results in Table 1 which give a loss/step of 0.82 and
estimated standard deviation of 0.05 per step. The optimal loss
per step is calculated to be 0.83 units per step, indicating that
ASOD in this case performs nearly optimally. Tabl 1 also
indicates that omitting the second order term 8“L/3u about ¥y
suffices, based on the accumulated loss. However, the running sum
of outputs is closer to 1.0 when using the full second order
approximation, which may point to an advantage in keeping the
second order derivative term. Figure 4 depicts the dispersion of
the simulation results for the different controllers.

Because each noise &sequence employed in the simulations has a

different character (1i.e. each is 1independent of the others
leading to widely scattered losses), a comparison of average
losses may not alwaye be conclusive. The statistical method

employed in Wenk - Bar-Shalom [41, Appendix II provides an
appropriate basis for comparison.

Instead of comparing the average loss for one control strategy
against the average loss of another, we build first a series of
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5
CAUTIOUS CONTROL I H H—H—M
[ rf]rﬂl%q ITW _ T ||| 1 11
| h
\ ’ ’ ASOD EXPANDED ABOUT u_
e | O 1T { "r F[L
: I
2 .02

- ’ ' ASOD EXPANDED ABOUT y WITH 3°L/3u
| | |][{LT -1[

ASOD EXPANDED ABOUT y WITHOUT 32L/8u2
1 H]Illl | ‘ |ﬂ
1

1 i 1 i 1 |
I T r I ]

L] i
700 aoo 900 1000 1100 1200 Loss

Figure 4. The losses for 60 =imulations of the zero-order system.
The arrows indicate mean values.

A’s8 each of which equals the difference between the 1loss for
controller b and controller a, for a simulation with the =same
noise sequences, that is,

Ai = lossib)* loss;a) for simulations i=1,2,...n .

Agsuming that there are a sufficient number of A’s available, the
central limit theorem can be employed to compare_the differences
(i.e. the A’s) and give a probability to whether A is positive or
negative. Thus we may test the hypotheses

(b) —(a)

HD: A = true loss - true loss £ 0 algorithm a not best
and
(b) (a) .
Hl: A = true loss - true loss > 0 algorithm a best .

The hypothesis H1 will be accepted if



i4

n

2 _ 1 L. w2

Ai and GZ = ——E-Z: (Ai A) .
n- 1=1

B>

]
=|p
(=]
IIM o]

1

The value for yu given by the normal diestribution tables leads to
a corresponding probability o« that the hypothesis H, holde true.
Table 2 shows the results of this statistical comparison on the
same simulations wused in producing Table 1, with the same
numbering for the control laws. Both mean losses and esumg are
compared. Since the criteria for a "better" mean sum is in this
case the reverse of that for losses, that is, a higher wmean sum
is closer to the reference value of 1 , the hypotheses are
adjusted for sums to:

—(a) —(b)

HD: A = true sum - true sum £ 0 algorithm a not best
and
Hl: A = true sum(a) - true sum(b) > 0 algorithm a best

The estatistical comparison does not lead to any unforeseen
conclusions, but confirms expectations based on Table 1. For all
values of o which are given as >99.9, p has a value between 10.0
and 20.0, indicating a high degree of certainty. ASOD control
strategies yield superior results. Even expanding about +the
cautiaus iEput u, offers an improvement to cautious control, when
the 9"L/8u” term is omitted.

2. System with integrator.

The second example system has been used in "Dual Control of a Low
Order System", by Astr&m and Helmersson [S5] and has the form

y(t+l) = y(t) + b(t)u(t) + ce(t)
The parameter b varies, obeying,

b(t+l) = ¢b(t) + ev(t)

As before, the noise sequences e(t) and v(t) are Gaussian with
mean zero and variance 1.0. The constants o and e are known; o is
held at the constant 1.0 for all simulations, and e is varied to
constant values between 0.003 and 0.5 for different Monte Carlo
runs. In order that the gain for b(t) has a constant variance of



15

Table 2. The results of the statistical test are shown for Table 1
simulations. The specification >99.9 implies that |pi>3,09.

Control Control Better o
law a law b Control law (percent)
lose: 3 »99, 9
1 3 e e
sum: 3 >99.,9
loes: 4 >99,.9
1 4 - = = = = = = = e = e e e e e e - -
sum: 4 >99.9
loss: 2 >99.9
1 2 - = = = = = = - s m - e e m e - - -
sum: 2 >99.9
loss: 3 >99,9
2 3 e
sum: 2 >99.9
loss: 4 >99,9
2 4 e
sum: 2 >99.9
loss: inconclusive
3 4 - = = = = = = = - = e - - - e e e -
sum: 3 >99.9

1.0 for all values of g, the parameter ¢ is calculated to satisfy

2
(p = l - e .

