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A NEW METHOD FOR DESIGN OF PID REGULATORS

Tore Higglund and Karl Johan Astrdm

Department of Automatic Control
Lund Institute of Technology

Lund, Sweden

Abstract. The idea of conformal mapping is used to develop methods for
analysis and design of PID control. It is first shown that the notions of
amplitude margin and phase margin are too simplistic for design. The reason
is that they are based on knowledge of one point on the Nyquist curve only.
Simple methods for approximative determination of the dominant closed loop
poles based on knowledge of two points on the Nyquist curve are first given.
A design method based on knowledge of two points on the Nyquist curve is
then presented, as well as techniques for determining these points

automatically.
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1. INTRODUCTION

The majority of the regulators used in industry are of the PI(D) type. A large
industrial plant may have hundreds of them. Instrument engineers and plant
personnel are used to select, install and operate such regulators. Many
different methods have been proposed for tuning PI(D) regulators. The
Ziegler-Nichols (1943) method is one of the more popular schemes. Many
regulators are, however, poorly tuned. The purpose of this paper is to
propose improved design methods for PI(D) control, which are based on
knowledge of two points on the open loop Nyquist curve in the neighbourhood
of the cross-over frequency. A powerful method for determining suitable
points is also presented. The method is an extension of the technique
presented in Astrdm and Hagglund (1983), which is based on determination of

one point only of the Nyquist curve.

The paper is organized as follows. The notions of phase and amplitude
margins are analysed in Section 2. It is shown that design specifications can
not be expressed in terms of these margins only. Examples are given of
systems with the same margins which have widely different transient
responses. A technique for estimating the dominant closed loop poles from the
open loop Nyquist curve is then presented. The estimate is based on the
knowledge of a portion of the Nyquist curve close to the critical point s = -1.
It is derived using a conformal mapping argument. Two points on the Nyquist
curve are needed to estimate the dominant poles. It is demonstrated that the
procedure gives the dominant closed loop poles with a reasonable accuracy.
A design technique for positioning the dominant poles is presented in Section
3. Starting from the knowledge of two points on the Nyquist curve, a PID
regulator which gives a closed loop system with dominant poles having
specified relative damping and frequency is obtained. Methods for automatic
determination of relevant points on the Nyquist curve are finally discussed in
Section 4. A powerful scheme for automatic tuning of simple PID regulators is
obtained by combining the estimation technique with the design methods
discussed in Section 3. Computer programs related to the paper are enclosed

in the Appendix.



2. ANALYSIS

This section is introduced by two examples, which show that the notions of
amplitude margin and phase margin are too simple design criteria. The
following analysis gives a general explanation, and indicates how to derive

better criteria.

Example 1. Nyquist curves for three different systems are given in Figure 1,
together with their corresponding closed loop step responses. The open loop

transfer functions are

G (e - 1.401+0.55)e 0?8
1 2
S

_0.072e °°

GZ(S) = ——= =
s{1+5s)

e o] 1.65¢ 12°
3 1+20s

All the systems have the amplitude margin Am = 2. It is clear from the figure
that there is a considerable variation in damping between the three systems.
The values of the resonance peaks of the systems are Mp = 17, Mp = 1.8, and
Mp = 1.2 respectively. The closed loop responses are obtained with unit

feedback. a

Example 2. Nyquist curves for three different systems are shown in Figure 2,
together with their corresponding closed loop step responses. The open loop

transfer functions are

1.25¢ 198
G,(s) = === —
4 2
(1+5s)
Gg(s) = __9;5__5
s(1+5s)
G (g & 1.4(1+1.25)e 0 %S
6 2

=

All the systems have the phases margin P 45°. The damping varies
considerably between the three systems. The values of the resonance peaks of

the systems are Mp =17, Mp = 1.4, and Mp = 1.5 respectively. a]
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Figure 1. The Nyquist curves of the three systems with equal amplitude
margin in Example 1, and their corresponding closed loop step
responses.



