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INTRODUCTION.

Most of the established control theory requires that the pro-
cess to be controlled and its environment are described by a
known mathematical model. For many processes such models are
not available and cannot be constructed from theoretical con-
siderations. The reason may be that the process is too comp-
lex, or that the basic knowledge of process mechanisms and

process parameters is lacking.

Two approaches for solving this problem have been suggested.
One is to use experimental input-output data from the process
to select a model that adequately describes the measured da-

ta. This procedure is known as identification. Another app-

roach is to use a regulator with adjustable parameters and to

tune the parameters until a satisfactory performance is achieved.

In the majority of casges the parameters are adjusted manually
like in most industrial PI regulators. It is also possible to
have some device which automatically adjusts the parameters.

Such an approach is called adaptive control.

Identification algorithms, as well as algorithms for adaptive
control are supplied with input-output data from the process

and they produce a set of parameters that describes the model
or the regulator respectively. As the number of data supplied
increases it 1s naturally desirable that the produced results

should improve. The problem of convergence of the algorithms

concerns the question of what happens to the parameters as the

number of data tends to infinity.

In many cases the measured input-output data from the process
cannot be exactly reproduced if an experiment is repeated.
This is due to a number of unmeasurable variables, called dis-
turbances, that influence the process. Therefore, the parame-
ter values that are produced by the algorithms as well as

their convergence properties may vary from experiment to ex-




periment. It is customary to describe the disturbances acting
on the process as stochastic variables. Then alsc the parame-
ters become stochastic variables, and the convergence problem

must be considered in a stochastic setting.

This thesis deals with the problem of convergence of algorithms
for identification and adaptive control. The stochastic conver-

gence concept used is "convergence with probability one'.

CONVERGENCE AND CONSISTENCY.

Two different kinds of algorithms can be distinguished. In re-
cursive or on=line algorithms, input-output data from the pro-
cess are treated sequentially, directly after they have been
measured. In off-line algorithms data collected during pre=

vious experiments are treated at the same time.

Recursive algorithms can be regarded as time varying stochas-
tic systems. Their convergence therefore could be considered
within the general framework of stochastic stability theory,
as treated by e.g. Kushner (1967). However, these concepts do
not seem to be very suitable for this specific application,
and the various algorithms suggested have instead been ana-
lysed by individual methods. Stochastic approximation algo-
rithms, which form an important subclass of the algorithms
treated in this thesis, have been considered by e.g. Blum
(1954) . Convergence of recursive identification methods can
in some cases be investigated as consistency analysis of the
corresponding off-line method; this has been done for the
least squares method in e.g. Astrdm-Eykhoff (1971). Many al-
gorithms for adaptive control have been studied mainly by
means of simulation. In this thesis a unified approach to the

problem of convergence of recursive algorithms is suggested.




Off=1line algorithms are naturally of interest only for iden-
tification. For such methods it is of great importance to
know. i1f the parameter estimates are consistent, i.e. if they
approach the true values as the number of data used increases
to infinity. A large number of identification methods exist,
see e.g. Astrom-Eykhoff (1971). A method that seems to have
wide applicability is the maximum likelihood method. It was
introduced originally by Fisher (1912) and applied to system
identification by Astrdm-Bohlin (1965). The consistency pro-
perties of the original method have been analysed e.g. by
Wald (1949). When applied to system identification, the con-
sistency problem for the maximum likelihood method is more
difficult, and it has been studied by several authors under
varying assumptions. In this thesis consistency of a class
of identification methods that, under certain conditions on
the noise, includes the maximum likelihood method is consi-
dered. The results obtained are believed to have general
applicability, since they are not associated with any rest-
rictive assumptions about noise characteristics, model struc-
ture, time invariance (ergodicity) or input signal genera-

tion.
The thesis consists of three parts,

I. Convergence of Recursive Stochastic Algorithms.
Report 7403, Div. of Automatic Control, Lund Institute
of Technology, Lund, Sweden (1974).

