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In thls paper we initiate a program whose goal is to develop
a theory of necessary conditlons in adaptive control, the
scope of which s broad enough to answer some of the baslc
questions and problems in adaptive control. For example,
such a theory should contribute: a clear understanding of
which desirable or undesirable characteristics any adaptive
control algorithm must have; a basls for evaluating the
relative performance of speciflc adaptive controllers, and a
potential tool in the design of new adaptive control
algorithms. Since any such theory would necessarily be
algorithm Ilndependent, we begin by giving somewhat general
definitlons of "smooth" adaptive controllers, "universal" for
a class 2 of systems. This Includes self-tunlng regulators,
model reference adaptive controllers and dynamic feedback
based controllers, although we exclude in the present paper
the possibility of using a "probing signal". These concepts
are illustrated in the case of adaptive stabilization where
we prove our main result which relates the complexity of an
arbitrary nonlinear adaptive controller to the inherent
complexity of any linear compensator obtained by classical
methods, when the parameters are known. This has an
appealing form (Theorem 2.2) when stated precisely. As
{mmediate corollaries we deduce the nonexlstence of certaln
universal adaptive stabllizers (Corollaries 2.3 - 2.4) as
well as obtalning insight Into such questions as (Remark 2.5)
how much (Lf any) high-frequency information ls needed to

. design an adaptive stabillzer, universal for particular
classes X of systems. It seems possible to refine our
results, using similar technique, to obtaln deeper stability
results which would also include time-varylng controllers
contalning, for example, a probing signal. We expect to
treat these cases 1n a future paper. Finally, we wish to
explain our methods which are quite new to the theory of
adaptive control. Since adaptive controllers are non-linear,
we shall find it useful to analyze them using concepts from
nonlinear dynamics, especially the notlons of stable,

. unstable and center manifolds (which we briefly summarize In
section 3). While nonllnear dynamics provides useful
paradigms for studying quite exotlic system behaviour (e.g.
chaos, strange attractors) our appllcatlon actually rests on
a different perspectlve. That ls, since a good adaptive
controller is supposed to exhibit remarkably simple
behaviour, we use the nonlinear paradigms to obtaln necessary
conditions on the nature of the underlylng system.

*Research partlially supported by AFOSR Grant 85-0224, NSF Grant 85-13099
s#*Research partlally supported by AFOSR and NSF Grants
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NECESSARY CONDITIONS IN ADAPTIVE CONTROL

1. INTRODUCTION

Parameter adaptive control is a potentially Important extenslon of the
traditional system theoretlic design of controllers, necessitated in practice

because certaln of the system parameters are unknown for a varlety of reasons.
These include:

(i) the system parameters (e.g. altitude, attitude, or, for example, the value
of a resistor) may change;

(11) certaln of the system parameters, especlally those related to high
frequency modes, cannot be precisely determined experimentally; or

(ii!) the inclusion of flexible and/or high frequency modes Into the system
model is prohibited by the additlonal complexity (e.g. infinite versus
finite dimensional) incurred and thus the system parameters represent only
an approximation to true physical parameters.

The resurgence of Interest in adaptive control in the past decade has stemmed
from the impressive practical applicatlons of self-tuning regulators originating
wlth the research effort at the Lund Institute of Technology ([1] - {91), from
the application of new results in system identification (e.g. (4], [10] - [12]),
and also from results ln model reference adaptive control (e.g. [13]1 - [15]).

As one can see from the references clted, the most spectacular successes in
practical applications of adaptive control have been in process control. In
fact, in 1983 the Swedish firm, ASEA, produced and sold approximately 140
self-tuning regulators for implementation in process control plants. On the
other hand, one of the legitimate criticisms [16] of the "universal"
applicability of existing adaptive control schemes ls that the theoretical
assumptions on which many of these schemes are based are very restrictlve,
typically involving assumptlons about the number of system poles, and of system
zeroes, and hence about their difference, the relative degree of the system,
For many reasons, lncluding (1i) - (iii) above, high frequency informatlon such
as the relatlve degree cannot necessarily be regarded as known 1n practice. 1In
this sense, existing adaptive control schemes may be expected to function quite
well for slow systems like those encountered in process control while these
schemes may be expected to have a more limited range of applicability for faster
systems such as hlgh performance aircraft. This is well documented; see for
example [17], which evaluates Important performance aspects such as
identification accuracy in steady flight, convergence characteristics, and
tracking characteristics for standard fllght transitlons for an
identification-based adaptive controller implemented (in simulation) on NASA's
F-8 digital "fly-by-wire" research aircraft. The undesirable characteristics
noted in [17] which are due to the "dichotomy" between identification and
control, e.g. ldentification lag or "bursting", have recently been theoretically
analyzed in some generality by several authors, see esp. {111.