14

T 1
0 LE}U 800
14
0 T T L 1
0 100 200

AP

Figure 2. The Nyquist curves of the three systems with equal phase margin in
Example 2, and their corresponding closed loop step responses.



The examples show clearly that the notions of amplitude margin and phase
margin are too simple design criteria. The reason for this will now be

demonstrated by analysis.

Analysis

The transfer function G(s) may be viewed as a conformal map from the
complex s-plane to the complex G-plane. The Nyquist curve is the image in
the G-plane of the positive imaginary axis in the s-plane. To judge the
properties of the closed loop system, it is useful to know the poles of the

closed loop system. They are the zeros of the characteristic equation
Gis) + 1 =0 (2.1

i.e. the points in the s-plane which are mapped to G = -1.

To discuss the inverse map G_l, it is useful to consider a manifold of several
sheets in the s-plane. This is necessary because there are frequently several
points in the s-plane which maps into G = -1. Physically this corresponds to
the common situation when the closed loop system has many poles. For simple
systems the response is, however, often dominated by a pair of complex poles

which are called the dominant poles. A simple approximate method to

determine the dominant poles from the Nyquist curve of a system will now be

given.

Consider the map of a line parallel to the imaginary axis in the s-plane which
goes through G = -1. See Figure 3. A point A’ on this line is obviously a root
to the characteristic equation (2.1). Now consider the map A’B’C’ of the
triangle ABC in the s-plane. This map is in general not a triangle because its
sides will not be straight lines. If the points are sufficiently close together,
it will however be close to a triangle. Under this assumption it is easy to
determine the point A from knowledge of B’ and C’. Assume e.g. that B’ and
C’ are chosen symmetrically at either side of the normal to the Nyquist curve
through G = -1. Let the angle o be small and let B’ and C’ correspond to W,
and w,. The following approximate formulas are then obtained for the

2
dominant poles.



‘Im s

C:M?

B=Mﬁ

Re s

Figure 3. The conformal mapping from the s-plane to the G-plane.
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The relative damping is given by

g = —2
2

Joo o+

2
W

Re G

(2.2)

(2.3)

(2.4)

It is clear from these formulas, that the damping of the dominant poles is

determined not only by the shape of the Nyquist curve, but also by how

rapidly w changes along the Nyquist curve.

To get a feel for the accuracy of the approximate formulas, they will be

applied to the systems in Example 1 and Example 2. For the Nyquist curves in

Example 1 we get

o]
Gl: w

g

o]
(32: W

g

o1
(33:

0. 044
1.30
0.034

0. 027
0. 088
0. 29

0.051
0.143
0.34

(0.043)
(1.29)
(0.033)

(0.024)
(0.082)
(0. 28)

(0.042)
(0.136)
(0.30)



where the true values are given in parenthesis. The corresponding results for

the systems in Example 2 are

g = 0.0076 (0.0060)
G,: w = 0.135 (0.131)

4t
L = 0.056 (0.046)
o = 0.057 (0.044)
GS: w = 0.12 (0. 104)
= 0.43 (0. 39)
o = 2.86 (1.06)
66: w = 3.0 (1.06)
L = 0.69 (0.71)

The approximate formulas thus give a fairly accurate estimate of the

dominant poles, except in case G,. The reason is that the Nyquist curve of G

has a shape such that the normal6 is very close to G = -1 for a wide range o?
w-values. This causes the large error in the o and w estimates. Note that the
value of the relative damping nevertheless is quite good even in this case. It
thus appears, that the approximate formulas are useful in order to assess the

damping of the dominant poles from the open locop Nyquist curves.

Amplitude and phase margins

It is clear from the preceding analysis that amplitude and phase margins
alone do not suffice to give good estimates of the damping of the dominant
poles. More insight into this is obtained by approximating the Nyquist curve
locally by straight lines as shown in Figure 4. Assuming that A’B’C’ can be
approximated by a triangle, the following approximate expressions are

obtained for the dominating poles.

