LUND UNIVERSITY

Simplification of Expressions Using Prolog

Bruck, Dag M.

1987

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Briick, D. M. (1987). Simplification of Expressions Using Prolog. (Technical Reports TFRT-7364). Department of
Automatic Control, Lund Institute of Technology (LTH).

Total number of authors:
1

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.

* You may not further distribute the material or use it for any profit-making activity or commercial gain

* You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

https://portal.research.lu.se/en/publications/40c9f4be-0059-4c54-ada2-5520c66ea521

CODEN:LUTFD2/(TFRT-7364)/1-014/(1987)

Simplification of Expressions
using Prolog

Dag M. Bruck

Department of Automatic Control
Lund Institute of Technology
July, 1987

Document name

Department of Automatic Control INTERNAL REPORT

Lund Institute of Technology Date of issue
P.O. Box 118 July 1987
S-221 00 Lund Sweden Document Number
CODEN:LUTFD2/(TFRT-7364)/1-014/(1987)
Author(s) Supervisor
Dag M. Briick

Sponsoring organisation
The National Swedish Board of Technical
Development

Title and subtitle
Simplification of Expressions using Prolog

Abstract

The report describes the development of a Prolog program for simplification of polynomial expressions. The

main problem is that expressions can take many shapes, leading to a very large number of transformation
rules.

The solution is to introduce a normal form for expressions, and to order the terms of a sum and the factors
of a product. Ordering also changes the shape of the expression tree. These operations greatly reduce the
number of transformation rules. Execution speed is considerably improved by detecting dead ends that cannot
be further simplified, and by rejecting repeated results.

The evolution of the program, and the consequences of using Prolog or Lisp as implementation languages, are
also discussed.

Key words
Symbolic computation, Pattern matching, Logic Programming, Prolog

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title ISBN
Language Number of pages Recipient’s notes
English 14

Security classification

The report may be ordered from the Department of Automatic Control or borrowed through the University Library 2, Box 1010,
S5-221 03 Lund, Sweden, Telex: 33248 lubbis lund.

CODEN:LUTFD2/(TFRT-7364)/1-014/(1987)

Simplification of Expressions
using Prolog

Dag M. Briick

Department of Automatic Control
Lund Institute of Technology
July, 1987

1. Introduction

This report describes the development of a program for differentiation and
simplification of mathematical expressions. The work is centered on simplifi-
cation; the differentiation part was taken from section 7.11 of Programming
in Prolog [Clocksin and Mellish, 1981].

The basic idea behind the simplification algorithm is quite simple. A table
of transformation rules describes possible ways of rewriting an expression. To
simplify a binary expression F, we must first simplify the left-hand argument
of E, then the right-hand argument, and finally see if the simplified expressions
can be matched with one of the transformation rules. Normally, more than
one rule will match, so multiple simplifications are generated.

Achievements

A program has been developed that can do certain simplifications of polynomi-
als; it is implemented in Prolog. The problems of symbolic computation have
been investigated (and experienced), and a number of approaches have been
explored. The insights gained are readily transferable to other programming
environments.

Given a polynomial expression as input, the program will try to transform
it to fully expanded form. For example,

(a+b)(c+d) — ac+ ad + bc+ bd
(— means is transformed to). Similar terms or factors will be combined:

3z 42z — 5z

m2*$3—>$5

The following example demonstrates what the program can do:
3+z+22+(z+1)(z—-1)— 2243242
which is equal to (z 4+ 1)(z + 2), although the computer doesn’t know it.

Limitations

The existing implementation is quite limited. Firstly, the program can do
useful work only on polynomials; other types of expressions (e.g., logarithms
and complex numbers), will be treated as indivisible units.

Secondly, the “simplifier” has no way of measuring the simplicity or read-
ability of an expression. Simple merits, such as the length of the expression,
would be easy to implement, but would probably not be of any great use;
the most desirable form of an expression depends largely on the intended use.
Rather, the program will print all transformations of an expression it has been
able to find.

Thirdly, factoring is not done. Therefore, neither of the following trans-
formations will be found.

2?2 ~1= (a4 1D)(z-1)
w2-|—2:1:—|—1—>(a:+1)2

Not even content factoring, i.e., extraction of the greatest common divisor of
the terms, is possible. For example,

622 + 4z — 22(3z + 2)

is not on, although the reverse is, using expansion and combination.