ITI. Asymptotic Properties of Self-Tuning Regulators.
Report 7404, Div. of Automatic Control, Lund Institute
of Technology, Lund, Sweden (1974).
(Coauthor B. Wittenmark)

ITII. On Consistency for Prediction Error Identification
Methods. Report 7405, Div. of Automatic Control, Lund
Institute of Technology, Lund, Sweden (1974).

each of which will be briefly reviewed below.




CONVERGENCE OF RECURSIVE STOCHASTIC ALGORITHMS.

For a recursive algorithm, the data that is collected from

the process, is condensed into a vector X0 which represents
the current knowledge about the process. This vector is modi-
fied each time a new observation ®, is obtained. The procedure
can be written as

Xp = Xy *F YnQn(anl'wn) (1)

Algorithms of this type thus represent a general recursive al-
gorithm. The observation @n as mentioned above is a stochastic
variable, which may depend on previous vectors X s k < n-1 in
an arbitrary manner. In part I of the thesis, a subclass of
algorithms (1) is studied; where 9 depends only on X1 and
not on all previous xka‘This class of recursive stochastic al-
gorithms contains so-called stochastic approximation algorithms
like the schemes suggested by Robbins and Monro (1951) and Kie-
fer and Wolfowitz (1952). Therefore, it also contains all forms
of algorithms for identification, adaptive control and pattern
recognition, that are based on stochastic approximation, see
e.g. Tsypkin (1973), Fu (1969). Several other algorithms, like
e.g. the real time least squares algorithm belong to the class
under consideration. In the thesis the problem of convergence
of (1) is treated. It is shown that the question of conver-

gence can be separated into two problems:

1) Stability of the ordinary differential equation

IE X~ £(x) = lim E{Qn(x,m) [} (2)

nN=—=oo

where E{Y|x} denotes the conditional expectation of Y gi-

ven X.




and

2) consistency of a sgimple mean value estimator, connected

with (1).

With this approach, convergence of stochastic approximation
algorithms can be shown under conditions that are weaker than

previously reported.

The ODE (2) can be used not only for the convergence analysis,
but also to investigate convergence rate, choice of’{yn} and

other asymptotic properties of (1).

ASYMPTOTIC PROPERTIES OF SELF-TUNING REGULATORS.

An adaptive controller adijusts its regulator parameters in
accordance with the process dynamics. It can often be formed
as a real time identification algorithm connected to a regqu-
lator whose parameters are determined using the current esti-
mates from the identification. Such adaptive controllers have
been discussed by many authors. The case where the identifica-
tion algorithm is an equation error algorithm (least squares
algorithm) has received speciai interest, see Kalman (1958),
Peterka (1970) and Astrdm-Wittenmark (1973) . This class of
adaptive controllers has been called "Self Optimizing Control
Systems" or "Self-Tuning Regulators®™. Specific controllers
belonging to this class have successfully been used in prac-
tice, but convergence of them has so far been studied only
with simulation and heuristic arguments. Part II of the the-
sis presents tools for the theoretical convergence analysis

of self-tuning requlators.

The regulators can be expressed in the form (1) where x con-

sists of the process parameter estimates. Then P, consists of




the latest recorded inputs and outputs and it is a complex
function of all previous X s k « n. However, the same con-
vergence result applies as above. Hence the guestion of con-
vergence relies upon the stability of the ODE (2). This ODE
has been studied for some specific controllers and convergence
with probability one has been established in some cases. By
careful examination of the ODE, examples of processes have
been constructed for which the regulator proposed in Astrdm-
Wittenmark (1973) does not converge. No such process was
known before the analysis, and, in fact, extensive simulations
had indicated general convergence. It is alsc shown that
these self-tuning regulators possess a stabilization property,
which assures overall stability even if the regulator does

not converge.

ON CONSISTENCY FOR PREDICTION ERROR IDENTIFICATION METHODS.

Many identification methods are based on minimization of some
discrepancy, or error, between the model and the measured da-

ta. For output error methods the difference between the model

output and the measured output is minimized, while for equa-

tion error methods the error in the equation describing the

model is considered. These methods do not model the dynamic

behaviour of the disturbances that cause the discrepancy.