A (A + 1) sin2(¢ /2)
™ m

m
w =00, + (0, - w,) (2.35)
1 2 ) (A - l)'2 + 4A sin2(<p /2)
m m m

Am(Am - 1) sin(q)m)

o = (m2 - wl) > > (2.6)
(A - 1) + 4A gin (¢ _/2)
m m m

where Wy and w, are the frequencies where the Nyquist curve intersects the

unit circle and the negative real axis respectively. From these equations it
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Figure 4. A map of the s-plane in the G-plane.

follows that knowledge of either the amplitude margin or the phase margin is
not enough to determine o and w. The quantity Wy T Wy, which tells how

rapidly w changes along the Nyquist curve, is also needed.

The above analysis shows that knowledge of at least two points on the
Nyquist curve is needed to determine the dominant pose of simple feedback
loops. It also explains qualitatively why the Ziegler-Nichols design or

designs based on phase or amplitude margins alone do not suffice.
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3. DESIGN

In the previous section it was shown that the dominant closed loop poles can
bee determined approximately from two points on the Nyquist curve of the
open loop transfer function. By introducing a controller in the loop, the
dominant poles may be moved to new desired positions. The corresponding
design problem may then be expressed in terms of the frequency « and the

relative damping ¥ of the dominant poles.

To perform the design, it is assumed that the values of the open loop transfer

function at two neighbouring frequencies, w, and w,, are known, i.e.

1

n
w

Go(lwl> 1 + 1bl
(3. 1)

It
A1}

+
U8
o

Go(lwz) > >

It is also assumed that the frequencies W, and w, are close to the cross-over
frequency. The design is not restricted to any particular regulator structure.
Almost any regulator with at least two adjustable parameters may be used. A

PID regulator of the form

Go(s) = K[1 + + 8T, ) (3.2)

sT,
i

is chosen as an illustration. Furthermore, it is assumed that there is a given

relation between the integration time Ti and the derivative time Td.
Td = aTi
Hence
G(s) = K[1 + iz + saT) (3.3)
R sT

This regulator has two adjustable parameters. The gain K moves the Nyquist

curve radially from the origin. The time constant T twists the curve.

The design problem is then to determine a regulator so that the transfer
function of the compensated system has desired values at the two frequencies,

i.e.
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1l
a

+
-
(o}

G(:Lwl) = Go(iwl) GR(lwl) 1 1

(3. 4)

G(lwz) = Go(iw

n
Q

+
H.
a

2) GR(lwz) o >

In the sequel, it is assumed that the desired frequency w of the dominant

poles is equal to w,. To obtain dominant poles with frequency W the normal

2

of the Nyquist curve at w, should go through -1. See Figure 5. The following

2
relation is then obtained from the conformal mapping argument introduced in

the previous section.

G(1w2) - G(1wl) G(lwz) + 1

iw, - iw - o Sk S
2 1
Hence
G(wz) + 1
® % B(ie) - Gliay iz 7 9y (3. 2P
2 1
Equation (2.4) gives
Lw
g = 2 (3.7)
2
J1-g
Equations (3.6) and (3.7) now give
G(iw,) - G(iw,) 2 ilw, - w,)
. Lo b=t . A T (3.8)
G(lwz) + 1 g w5
It follows from Equation (3.4) that
*lm s ‘/m G
rE— o 2 e
l ‘\“\\ . _IVQ‘ =
few
, S~ .
| & 6(ia) Re G
| N,
% —
| Re s
o

Figure 5. The conformal map of the s-plane in the G-plane used in the design
method.
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c, - c, + i(d, - d,)
2 1 ' 2 1 = ix (3.9)

c2 + 1 + id2

Equation (3.9) then gives

c, - c, + xd_ =0 (3.10)

d, - d, - xl(c, + 1) (3.11)

2 1 2

i
(@]

These conditions determine the parameters K and T of the PID regulator (3.3).
Equation (3.10) gives a second order equation for T, from which T is solved.