2. Fundamental algorithms

This section describes some of the problems with simplification of expressions,
and ways of dealing with these problems.

Fundamental problems

The first version of the program was directly based on the simplification algo-
rithm in section 7.12 of Programming in Prolog [Clocksin and Mellish, 1981].
Although it works on naive examples, it is easy to find special cases which
require more rules, and some cases which are very difficult to express. There
are three major problems:

1. Commutative operators, such as addition and multiplication, double the
number of rules; z 4+ y is algebraicly but not syntacticly equal to v + 2.

2. An expression may be represented by different expression trees. This is
insignificant when evaluating the expression, but matching is done sym-
bolicly on the tree structure. For example, 2 * 3 * a is represented with a
different tree than a 2% 3, although the trees have the same shape. Even
worse, 2 * 3 * a has a differently shaped tree compared with 2 x (3 a).

3. Combinations of different operators, such as addition and subtraction,
increases the number of rules. Many special cases, like a + b —a = b, must

be handled.

These problems would lead to a very large number of transformation rules,
with little structure. Sensible rules can hardly be machine generated, and
it is impossible to verify that all essential rules exist. It is also likely that
more than one rule will yield equivalent transformations, for example, one
covering a special case and one covering the general case; this may generate
an uncontrollable number of so called simplifications.

The goal is to impose some structure on the problem and to reduce the
number of rules. This can be done by applying three transformation steps:

o The expression is transformed to so called normal form, eliminating sub-
traction and division operators. This step addresses problem (3) above.

e Terms and factors of an expression are ordered to get syntacticly uniform
expressions.

e Some basic simplifications must be made, for example, evaluation of ex-
pressions involving constants only (constant folding).

The last two steps will handle problems (1) and (2). The first step is needed
only once, while the other two must be performed as parts of each major
transformation.

Normal form

Prior to any other processing, the expression is normalized. Normal form can
loosely be described as a polynomial with all factors written out, e.g., 1 * z!.
Normal form is defined more formally using BNF:

expr := [expr +] term
term = [term %] factor
factor ::= number

| number * atom | number
| (expr) [1 number]

To get this far, a number of transformations must be made, making the ex-
pression visually much more complicated:

o Variables and symbolic constants (atoms in Prolog) are written on expo-
nent form: @ — 1#a'. This means that no special rule is needed to handle
both z * 2™ — 2™ and 2™ * 2™ — z™*", and other similar cases.

¢ Elimination of subtraction, division and unary minus:

a—b—a+(-1)*b
a/b— axbt

—a— (—1)*a

These transformations reduce the number of operators, and hence greatly
reduce the number of rules. They also introduce a nice symmetry: ad-
dition and multiplication are both commutative and associative, which is
used for ordering expressions.

o Positive powers of complex (non-atomic) expressions are expanded:
(a+0)°— (a+b)*(a+b)*(a+b)

The use of this transformation is not so obvious, but it is often applied in
symbolic algebra [Pavelle et al., 1981]. It should be noted that negative
powers are not handled gracefully. In particular, a negative power should
be distributed over a product:

(ab)_3 — a7 33

In addition to these transformations, a zero term is appended to every sum,
and a unity factor appended to every product. This is done during expression
ordering (see below).

Ordering of expressions

The most fundamental and important task when doing symbolic calculations,
is to order or sort terms of a sum and factors of a product. One reason
for eliminating all operators but addition and multiplication, is to be able to
rearrange an expression using the laws of commutativity and associativity.

Expressions are ordered because it is easy (and cheap with respect to com-
puter resources) to do operations on two adjacent elements of an expression,
and much more difficult when the whole expression must be considered. In
particular, matching expressions using Prolog is most conveniently done by
looking at two subexpressions combined with a binary operator; this may not
be true when a list-based notation for expressions is used, as in Lisp.

If the expression is ordered according to some mechanism which takes
into account the type of subexpressions involved, a number of fundamental
operations are easy to implement. Firstly, if all numeric constants are grouped
together, then numeric subexpressions can be evaluated by successively looking
at pairs of constants. This operation (called constant folding) is one of the
basic simplifications, see below.

