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create signals related to the derivatives of the input-output process signals. The
estimation scheme is implemented by sampling the filtered signals and using a
recursive least squares algorithm (RLS). The Choice of filter leads to differents
parameter convergence properties. Conditions for parameter convergence are
established in terms of the frequency content of the input signal. The relation
between choice of filter, sampling time selection and quality of the estimates is

discussed and exemplified with simulation examples.
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Introduction

Identification of the continuous-time process parameters was the initial goal in the
earliest work on process identification. The rapid development of digital
computers and control theory made the identification of discrete time models and
the use of recursive identification techniques more attractive. However, much of
the usable a priori process knowlegde is lost after the discretization procedure
which is strongly dependent on the sampling conditions, i.e. the mapping between
continuous-time and discrete-time process-parameters. Contimuous-time process
parameters identification gives the following advantages: 1) More usable a priori
knowledge of the process, e.g. order and form of the differential equations, order
of magnitude of model-parameter values and known values for some of the
parameters. 2) Independent selection of the sampling rate for identification and

control purposes.

In order to fit different process descriptions a generalized model was proposed
before see, Eykoff (1974), where the signals needed to generate the model error
were created by dynamic operators acting on the input-output process signals. In
particular when these operators are chosen as low pass filters, it is possible to
create signals which are related to the derivatives of the input-output process
signals and to estimate the coefficients of the continuous-time differential process
representation. For previous work using this technique in identification and
self-tuning control see Young (1965, 1969). Stability studies of control schemes
using the previous ideas can be found in Johansson (1983), Pernebo (1978) and

more recently in studies of 2-D systems by Johansson (1985).

It is clear that the choice of the filters influences the properties of the parameter
estimation scheme, e.g, the kind of information produced, the speed of
convergence to the solution, the interaction of parameter estimates and the usable
a priori process knowledge. In this report we place particular emphasis on the
study of the parameter convergence in a deterministic environment and on
understanding the influence of the filter choice. Plant, filter and estimation
algorithms are related to the well-known convergence condition (persistent
excitation). The analysis is carried out in the frequency domain as in previous
studies of Sastry (1984).



This work combines the multifilter technique, previously described, with 3
recursive least squares algorithm. The estimation scheme is described in Section
1. A major effort has been put in to understanding the influence of filter choice
on the properties of estimation algorithm. Section 2 reviews the parameter
convergence conditions and relates these conditions with the frequency content of
the input signal and with the filter spectrum. Section 3 discusses the selection of
the sampling time and the filter choice. Some simulaticns illustrating the main

ideas are given in Section 4.



1. Estimation scheme

This section aims at formalizing models to be used in the estimation scheme. As it
was mentioned before, the introduction of additional filters permits creation of
signals that are related to each other as time derivatives. This method is known
as "multifilters technique"” and allows identification the parameters of the Laplace

representation of the process.

MODEL

Let the physical process be described by a finite dimensional differential equation:
n m
Dy(t)+ ...+a y(t)=b Du(t)+ ...+b u(t) (1)

where, D' is the ith differential operator, a, and bi are slowly variant or fixed

coefficients. Equation (1) describes a proper system , n > m, having a minimal

representation. Taking the Laplace transformation of equation (1), we obtain:
sny(s)+ .. .+a°y(s)+Y(0)=bmsmu(s)+ o .+b°u(s)+U(0) (2)

where Y(0) and U(0) are the initial conditions:

n-1 n i nei m-1 m i m-{
Y0)=E =Ty (0)s™) and u(@)=xz = u'(0)s
i=0 j=i+1 i=0 j=i+1

yl(O) and ul(O) are the initial conditions of the i™ derivative of y(t) and u(t),
respectively. Let F(s) be a dynamic operator acting on each side of equation (2)

and define:

v;(s)8s'F(s)y(s) v i e[0.n] and Y (s)2F(s)Y(0)

uj(s)ésjr(s)u(s) v je[0.n] and U (s)5F(s)u(0)

Then equation (2) becomes:



yn(s)+ ‘e .+aoy°(s)+Yf(0)=bmum(s)+ .. .+b°u(s)+Uf(0) (3)

The time representation of (3) can be obtained by taking the inverse Laplace

transform, ( L1 ), as follows:

v (t)+ .. .42y ()+L7HY,(0)}=b u (t)+ ..+b_u(t)+L U (0))

(4)

It can be observed by inspection that the initial conditions in equation (4) will
vanish as time increases provided that F(s) be chosen as a stable operator.
Equation (4) becomes then an equivalent representation of process description (1).
The above structure and the filter signals will be used in the estimation scheme.