Another approach is to predict the next output of the process
based on previous measurements, taking into account the cha-

racteristics of the disturbances. In prediction error identi-

fication methods some function of the difference between the
predicted output and the measured output is minimized. If the
disturbances are gaussian, the maximum likelihood method is a

special case of prediction error methods.

In part III of the thesis consistency of such methods is dis-
cussed. Special interest is paid to the problem of feedback

terms in the input sequence.




The traditional way of studying thevconsistency problem of
the maximum likelihood method, see e@g° Astrdm-Bohlin (1965),
RissanenmCaines‘(l974), is to consider the limit of the log=-
likelihood function, To do this, ergodic theory is used, and
restrictive assumptions on the input must be imposed. This
makes the resultg inapplicable to a number of situations in
practice, in particular when the system ig governed by an
adaptive controller.

A different technique, partly based on martingale theory and
partly inspired by Wald's (1949) proof, is used in the thesis.,
This approach allows & general input sequence as well as a

general system description,

IMPLICATIONS OF THE RESULTSn

In the thesis the results are applied to some specific examples.

The general implications and the possible application areas of
the results will now be briefly discussed.

Numerical solution of differential equations as a tool for the

analysis of recursive algorithms,

The theoretical convergence analysis of a given recursive al-
gorithm is in many cases very difficult., TIn particular, this
is true for algorithms for adaptive control. According to the
results of parts I and TT of this thesis convergence can be
proved by showing stability of the differential equation (2).
This differential eéquation may be quite complex and cumber-
some to handle analytically, However, some insight into the
stability properties of (2) can be obtained by numerical so-
lution with different initial conditions, Such analysis can

often be made relatively easily. The question then asked is:




What is the advantage of simulating (2) over simulating (1)?
The main feature is that, loosely speaking, the stochastic
element is removed. This means that it is immediately clear
whether a given effect is something peculiar to the algorithm
or just a random influence. Also, by éolvinq the CODE (2), the
area of feasible parameter values can be searched systemati-
cally for local, undesirable attraction points with small do=
mains of attraction. If such points exist, there is a non-
zero probability that the estimates produced by (1) are trapped
there. The probability may, however, be quite small and the
point might never be revealed by simulation of (l). This illu-
strates a basic limitation with simulation as an instrument
for investigation of the algorithm (1). The numerical solution
of the associated ODE has thus proved to be a valuable comple-
ment to simulation. It has been shown that the trajectories of
(2) are also directly related to the paths of (l). Bounds for
the probability that the estimates produced by (1) deviate
with more than a given distance from the corresponding trajec-
tory of (2) can be calculated. Such a result supports the use

of numerical solution of (2) as a tool for the analysis of (1),

Off~line and on-line identification algorithms.

On-line, i.e. recursive, identification algorithms can be in-
vestigated using the ODE discussed above. An example of its
application to the recursive least squares method is given in
part I. The technique seems to be applicable also to identifi-
cation algorithms for which convergence has not been shown
previously, like recursive approximate maximum likelihood.
For identification methods that are based on a criterion mi-
nimization it is relatively easy to find Lyapunov functions
that assure stability of the associated ODE: the criterion
itself can be chosen., For other methods, numerical solution
of the ODE may be useful.




Also for off-line identification methods it is, of course,
important to have convergence results that are valid under
general conditions. In many cases it is necessary to use da-
ta for identification that are obtained when the system is
operating in closed loop. For industrial processes, e.g.,
production or security reasons may prevent open loop identi-
fication experiments, Other processes, like economic systems,
may often inherently be in closed loop. The consistency re-
sults of part III are valid under such general feedback si-
tuations. This facilitates a systematic analysis of the iden-
tifiability properties for systems operating in closed loop,

see Gustavsson-Ljung-S&derstrdm (1974).

Towards a theory of adaptive control.

The field of adaptive control of dynamical systems has re-
ceived much interest during the past fifteen years. Many dif-
ferent schemes have been proposed and in some cases also tes-
ted in practice. It seems as though each method has been ana-
lysed by individual methods, and many studies have been car-

ried out on the basis of simulation of the proposed scheme.