The terme needed for approximation have the form

. -1 - 0 o
= A ] =
x(tr=| o L ¢ [o p ] Ri=| o o2

O(t)=0 -y(t-1), u(t-1)1, O(t)=[ -y(t-1), 01,

and LA =T10011.

The Kalman filter is then given by
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_ _ 2 2 .
Ky (t) = op, (B)ult-1)/00“ + p_, (£)u“(t-1)]
Ppy (E+1) = @le - K (t)ult-1))p,  (£) + R,
A A A
b(t+1) = ¢b(t) + K (£)I[y(t) - y(t-1) - b(t)]

In this case the reference value for the cutput is set at zero.

The four control strategies used in the previous example were
also used here, that is, the cautious and approximate ASOD
controllers for a first order system. Additionally, an analytic
solution to the optimal dual control loss function is simulated.
The control algorithm is taken from Astr®m and Helmersson [5].
This control law is derived for a constant b(t), but is expected
to be a good approximation for a b(t) which varies slowly, i.e.
vhen ¢ is small. The losses for different values of @ are shown
in Table 3. The average running output sums were all within 40
units of zero, and could not be distinguished significantly.
Therefore output sums will be omitted from discussion.

Figure &) shows the diEpersion of results for cautious,
approximate ASOD (with 8°L/3u”), and near-optimal dual (for
@=0.0) controllers. The constant A=0.5 gave satisfactory results
for all values of g except for @=0.5, where a value of A=2.5 was
found to give better results.

ASOD expanded about y again gives results superior to those of
the cautious controller. The near-optimal controller S5 and ASOD
controllers 3 and 4 give comparable results for small values of
e. As 1is to be expected, the performance of the analytic
expression for optimal dual control becomes worse for higher e’'s.
The near-optimal analytic control law loses validity, and must be
reformulated.

The statistical comparisons carried out for the Monte Carlo runs
for this system are shown in Table 4. As expected, the control
lawse 3 and 4 are statistically2 ind&stinguishable. To save
calculation time, omission of the 8“L/38u“ term may be considered
here.

Figures 6 and 7 illustrate typical %}mul§§ions for cautious and
approximate ASOD (with the a"L/au term) controllers,
respectively. Both simulations were obtained using the same noise
sequences, and the losses for both are close to average; e is
equal to 0.3. Figure 6 exemplifies +the +turn off phenomenon
occuring during cautious control where parameter estimation
ceases and the control signal nears zero.

In Figure 7, ASOD control shows no tendency toward turn off.
Parameter estimation and good control are maintained. A large
portion of the 1loss takes place when b(t) changes sign. The
estimated b(t) is delayed slightly, and the control gignal wmay



Table 3.

system each for a different e.
are used in the statistical comparison shown in Table 4.
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The results from six Monte Carlo runs for the first order

The runs with 60 simulations

1000
Loss = (y )2
n
n=1
e=0.003 e=0.1 e=0.2 e=0.3 e=0.4 e=0.5
A=0.53 A=0.5 A=0.53 A=0.5 A=0.5 A=2.5
Control law (60 2im) (60 sim) (10 sim) (60 sim) (10 =im) (60 sim)
Cautious 1 2316.6 2846.1 4145.1 5223.1 6473.7 8197.0
Control +775.8 +798.5 +978. 6 +919.5 +905.0 +1301.2
ASOD 2 1869.0 2250.1 3158.1 3631.0 4331.2 4572.1
expansion +565.7 +597.8 +728.6 +675.9 +726.6 +744, 32
about u
c
ASOD 3 1658.7 2038. 6 2585.7 3128.3 3702.5 4082.1
expansion +390. 8 +489.0 +491.0 +618.2 +385.7 +708.5
about ¥
with 82L/au2
ASOD 4 1658. 7 2040.0 2582. 5 3122.7 3721.1 4064. 4
expansion +390. 8 +493. 6 +482.8 +619.9 +399.0 +690.0
about ¥y > >
without 8 L/du
near S 1677.6 2077.4 3041.7 3328.8 4135. 2 5107.0
optimal dual +394.7 +504.1 +821.0 +749.0 +723.3 +1288.3
dual analytic
for e=0.0
have the wrong sign. The example =imulation in Figure 7

illustrates this phenomenon.
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Figure 5. The dispersion of results obtained for six Monte Carlo runs
with different values of @. The vertical axis is tracking
loss, and the horizontal axis is @.