The creation of the filtered signals is described in the following procedure.

IMPLEMENTATION OF THE FILTERED SIGNALS

The choice of the operator F(s) depends on the type of application and purpose of
the estimation scheme. Assuming the interest in models representing the process
accurately at low frequencies, it seems intuitive to use a low-pass filter as
operator F(s) with the obvious intention of eliminating the high-frequency
information. In the sequel, F(s)-cl/(s+c)l ; however, other structures are also

possible. Further discussions on the choice of F(s) is refered to Section 3.

The implementation of the filtered signals yi(t) and ui(t), can be done in different
ways. A straight-forward way is individual implementation of each signal by
passing u(t) and y(t) through si/'F(s). However, it is also possible to construct the
signal sets, yi(t), ui(t), using only low-pass filters and their linear combinations.

This is achieved as follows.

Let us first analyze the case where u(t)=0. Then a system, having y(t) as the

input and yi(t) as the output can be easily constructed:



Xy -C c 0 0 x1 0
. 0 _c - * L - -
: - . . . . 0 : + : Y (5)
§ -C c 0
X o 0 -c X c
n n
- yo - - 1 Tr X, - e
vy -C c X
2 2 2
Yo ¢’ -2c c x4
I . Sy (6)
n . ) ‘n
L ¥n 1 [(-¢) . x, 1 e

In a compact representation the set (5,6) can be rewritten as:

x=Ax+By : A e RV" B, ¢ IR"

1 1 1 1 (7)

. n+i,n n+1
P Clx + Dly : C1 e IR D1 e IR
The states x, are given by L—l{xi(s)}, where
cn—i
X.(s) = . y(s) v i e[0,n-1] (8)
i n-i
(s+c)

and the filtered signals yi(t) can be obtained by a linear combination of the states
X, see equation (6). Notice that the coeffit_:ients of the triangular matrix 01 follows
the Pascal triangle expansion times (-c)l , i=0, ...n. Proceeding as before, the
general case is solved by implementing the following system with inputs u(t), y(t)

and outputs yi(t), ui(t).
[x A 0 x [ B 0] [v]
ks 0 A2 2 | O B2= u|

v c ) X [ D 07 [y]
u, 0 ol lz] lo ] [u]

The matrices A

o» By» C5» Dy, have the same form as the matrices defined in (7)
but defined in the spaces (n,n), (n,1), (m+1,n) and (m+1,1) respectively. Figure 1

shows the implementation scheme.
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Figure 1. Implementation scheme for muitiple-filter technique.

Remark. The signals at level L1 are easy to create; a simple battery of low pass
filters is needed. The signals yi(t) and ui(t) can be generated numerically in the

computer.



ESTIMATICN ALGORITHM.

Differently from previous works, Young (1969, 1969) and Eykoff (1974), the
estimation scheme will be based on a recursive algorithm rather than on data
recollection and its respective information-matrix inversion. This hybrid scheme
allows us to deal with slowly time-variant process and to use the computer

potentialities. The parametrization of the model (4) leads to the next compact

form:
y (1) = 874(t) (11)
where

o ﬁ [-a,, ..-a_, b, ...b]

d(t)= [y ()., ...y _,(t).u (t), ...u ()]

The cbservation vector contains continuous-time information that will be sampled
at t=0, h, 2h, ..( named k instants) in order to implement a discrete RLS

estimation algorithm. Then the model error will be defined as:
A T
e(k) = y_(k)-8 (k) (12)

The estimation algorithm is obtained by minimizing a model error function (12).

k
I6(k) = 1 _zotvn(i)—é(k)T¢(i)]2 (13)

and described by the following set of recursive equations:

B (k) =8 (k-1) +P (k) (k) [y, (k) - (k-1) T4 (k)] (14)

T
P(k)=P(k-1)[I- ¢(k%¢(k) Plk-1) ] (15)
1+¢" (k)P(k-1)$ (k)

with P(0) = al, for « >>0.
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2. Parameter convergence

This section studies the parameter convergence of the previous identification
scheme. The noise free case is considered in order to simplify as well as
elucidate the analysis. The equations used in the following analysis are very
similar to those needed to analyse the noise case where the deterministic signals
are substituted by ergodic stochastic process. Since our objective is to choose of
the filter F and to see its influence on the parameter convergence, it is useful to
translate some of the time-domain properties of the RLS algorithm into the
frequency-domain. This permits us to give the parameters convergence properties
in terms of the input signal's frequency content and to analyze the influence of

the filter in terms of its frequency spectrum.

THE PERSISTENT EXCITATION CONDITION.