Much of the discussion of this thesis is indirectly focused
on the problem of how to produce techniques with some genera-

lity for the theoretical analysis of adaptive systems.

It seems that many adaptive schemes can be expressed in the
form (1), which makes the ODE (2) available as a tool for ana-
lysis. The important condition is that the observation ({t)
in (1) depends on old estimates x(s), s << t, to an extent
that is rapidly decreasing. The forcing term in the system
need not be a stochastic process; it can equally well be a
deterministic signal such that certain variables are Cesaro
summable. Therefore this technique is applicable to a broad

class of adaptive regulators, and not only to the class dis-




10.

cussed in part II of this thesis.

A different way of considering adaptive systems is to single
out a part that is monitoring the system dynamics. This part
can be understood as a real time identifier. It passes on in-
formation to a controller which determines the input to the
process on the basis of the information received. Such a de-
composition is possible for many adaptive schemes, in parti=
cular for the self-tuning regulators discussed in part IT,
where the identifier is a real time least squares algorithm.
The limiting behaviour of the algorithm can in such cases be
studied as the consistency properties of the identifier. A
main concern of the discussion in part II is to obtain con-
sistency results that are valid under general feedback con-
ditions, including various types of adaptive controllers. Such
results are necegsary to understand how identification algo-

rithms behave when they are part of an adaptive controller.
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ABSTRACT

Adaptive controllers
in this report. The
model of the process

squares method. The

of a certain structure are considered
parameters in a difference equation
are estimated on-line using the least

current parameter estimates are used

to calculate the parameters of the feedback law that governs

the process. The resulting adaptive controller is called

a self-tuning algorithm. It is shown that the convergence

properties of such algorithms can be investigated by ana-

lysing an associated

ordinary differential equation. The

analysis is applied to specific examples of self-tuning

algorithms.
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1. SELF-TUNING REGULATORS

Adaptive control of dynamic systems has been extensively
discussed during the last ten years. An important special
case is when the process parameters are known to be time
invariant, but the values are unknown. For this case the
control algorithms should be such that they converge to the
optimal control algorithms that could be derived if the sys-
tem characteristics were known. Such an algorithm is called

a self-tuning regulator.

Most suggested adaptive and self-tuning regulators are based
on the assumption that the real time estimation of the para-
meters of the process can be separated from the determina-
tion of the control signal. See fig. 1.1. In many cases
the control signal is determined without taking into consi-
deration that the estimates of the parameters are uncertain.

A more sophisticated type of controllers are those which

b

OUTPUT
‘NPU; PROCESS

ENVIRONMENT

<{ CONTROLLER [—
_ [PARAMETER | _
>~| ESTIMATOR

Fig. 1.1 - Schematic block diagram for adaptive regulators.




consider the parameter uncertainties when the control sig-
nal is determined, but do not make anything to obtain

better estimates. The dual controllers, see Feldbaum (1960,
1961), represent a further degree of sophistication where the
input signal is chosen to increase the accuracy of the para-
meters in the same time as the controller tries to make as
good control as possible. The two activities of the dual
controller are mutually contradictory and there must be a
compromise between the identification and control activities
of the controller. The dual controllers have attractive
features, but it is very difficult to get practical solutions

to the dual control problem.

In this report the behaviour of self-tuning regulators with
a structure as in fig. 1.1 is discussed in the case when
the identifier is based on the least squares (LS) method.
However, the techniques put forward are applicable to more

general identification schemes.

Special attention will be paid to the case when the con-
troller is a minimum variance control law based on current
estimates. This self-tuning regulator is discussed in Astrom -
Wittenmark (1973).

The central question for the analysis of such a regulator is
of course: Will the regulator converge to the desired one?
Techniques and basic theorems to answer this question are
presented in this report. Specific examples of self-tuning

regulators are analysed using these tools,

In Chapter 2 the LS method is defined, and known results are
repeated for easy reference. A class of self-tuning regu-
lators is strictly defined. The main problem in the analysis
of the regulators is that the feedback is time varying. This
makes The input and output sequences non-stationary and the

usual consistency results for the LS method are inapplicable.