In the light of thls research, it is clear that adaptive control 1s a promising
field which, however, continues to requlre development of algorithms, a rigorous
analysis of algorithm convergence under well-understood hypotheses, and a clear
delineatlon of its applicability. Evidently, what ls required is the
development of a theory of necessary conditlons for adaptive control, comparable
in scope to necessary conditlons (e.g. Pontryagin's Principle) in optimal
control theory. In this paper we initiate such a program giving a derivation
(which relles heavily on non-linear dynamics, center manifold theory, etc.) of
the necessary conditlons for adaptive stabllization. One goal of such a theory
Ls to clearly and unequivocally delineate the scope of applicabllity of adaptive
control. Our program is in the spirit of [18] which focused on necessary
conditions In the one-dimensional sltuation. Since such a theory would be
algorithm lndependent 1t would also provide:

2
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(1) a rigorous understanding of which desirable or undeslrable characteristics
any particular adaptive control algorithm must have;

(1i) a basls for evaluating the relative performance of speciflc adaptive
controllers; and

(i11) a potential tool in the design of new adaptive control algorithms.

Examples of (1) would include: How much (if any) high-frequency information is
needed to design an adaptive stabillzer, or a model reference adaptive
controller? As an 1llustration, the output feedback-based adaptive stabillizers
designed in [19] did not require, as identlficatlon-based adaptive stabilizers
do, an upper bound on the system-order. On the other hand, these controllers do
require that the system has relatlve degree one, and one of our goals ls to
determine if such high frequency conditions are necessary for adaptive
stabillzation.

In this paper we address these Issues proving an explicit form of a rather
Intuitive principle relating the nonllnear complexity of an arbitrary adaptive
controller to the linear complexity inherent in any classical controller in the
case where the system parameters are known. This in fact Impacts the aspects
(1) - (iii) mentioned above. Before stating this "principle of adaptive
stabilization", we remark that the proof of our technical result (which
comprises the latter part of this paper) requires concepts from nonlinear
dynamics which are quite new to adaptive control, e.g. center manifolds theory
and reduction techniques, but which are equally applicable to other problems in
adaptive control. For thls reason, we devote section 3 to a brief summary of
these methods while the proof Ltself 1s contained in section &.

Our first main result (with definitions provided in section 2 and an
illustration in Example 2.6) 1s:

Theorem 2.2. Suppose a smooth controller of order q 1Is an adaptive stabillzer,
universal for a class Z of linear systems. Then the poles of each system in z

can be placed in the closed left half plane by some linear compensator of order
q.

Although plausible, thls result requires a careful formulation and, of course,

a rigorous proof. As Immediate corollaries (Corollary 2.3 - 2.4) we glve what
1s, to the best of our knowledge, the first proofs of the nonexlstence of
smooth, universal, finite-dimensional, adaptive stabllizers for linear systems
and for minimum phase linear systems. We also lnterpret the standard hypotheses
in adaptive stabilization as glving estimates

q*(g) < q (1.1)

on the minimal order of a stabilizing compensator. In this manner, we observe
(Remark 2.5) that high-frequency information s not necessarily needed a prlorl
for-adaptive stabilization of certaln classes X of llnear systems. Indeed, high
frequency information Ls only one way to obtaln an estimate (1.1) and does not,
e.q., always give gq*(g). Thls polnt is made even more forclbly in Martensson
(24] where Lt 1s proved that the necessary conditlon Ln the principle of
adaptive stabilization is in fact sufficlent.

2. NECESSARY CONDITIONS FOR ADAPTIVE STABILIZATION

As we stated in the introductlon one of our goals ls the development of
fundamental principles for adaptive control, similar in breadth to the principle
oGoptimality. Speciflcally, one "candidate" principle from which one can
clearly derive necessary condltlons might be roughly stated as follows

3



NECESSARY COMDITIONS IN ADAPTIVE CONTROL

Principle of Adaptive Control: If a control objective can be achieved in an
adaptive context, it can be achieved using linear compensation if one has
knowledge of the system parametera.

As simple as it may seem, the assertlon does require rigorous formulation and
verification. In this section, we 1llustrate this principle and indicate what
we expect 1s lnvolved in this general research program, in the context of
adaptive stabilization.

