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Problems in
Nonlinear Control Theory

Bengt Martensson

Preface

This is a collection of seven problemsets, used when | gave a short
course on nonlinear system theory at the Department of Automatic
Control in Lund, Sweden. The course was given during the first
half of the spring semester in 1987. The course book was A. Isidori:
“Nonlinear Control Systems: An Introduction”, but neither the lec-
tures nor the problems followed the book so very closely. During the
allotted time—seven weeks—there was not very much possibility to
cover the material more than superficially.

The different problemsets was done as homeworks in a weeks time.
It should also be noted that problemset 1 was handed out before the
start of the course, and due just a few days after the first lecture.
It was intended just as a warm-up, without really entering the core
of the course.

There are student’s solutions available. Unfortunately, they are
handwritten and in Swedish.

The references are collected at the last page.
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1.1

1.2

1.3

1.4

1.5

1.6

Problemset 1

This is a set of warm-up problem, intended to get used to some sim-
ple concepts. These are all in the appendix in Isidori’'s book. Some
new concepts are introduced, but these should hopefully not be too
frightening.

The (scalar) root-locus problem is the following: Static feedback u = —ky
is applied to the plant g(s) = n(s)/d(s) € IR(z). The closed loop charac-
teristic equation will thus be d(s) + kn(s) = 0. The root locus is defined as
s:d(s)+kn(s) =0, k € R. Use the implicit function theorem to show that
under a certain condition—determine which and when it is satisfied—the
root locus locally is a function of k. Determine a differential equation the
branches s;(k) of the root locus satisfies.

Do the same for the problem of zeros of sampled systems. Here the object
of study is the location of the zeros of the sampled system as a function
of the sampling interval b > 0. (Given an, e.g. strictly proper rational
function G(s), then the sampled pulse transfer function can be defined as
H(z):= (1—2"1)ZL7'G(s)/s. See e.g. [Astrom-Wittenmark 1984], [Astrdm-
Hagander-Sternby 1983], [Martensson 1982].)

For the special case of linear mappings, formulate “the Rank Theorem”, p.
255 in Isidori, in matrix language. (In particular, what docs the matrix
representation of H o F o G look like?)

Consider the function f: IR — IR discussed on page 254,
_J0 ifz <0
f(z) = {e_l/x ifz >0

Draw a figure of f (or even better, plot it). Show Isidori’s claim that f € C°,
Is there an analytic function with the same property that it vanishes on the
negative real axis?

The first line of the Appendix is “Let A be an open subset of IR" and f :
A — R a function.” Why is A required to be open? What if A = (§?

Determine in the following cases if the given subsets are open and if they are
dense.

QCRR
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b)
(z,0): 2z € Q CR?

c)
R?\ (z,0): z € Q C IR

d)
(z,y): 2 +y? <1 C R?

(z,y): 22 +y? <1 C R?

1.7  Show, e.g. with the rank theorem, that there does not exist a diffeomorphism
¢:R*" > R™ ifn#m.

1.8a) Is IR? together with the scalar product, i.e. with [z,y] :== z -y, a Lie algebra?

b) IsIR® together with the vector product, i.e. with [z,y] := z Xy, a Lie algebra?
1.9 Does the associative law hold in a Lie algebra? (Hint: previous problem.)
1.10 Classify all one-dimensional Lie algebras up to isomorphism.

1.11 Show that any (associative) algebra (i.e. a vector space that also has the
structure of a ring; the reader not familiar with these terms are welcome to
think about square matrices) can be made into a Lie algebra by defining the
Lie bracket as the commutator, i.e. according to

[z,y] := 2y —yz
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1.12

(The skew line on the torus.) The circle S! can be defined e.g. as S =
IR/27Z = IR mod 2. The torus is defined as T = $* x S'. For a € R,
consider the mapping f, : R — T defined by

fa(t) = (t mod 27, at mod 27)
Show that
fa(?) is a closed, periodic curve if and only if a € Q.

If a € Q then f,(t) is injective, and furthermore, f,(IR) is a dense subset of
T. (i.e. the curve f(t) comes arbitrarily close to every point p € T.)

Select a particular @ ¢ @, and select an embedding of T in R® (the familiar
doughnut). Make a beautiful computer plot of the skew line with perspective
projection, hidden line removal etc.
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Problemset 2

These problems give some exercise on Lie algebras, especially the
classical ones. Some concepts on calculus on manifolds are used.
Bilinear systems on the sphere are dealt with. Also, existence and
uniqueness questions of differential equation are briefly touched upon.

We will need the following theorem.