Table 4. A statistical comparison of loss resulte obtained for
the first order system.

e=0.003 e=0.1 e=0.3 e=0.5
Control Better Better Better Better
law control o control o control « control o
a b law (%) law (%) law (%) law (%)
1 2 2 >99.9 2 >99.9 2 >99.9 2 >99.9
1 4 4 >99.9 4 >99.,9 4 >99.9 4 >99.9
1 3 =} >99.9 =1 >99.9 3 >99.9 3 >99.9
2 3 3 >99.9 3 >99.9 3 >99.9 3 >99.9
3 4 inconcl. inconcl. inconcl. inconcl.
3 S inconcl. inconcl. 3 99.9 3 >99.9
4 S inconcl. inconcl. 4 99.9 4 >99.9
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10.
y(t) 0.
-10. . . .
0. 250. S00. ' 750. ' 1.E3
12.5
uee) Oy W
-12.5 .
0. 250. ) 500. ' 750. ' 1.E3
2.5
b(t) 0.
-2.5 .
0. 250. ' 500. ' 750, ' 1.E3
2.5
. |
b(t) 0.
-2.5 .
0. 250. ’ 500. ' 780. ' 1.E3
1.
pbl 0.5
0. - ,
0. ! 250. . ' 500. ' 750. ' 1.ES
Loss=4749. 8
4.E3
loss 2.E3]
0. .
0. ' 250, ) 500. ) 750. ) 1.E3
Figure 6. Representative simulation for the first order system (eg=0.3)
with cautious control. Turn off occurs when the control
signal u(t) nears zero, and identification of the parameter
b(t) is impeded. Here the variance of b(t) increases to its

maximum. Variables are plotted versus time.
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10. |

-10
0. ! 250, ' 500, ; 750, i 1.E3
15. |
u(t) 0.
-15. |
0. 250, : 500, " 750. - 1.E3
2.5]
b(t) 0. -
-2.5 . .
0. 250, " 500. ' 750, ' 1.ES
2.5]
A
b(t) o. \ dﬁPbJ JM:IUAJAﬂht”ﬁ¢¥fﬂt#
-2.5 ) . ¥h/ bkdlvl
0. 250. ) 500. 750. i 1.E3
1.
.5
Phy °
0. _ . ] . - =
0. 250, 500. 750. i 1.E3
4.ES]
Logss=2927.2
loss 2.3
o. LS T L L Ll v T .
0. 260, 500, 750, 1.E9
Figure 7. Approximative ASOD control for the integrator (¢=0.3) is

illustrated, with the same noige sequence used in Figure 6.
No turn off occurs. A large portion of the lose takes place
when b(t) changes sign. Variables values are plotted

versue time.
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V. Conclusion

The purpose of thils paper has been to describe how approximation
of the ASOD 1loss function, while decreasing calculations in
comparison to iterative methods, maintains good results. The loss
function V_ is readily approximated, and an analytic ASOD control
law can be calculated.

The two example systems 1llustrate how the active sub-optimal
controller’s dual effect can lead to good control vhile
maintaining good parameter estimation. Although cautious control
involves few calculations, the ASOD controller has given superior
results. The first example shows that this analytic solution
leads to results which are equivalent to those obtained using
numerical wminimization algorithms at least in the case qf th;
simple, =zero order system. An approximation omitting the 38" L/du
term should also be considered.

For the system with an integrator, +the approximate ASOD also
performed well. In comparing ASOD and the near-optimal analytic
dual control 1law, results show +that for low e, ASOD and the
near-optimal dual solution gave losses which could not be
distinguished with statistical significance. For higher wvariances
(e20.3), the performance of the ASOD controller is better with
high statistical significance. Thisg result indicates +that the
optimal dual solution for constant b(t) does not suffice for a
rapidly varying b(t). Additionally, approximations for ASOD
including or omitting the second order derivative of L(u) gave
statistically indistinguishable results, both in loss and running
sum.

For all three controllers, a large portion of the loss takes
place when the parameter b, (t) nears =zero. In cautious control, a
low b,(t) leads to the %urn-off phenomenon. In dual control,
parame%er identification continues for small b, (t). Even so, the
wrong sign of the gain can lead to large losses in short periods.