The gain K is then obtained from Equation (3.11).

The new design method will be illustrated by some examples. It will also be
compared with the Ziegler-Nichols design. First, the introduction of the

command signal in the loop will be discussed.

The PID controller introduces zeros in the loop transfer function. These zeros
are influenced by the manner in which the command signal is introduced in
the system. It is common practice not to introduce the command signal in the

derivative action. Such a PID-regulator can be described by

t
1 dey
u-Kep+,Fi—je<s)ds+Td—d-,-c— (3.12)
where
e = e = r -
B 4
and
&y = T Y

This controller is used for the Ziegler-Nichols design below. The regulator

has a zero at

This zero may cause an excessive overshoot if it is too close to the real part
of the dominant poles. The zero can be adjusted by the following modification

of the controller.
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e = Pfr - vy 0<p <1 (3.13)

This means that the proportional part only acts on a fraction p of the

reference signal. The regulator (3.12) with ep, e, and e defined by (3.13)

d
introduces a zero at

This zero can be positioned properly by selecting B. Since the dominant poles
are specified in the new design, it is possible to ensure that the zero not is
too close to the real part of the dominant poles. In the following examples,
the value of B is chosen as

1

B = 30’Ti (3.14)

Example 3. Consider the linear system

1
(1+8)(1+0.28)(1+0.05s)(1+0.01s)

G(s)
Two points on the Nyquist curve which are used for the design are given by

G(8:i) = - 0.0593 - i+-0.0135

G(10+i) = - 0.0396

Using these two values of G(iw), the design method presented above can be
applied. The following set of PID parameters is obtained for o = 0.25, w, = 10
and g = 0.4,

K = 14.17 Ti = 0. 407 Td = 0.1018 p = 0.17

These parameters can be compared with the following wvalues obtained by the

Ziegler-Nichols design.

K = 15.15 Ti = 0.314 Td = 0.0785

Step and a load disturbance responses of the closed loop systems are given in
Figure 6. It is well-known that the Ziegler-Nichols method gives a system

with poor damping in situations like this. This is clearly seen in the figure.
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Figure 6. Step and load disturbance responses of the closed loop systems in
Example 3 obtained with the new design (thick line) and the
Ziegler-Nichols design (thin line).

~

0 2

Also notice that the responses of the systems are quite different even if the

parameters are relatively close. a

Example 4. The new design method has alsc been applied to the six systems in
Example 1 and Example 2. The controller parameters are given in Table 1. The
step and load disturbance responses are given in Figures 7 and 8. The
corresponding results for the Ziegler-Nichols design are also given in the

graphs and in the table.

The differences between the controller parameters obtained by the two

methods can roughly be characterized as follows.

The same gain, Ti and T, about 2.5 times larger in the new design.

d
The gain 10% higher in the new design, Ti and Td the same.
The same gain, "I‘i and Td 20% smaller in the new design.

The gain 15% and Ti and Td

The gain 10% lower, Ti and T

30% smaller in the new design.

d 30% larger in the new design.

The gain 25% higher in the new design, Ti and Td the same. o

Q Q Q Q Q@ @

N W=



TABLE 1: The PID parameters obtained in Example 4.
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Ziegler-Nichols New design
design

K Ti d Tl 'I‘d g
Gl 1.13 1.65 .41 1.12 4.11 1.03 0.090
G2 1.21 28.3 .08 1.33 28.3 7.07 0.22
GB 1.20 20.0 .00 l1.18 15.7 3.93 0.28
G4 0.69 23.8 .93 0.58 16.9 4.23 0.31
G5 2.40 15.7 . 93 2,253 20.5 5.12 0.17
GS 2.6 0. 43 <11 3.24 0.41 0.103 0.23
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New design