Secondly, the most powerful means of simplifying an expression in the
current implementation, combination of factors, is also efficient when similar
factors are grouped together. This is also done pair-wise, left-to-right:

3z +z2+ 22 — 4z + 2z — 62

The definition of “relative order” used for ordering the elements is here very
important. If alphabetic order is used, then

2z + 3y + 5z

would be correct, but in this case combination is not possible. The ordering
predicate used will look into the elements and, for example, disregard numeric
coefficients. The last equation would come out as:

22 + 5z + 3y

which is easily combined to give 7z +3y. Lastly, we are used to order the terms
of a polynomial when using pencil and paper. It is advantageous if a similar
ordering can be used by the program, both when writing new transformation
rules and when presenting the result to the user.

In the discussion above, the expression has been regarded as a linear list
of terms. This is not true; an expression is represented by a binary tree. To be
able to match trees of any shape, a large number of cases must be regarded.
Because all (both) operators after normalization are associative, the expression
can be extensively rearranged. The goal is to provide not only a uniform order
of terms, but also a uniform shape of the expression tree.

The procedure for ordering expressions is as follows: Firstly, the binary
expression tree is cut to pieces and all elements that can be rearranged are
put in a list. Secondly, the list is ordered, disregarding numeric coefficients
of terms. Lastly, a left-recursive expression tree is constructed from the list.
These operations are performed recursively for all sums and products. As an
example, the expression a + (¢ + b) has the following tree.

To make matching even easier, one more trick is used. A zero term is
appended to every sum, and a unity factor is appended to every product.
After ordering, all numeric elements will be located in the leftmost part of
each subtree. Consequently, all symbolic elements can be found by matching
the right operand of each operator. The number of special cases are further
reduced.

Basic simplifications

After normalization and ordering, there is usually a large number of numeric
terms and factors in the expression. The routines for basic simplification will
evaluate almost all numeric expressions; floating point numbers look messy, so
only integer powers are evaluated. The “dummy” terms and factors inserted
during ordering are therefore eliminated when not needed.

In addition, products with a zero factor are reduced to zero, and zero
terms are removed. For example: ¢ + 0% b — a. A single numeric term or
factor is of course saved in every sum or product. A number of special cases
involving exponentiation are detected: z° — 1, 0 — 0 and 1™ — 1.

Finally, to see how these three steps transform an expression, the expres-
sion 3+ 2 + 2z + (2 + 1)(z — 1) is transformed to:

34+1xal +2x(1xal)+(1ral + 1) % (Ixal + -1x1)
after normalization,
O0+3+1xlsz' +1x(0+14+1+142) 4 (04 —1xlxl+1xlsz))+ 15142420
after ordering, and
3+1xa' +1x(1+1xal)s(=1+1x2')+ 242"
after basic simplifications.

Final clean-up

Just before printing, the results of a simplification are cleaned up a little. The
following simplifications are made:

O+a—a
l¥a—a
al = a
cxa — ca when ¢ is numeric
axb™ " — a/b"

at+(-b)—a->

The expression will become more readable, but not all transformations from
the normalization step are undone.

3. The real McCoy

After the treatment of normalization, ordering and basic simplifications, we
now have an expression in a form which is supposed to be “suitable” for further

processing. This section describes the core of the program; routines that try
to analyze the expression and do substantial transformations of it. These are
called global transformations because they may look at the full expression tree.

There is an important difference between these routines and the routines
described in section 2: as many transformations as possible will be generated
in every step of the process. There may even be transformation rules with
contradictory goals; for example, one rule expanding the expression, and one
rule factoring the expression. Both transformations will, if possible, be applied
to every single expression.

The transformations are not restricted, except that normal form should
be maintained. It is therefore necessary to order the resulting expression and
to perform basic simplifications after each global transformation.

Operation

Global transformations are performed by two cooperating routines. One Pro-
log predicate (called simp) will generate new transformations one at a time.
The other (global) is a driver routine which will generate all transformations,
calling simp over and over again. This is done essentially as follows:

1. Transform the expression by calling simp. If no transformation was pos-
sible, the same expression is returned.

2. Clean the result of (1) by ordering and folding constants, etc.

3a. If the transformations of (1) and (2) have given a new expression, the
result is recorded as a fact in the Prolog database. Then the crank is

turned again; new global transformations are made on the result, going
back to (1).

3b. If the transformations yield a result which has already been found because
of some earlier transformations, then the transformations of (1) and (2)
are said to have failed.