There is some indication that better results can be obtained for
the ASOD controller by using a variable (or higher constant) A,
especially for systems with large parameter variation. It is
clear +that parameter variation and the need for parameter
identification increase s=simultaneously. For a high ¢ (=0.5) 1in
the first order system, a higher A gave improved results. A
suggestion for a wvariable A used 1in a special case of the ASOD
controller is found in Sternby ([21. Through improved parameter
identification, losses which occur when bl(t) changes sign may be
decreased.
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APPENDIX 1

The calculation of u (t) involves the following 3 steps which
are broken down intoagompnnent calculations. These steps involve
no iterations. The estimated parameters are taken from the Kalman
filter. The cautious regulator involves only step one.

Step 1: Calculate uc(t) gince sign(umin)=aign(uc).

— A A A ~
@(t+l)x(t+l)bl(t+l) = yrbl(t+l) + kP(t+l)@(t+l)T
u_(t)= - 2
Cc
b

(t+.'|.>2 (t+1)

1 * Ppy

Step 2: Calculate ¥ for approximation.

Yy * Yp

Y = 2 *

This involves the calculations:

.Q.P(t+1)®(t+l)T

2a. d1

2b. d, = pbl(t+1)(@(t+1)P(t+l)®(t+l)T+ 02) = df ’

2
Md2/3 - d1

— > -
2c. U, pbit+1) , uc(t)_O ( u, for uc(t)<0)
2d. Vplup) = [(B(t+1)48u, O x(t+1) - ¥l
PO U P+ Bt +Ru ) T 4 02 s ALCu,)
with
2
$°d
L, =2R 27+ > b2 = =
Ppy(t+lluy + 2d,u, + B(L+1)P(£+1)0(t+1)+ o
2
2e. a = DbI(t+l) + p . (t+1)
ol A I\2 Lo T
2f. b = 2([(B(t+1)x(t+1) - YpIB (+1) + 2P(t+1)@(t+1)])



2h. /2
b+ /b - 4ac u_(t)20

2a
u =
B -b - Jbz- 4ac
%a uc(t)<0
Step 3: Calculate ASOD control signal.
aviy)
u =y - au
as a%viy)
2
du

This involves the calculations:

2(p,, (t+1)y + d,)

3a aL. = —¢2d
. 2 @ [pbl(t+l)72+2d17+®(t+1)P(t+1)®(t+1)T+ 02]2
2 6(p. . (t+1)y + d 12 - 2d
3“L 2 Pp1 ¥ 1 2

bz 2~ = $pds 2 ~ ~ T 213
du [pbl(t+1)7 +2d y+@(L+1)P(£+1)B(£+1) + o ]
3V2 ~ A A A

3c. 5o — = 2[ (@(t+1)x(t+1) + b (t+l)y - y Db, (£+1)

+ AP(E+1)O(t+1) T + po (t+1) ] + a—2bl¥)
bl au

32v2 A2 3%L(y)

3d. ——=%— = 2(b,“(t+1) + p_,(t+1)) + A ———="¥°
pe 1 bl a2

As mentioned above, simulations have shown that setting 32L/3u2=0

in step 3b, can give satisfactory reault52 Evg? though the output
losses are comparable, omission of the 8"L/3u”~ term gives higher

loeses according to the loss function V2.
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APPENDIX 2

Simnon programs used in simulating the system with an integrator.
The system "Newdual2" is the regulator for the system, containing
the control algorithms for cautious, approximated ASOD, and
near-optimal dual (for ¢=0.0) controllers. "Syst" is the first
order system, and "Condual" connects the system and regulator.

DISCRETE SYSTEM NewdualZ2

"Dual regulator for a system of the form:

"y(t) - y(t-1)=bl(t+1)u(t-1) + sigmaxe(t)

"where bl(t+1)=fi%*bl(t) + ro*v(t)

"This system component gives a choice between three controllers:
"cautious, ASOD, and an approximate optimal dual controller for syst
"with ro=0.0 (Rlb=sqr(ro)). The ASOD control signal approximately
"minimizes approximated ASOD loss function V2.

" (Connected by cdual to syst.)