8
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Figure 7. Step and load disturbance responses of the systems Gl’ G, and C;3
controlled by the Ziegler-Nichols
method. The graphs show the output signal above the control signal.

design and the "new design
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Ziegler-Nichols design New design
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Figure 8. Step and load disturbance responses of the systems G4, G. and GG
controlled by the Ziegler-Nichols design and the new design
method. The graphs show the output signal above the control signal.
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4. DETERMINATION OF POINTS ON THE NYQUIST CURVE

To apply the design technique discussed in 3ection 3, it is necessary o know
two points on the Nyquist curve which are close to the cross-over frequency.
Any peint on the Nygquist curve can easily be determined by frequency
response analyzis. Since the appropriate frequencies are not known apriori,
an exhaustive search is needed to find suitable frequencies. The method
introduced in Astrom and Hagglund (1983) gives a convenient method for
determining the point on the Nyquist curve which intersects the negative real
axis. The method is based on the observation that a system with a phase lag
of at least 180° may oscillate with period t'c under relay control. To
determine the critical gain and the critical period, the system is provided
with relay feedback as is shown in Figure 9. The error e is then a periodic
signal with the period tC. If d is the relay amplitude, it follows from a
Fourier series expansion that the first harmonic of the relay output has the
amplitude 4d/mn. If the process output is a, we get approximately

L2, ma

G( if ) = a4 (4. 1)
C

This result also follows from the describing function approximation. The

describing function N(a) for a relay is given by

N(a) = 28 (4.2)

na

=1 PID

e c
r.@_‘ | Process y
ref t ]

Figure 9. Block diagram of the auto-tuner. The system operates as a relay
controller in the tuning mode (t) and as an ordinary PID regulator
in the control mode (c).



There are advantages in having a relay with hysteresis. The negative

reciprocal of the describing function of such a relay is

n 2 2 e
r: e ’ o 4 s (4,
a4 v a € i 24 4.3)

N(a)

where d is the relay amplitude and e is the hysteresis width. This function
can be regarded as a straight line parallel to the real axis, in the complex
plane. See Figure 10. By choosing the relation between € and d it is therefore
possible to determine a point on the Nyquist curve with a specified imaginary
part, Several points on the Nyquist curve are easily obtained by repeating

the experiment with different relations between € and d.

Two experiments with relay feedback having different ratios £/d thus give
the information about the process which is needed in order to apply the
design method given in Section 3. It is easy to control the amplitude of the
limit cycle by a proper choice of the relay amplitude. Notice also that the

estimation method will automatically generate the appropriate input signals.

Determination of amplitude and period

Methods for automatic determination of the frequency and the amplitude of
the oscillation will be given to complete the description of the estimation
method. The period of an oscillation can easily be determined by measuring
the times between zero-crossings. The amplitude may be determined by

measuring the peak-to-peak wvalues of the output. These estimation methods

‘/mG

== Re G

"N(A)

G(iw)

Figure 10. The negative reciprocal of the describing function N(a), and the
Nyquist curve of G(s).
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are easy to implement because they are based on counting and comparisons
only. Since the describing function analysis is based on the first harmonic of
the oscillation, the simple estimation techniques require that the first
harmonic dominates. If this is not the case, it may be necessary to filter the
signal before measuring. More elaborate estimation schemes like least squares
estimation and extended Kalman filtering may also be used to determine the
amplitude and the frequency of the limit cycle oscillation. Simulations and
experiments on industrial processes have indicated that little is gained in
practice by using more sophisticated methods for determining the amplitude

and the period.
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5. CONCLUSIONS

