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Figure 1. Structure of Controller.

1. INTRODUCTION.

A controller with a given transfer-function can be realized in many different
ways. The sensitivity to quantization in coefficients and to round-off errors in

the multiplications depend on the chosen realization.

Purpose.

In this paper we will study how the variance in the output from the controller
due to the noise from round-off-effects in the multiplications in the controller

depends on the realization of the controller.

Limitations.

This paper only treats single-input single-output continuous time controllers.
A study is made of those realizations where it is possible to split the
controller into a number of first order sub-systems. Some of these sub-systems
are connected in parallel and others are connected serially. See figure 1. The
observable and controllable canonical forms will not be treated here because
they are badly conditioned, and therefore sensitive to changes in the

coefficients.



Assumptions.

The controller is on the form

x(t)
y(t)

A-x(t) + Bru(t) + Q@.e(t)
Cex(t)

where A, B and C are matrixes and e(t) is a white noise process with unit

variance.

The covariance-matrix Q is diagonal and its values are representing the sum
of variances of noises that are thought as being generated by the analog
multipliers. Each diagonal-element of Q is a sum of two variances that come

from the multiplications with a, and bi' It is possible to add the variances

i
becauses the noises are independent.

A multiplication whose product belongs to the range [-1,1) generate noise
with the incremental variance 32- dt and a multiplication that gives a result in

the range [-qi,qi] generates noise with the incremental variance (qi- 9)2- dt.
It is however possible without loss of generality to chose coefficients so that
all multiplications for computation of a certain derivative give results in the

same range.

For a second order system we have the following block-diagram

u R X R X, =y
1 1 2 3 1 1
>| Py > 8 >| b2 [ | =
R R
2 4
-al < az <

For this realization the values of R1 and R2 lies within the range [—ql,qll and
the values of R3 and R4 lies within [—qz,qzl. This gives the following

covariance-matrix.



0 2-q§

It is also assumed that multiplication by 1 or -1 in the C-matrix gives no
noise. Further, the integrators are assumed to be ideal. Finally it is assumed
that the signals are scaled to avoid overflow in the internal states. The

scaling itself is no source for noise.



2. ANALYSIS OF SOME SYSTEMS.

Three different controllers are studied to obtain some experience of the

properties of different realizations.

2.1 Controller 1.

The first controller has the transfer-function

100

G(s) =
(s + 100 ) (8 + 1)

This transfer-function has been realized in five different ways. For each
realization the asymptotic output-variance E y2 is computed with the package
CTRLC. See appendix 1 for the macro used.

Realization 1.1

This realization consist of two serially connected first order systems.

| 100 |x
1 g + 100

-

+|

The A, B and C matrixes that correspond to this structure can be found in
appendix 2.

The block-diagram then looks as follows.

u R X R X, =y
—>| 1.0 |—%> A | —25| 100 |3 1 1
8 S
R R
2 |-1.0 2 |-100

The results R1 and R2 are in the interval [-1,1]. The results RS and R 4 belong

to the interval [-100,1001.



According to the assumptions of the generated noise this gives q1=100.0 and

q2=1.0. Then we achieve the following covariance-matrix Q.

2. 1002 0
Q = -52
2

o 2.1

Due to round-off effects in the multiplication the asymptotic variance in the

output for this realization is

E y2 = 100.99-¢2

For realization 1.2 to 1.5 the domain of the multiplications have been
determined in the same way as for realization 1.1i. The A, B and C matrixes for
all realizations can be found in appendix 2. From these the variances of the
noises have been determined. The asymptotic output-variances were computed

with the following results.

Realization 1.2

w | 100 |_ | _1 | ¥
s + 1 g + 100
- g, = 100-e _ 2= L2
> { qé = 100-e => E vy 100.99-¢

Realization 1.3

u 100 . 1 Y
8 + 100 8 + 1
- q, = 1. - 2 _ -
3> { qé = 100-e 2 Evy 1.9901-¢



Realization 1.4

| =1 _ 100 ¥
s + 100 i |
-~ { - S => E y? = 1.9901-¢°
q, = l-g
2
Realization 1.5
100/99
g + 1
e _y
-100/99 (i)
s + 100
= q, = 100/99-¢ _ 2 _ 2
® { q; = 100/99:¢ > Evy 1.0305-¢
Summary

Realization 5, which is the parallel form, has the lowest output-variance. The
realizations 3 and 4 also have low output-variance, but realization 1 and 2 are
obviously unsuitable from the point of view of multiplication noise. It is also
noticed that only the location of poles determine the output-variance. The
influence of the location of multiplications with gain-factors is eliminated

because of scaling.