We therefore begin with a definition of adaptive stabilizatlon (cf. [18]).
Explicitly, we suppose Z i{s a class of linear systems

x = Ax + Bu _ (2.1a)

y = Cx (2.1b)
where u € Rm, y € RP. By a smooth controller we mean a ¢” control system

z = f(z,y) : (2.2a)

u = g(z,y) (2.2b)

where z € RY (in what follows, we could also take z ¢ M with M a smooth manifold
of dimension q).

We note that, as a consequence of the "ODE method" (see e.g. [4]), self-tuning
regulators based on an expllcit identification subroutine can be modeled as a
closed-loop system arising from (2.1) - (2.2). Model reference adaptive
controllers also take the form (2.1) - (2.2) where the dynamics (2.2) consist of
(a universal) observer dynamics together wlth nonlinear parameter adjustment
equations for the observer parameters. Flnally, the "dynamic-feedback" based
adaptive controllers recently introduced in [19], [21], [22], [24] all have the
form (2.1) (2.2).

We therefore regard (2.2) as an algorithm independent definition of an (smooth)
adaptive controller, provided (2.1) - (2.2) achieves the desired control
objective. We will illustrate thls iln the case where the desired objective 1s
closed-loop (internal) stability.

Definitidn 2.1. A smooth controller is a universal adaptive stabilizer for X
provided for any fixed system (2.1) (in §) and.for all initial data zg, xg, the
closed-loop system (2.1) - (2.2) satisfies:

(1) lim X, = 0 (2.3a)
oo

(i1) 1lim z =z, exlsts. (2.3b)
tre

With these conventlions, we can now glve one preclse formulation of the principle
of adaptive control introduced above. For adaptive stabllization, thls takes
the form

Theorem 2.2. Suppose a smooth controller of order q is an adaptive stabilizer,
universal for a classz of linear systems. Then the poles of each system in 5
can be placed in the closed left half plane by some llnear compensator of order
q.

Since a llnear system with an elgenvalue on the Imaginary axis of geometric
multipllcity > 1 is unstable, Theorem 2.2 does not quite imply that any system
in Z can be stabllized by a llnear compensator of order q. A proof that this
non-generic slituation can be excluded requires more subtle arguments and can be



NECESSARY CONDITIONS IN ADAPTIVE COHTROL

given under auxiliary technical hypotheses. We will treat this case in a
future, expanded version of the present paper.

It appears that a necessary condition for adaptive stabilizatlon 1s an a priori
knowledge of the order of a stabilizing llnear compensator for each system in

I. For example, Theorem 2.2 gives an interesting Interpretation of the standard
assumptions for adaptive stabllization:

(i) each system in I Is minimum phase;j

(1i) each system in I has relative degree r £ .

Using the classlcal root-locus theory hypotheses (i) - (11) yileld the estimate
glr*-1

for the minimal order of a stabilizing compensator, in harmony with Theorem
2.2. We remark that B. Mirtensson has just shown [24] that the necessary
condltion in the principle of adaptive stabilization is in fact also sufficient
for adaptive stabilization, Justifying our interpretation of the hypotheses (D)
- (Li).

We now wlsh to point out an immedlate corollary of Theorem 2.2. To our
knowledge, thls is the first rigorous proof of a very plausible folklore result.

Corollary 2.3. There Is no finite dimensional, smooth controller which is a
universal adaptive stabilizer for all m input, p output llnear systems.

Similarly, we conclude:

Corollary 2.4. There is no finite dimensional smooth controller which is a
universal adaptive stabillzer for all scalar, mlnimum phase systems.

On the other hand, if one fixes (say) an upper bound on the McMillan degree n of
the system then there is a universal adaptive stabillizer. For scalar systems
with n = 1, this is a celebrated construction due to Nussbaum [21], while for
multivariable systems of order n > 1 this follows from Martensson's Theorem
[24].

Remark 2.5 (High Gain/High Frequency Assumptlons). Another important
consequence of Theorem 2.2 1s that the question of how much high frequency
jinformation must be tacitly assumed Ln the deslgn of an adaptive stabilization
scheme 1s now reduced to a purely linear system-theoretic question: Given a
system g(s) what information is needed to compute an upper bound

g*(g) < q (2.4)

on the minimum order g*(g) of a stabillizing compensator. Important steps have
recently been taken ([25] - [28]) towards a computation of q*(g) and we expect
this classlcal problem will ultlmately be resolved. 1In any case, we remark that
classical lead-lag compensation, which is based on hlgh-galn techniques, does
not always give the computation of g*(g). From this polnt of view, it Is
therefore not clear that hligh-galn methods are necessary. 1o the contrary, as
we have just seen above, there are many classes L of systems where the estlmate
(2.4) does not require high frequency Information (see esp. [24]1).