Tuning of simple regulators have not received much attention in the past 20
years. This paper hopefully indicates that is is possible to obtain simple
design techniques that will improve upon the traditional practices. The
possibility to combine these design methods with the techniques for automatic
determination of certain points on the Nyquist curve offers interesting
possibilities to arrive at robust automatic tuning of simple regulators. The
availability of microprocessors makes it possible to implement the tuning

techniques in a simple fashion.
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This appendix contains some of the computer programs used in the design

calculations and simulations presented in the report.
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Program

NYQDES - Pascal program for computation of PID parameters

according to the new design method.
SIMNON programs for simulation of
PID regulator designed according to
SIMNON programs for simulation of
PID regulator designed according to
SIMNON programs for simulation of
PID regulator designed according to
SIMNON programs for simulation of
PID regulator designed according to
SIMNON programs for simulation of
PID regulator designed according to
SIMNON programs for simulation of

PID regulator designed according to

the system G, controlled by

1
the new method.

the system 62 controlled by
the new method.

the system G. controlled by

3
the new method.

the system G, controlled by

4
the new method.

the system G_ controlled by

5
the new method.

the system G_ controlled by

6
the new method.

1]

W
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program NYQDES(input, output);

{This program computes the PID-parameters from the information
of the location of two points on the Nyqvist curve
Author: Tore Hagglund 1984-04-12}

const namelength=63;
lo=1; hi=10;
var outfile:text;
outfilename:packed array(l..namelength] of char;
outlen, i, Jj:integer;
al, a2, bl, b2, cl, c2, dl, d2: real;
wl, w2, alfa, z, kappa, n, a, b, c, d, e: real;
K, Ti, Td, T, beta, s: real;

procedure filename(name: packed arrayllo..hi:integerl of char;
var length:integer);extern;

procedure list(K, Ti, Td, beta, ci, dl, c2, d2: real);

begin
writeln;
write(’K = '); writeln(K);
write(’'Ti = ’); writeln(Ti);
write(’'Td = ’); writeln(Td);

write(’beta = ); writeln(beta);
writeln(outfile);

writeln(outfile, ’‘Regulator parameters:’);
write(outfile, 'K = ; writeln(outfile, K);

)
write(outfile, 'Ti ) writeln(outfile, Ti);
)

14

write(outfile, ’'Td ; writeln(outfile, Td);
write(outfile, 'beta = "); writeln(outfile, beta);
write(’'cl= ’); write(cl); write(’dl= ’); writeln(dl);
write(’'c2= '); write(c2); write(’d2= ’); writeln(d2);
wvriteln(outfile);
writeln(outfile, ’‘Location of compensated Nyqvist curve:’);
write(outfile, 'cl= ’); write(outfile,cl);
write(outfile, 'dl= ’); writeln(outfile,dl);
write(outfile, 'c2= ’); write(outfile, c2);
write(outfile, 'd2= ’); writeln(outfile, d2);

end;

begin
write(’Output file: ’); readln(outfilename);

filename(outfilename, outlen);

open(outfile, '$$$FIL’, new);

rewrite(outfile);

writeln(’Enter parameters of the open loop Nyqvist curve’);
writeln(’Notation: G(iw) = a + ib’);

writeln;
write(’'wl=
write(’al=
write(’bl=
write(’'w2=
write(’a2=
write(’b2=

readln(wl);
readln(al);
readln(bl);
readln(w2);
readln(a2);
readln(b2);
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writeln;
writeln(outfile, ’'The parameters of the open loop Nygvist curve'’);
writeln(outfile, ’Notation: G(iw) = a + ib’);

writeln(outfile);
write(outfile, 'wl=
write(outfile, ’al=

*); write(outfile, wl);
)
write(outfile, 'bl= ')
]
)
")

; write(outfile, al);
; writeln(outfile, bl);
write(outfile, w2);