Theorem. Consider the system

= u;B;x zeR"
2 ©
z(0) =z

where u;(t) are smooth functions of time. Assume that B; is a (Lie-) sub-
algebra of gl(n) (the n X n matrices, the bracketing operation being the
commutator). Then, for small t, there exist functions ¢,(t),...,gm(t) such
that ®(t), the fundamental solution of (V) satisfying ®(0) = I can be written

@(t) = egl(t)Bl . egm(t)Bm

Remark. If the B;’s do not form a Lie Algebra, the theorem can still be
applied if we first ...

2.1a) Show that sl(n), the n X n matrices of trace 0, form a Lie algebra.

b) Show that so(n), the skew-symmetric n X n matrices, form a Lie algebra.

2.2a) Show that if A is skew-symmetric (skew-hermitian) then e# is orthogonal
(unitary). Is the converse true?

b) Consider the bilinear system
m
zi:=Aw+Zu,-B,-w zeR"
1

where A, B; are skew-symmetric. Give a bound on the reachable set (from
z(0) = z¢) for the system using smooth inputs.

c) Consider

d n—1
%X = 21: u; B; X X(0) € SO(n) ()
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2.3

2.4

2.5

2.6

2.7

2.8

29

where

B; = blockdiag { 0,....,0, [(1’ _01] 0,...,0}
——

i—1

Show that for all smooth inputs u;, X(¢) € SO(n). Show, possibly for n = 4,
that LA{B;}, the Lie algebra generated by the B;’s, equals so(n), the Lie
algebra of all n X n skew-symmetric matrices. Use Euler’s theorem (see e.g.
[Mértensson, 1986 p. 86]) to prove that (#) is a globally reachable control
system on SO(n).

Find two non-commuting matrices A and B such that e4e® = e4+B. (As is
well known, this is in general false if [4, B] # 0.) (Hint: previous problem
with n = 3. Try to make both sides = I.)

Show that from the viewpoint of modeling an input-output behavior, the
class of bilinear system contains the linear systems.

(Cooperation allowed, but must be reported.) Simulate a Wiener process on
the sphere S? using (#) (with z € IR? instead of in SO(n)), Simnon and
the standard system noisel. Verify that z(¢) does live on the sphere by also
plotting ||z||®. If time permits, make a 3D-plot.

Consider
& = f(z,t) z € R"

z(0) = xo *

Find out what it means to say that f satisfies a (local) Lipschitz-condition.
Find a theorem on (%), provided f satisfies a Lipschitz-condition.

Counsider the differential equation
&= x?

Discuss existence and uniqueness of the solution.

Prove that if (x) satisfies a global Lipschitz-condition, then the solution exists
for all ¢. In particular, what can be said about

&= A(t)z + Y ui(t)Bi(t)z

where A(t), B;(t), and u;(t) are smooth and bounded?

Exercise 1.5 in [Byrnes].
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2.10

2.11

Let V(O) denote the set of vector fields on the open set O C IR". Show that
V(0) is a Lie algebra if we define

0 0
[f,g] = a_i - 6—£g

Which ones of the following “objects” are manifolds (decent motivation re-
quired)?

JIEIR,"':.'L'I >0

AeGL(n):detA=m
A€gGL(n):detA#nr
(x7y)€]R'2 ry = a?

(Skip if you have never heard of projective spaces.) IP(n), the projective
space over R" 1!



Nonlinear Control Systems, Spring 1987, Problemset 3 Page 7
Problemset 3

Lie bracket- and Lie derivative computations are exercised with. Con-
trollability with Lie brackets. Solution of the system equation for
bilinear systems.

3.1 Consider the system
&= f(z)+ub 2(0) ==z
where b is a constant n-vector, with the input
ue(t) = n(6(t) — 6(t —¢))

where ¢,7 > 0. Compute z(e+) up to first order in ¢, and first order in 7.
Express the results in terms of the Lie bracket between f and b.

3.2 (Compare Isidori p. 282-283.) Let M be a smooth manifold, and V(M)
the set of vector fields on M. Let A € C*°(M) and f,g € V(M). The Lie
derivative of A along f is a function € C*°(M) defined as

(LsA)(p) = (f(p)) (A)
for p € M. The Lie bracket [f, g] is defined by

L[f,g]’\ =LgLgA— LyLgA

T
a) Let M = R f = [:1:1:02 sinzz 1 ] , and A = 1 cos(zez3). Compute
Lg).

b) Show that [f, g] is a vector field, but the “vector field” defined by A — LyLyA

1s not.

¢) Show that in coordinates

0 0
[fag]=a_z —a_ig

3.3 Let

2 — 3
= g= | T17273
e®1 1
ToT3

k“
Il

cos(z3 )14— VZL VT3 ]

T2
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Compute [g, adfc q].

3.4 Consider the system

:i:1=u

.’1.52=.'15%

Compute the controllability Lie algebra and its span at 0.

3.5 (Cooperation allowed if reported.) Consider

T=u
y=v
z=uzxy

a) Compute the controllability Lie algebra and its span at 0.