Example 2.6. We now t1lustrate Definition 2.1 and Theorem 2.2 in a simple case,
also motivating our later use of nonlinear dynamics. Consider the unstable
first-order llnear system
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y = y + bu (2.1)!

where b 1s a positive but unknown constant. If b were known, one simply would
choose the constant gain controller

u=-ky, k> 1/b
giving rise to the stable closed-loop system
y = (1-bk)y.

Returning to the adaptive case, of course no fixed choice of k will stabillze

(2.1)" if kg%.

On the other hand, the smooth controller
K = yz, u = -ky (2.2)!

increases k, on line, as long as Y 1s not golng to zero. Indeed, the closed-
loop system (2.1)' - (2.2)!

y = (1-bk)y (2.5)
€= y2
satisfles the conditions (2.3) for all 1initial data, yg, kg. In other words,
(2.2)' is an adaptive stabilizer which is universal for the class I of systems
(2.1)'. The phase portrait of (2.1)' - (2.2)' 1s depicted in Figure 2.1, using
the fact that the function
E(k,y) = y2 + bk? - 2k o (2.6)

is an fnvariant integral for (l.e. Is constant on the trajectories of) (2.1)' -
(2.2)'. Thus the integral curves are "semi-elllpsolids",

\3 h

1)
\\ b

Fligure 2.1 The Phase Portralt of the (universal) adaptive stabflizer.

AV

As for Theorem 2.2, the assertion that (2.1)' can be stabilized uslng constant
galn Is of course correct, but it Is useful to see this from Figure 2.1. For
any Initial condition (ko,yo) the forward limit (k. y,) satisfies

(koyy) = (k_,0) k, > 1/b. (2.7

The Jacobian of (2.1)' - (2.2)' at the equilibrium (2.7) 1s therefore
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o IS U S . (2.8)

From (2.7) we know spec(J) C C-, but we can also deduce this from the local form
(cf. section 3) of the flow 1n a nelghborhocod of (2.7). 1In general, Theorem 2.2
would follow by an elementary linearization argument if it were true that J 1s
nonsingular, i.e. that the equilibrium of (2.5) were isolated. As examples
show, however, this 1Is not always the case. Thus, the presence of nonisolated
equilibria, i.e. a nontrivial center manifold, requires a more subtle argument
which we will sketch in section 3 - 4.

3. RESUME OF RESULTS FROM NONLINEAR DYNAMICS

Let X : M + TM be a C* vectorfield defined on a smooth n-dimensional manifold
M. We denote by ¢, the flow generated by X, l.e. x(t) = ¢t(x) 1s the unlique
solution of the ordinary differential equation

x(t) = X(x(t)), x(0) = x,
which passes through x at time t = 0.

The points a € M where the vectorfleld vanishes, X{(a) = 0, are the equilibrium
points of X. If ¢t(x) converges to some a € M for t + =, a 1Is necessarily an
equilibrium point of X. '

The Inset of X is the set

w3 (a) := {x € Ml¢t(x) + a fort + "},
while the outset of X 1s deflned as

wi(a) := {x ¢ M|¢t(x) > a for t + «}.
Even locally, these sets can look rather complicated.

If a 1s an equilibrium point of X, the linearization DXa: TaM+TaM of X at a 1s
well defined. Let c, resp. s, resp. u denote the number of eigenvalues of DXa
(counted with multiplicities) whose real part Is equal to 0, resp. < 0, resp.

> 0. Let Ec, resp. ES, resp. EY denote the corresponding generalized
elgenspaces of DXa. The equilibrium point a is called hyperbolic, If DXa has

no eigenvalues on the Imaginary axis, l.e. of u + s = n.

Figure 3.1. Hyperbollic equilibrium polnt.



NECESSARY CONDITIONS IN ADAPTIVE CONTROL

Definition 3.1. A center manifold of X at the equilibrium point a e M is a
c-dimensional submanifold W of M with

(1) a e W, Taw° = g€

(2) X(x) is tangent to W® for each x € W°.

Similarly, a center-stable manifold of X 1s defined as a c+s-dimensional
submanifold W°° of M, tangent to E® C)Es at a, such that the vectorfield X 1s

tangent to We° at any point x € W°>. Center manifolds (resp. center-stable
manifolds) do exist:

Center Manifold Theorem 3.2. If X is a CT vectorfield on M, then there exists a
¢’ center manifold W(a) resp. a C' center-stable manifold W°3(a) of X at a.
We(a) (resp. W°°(a)) is locally invariant: there is a neighborhood V of a in M
with:

x € W(a), t >0 and ¢.(x) eV =>4 (x) ¢ ¥ia).
For proofs see e.g. [30] or the Appendix written by Al Kelley in [29].