A theorem on consistency that is valid in the present case

is proved in Chapter 3.

In general the result of the identification depends on the
feedback law. This introduces essential non-linearities
into the identification process. To handle this problem an
ordinary differential equation (ODE), which is connected
with the regulator, is derived in Chapter 4. Stability of
this ODE is shown to be equivalent to convergence of the
regulator. Also, the paths of the ODE define "expected

behaviour" of the regulator.

In Chapters 3 and 4 the controller is not specified. 1In
Chapters 5, 6, and 7 most of the analysis is concerned with
the self-tuning regulators discussed in Wittenmark (1973).
In Chapter 5 the behaviour near or outside the stability
boundary of the closed loop system is discussed. The regu-
lators are shown to stabilize the closed loop system even if
the model noise does not agree with the true noise charac-

teristics.

In Chapter 6 the ODE defined in Chapter 4 is investigated
for some self-tuning regulators. It is shown that the regu-
lators do not converge for genefal noise structures.
Actually, it was indicated by extensive simulations, Astrdm -
Wittenmark (1973), that the regulators converge in general.
Only after using the analysis of Chapter 6 could examples be

constructed for which the regulators do not converge.

In Chapter 7 the ODE is solved numerically for a number of

cases of interest.

In Appendix A the proof of Lemma 4.1 is given. The results
of the report hold for several different model structures.
In Appendix B it is shown how other model structures can be
handled, and the modifications of the results shown are also

given there.




2. PRELIMINARIES

The class of self-tuning regulators to be treated is for-

mally defined in this chapter. In Section 2.1 some diffe-
rent models for least squares identification are discussed.
Off-line and on=line algorithms for leasT squares identifi-
cation are given in Section 2.2. In Section 2.3 algorithms
of stochastic approximation type are introduced. The class
of self-tuning regulators is defined in Section 2.4, and

in Section 2.5 the special algorithms "STUREO" and "STUREL"

(self-tuning regulator) are introduced.

2.1 Models,

Assume that the system'can be described by the difference

equation

y(t+l) + a;y(t) + .. o any(t+lﬂn) =

= bou(t—k) + ...t bmu(tmk—m) + v{(t+1) (2.1)

where k = 0, {v(t)} is a sequence of random variables and
where {y(t)} is the output and {u(t)} the input of the system.

The usual model for least squares identification has the same

structure as (2.1) and in general all the constants a;,...,
as bO"“"’bm are estimated. In connection with self-tuning
regulators, cf. Astrdm - Wittenmark (1973), it is in some

cases meaningful not to estimate bO'
Tt is possible to rewrite (2.1) as
y(t+k+l) + uly(t) + ...+ any(t~n+l) = Sou(t) ...
1
+ gm,u(tmm') + e(t4+k+1) (2.2)
where {e(t)} is a process formed as a moving average Ifrom

v(t),...,v(t=-k). The variable m' equals m+k, see Astrdm -

Wittenmark (1973). This modification proves to be of great




value when control laws are synthesized as shown in Section
2.5.

Also in this case it is suitable to consider Bo as an a
i
priori known constant. Then, by introducing B, = Bi/Bo’

(2.2) can be written as

v(t+k+1) + a y(t) + ...+ any(t»n+l) Bo[u(t) t Bqult-1) +
+ ... 4 Bm,u(twd)] + e(t+k+1) (2.3)

The model of the system then is

y(t+ﬁ+l) + &1y(t) + ...+ &ﬁy(tmn+l) éo[u(t) + ...+

b oBouCt-m)] + e(tek+l) (2.4)
Here &i is the estimate of o and éi the estimate of B. .

Bg is regarded as a priori known and is not estimated. It

is, however, not realistic to assume that the value of B8

1s exactly known. Therefore, some of the analysis in this
report w111 deal with the case when 8 is assumed to have

the value B , which may be different from B The orders

n3 m and the time delay k may not be the same as the true

ones.