T
b) Given t > 0 and an initial condition ( z(0) y(0) =z(0) ) , find a control
(possibly using delta-functions) that takes the initial state to 0 in time t.

c) By simulation, try some reasonable fcedback control law for stabilization of
the system around 0.

3.6 Show that, in order to check the Lie algebra rank condition at 0, no finite
number of bracket computations suffices uniformly. Ie. there is no algorithm
of the type “check these N brackets”.

3.7a) Write a CTRL-C-function LIE(A,B) that computes the commutator between
A and B.

b) Write a CTRL-C-function AD(A,K,B) that computes ad’, B. (Hint: Simpler
by recursion. . .)

3.8 Consider the bilinear system

& = Az + u1(t)Biz + u2(t)Bazx z(0) =z
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Problemset §

where

\|I}
” b T .
< — —
_06_14 801A_1 © 7~
< b NONHO CoO0 OO
_06_1
o coco o coo
cocoococo
o (4]
<H — — o N — 00
cocoocooc o coo o coo
il I I
- (2]
= ) )

Solve the equation!
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4.1

4.2

4.3

4.4

4.5

Problemset 4

Some stuff on distributions. Different controllability concepts are
played around with.

Prove Lemma 2.7 in Isidori.
Prove Lemma 2.9 in Isidori.

Consider the case of A being a one-dimensional distribution on the manifold
M. Investigate what smoothness, regularity, and involutivity mean in this
case. What does Frobenius’ theorem say?

A system is said to be small time locally reachable from z, if

U R(z0,T)

0<T<T,

contains an open neighborhood of z¢ for all T, > 0.

Now consider the system on the cylinder S* x IR described by

z=u

6=1

where § € S? is considered only modulo 27. (This is really a sloppy way
of expressing things, but...) Determine if this system is locally accessible,
locally accessible at time T, locally reachable, locally reachable at time T,
small time locally reachable.

Give a heuristic “proof” of the following theorem.

Theorem. Consider the system
i = f(z) + ) uigi(z)

and assume that R, the smallest distribution closed under bracketing with
f, gi containing f and the g¢;’s, is nonsingular. Further, assume that for all
initial conditions, the flow corresponding to just the drift term is periodic
with a least period. More precisely, z(t,z¢) = <I>;,fa:0 is periodic with period
p(zo), where p(zg) > ¢ > 0 for some c.
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4.6

4.7

4.8

Under these conditions, the system is locally reachable from z¢ if and only
if the Lie algebra rank condition is satisfied at zg.

Consider the system

d n—1
a){ =B X+ 22: u; B; X X(O) € SO(n) (#)

where

Bi=blockdiag{0,...,{], [(1) _01] ,0,...,0}
S’

i—1

Show that (#) is locally and globally reachable. What about time-T-reach-
ability?

Consider the following theorem.

Theorem (Brunovsky). Consider the system
&= f(z)+ ) uigi(x)
=1

and assume that R, the smallest distribution closed under bracketing with
f, g9i containing the g;’s is nonsingular. Further, assume that it has the follow-
ing “symmetry property”: For allu = (uy,..., Uy ) there is & = (#1,...,Uyy)
such that

f=2)+ 3 tag(—a) = - (f(w) £ u,-gi(w))

Then the system is locally reachable from 0 if and only if the Lie algebra
rank condition is satisfied at 0.

Use the theorem to show that the linear system

&= Az + ) ub;
=1
is (locally) reachable (from 0) if and only if rank[B, AB,..., A" 1B] = n,
where B = [bl,...,bm ]

(Cooperation allowed if reported.) Consider
T=u
j=v

z=gzv—yu
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a) Compute the controllability Lie algebra and its span at 0.
b) Show that it is locally reachable and locally time T' reachable from 0.

c) By simulation, try some reasonable feedback control law for stabilization of
the system around 0.
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5.1

5.2

5.3

5.4

Problemset 5

Some aspects on observability.

Formulate a theorem like Theorem 1.7.8, but for the case of observability
without inputs (i.e. with u;(¢) = 0).

With the results and terminology of Theorem 1.7.8, derive (in great detail!)
the well known result on observability of the system

.’I':=Ax+zm:b,'ui

=1

Yj = CjT 7j=1,...,p

In particular, show—still using same methods and terminology—that ob-
servability with zero inputs are equivalent to observability with arbitrary
inputs.

Find a system on the usual form, which is globally observable, but for which
it is not possible (always) to reconstruct z(0) from y(9(0),s = 0,1,...