From these calculations it is obvious that it is preferable to realize this
controller in the parallel form. If the the first order sub-systems for some
reason must be connected serially then the part with smallest bandwidth

should follow after the part with wider bandwidth.



2.2 Controller 2.

The second controller has the transfer-function

100 ( 8 + 10 )

G(s) =
(s + 100) (s + 1)

This transfer-function has been realized in five different ways. For each
realization the asymptotic output-variance E y2 is computed in the same way

as was described previously.

Realization 2.1

— [ 1 ]
a)_Ll
s + 1

u_
-90
g8 + 100
_ g, = 1€ . 2 _ L2
= { q; = 90-e =» E vy 81.198-¢

Realization 2.2

=== 1]
10  (__ ?g)_}'_
g + 1

e,
-50
s _+ 100
; q, = 10'e  _ 2 _ .2
3 { q; i > Ey 8102.0-¢



Realization 2.3

—[ 1 ]
N -
5 g + 100
s + 1
=3 { q, = 100-e =» E y2 = 100.80-€2
a; = 9-e
Realization 2.4
—[_1 ]
u | _10 | _ =Y,
s + 100 5
s + 1
- g, = 0.9-¢ - 2 _ L2
> { qé - 10-e » Evy 2.7902-¢
Realization 2.5
10/11
8 + 1 ii)
u_ - A
100/11
g + 100
- g, = 10s711-e - 2 _ L2
> { qé = 100/11-€ > Evy 1.6529-¢

Summary

The parallel realization has the lowest output-variance, as in the previous
calculations. The realization 2.4 also has low output-variance. This was
expected because the sub-system with the widest band-width is in the first
block of the controller. The realizations 2.1, 2.2 and 2.3 have bad properties.



2.3 Controller 3.

We now will take a look at a controller which has multiple poles. It is
therefore not possible to realize it completely in parallel. This controller has

the transfer-function

S (8 + 80 )
G(s) =

(s+100)(s+2)2

This transfer-function has been realized in eleven different ways. belonging to
three groups. For each realization the asymptotic output-variance E y2 is

computed in the same way as in the previous experiments.

GROUP 1.

The controller has been separated in sub-systems as follows

1l 195749 50749
G(s) = +
s + 2 8 + 2 g + 100

This structure can be realised in two different ways, either starting with the

parallel or with the serial block.

Realization 3.11

195749

Bt 2 50749

g + 100

[C
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Realization 3.12

195749
8 + 2
u_ s 1 i A
50749 B2
g + 100
=> E y2 = 2.9899.¢2

GROUP 2.

The controller has been separated in sub-systems as follows

S 20

G(a)=——2 1 - —
(g + 2) 8 + 100

This structure can be realised in three different ways, depending on the

location of the parallel part.

Realization 3.21

,;
|
|
i
T

s + 100

=3 E }'2 = 9.2723'82

Realization 3.22

g8 + 100

= 3. 1228+ 2

"
v
e

<

"
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Realization 3.23

— [ 1]
. e W
=30 s + 2 S + 2
s + 100
=»> E y2 = 13.0625'5:2

GROUP 3.

The controller has been separated in sub-systems as follows

S5

78
G(s) = [ 1 + ]
(s + 2) (8 + 100) 8 + 2

This structure can be realised in six different ways, depending on the location
of the parallel part.
Realization 3.31

el 1|
w | S o —1 | X
8 + 2 g + 100 =8
8 + 2
=» E y2 = 4.9235-52

Realization 3.32

—_1 |
w | S || —1 | A
g + 100 s + 2 78

g8 + 2

= E y2 = 3.9021-&2
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Realization 3.33