A new transformation is generated by returning to (1) and asking simp for
another transformation. As a last resort, simp will return the input ex-
pression, so all global transformations will eventually fail, having explored
all possibilities.
The operation of global and simp can be described as generating the tree of
all possible transformations of an expression. All cycles will be detected and
cut off in (3). Simp returning the input expression is a cycle back to the latest
node of the tree.

Dead end detection

The expressions are often quite similar between each “turn of the crank.”
Identical subexpressions occur every time. This turns out to be very inefficient;
a large number of subexpressions, which cannot be transformed with the given
rules, must be traversed and tested.

The solution is to register all so called dead ends, i.e., expressions which
cannot be further simplified. In the current implementation, dead ends are
registered as facts, for example,

deadend(z 1 3).
but could also be registered as predicates, testing some common cases:

deadend(X 1Y) :- atomic(X), atomic(Y).

The increase in performance is substantial; simplification of typical examples
run 4-5 times faster with dead end detection.

The dead end database is valid as long as the rules remain unchanged.
Dead ends found when simplifying one expression are valid when simplifying
another. Regrettably, the database grows all the time, and must be manu-
ally purged now and then. A few simple predicates would greatly reduce the
number of generated facts.

4. Discussion of implementations

The discussion will cover two areas: Firstly, the evolution of the current Pro-
log program. Secondly, the consequences of implementing such a program in
Prolog or in Lisp.

Evolution of the program

It is interesting to see how the program, and in particular the transformation
rules, have evolved during the development of the program.

As has been noted in section 2, it all started by only using a routine similar
to the basic simplifications. Quickly, the number of special cases grew uncon-
trollably, and it is definitely not the case that “a more general algebra system
can be constructed simply by adding more clauses,” as is said in Programming
in Prolog.

The use of ordering is emphasized in both [Pavelle et al., 1983] and [mu-
MATH, 1983], and made generalizations possible in this program. There is no
evidence that normalization, as described in section 2, is used in muMATH,
but it is probably used in some routines. No single representation is the best
for all applications; multiple representations may be used in a program [Pavelle
et al., 1983]. Normalization and ordering reduced the number of rules to about
one fifth. At the same time, a number of basic simplifications were removed in
order to maintain normal form; they are now made during the final clean-up.

The rules controlling the global transformations have changed the most,
becoming simpler and more general. In the beginning, there were a number
of specialized rules (¢; are numbers; k = ¢1¢3):

(z+y)*(z—y) — 2% —y°
(z+y)*(z+9) > 22+ 92 + 22y
(z—y)*(z—y) = 2 +y° - 2uy
(z+y)*x(z4+w) - zz+ 2w+ yz + yw
a*(catz)—k+az

(z4ec1)*(z—cg) =22 -k

Eventually, all these cases (and many more) were handled by two general rules
for distributing a multiplication over an addition:

ck(z+y)—cz+ey
(z+y)*xz—zz+yz

Although the last two rules seem less powerful, the same results are found
when they are repeatedly applied.

Performance is an important issue in this program. Much time is spent
doing useless work. Testing a few special cases, such as sorting a list with
one element, provided a two-fold speedup. Even more important are dead end
detection and cutting off duplicate results. The “cut” in Prolog is used exten-
sively, for two resons. Firstly, debugging is much less tedious when meaningless
backtracking is avoided. Secondly, performance increases slightly.

Implementation in Prolog

Prolog is a good implementation language for this kind of work. Three advan-
tages should be noted in particular:

e Most work is done by pattern matching. Clauses are written to handle one
case each, and the Prolog system “automaticly” selects the right clause.
Additional qualifications, e.g., requesting a variable to be numeric, are
casy to add.

e The Prolog database is used to register facts about dead ends and results.
Self-modifying programs are quite powerful in this context. Using the
built-in facilities of a programming language is of course the fastest way
to solve a problem.

e Prolog uses “ordinary” infix operators in forming expressions. This nota-
tion is still the best for most people. The ability to define new operators
could be used in further developed systems. Prolog is one of the few
programming languages where it is easy to go from infix notation to list
(prefix) notation.