Consider the system
i=fc) ceM

y = h(z)

where f is an analytic vector field. Write
0
F= Z f"a_x,-
This is an operator on the ring C°°(M). By its formal adjoint F* we shall
mean 5
F*r=— —f;
zi: Ox; f

Also the (scalar) function h constitutes an operator on C°°(M) by multipli-
cation. Let O denote the Lie algebra of operators on C*°(M) generated by
F* and h. The bracketing operation is defined as the commutator.

Formulate and prove a sufficient condition for local observability around the
point g, expressed in terms of O. Do not assume that f(z) = 0. Specialize
to linear systems.
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5.5

5.6

Consider
0 1 0 0 01
z=|-1 0 0]laz+u 0 0 0= z € R3
0 0 0 -1 0 0

y=(0 0 1)
Compute @ for the two cases of u(t) = 0 and u(t) arbitrary. Interpretation?

It is well known that a linear, scalar system has relative degree r > 0 if and
only if it holds that the step response y(t) satisfles y(0) = - -+ = y(""1(0) = 0
and y(") (0+) # 0. Using this property, try to define the relative degree at 2
for the single-input, single-output system

¢ =f(z)+ug(z) zeM
y = h(z)

in terms of the vector fields f and ¢ and the function h.
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6.1

6.2

6.3

6.4

6.5

6.6

6.7

Problemset 6

Input-output relationships and realization theory.

Consider a body with rest mass myg, the position described by the spatial
coordinate z, and let f an applied force. In special relativity, Newton’s
second law is replaced by f—tp = f, where

mov

I
Vi-%

As usual, ¢ is the velocity of light, and v = . Compute the first three terms
of the Volterra series for this dynamical system with input f and output z.
Compare with the classical results, i.e. Newton’s second law mz = f.

Does Picard iteration have anything to do with the input-output descriptions
in Chapter 37

Find a necessary and sufficient criterion for a Volterra series to describe a
time-invariant input-output relationship. In particular, what about the term
wo? How does the formulas II1.2.12, describing the Taylor series expansion
of the Volterra kernels, simplify?

To what extent can this be done to the Fliess expansion?

In Lemma II1.1.3, show that “max |u;(7)| < 1” can be replaced by the for-
mally weaker requirement “max |u;(7)| < C for an arbitrary constant C”.

Find, if possible, a Volterra series and a Fliess expansion of the dynamical
system described by the transfer function

1 —s
g(s) = —e

Do the details in Example 111.1.16.

Compute the Volterra series and the Fliess expansion for

j;1=u
i‘z=$%

Yy=1=a
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6.8

6.9

6.10

6.11

6.12

6.13

Discuss the possibilities for symbolic or numeric computation of the Volterra
kernels. Outline a program. Do the same for the Fliess expansion.

(Optional.) Write a TEXmacro that typesets a truncated Volterra series (or
Fliess expansion). It should take two arguments, N, the desired order for
the expansion, and m.

Consider the bilinear system
= Az +uBzx

Obtain the Volterra series directly by applying the Peano-Baker expansion
—At
on z := e~ ‘g,

Give an example of an input-output relation (on any form) that has a input-
affine, but not a bilinear realization.

Give an example of an input-output relation (on any form) that has both a
input-affine and a bilinear realization but where any bilinear realization must
be non-minimal.

Give a strict meaning and a proof to the statement “From input-output point
of view, the set of bilinear systems is dense in the set of input-affine systems”.
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7.1

7.2

7.3

7.4

Problemset 7

Disturbance decoupling and exact state-space linearization.

Consider systems of the form
= f(z)+ug(z) =zeUCcCIRR?

for which the linearizability condition span{g(z), [f, g](z)} = T:(IR?) is sat-
isfied for all £ € U. Under what conditions can an explicit formula

z = ¢(z)
v =1(z,u)

be found which takes the system to the form

- (1) 3)-

In particular, show that the mapping (z,u) — (z,v) is a diffecomorphism
from U if and only if the linearizability condition is satisfied. (We shall say
that the system is globally linearizable if this condition is satisfied for all
z € R?).

Consider the system

Ty =z +u

Ty = T1T2
Show that this system is not globally linearizable. Discuss approximation of
the system by a linearizable system of the form & = f(z) + ug(z).

Discuss similarities and differences between gain scheduling and exact lin-
earization.

In linear system theory, a subspace V is called (A, B)-invariant if AV C V +
Im B. In linear system theory books the following algorithm for computing
the maximal (A, B)-invariant subspace V. contained in a subspace K is given:

V=K
Ve =Vt (A (Im B+ VF)
(Note that A~ denotes the inverse image, and is therefore well defined also

for singular A’s.) Discuss in detail the relationship between this algorithm
and the algorithm in Lemma IV.2.4.
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7.5 Consider
Tz = Az + bu

y=czx

where cb # 0. Compute Vi, .

7.6  Discuss linearization of £ = f(x,u) versus & = f(z)+wug(z) where u is scalar.
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