—[ 1 ]
N I e ey M e
78 8 + 2 g +100
g + 2
=» E y2 = 102.91-52
Realization 3.34
u_ _ —S | 1 | x
58 8 + 100 8 + 2
8 + 2
=» E y2 = 4.9110-e2
Realization 3.35
——_1 |
w | S5 | ?J)_ —1 |x
8 + 2 78 8 + 100
8 + 2
=> E y° = 102.86-€2
Realization 3.36
— 1 |
u S - N — 1 - 4
s + 100 78 s + 2
8 + 2
= E y2 = 3.9508-52

Summary

The realizations 3.11 and 3.12 both have dynamics in all branches of the
parallel part. They have the lowest output-variance in this experiment. It is

of less importance whether the parallel block is placed before or after the



13

remaining sub-system. The realizations 3.22, 3.23, 3.31, 3.32, 3.34 and 3.36 also
have low variances. This depends on the fact that the sub-gystem closest to
the output of the controller is a narrow low-pass filter. The realizations 3.33
and 3.35 have much higher output-variance. This because the sub-system
closest to the output is not as good as low-pass filter as in the other

realizations.
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3. SIMULATION OF SOME SYSTEMS.

In order to investigate whether the theoretically computed variances were
realistic three of the previous treated realizations have been simulated in
SIMNON.

The realizations 1.1, 1.3 and 1.5 were implemented as shown in appendix 3. For
these realizations the multiplications to compute the derivatives have been
computed with finite precision in order to generate noise. The result of each
multiplication done with finite precision is quantized in 10 levels. Scaling

was done so that the available levels were fully used.

These realization were driven by the simple input-signal u(t)=sin(t) for 30
seconds. This simple signal was chosen so that it was possible to analytically

compute a "true" output signal from the controller.

A controller where the multiplications are executed in full precision was also
simulated, in order to estimate the noise generated by the integration-routine
in SIMNON. The algorithm RKFIX was used with the step-length 0.0001. The
differences between the output signal from this controller and the "true"
output signal is considered as noise from the integration. (This signal is
denoted ds.) The differences between the output from the realizations with
finite precision and the "true" signal are considered as being a sum of
truncation-noise and integration-noise. (These signals are denoted di, d3 and
d3.) The variances of the truncation-noises are achieved by subtracting the

varilance of ds from the variances of d1,d3 and d5.

The differences were logged with the frequency 1000 Hz. The variances of the
difference-signals ds, di, d3 and dS5 were computed in IDPAC after the
simulation. The variances of the truncation-noise for the different realizations
are shown in the table below. To make the comparisons easy the previously

computed variances also are presented.
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Realization Computed Simulated
Variance Normed Variance Normed
1.1 100.99-52 50. 7 7.715E-3 8. 27
1.3 1.9901-e2  1.00 9. 334E-4 1.00
1.5 1.0305-€2  0.52 7.17SE-4 0.98

The ratios between the variances from the simulation and the theoretical
variances do not correspond well. However it is seen that the realization with
the lowest measured truncation variance in the output also has the lowest
computed truncation variance according to section 2. The reason for poor

agreement between calculation and simulation is not understood.
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4. CONCLUDING REMARKS.

The following principles can be suggested. Factorize the continuous controller
G(s). Determine the pole location. Divide the poles into groups according to
the absolute value (Isi ). Poles that are located close to each other (e. g.
multiple poles) belong to the same group. Take one pole from each group and
let sub-systems with these poles form the parallel block in the controller.
Sort the remaining poles after their magnitude. Then connect the sub-systems
serially so that the absolute magnitude of their poles are decreasing. (We only
consider stable controllers.) The parallel block also is connected in this
series. The location of this block is determined by the pole which is closest to
the origin. It is placed with the same rule as the remaining sub-systems

above.

5. FUTURE TOPICS.

A most urgent topic is to explain the differencies between the theoretically
computed variances and the variances achieved in the simulation. When this is
done one can continue as follows. This paper only deals with continuous time
controllers with real poles and zeroes. A possible extension would be a study
on controllers with both real and complex poles and zeroes. Another and more
important subject that could be studied is the noise generated by truncation in
the multiplications in discrete time controllers. This is most interesting since
this problems occurs when a controller is implemented in a signal-processor,

which uses fixed-point arithmetics.
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Appendix 1 page (1)

Macro for calculating the asymptotic variance with CTRLC.