The persistent excitation condition is a well-known prerequisite to achieving
parameter convergence in identification schemes. For the recursive least squares
algorithm (deterministic case), this condition is called "persistent excitation" (PE).

Its definition is established as follows:

Definition 1. A vector sequence ¢(k), is persistently exciting if:

N
lin Y ¢()é()" 2 oI (16)
N-00 k=1

where o > 0 and k is an integer multiple of the sampling time, h. In the sequel,
the subindex (t) will stand for a continuous time signal, and (k) for a discrete

time. Samples are made at t = 0, h, 2h, ... and named k instants.

Definition 2. A bounded vector signal ¢(t) : IRt = IR™ is said to have the limit

Ry € IR™ itf:
R, () & lim 1 Ir+z(t)¢(t+1)Tdt (17)
$(t) Twe T p
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exists for {¢{t), t ¢ [rr+T]} with the limit uniform in r. For the sampled vector

signal ¢(k), R Mk)(r) exists only for an integer 7 multiple of k, named n.
r+T
1 T
R n) = li = k}é(k+n 18
‘Hk)( ) T-lo: T k2=r¢( }$(k+n) (18)

It is useful to relate the PE condition (16) to the equation (17). This allows
interpretation of the time-domain condition (16) in terms of the spectral
distribution of the input signal u(t). Notice that equation (16) is given in terms of
a discrete vector sequence, {¢(k)}, and we intend to relate it to the spectral
characteristics of a continuous-time signal, u(t). To review the relation of (16) to
the Definition 2, we proceed as in previous work of Body and Sastry (1984).

The similarities between PE condition (16) and R )(0) in (18) become evident in

b(k

the following lemmas.

Lemma 1. Suppose that R¢(k)(n) exists and {¢(k)} is defined for k > 1, then {¢(k)}
is PE iff R¢(k)(0) > 0.

Proof. Assuming the existence of R@(k)(n) for r=1, the equation (16) can be
rewritten as R “k)(o) 2 ol. The rest of the proof is clear from the fact that all
positive definite matrices are bounded from zero by their minimun eigenvalue,
and reciprocally, matrices having positive bounds are positive definite. Notice also

that, R(:) is symmetrical and has real coefficients, hence real eigenvalues.

o
Lemma 2. Provided that {¢(k)} has the limit R ¢(k)(n)’ defined at the integer set n
= 0, h, 2h, ..., and it is positive semidefinite, then from the Helglotz's Theorem,

Burill (1973), there exists S ¢(k)(u) such that:

R, .\ (n) = ]1/% i2mw g (v)dv (19)
8 (k) LI 8(k)

where S d)(k)(u) is called the spectral density function of the sequence {$(k)}. For
n=0, S ¢(k)(y) is interpreted as the energy density of {¢(k)}, or simply, the inverse
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of the Fourier transform of R ¢(k)(°)'

The next step is to relate the spectrum of u(t) with the condition (16). Let g be

the operator vector relating ¢(t)=gsu(t) , and G(iv) its transfer function.

$(s) = H(s)F(s)u(s) = G(s)u(s) (20)
H(s)'=[ 5" . B ST L) (21)

where N/D is the process transfer function and F is the dynamic operator
defined in Section 1. Assume that u(t) has a bounded power spectrum, and from

the filter theory we have:

(v) = H(iv)H* (ir) IF(iv) 1% (22)

Sp(t) u(t) )

Where Su(t)(u) is the spectral density function of u(t). Due to the sampling
process, the spectrum of ¢(t) is reproduced at frequencies which are multiple of
1/h.

S¢(k)(u) = %;Li¢(t)(u+1/h) (24)

Combination of Lemmas 1 and 2 and Equations 22 and 23 allows expression of the

time-domain condition (16) in the frequency domain as:

R, .. (0) = }IZh 2 H(iv)H* (i7) TIF(i5) 12 s(7). . dv (25)
‘t’(k) —1/2h 1==o u(t)
where v = r+1/h. Choosing h small enough, to avoid frequency spectrum

overlapping, the summation above can be limited to 1=0. Then from Lemma 1 and
equation (24), {¢(k)} is PE iff,

S
Ry (k) (0) = —{/Zh H(iv)H' (iv) 1F(iv) 1 () y(r) @ > o (26)

is satisfied. Now, call uf(t) the signal resulting from uf(t)=f*u(t) , and Suf(t)(') their

spectral density function, the next thecrem follows.
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THEOREM 1.