On the other hand, there are problems with both the current implementation
style and Prolog itself:

e List notation, as in Lisp, is more natural when representing sums and
products with more than two elements. Searching and sorting is easier,
which ought to be of particular importance when factoring expressions.
The extensive reordering of the expression tree would be easier and faster.

e In Prolog, it is often necessary to go from infix notation to list notation
of expressions, for example, to get the operands of an unspecified opera-
tor. Sometimes, lists cannot be used, for example, to evaluate a numeric
expressions.

e There are very few control structures in Prolog; conditional execution must
be implemented by matching clauses, and repetition by tail-recursion or
backtracking. To avoid doing huge amounts of unnecessary work, ex-
tra clauses must be added when a simple if-statement would have been
enough.

e Compilation is not yet common in Prolog systems. Much time is spent do-
ing simple things in a few routines. Compiled code would be substantially
faster.

The advantages and disadvantages must be carefully weighted against each
other; it would have been quite feasible to make an implementation based
on list notation in Prolog. It is impossible, without trying, to say which
implementation would be better. Backtracking was used less than expected,
so the powers of Prolog may not have been fully explored.

Implementation in Lisp

Lisp is the oldest, and still most widely used, programming language for sym-
bolic computations. In the context of this program, the following can be
noted:

e Lisp only supports list (prefix) notation of expressions. There are more
powerful operations on lists in Lisp.

¢ Modern Lisp dialects support other data structures, such as arrays and
hash tables.

e Lisp has control structures for conditional execution and iteration. Back-
tracking is therefore not required.

e Lisp can be compiled into efficient code.

The main problem to solve in a Lisp implementation is the pattern matching
and substitution used for doing the transformations. It is available almost for
free in Prolog, but must be explicitly programmed in Lisp. This is not an easy
task; in particular, there is no concept of “instantiated” or “uninstantiated”
variables as in Prolog. A beautiful way of creating a logic programming envi-
ronment is presented in sections 4.4 and 4.5 of Structure and Interpretation
of Computer Programs [Abelson and Sussman, 1985]. Their query language
comes very close to the facilities provided by a Prolog system, but is perhaps
less convenient to use.

The ability to assert new facts (or even predicates) in Prolog exists in Lisp
too. The program can modify itself and define new functions. Regrettably,
this ability is much less useful in Lisp because there is no built-in pattern
matcher as in Prolog. It is possible to define additional code in Lisp, but not
to use the Lisp system as a database (although production systems, such as
YAPS [Allen, 1983], may be used). Lisp has global variables though, which is
a common use of Prolog facts.

5. Summary

Simplification of expressions is not easy. Firstly, the intended use of an ex-
pression determines what is a useful simplification; only the human user knows
this. Secondly, expressions can be written in many ways, leading to a huge
number of cases that must be handled by the program. Thirdly, a large pro-
gram with possibly hundreds of transformation rules cannot be maintained.
Rules without structure are not comprehensible.

Most of these problems can be solved with a framework that serves as
the basis for future developments. By transforming the expression to normal
form, the number of operators and special cases are greatly reduced. Ordering
makes it possible to efficiently perform transformations, and rearranging the
expression reduces the number of cases that must be tested even further. Basic
simplifications, such as evaluating numeric expressions, are also needed.

After that, it is not so difficult to write the rules that do the real transfor-
mations. Rules with contradictory goals (e.g., factoring and expansion) may
be used. A driver routine which generates all solutions is required; this is one
of the few actual uses of Prolog’s backtracking mechanism. Detecting dead
ends and repeated results is the most effective way of improving execution
speed.

Prolog is a suitable programming language for this application. The pat-
tern matching is extremely powerful, and quite difficult to emulate in other

10

languages. Using the Prolog system as a database manager is convenient. Re-
grettably, there are few control structures in Prolog, sometimes forcing the
user to adopt an awkward programming style.

Lisp is also a good implementation language. It has better list handling
and more data structures, but some important parts must be written by the
user, in particular the pattern matcher. Estimating the time needed to imple-
ment these parts is difficult.

6. Acknowledgements

Professor Karl Johan Astrém suggested this problem for me, and introduced
me to muMATH. Per Andersson found the reference to the query language in
[Abelson and Sussman, 1985]. Kjell Gustavsson reviewed the report and made
a number of useful comments.

This work was supported by The National Swedish Board of Technical
Development (STU).

7. References

ABELSON, H. and G. J. SussmaN (1985): Structure and Interpretation of
Computer Programs, The MIT Press, Cambridge, Massachusetts.