// [ 1 = pycalc(ai,bi,ci, ql)

//
// function for calculating the variance of a controller

-e

Px = lyap(ai, qi)

-e

Py = ci¥px#ci’

print ai bi ci qi px py



Appendix 2 page (1)

The A, B and C matrixes of the investigated realizations.

Realization 1.1

-100 100 0 _
A = [ 5 ] B = [ H ] c=[1 o]
Realization 1.2
-100 1 _ 0 -
i [ o -1 ] B = [ 100 ] c=[1 o]
Realization 1.3
- -1 1 - ) -
e [ 0 -100 ] B [ 100 ] c=[1 o]

Realization 1.4
-1 100 - o =
A= [ 0 -100 ] B [ 1 ] c=[1 o]
Realization 1.5

_ 10 _ [ 100/99 ) )
A= [ 0 -100 ] B = [ 100/99 ] c=1[1 -1]

e[ 3L] ee 8] c-rr o3

Realization 2.2

i [ =6 -100 ] B = [ o ] c=1[1 -1]



Appendix 2 page (2)

Realization 2.3

A = [ '108 f? ] B = [ lg ] c=[1 o]

Realization 2.4

_ -1 9 _ 0 _
A= [ 0 -100 ] L [ 10 ] c=[1 1]
Realization 2.5
_ -1 0 _ 10/11 _
A= [ 0 -100 ] 8= [ 100711 ] c=1[1 1]

Realization 3.11

-2.00 0.00 0.00 1
A = 3.97 -2.00 0. 00 B = 0 c=[0 1 1]
1.02 0.00 -100.00 0
Realization 3.12
-2. 0. 0. 3.97
A= 0. -100. 0. B = 1.02 c=[001]
1. 1. _20 0- 00
Realization 3.21
-2, 0. 0. S
A = 1. -2, 0. B = 0 c=[o011]
0. -20. -100. (o)
Realization 3.22
-2. O. 0. S
A = -20. -100. 0. B = 0 C=[o001]
1. 1. -2. 0



Realization 3.23
-100.
5'
ol

Realization 3.31

_2!
1.
0.

Realization 3.32

-100.
1'

0.

Realization 3.33

-2.
5.
0.

Realization 3.34

-2.
5.
0.

Realization 3.35

-2.
78'
1.

>
[}

0.
_100'
78.

0.

78.

-100.
1.

0'

1.

0.
ol

0.
0.

0.

-100.

o.

-100.

|

]

-

[ |
oouw

oow

oow

Appendix 2 page (3)

0

0

—— —_— —_ —_—
Q Q Q Q
" ] " "

[001]

[011]

[011]

[001]

[o001]

[o0o01]



Appendix 2 page (4)
Realization 3.36

-100. 0. 0. 5
A= 78.  -2. 0. B = 0 c=[001]
0

1- lo _2-



Appendix 3 page (1)

SIMNON-code for the simulated systems.

continuous system expl

" Simulation of controller 11 13 15

L]

state x11 x12 x31 =x32 x51 x52 sl11 si2
der dx1l dx12 dx31 dx32 dx51 dx52 dsll dsi2

time t

N S e e e o R e e true solution

ycl = ( 4950#s8in(t) - S0S50%*cos(t) )/10001

yc2 = S0#%exp(-t)/99

yc3 = 100%exp(-100%t) /99099

yc = ycl+yc2+yc3

i okl M B S system with full word-length
u = gin(t)

dsll = 100 * (-sl1 + =12)

dsi2 = -812 + u

ys = sl1

T e e e i systems with finite word-length
tc = 10%tq

N e et S R s e s e S S S e e e o o e realization 11
dxll = 100 % (-int(xil) + int(x12))

dx12 = -int(x12) + int(tc#*u)

vyl = x1ll/tc

T s el o e e realization 13
dx31 = -int(x31) + int(x32)

dx32 = 100.0 # (-int(x32) + int(tc#u))

y3 = x31/tc

T o oo e o e o ] ] 4 realization 15
dx351 = -int(x51) + int(tc*u)

dx52 = -int(100.0#x52) - int(tc#*u)

y5 = 100.0/99.0 # (x351 + x52)/tc

W o e’ e s i s i | v i B S e it R B i e e B B b Tk

ds = yc-ys

dli = yc-yl

d3 = yc-y3

d3 = yc-yS

tq 1

pi ¢ 3.14159265