; write(outfile, a2);
; writeln(outfile, b2);

vrite(outfile, 'w2=
write(outfile, ‘a2=
write(outfile, 'b2=
writeln(outfile);
wvhile true do
begin
wvrite(’'Specify relative damping. z = ’); readln(z);
write(’'Specify alfa in Td = alfax*Ti : alfa = ’); readln(alfa);
write(outfile, ’‘Relative damping. z= ’); writeln(outfile, z);
write(outfile, ‘alfa = ’); writeln(outfile, alfa);
g:=z¥w2/(l-z%z);
kappa:=(w2-wl)/s;
if alfa=0 then
begin
T:=(bl*w2-b2%wl-kappa*a22%wl)/wl/w2/(a2-al-kappa*b2);
K:=kappa/ (-kappa*a2+b2-bl-(a2+kappa#*b2)/ (w2*xT)+al/(wlxT));
Ti:=T;
Td:=alfaxT;
beta:=1/(3%gxTi);
cl:=Kx(al-bl*(alfa*wl*T-1/(wix*xT)));
c2:=K#(a2-b2*(alfaxw2¥T-1/(w2%T)));
dl:=K#(bl+al*(alfa*wl*T-1/(wl*T)));
d2:=K*¥ (b2+a2% (alfa*w2xT-1/(w2%¥T)));
list(K, Ti, Td, beta, cl, dl, c2, d2);
end
else begin
for j:= 1 to 2 do
begin
n:=bl*wl-b2%w2+kappa*alxw2;
a:=(a2-al+kappa#*b2)/(alfa#*n);
b:=(b2%wl-bl*w2-kappa*a2#wl)/(alfaxwl*w2¥n);
T:=-a/2+2%(j-1.5)#asqrt(sqr(a/2)-b);
c:=(-kappa*a2+b2-bl);
d:=(a2+kappa*b2) *(w2%alfa*T-1/(w2%T));
e:=-alx(wlxalfaxT-1/(wlxT));
K:=kappa/(c+d+e);
Ti:=T;
Td:=alfax*T;
beta:=1/(3%s*Ti);
cl:=Kx(al-blx(alfa*wl*T-1/(wlxT)))
c2:=K#*(a2-b2% (alfa*w2*T-1/(w2»T)))
dl:=K¥(bl+alx(alfa*wl*T-1/(wl*T)));
d2:=K*(b2+a2%(alfaxw2¥T-1/(w2%T)));
list(K, Ti, Td, beta, cl, dl, c2, d2);
end;
end;
end;
close(outfile);
end.
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CONTINUOUS SYSTEM SAM1

INPUT u

OUTPUT y dy
STATE x1 x2
DER dxl1l dx2

dx1=x2+0. 7%u
dx2=1.4%u

y=x1
dy=dxl1

END

CONTINUOUS SYSTEM PID

INPUT e de ep
OUTPUT u
STATE i

DER di

di=e/Ti
u=K* (ep+i+Tdx*de)

K:1.12
Ti:4.11
Td:1.03

END

CONNECTING SYSTEM CONAM1
TIME t

td1(DELAY1l=t-0.4
ul[DELAYJI=ulPID]l+v
e[PIDl=yref-y[SAMl]
delPID1=-dy(SANM1]
ep[PID]l=betax*yref-y[(SAM1]
ulSAM11=yl[DELAY]

v=if t>tl1 and t<t2 then -1 else O

t1:40
t2:400
yref:l
beta:0. 090

END
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CONTINUOUS SYSTEM SAM2

INPUT u

OUTPUT y dy
STATE x1 x2 x3
DER dx1 dx2 dx3

dx1=-0.4%x1+x2
dx2=-0.04%x1+x3
dx3=0. 00288%u

y=x1
dy=dx1

END

CONTINUOUS SYSTEM PID

INPUT e de ep
OUTPUT u
STATE i

DER di

di=e/Ti
u=K#*(ep+i+Td#*de)