In this report (2.4) is used as the basic model, since this
structure is used in the self-tuning algorithms STUREO and
STUREL, defined in Section 2.5. However, the other model

structures can be treated formally in exactly the same way.

This is shown in Appendix B.

2.2 Least squares identification.

Introduce
~ ~ ~ ~ oW T
6 = (o, a” By s B




and
() = (=y(), ... -y (t=n+1),8_u(t=1),...,8_u(t-m))"
Then (2.4) can be written

T

y(t+k+l) = 67 x(t) + B_u(t) + e(t+k+l) (2.5)

The LS criterion for this model is (initial value effects

are neglected) :

n ™

[y(s) - B_uls-k-1) - 8 x(s-k-1)1° (2.8)
1

i

vo(e) =
S

This function is minimized by

e(t) = P(t)h(t) ' (2.7)

where
-1 1 ¢ - " T
P ~(t) = T r x(s-k-1) x(s-k-1) (2.8)
s=1
and
1 t . N , "
h(t) = T I [y(s) = g u(s-k-1)] x(s-k-1) (2.9)
s=1 ©

If {v(t)} in (2.1) is a sequence of independent random

variables, then the LS noise condition is said to be satis-

fied. Then e(t) and e(s) are independent for |t-s| > k.
If the LS noise condition is satisfied, 5 : n, & > m, ﬁ = k
and éo = Bo’ then it can be shown that 6(t) tends to the
true value (alg..e, o Bl,.-.,Bm)T w.p.1l (with probability
one) as t tends to infinity, see Astrdm (1968). This ques-

tion is further discussed in Chapter 3.

The solution (2.7) can be written recursively as




B(t+1) = 8(t) + %%I P(t) x(t-J0ly(t+1) = Bu(t-k) = 8(t) T x(t-1)] -
t+1

(=10 TP (0 x (£-1)

(2.10)

1

- ~T -1
7 [x(-I0) x(t-107 = P ()]

p sy = Pl +
t+1

In asymptotic analysis the factor i
t+x(t-k) P(t)x(t-k)

will be replaced by 1. Recursive formulas can also be

given for P(t) directly, Astrdm (1968).

2.3 Tdentification using stochastie approximation.

A suitable identification criterion for model (2.4) is
_ " - T y 2
J(6) = Ely(t+1) - Bou(t—k) - 6 x(t-Xx)] (2.11)

where the expectation is taken with respect to e(t+l),

e(t), ... . Naturally (2.11) cannot be computed when only
a finite number of data y(t), u(t) are known. One approach
is to replace (2.11) with the estimated mean value (2.6).
This has been discussed in Section 2.2. Another approach is
to apply the Robbins-Monro scheme, see e.g. Tsypkin (1973)
to the derivative of (2.11). This gives

B(t+1) = 0(t) + y(t+1) x(t-k)[y(t+1) - g ult-k) - x(t-0T o(t)]
(2.12)

The sequence of scalars {y(t)} must satisfy certain conditions,

Tsypkin (1973), which are further discussed in Chapter u.

Common choices of the sequence are

y(t) = % (2.13a)
N -1
T-k 5
y(t) =| 1 |x(s)|) (2.13b)
g=1
V() = % (x(t-1)7T x(t-1))"1 (2.13¢)




Algorithm (2.12) is clearly quite similar to (2.10). The
latter one requires more computation and more memory

storage than (2.12). 1In return it converges more rapidly.

2.4 Self~tuning regulators.

Suppose that the input to the process, u(t), is determined
as a feedback from old inputs and outputs. Suppose also
that the coefficients of the feedback law are calculated

from the current LS-estimates of the process parameters:

u(t) = £e(t), x(t)) (2.14)

This type of adaptive controllers, which are based on a
straightforward separation between identification and con-
trol, is discussed by e.g. Kalman (1958), Peterka (1970),

Astrdém - Wittenmark (1971), (1973) and Peterka - Astrém
(1973).