The sequence {$(k)} is PE and hence 6(t) — o' , iff suf(t

in K < p support points, where p is the parameter number p = n+m+1 and

)(V) is not concentrated

Sue(r) @) = IF(iu)IZSu(t)(u) v v e [-1/2h , 1/2h]

Proof. Assume first that Suf(t)(”) is concentrated in K < p support points, Yy
within the interval [-1/2h, 1/2h], that is,

K
Su () V) = 3 5()) (27)

Then, Equation (26) combined with (27) takes the following form:

K
. x, . T
R¢(k)(0) = j§1 H(wj)H (wj) (28)
Since the combination of K<p symmetrical matrices of rank 1 in IRPP is a

singular matrix, {¢(k)} is not PE.
For second part of the proofsee Goodwing and Sin (1984), assume that Suf(t)(u)
is not zero at more than p points, but there existes a non-zero vector, )\, such

that

1/2h

T Tore:ov 2
= A 0)A IA'H 1~ S dv = 0 29
r= ARy (02 = ] o (10)19 S(v) 4 () (29)
Hence H(iu)AT vanishes at each support point v = Vj’ that is
AN(s)s" 1+ L4x N(s) +r__.D(s)s™ ..+D(s)\ =0 (30)
1 " 'n n+1 e p '’

for all s = iy, j=1, ..,p. Since deg D(s) = n > deg N(s) = m, there are not more

J

than m+n = p-1 roots satisfying the above polynomial equality; this contradicts

the existence of X\ and proves the theorem.
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The next corollary reformulates Theorem 1 in terms of the frequency content of

u(t).

Corollary 1. {$(k)} is WPE and hence 8(t) — o', iff Su(t)(u) is not concentrated
in K < p support points and the spectrum of the filter F is non-zero at those

points.

From the definition of Suf(t)(u)’ it is clear that if Su(t)(u) is concentrated in K
support points at Y then S . )(u) will also be concentrated at the same

frequencies provided that IF(iuj)l be non-zero for all j=1, ..p.

The previous results are in agreement with the expected "richness condition" on
the input signal. Notice that, from the above corollary, the asymtotic properties of
the RLS algorithm will not be affected by the filter F(s), unless its spectral density
be null at the frequencies uj's. This is not realizable since it implies the
implementation of "ideal filters"”, i.e. filter with a perferct spectral window.
However, the selection of F(s) is critical when more realistic cases are
considered, i.e. unmodeled dynamics and presence of noise. Also, the estimation
transient will strongly depend on the choice of F(s). Further discussion is defered
to Section 4, where some examples are simulated to analyse the transient
behavior. The next section discusses the filter selection and its relation to the

sampling period and the process band-width.
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3. Filter selection

This section discusses the selection of the filter F. As is intuitively expected the
choice of the spectrum of F is closely connected with the sampling time and the
process band-width. The choice of F is derived from the cost function in equation

(13) expressed in the frequency domain as,

Vo wn o,
v(e)= l I D—};)[ 1+ 21: ajs]] - g bjs I"1F(s)! Su(t)(u) dv (30)
~1/2h

with s=iv. See, Wahlberg and Ljung (1984), for further details. It is clear for the
above equation and the discussion in Section 1, that the operator F has a double
purpose; it creates the equivalent derivatives of the input-output process signals
and acts as a weighting function that dictates the relative importance of matching
the model to the process at any particular frequency. The estimation algorithm
identifies parameters that will enable the model to describe the process accurately
in the frequency range where the magnitude of F is high, while representing the

process poorly in the frequency range where this magnitude is low.

Then the "ideal" choice of F would be a linear filter with a spectral distribution
similar to the desired model spectrum. In practice, however, F is selected as a
linear filter of the form F(s) = cl/(s+c)l, with 1 > n. Thus the magnitude of F is
constant for frequencies up to ¢ and diminishes thereafter at the rate depending
on 1. The choice of the above F is an attractive candidate for identifing models at

low frequencies.

SAMPLE TIME SELECTION.

Refering to Figure 1, the use of the sampling level L1 imply to sample the states
xi(t). zi(t) and the input-output signals u(t) and y(t). It is also possible, by chosing
1 > n , to construct the signals set {yi(t)} and {ui(t)} only with the states x; and z,
for i = 1, ..n. Then according to the sampling theorem the sampling frequency,

Vg should be chosen as, at least, twice the largest frequency band-width of the
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signal set { X zi}, named VO-maxB{xi’ z; vi= 1, ..n}. Its is clear that Vg will
depend basically on the process band-width and the filter cut-off frequency.
Low-frequency models for which we have a rough notion of the process
frequency band-width, Vp, it seems reasonable to choose F as a low-pass filter
having a frequency band-width, Vo grater than or equal to up, and select the

sampling frequency as,

v_> 2v

: £ 2 2up (31)

Notice that the lower bound of Ve in (31) assures the identifiability of the model at
frequencies lower that Vp. For practical reasons it is advisable to select v N up
(reasonable suppression of the undesirable higher frequencies and process

parasites).