K:1.33
Ti:28.3
Td:7.07

END

CONNECTING SYSTEM CONAM2
TIME t

td1I[DELAY1=t-S

ul[DELAY1=ulPIDJ)+v
elPID]l=yref-y(SAM2]
delPID]1=-dy[SAM2]
eplPIDl=beta*yref-y[SAM2]
ulSAM21=yl1[DELAY]

v=1if t>t1 and t<t2 then -1 else O

t1:300
t2:1000
yref:l
beta:0. 22

END
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CONTINUOUS SYSTEM SAM3

INPUT u
OUTPUT y dy
STATE x1
DER dxl1

dx1=-0.05%x1+0.0825%u

y=x1
dy=dx1

END

CONTINUOUS SYSTEM PID

INPUT e de ep
OUTPUT u
STATE i

DER di

di=e/Ti
u=K*(ep+i+Td#*de)

K:1.18
T1:15.7
Td:3.93

END

CONNECTING SYSTEM CONAM3
TIME t

td1[DELAY1=t-12
ullDELAY1=ulPIDl+v
e[PID]l=yref-y{SAM3]
del(PID1=-dy[SAM3]
eplPIDl=beta*yref-y[SAM3]
ulSAM31=y1l[DELAY]

v=if t>tl and t<t2 then -1 else O

t1:200
t2:400
yref:l
beta:0. 28

END



CONTINUOUS SYSTEM SFM1

INPUT u

OUTPUT y dy
STATE x1 x2
DER dx1 dx2

dx1=-0.4%x1+x2
dx2=-0.04%x1+0.0S%u

y=x1
dy=dx1

END

CONTINUOUS SYSTEM PID

INPUT e de ep
OUTPUT u
STATE i

DER di

di=e/Ti
u=K# (ep+1i+Tdx*de)

K:0. 58
Ti:16.9
Td:4.23

END

CONNECTING SYSTEM CONFM1
TIME t

td1[DELAY1=t-15
Wl[DELAY)=ulPIDl+v
e[PID]l=yref-y[SFM11]
delPID1=-dy[SFM1]
ep[PIDl=beta%*yref-y[SFM1]
ulSFM11=y1[DELAY]

v=if t>tl and t<t2 then -1 else O

t1:200
t2:600
yref:1
beta:0, 31

END



CONTINUOUS SYSTEM SFM2

INPUT u

OUTPUT y dy
STATE x1 x2 x3
DER dx1 dx2 dx3

dxl=-0.4%x1+x2
dx2=-0.04%x1+x3
dx3=0.004%u

y=x1
dy=dxl

END

CONTINUOUS SYSTEM PID

INPUT e de ep
OUTPUT u
STATE i

DER di

di=e/Ti1i
u=K#*(ep+i+Tdx*de)

K:2.25

Ti:20.5

Td:5.12
&\

END

CONNECTING SYSTEM CONFM2Z
TIME t

elPID]l=yref-y[SFM2]
delPID1=-dy([(SFM2]
eplPIDl=beta*yref-y[SFM2]
ulSFM21=ulPID]+v

v=if t>tl and t<t2 then -1 else O

t1:200
t2:600
yref:1
beta:0.17

END



CONTINUOUS SYSTEM SFM3

INPUT u
OUTPUT y dy
STATE x1 x2
DER dxl dx2

dxl=x2+1.68%u
dx2=1. 4%u

y=x1
dy=dxl1

END

CONTINUOUS SYSTEM PID

INPUT e de ep
OUTPUT u
STATE i

DER di

di=e/Ti
u=K# (ep+i+Tdx*de)

K:3. 24
Ti:0.41
Td:0. 103

END

CONNECTING SYSTEM CONFM3
TIME t

td1[(DELAY1=t-0.2
ullDELAY1=ulPIDl+v
elPIDl=yref-y[(SFM3]
del[PID1=-dy[SFM31]
eplPIDl=beta*yref-y[SFM31
ulSFM31=yl[DELAY]

v=if t>tl1l and t<t2 then -1 else O

ti:8
t2:20
yref:1
beta:0. 23

END
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