A very useful tool from bifurcation theory is the following reduction theorem,
due to [31] and [32]. It Implies that the only interesting local recurrence
phenomena of a vectorfield occur on the center manifold.

\

Reduction Theorem 3.3. Let X be a C* vectorfield on M and a € M an equlibirium
point. X is locally topological equivalent to a c® vectorfield of the form

il = X1(x1)
— y .
= -z

Ne <o

where x) € Rc, y € Ru, zZ € Rs.

T

5/_/

X W

12

Xn

Figure 3.2. A Center Manifold
Example 3.4. (Example 2.6 contlnued.) Consider the adaptive stablllizer (2.2)

which 1s universal Eor the class L of systems (2.1)' with b > 0. This defines a
vector fleld X on R™ via
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X(k:y) = (YZ!“‘bk)Y)
and therefore has the entire k-axls as its set E of equillbrium points
X(k,y) = (0,0).

Since the llnearization of X(k,y) at (k,0) € E is given by (2.7), X has a
2_dimensional center manifold at (1/b,0)}, compare Figure 2.1, and a
1-dimensional center manifold at any (k_,0), k_ > 1/b.

SKETCH OF THE PROOF

In order to prove Theorem 2.2, 1t suffices to consider a fixed n-th order linear
system (2.1) and a fixed g-th order smooth controller (2.2) such that the
closed-loop system (2.1) - (2.2) satisfies the conditions of Definition 2.1.
Recalllng Examples 2.6 - 3.4, we want to first prove that there exist some
(z,,0) € E, the equilibrium set, such that

dichs(zw,O) = n+q.
From the linearization of (2.1) - (2.2) at thls center-stable equilibrium we
will then construct a linear compensator, of order q, for (2.1) which places

the closed loop poles in C~.. Suppose a 1s an equilibrium point of a ct
vectorfield X : M + TM and let u denote the number of elgenvalues of the
linearization DXa at a with positive real part.

Ball Lemma 4.1. Let u > 1. Then there exlsts an open neighborhood Va of a and
z ;egidual subset @ of points x € M such that ¢t(x) ¢V, for infilnitely many
Proof. Let WC° be the center stable manifold of X at a. since W°® is locally
closed there exists an open nelghborhood V of a such that W := WS> NV is a
closed submanifold of V. If u > 1 then dim¥ = dimy®® = ¢ + s <n-1 Thus W
is nowhere dense in M and the complement M \\¢t(W) is open and dense 1n M.

Define
A e — o ~—/
A= £50 ¢_t(W) 2 B := £50 ¢_t(W).
t. rational

We show that A = B. Obviously B ©A. For x €A, ¢t(x) e W for some t > O.
Since W°° is locally invariant also ¢s(x) e ¥ for {t-si small. In particular

there is a rational approximation s of t with ¢s(x € Hence x € B.

Q.E.D.

Since M\\¢_t(W) is open and dense, the set
N =
o = M\NAC iy MNG_ (W)
t rational

is residual (and therefore dense, by the Baire Category Theorem).

For x € @ the Reduction Theorem 3.5 implles that the trajectory t + ¢ .(x) has

to leave a fixed nelghborhood of a an Infinite number of times.
Q.E.D.

Lemma &.2. Under the hypothesls of Theorem 2.2, there exlsts an equilibrium
a = (z_,0) for which u = 0.
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Proof. Suppose not. Since EC R" x M is closed, it is countably compact.
Choose then a countable covering of E by balls Va1 about aj € E, as 1n the Ball

Lemma. By the Baire Category Theorem

Q= Na
i 1
is residual and hence non-empty. However, if (zg,xg) € Q then

(Zt’xt) )" E

contrary to hypothesis.
Q.E.D.

Now consider the closed-loop system (2.1) - (2.2) in (z,x) coordinates near an
equilibrium (z_,0) as in Lemma 4,2.:

z = f(z,Cx)

. (%#.1)
X = Ax + Bg(z,Cx) ‘

The linearization (4.1) at (z_,0) takes the form

z f f C z
z Yy
- (4.2)
X BgZ A+BgyC
where f,f (etc.) denote the partial Jacoblans of f with respect to z,y
evaluated at (z_,,0). Thus (4.2) is the transition matrix for a linear
compensation in closed-loop around (2.1). Moreover, by Lemma 4.2 we know
fz fyC
spec < Cc-
Bgz A+BgyC
Therefore, the linear closed-loop system has spectrum in c-. '
Q.E.D.
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