4. Examples

The following examples aim is to show the influence of the filter F on the
performance of the identification scheme. The examples are realized a in hybrid
environment (using SIMNON package). The process to be identified is a first order

system, described by the following differential equation:

& v(t) + ay(t) = bu(t) (32)

The parameters a and b will be estimated using the technique described in Section
1. F is chosen to be a low-pass filter of the form F(s)= cz/(s+c)2. The input
signal is periodic, cos(21ruut), with its density energy concentrated on two points;

tuu. A schematic diagram cf the filter implementation is shown in Figure 2.
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p e
: \- xl(k)
. |
di=m ] | >[ = ] | \— 74 (k)
' \— z, (k)

sampling level

Figure 2. Multifilter implementation for a first order process.
EXAMPLE 1.

This example illustrates the transient behavior of the estimates for different
values of c. Sampling frequency is selected large enough to avoid alias
phenomena, us-1000 Hz. The process parameters are; a = 10 and b = 12, Yu is 10
Hz.

The simulation results are shown in Figure 3. It is clear that the estimates
converge fast to their optimal values as the value of c is increased. However, the
selection of largest values of ¢ are limitated by practical considerations. Large
values of Ve (or similarly large c) imply to increase the sampling frequency Vs
see equation (31), it will also intensify the influence of undesired high frequency
information (presence of noise and unmodeled dynamics). This last case is

considered in the next example.

EXAMPLE 2

This example illustrates the influence of F when more realistic situations are

considered. The plant is described by the following transfer function;

1200
(s+10) (s+100)

G(s) = (33)
which is the same as before but with a parasite pole located at 100 Hz. White
noise (0, 15%) is also added to the process output. The equation (32) describes
the desired model to be matched to the plant (33). The values of v and v, are

the same as in the previous example.
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Parameter a(t)

8. |
4,
time (sec)
0.
0. 0.2 0.3 0.4
_ Parameter b(t)
10.
c =50
c =10
5. -
c=5
0. time (sec)
0. 0.1 0.2 0.3 I (n

Figure 3. Transient behavior of the estimates a and b for differents values of the

filter cut-off frequency c.

The presence of noise and unmodeled dynamics will produce a bias in the
estimation of a and b. The bias levels will certainly depend on the choice of F.
Notice that, selecting F as a low-pass filter ( ¢ = 10 Hz.), the identified parameters
will enable the model to describe the process accurately only in the frequency

range 0-10 Hz.

Figure 4 shows that better results are obtained by choosing values of ¢ close to
10 Hz. The identified model has a static gain of 1.22 and a time constant of 9.42
(Process static gain is 1.2 and the dominant time constant is 10). As the value of
¢ is increased the transient behavior of the estimates deteriorates and the bias
levels are increased. For c=100, the identified static gain is 1.1 and the time

constant is 8.11.
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10. Parameter a(t)

5. | c=10 c =50
0. Q]
T time (sec)
0.yl 0.15 0.3 0.45 0.6
12, Parameter b(t)
b —
6.
E c=10 c =50
0. 11
time (sec)
0.l 0.15 0.3 0.45 0.6

Figure 4. Selecting F in presence of noise and neglected dynamics.

Conclusions

Process parameter identification gives a powerful tool in modeling and control
design. Its major advantage is that the set of identified model parameters is
directly related to the differential equation that describes the physics of the
process. Section 1 has reviewed this technique and described the manner of
implementation. The implementation should be realized as simply as possible in
order to avoid too many analog elements. The simplest way is using a battery of

low-pass filters and sampling at level L1, see Fig. 1.

The conditions on parameter convergence were established in Section 2 in terms
of the frequency content of the input signal. These conditions can be sumarized
as follows: for input signals having a spectral density Su(t)(u), it is sufficient that
su(t)(V) has p or more support points in order to archive parameter

convergence.
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Sample-time selections and alternatives of choice of F were analyzed in Section 3.
Section 4 was dedicated to illustrate the effects of the choice of the filter F in two
situations. For the deterministic case with adequate process and model orders, the
choice of F is not critical and affects only the rate of convergence. In more
realistic situations (presence of noise and unmodeled dynamics), the selection of F
is more relevant and may change drastically the estimates quality. The ideal
choice of F would be a linear filter with a spectral distribution similar to the

desired model spectrum.

Other interesting topics remain to be analyzed; i.e. convergence rate as a
function of the filter and input spectrum, estimation bias produced by model

mismatch, and noise contamination.
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