ALLEN, E. M. (1983): “YAPS: Yet Another Production System,” TR~-1146,
Department of Computer Science, University of Maryland.

Crocksiv, W. F. and C. S. MELLISE (1981): Programming in Prolog,
Springer-Verlag, Berlin-Heidelberg.

(1983): muMATH-83 Reference Manual, The Soft Warehouse,

Honolulu, Hawaii.

PaveLLE, R., M. RoTHSTEIN and J. FiNcE (1981): “Computer Algebra,”
Scientific American 245, 6 (December), 136-152.

11

Appendix — Using the program

The program consists of six modules:

simp.pl Main program, global simplifications.
normal.pl Normalization routines.

order.pl Ordering routines.

basic.pl Basic simplifications.

deriv.pl Differentiation.

tree.pl Draws expression trees.

The main program, simp.pl, will load the other modules. The following table
describes the most interesting predicates:

sim(expr) Generates all “simplifications” of ezpr. Every global transfor-
mation is traced, and all results are printed.

dx(expr) Calculates the derivative of ezpr with respect to z, and sim-
plifies the result.

d(E, a, F) Calculates derivative of E with respect to a, giving F. No
simplification.

normal(F, F) Normalizes E, giving F.
order(E, F) Orders E, giving F.
basic(E, F) Performs basic simplifications on E, giving F.

pr(expr) Prints expr after final clean-up.

prr Prints the results of the last simplification.
tree(expr) Prints the expression tree for expr (very crude).
Example

The following example shows most of the features of the program:

| 7- sim(2%x*x(3%x + 2)).

Starting: 2k x0k (3kx+2)

0 In 2% (2+3%x~1)*x"1

0 Out O+4%xx™146*xx"1%x"1
1 In O+4xx~1+46%x~1%x"1
1 Out 0+4*x"1+6%x"2
2 In O+4xx~ 1+6%x"2
2 Fail O+4%x~1+6%x"2
1 Fail O+4*x~1+6%x"2

0 Fail O+4*x~1+6*xx"1*x"1

Result 4x+6*x~2
4x+6x*X
2% (2+3x) *x

no
| ?- normal(2*x*(3%x + 2), N), order(N, 0), basic(0, B).
N = 2%(1*x~1) % (3% (1*xx~1)+2)

0 = 1%1%2% (0+2+1*1k3kx~ 1) *xx~1

12

B = 2%(2+3%x~1)*x"1

| ?7- sim(3 + x + 2%x + (x+1)*(x-1)).

yes
Starting:

0 In
0 Out
i In
1 Out
2 In
2 Out
3 In

3 Fail

2 Fail

1 Fail
0 Fail

3+x+2%x+ (x+1) % (x-1)

3+1kx 1+1% (1+1xx" 1) % (—14+1%x~ 1) +2%x~1
B+l (-14+1%x 1)+ 1%~ 142%x~ 1+1k (~1+1%xx" 1) *x"~1

B+lk(=1+1%x~ 1) +1xx " 1+2kx" 1+1% (-1+1xx" 1) *x~1
2+1%x"14+3kx" 1+-1%x "1+ 1kx"1kx"~1

2+1kx7 143 x " 14+-1xx " 1+1%x" 1%x71
2+3%x"1+1%x"2

2+43%x"1+1%x"2

2+3%x"1+1%x"2

2+3*%x"1+1%x"2

2+ 1kx"14+3%x " 1+-1kx" 1+1kx " 1%x~ 1
B+lk(~1+1%x" 1) +1kx~ 1+2%x " 1+1% (=1+1%x~ 1) *x~1

Result 2+3x+x"2
24 x+3X-X+X*X
3+(~1+x)+x+2x+ (- 1+x) *x
S+x+(1+x) % (-1+x) +2x

| 7- dx(3 + x + 2*%x + (x+1)*(x-1)).

no
Starting:

0 In
0 Out
1 In
1 Out
2 In

2 Fail
1 Fail
0 Fail

Result 3+2x

3+x+x

0+1+2%1+((1-0) % (x+1)+(1+0)*(x-1))

B+1% (~1+1kx"1)+1x (1+1%x"1)
3+1kx"1+1%x"1

3+1*x"1+1%x~1
3+2%x~1

3+2xx71
3+2%x~1
3+2%x~1
3+1xx"1+1%x"1

3+(=1+4x)+(1+x)

no
| ?- halt.

13