"Craig Elevitch August 11, 1983

state xcap2 Pb wuo ytml Psum V2sum track
new nxcap2 nPb nuo nytml nPsum nV2sum ntrack
input y R1lb

output u

time t

tsamp ts
"Kalman filter:

Pb:0. 25 "initializations
xcap2:0.1

K2= fi*Pb*uo/(sig2 + Pb%*uo%*uo) "Kalman gain

Pbtl= fi*#(£fi-K2%uo)*Pb + R1b "variance for bl (t+1l)

xbtl= fi*xcap2 + K2%(y-1#%*ytml-xcap2%uo)"estimate for bl(t+l)
te= t + h

uc= xbti*(yr-y)/(xbtlx*xbtl + Pbtl) "cautious control

"Find a good point to expand about:

"V2 minimum is on the same side of zero as uc
fi=sqrt(1-R1lb)

d1=0.0

d2=Pbtli*sig2

point=(sqrt(d2/3)-dl)/Pbt1l

uA=if uc>0.0 then point else -point
V2uA=(y+xbtl%uA-yr)#(y+xbtl*uA-yr)+Pbtl*uA*xuA+sig2+lam*LuA
LuA=R1b+(fi*fi*d2)/(Pbtl*uA*uA+sig2)
a=xbtl¥xbtl + Pbtl

b=2%(y¥xbtl-xbtl*yr)

C=y¥#y+yr - 2#%y*yr + sig2 + lam#R1lb - V2uA
point2=(-b+sqrt(b*b-4%axc) )/ (2%a)
point3=(-b-sqrt(b*b-4%xax¥c) )/ (2#a)

uB=if uc>0.0 then point2 else point3

best= (uA + uB)/2
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"Possible expansion pts. (must set variables of previous exppts to 1):
"uc (with dL), best ((uA+uB)/2, with or without d2L/du2 term)

alfa=if aver<0.5 then uc else best

dvV2= 2%(y + alfa*xbtl - yr)*xbtl + Pbtl*alfa
dL=-2%xfixfi*d2#Pbtl*alfa/(sig2+Pbtlxalfa*alfa)*?2

d2v2= 2% (xbtl#xbtl + Pbtl)
glupl=(6%(Pbtl*alfa+dl)*(Pbtl*alfa+dl)-2%d2)/(gig2+Pbtlxalfa*alfa)+*3
d2L= if id2L<0.5 then 0.0 elge fixfixd2%glupl

L=Rlb+(fixfi*d2)/ (Pbtl%uo*uo+sig?2)
target=alfa-(dV2+lamxdL)/(d2V2+1lam*d2L) "target point

"Compare even dual control algoritm from Astr®m Helmersson paper

""Dual Control of a Low Order System, " Coden:lutfd2/(tfrt-7249)/1-18/(1983
"(note symmetry considerations)

ae=y/sqrt(sig2)

be=abs(xbtl/sqrt (Pbtl)) "normalized gain

factor=sig2/sqrt (Pbtl)

nu=(0. S56+be)*¥abs(ae) /(2. 2+0. 08*be+be*be)+(1.9/(1. 7+be*be*be%be))

vi=if xbt1>0.0 then nuxfactor else -nux*factor

v=1lf y>0.0 then -vl else vl

u=if dual<0.5 then uc else if astah<0.5 then target else v

nxcap2=xbtl

nPb=Pbt1

nuo=u

nytml=y

nPsum= Psum + Pb

nV2sum=V2sum+ (y+xbtl*u-yr)*(y+xbtl%u-yr)+usu*Pbtl+sig2+lam#L
ntrack=track + (y-yr)#(y-yr)

"parameter values
h:1.0

2ig2:1.0

lam:0.3

yr:0.0

id2L:0

dual:O

astah:0

aver:0

END

DISCRETE SYSTEM syst
"Discrete time system with integrator
"Craig Elevitch August 11, 1983

state b x loss sum
newv nb nx nloss nsum



input e v u Rlb
output y

time t

tsamp ts

ts=t+h
y=X

nx=x+b*utersqrt(sig2)
nb=fi*b+v#sqrt (R1lb)
nloss=loss+(y-yri#(y-yr)
ngum= sum + y

fi==sqrt(1-R1lb) "gsyst hae unit wvariance
h:1

yr:0.0

eig2:1.0

END

CONNECTING SYSTEM cdual

"Connects newdual and syst

elsystl=ellinoisel]

visystl=e2lnoisell

ulsystl=ulnewdual?l

yInewdual2l=ylsyst]

Rlblsyst1=R1b

Ribf{newdual21=R1b

Rib:0.01 "Rlb=gqr(ro) where ro is s8.d. of v(t)
END

macro gonew
let n.noisel=2

let nodd.noisel=19

syst newdual syst noisel condual

par same:l

store ulsyst] ylsystl blsyst] xcap2 Pb loss
END
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