The equations (2.10), (2.12) and (2.14) thus define a class

of self-tuning regulators. They have the form:

A A N T A
6(t+1) = o(t) + y(t+L)s(tIx(t-Xk)[y(t+1) - g_ult-k) - 8 (L) x(t-k) ]

(2.15a)
u(t) = fe(t), x(t)) (2.15b)
Linear regulators
u(t) = F(e(t)) x(t) (2.15c)
form an important subclass of the algorithm. Two choices of

S(t) will be considered. Let P(t) be defined by

p7lies1) = PTY(E) 4 v (4L [x(t-Rx(t-1)T = PTT(1)] (2.15d)




Then S(t) is taken either as

S(t) = P(f)T _ (2.15e)
IT+y(t+1) [x(t-k) "P(t)x(t-k)-1]

or

S(t) = L (2.15f)

tr PTL(te1)

The sequence {y(t)} is a sequence of deterministic scalars.
If y(t) = 1/t, the choice (2.15e) gives the recursive least
squares algorithm, and €¢2.15f) gives the stochastic appro-
ximation algorithm (2.12) with (2.13Db).

For future reference, the regulators with S(t) as in (2.15e)
will be called self-tuning regulators of LS type. Correspond-
ingly, with S8(t) as in (2.15f) they will be called self-

tuning regulators of SA type. Equation (2.15) will be used as

a basic reference.

Various conditions on the noise sequence {e(t)}({v(t)})will

be considered. In Chapter 3 and in Section 6.2 the LS noise
condition is assumed to be satisfied. Then e(t+£+l) and x(t)
are independent if X > k. In the rest of the analysis the con-
ditions are much less restrictive. They will be defined for
each case, cf. (4.12) and (5.3),.

2.5 Minimum variance control and self-tuning regulators,

Consider the gystem (2.3). Suppose that the LS noise condi-

tion is satisfied. If the input is chosen as
1
u(t) = “EZ [maly(t) = e = o y(tentl) 4 Blu(twl) ...+

+ Bm,u(t“m'>3 (2.16)
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then the output 1is
yv(t) = e(t)

Obviously, no other control law can yield lower variance of
the output. The feedback law (2.16) is therefore called the
minimum variance controller. It is discussed at length in
Astrém (1970).

If the parameters of model (2.3) are unknown, the minimum
variance control law (2.16) cannot be computed. It is
suggested in Astrdém - Wittenmark (1973) that the coeffi-
cients of (2.16) should be chosen as the LS-estimates of
the system parameters., 6 This means that £(8(t), x(t))in
(2.15) is chosen as

FB(t), x(1)) = -2— o(t)T x(t) (2.17)

o
The self-tuning regulator of SA type with this feedback law
is called STURED (self-tuning regulator). The corresponding
algorithm of LS-type is called STUREl. These regulators
are discussed in e.g. Peterka (1970) and Wittenmark (1973).
They have also been applied to industrial processes, see

e.g. Cegrell - Hedgvist (1973) and Borisson - Wittenmark
(1973).

Example 2.1. The behaviour of STUREl will be illustrated on
the system

y(t+1) + a y(t) = b ult-1) + v(t+1l) (2.18)

where a = -0.9, b = 1 and v(t) = e(t) - 0.4 e(t-1), {e(t)}
being a sequence of independent, random variables with
distribution N(0,1). The LS noise condition is thus not
satisfied for (2.18). The minimum variance controller for

the system (2.18) is given by
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u(t) = -0.45 y(t) - 0.5 u(t-1) (2.19)
This controller gives in each step an expected loss

2 _
E y(t)™ = 1.26

Without any control the loss is 2.32 per step. When using
the self-tuning regulator the parameters o and g are esti-

mated from the model
y(t+2) + &y(t) = éo[u<t> + gu(t-1)1 + e(t+2)

using a stochastic approximation method, STUREQ, or the

~

least squares method, STUREl. Hence, in this case m = m',

n = n. The control law is then simply

W(t) = 2 [ay(t) - Bu(t-1)]

BO

The system has been simulated with STUREL using éo = 1. The
sequence {y (t)} was chosen as 1/t and the initial covariance
matrix P(0) was 0.1 times a unit matrix. The parameter
estimates from one simulation are given in figure 2.1. Very
quickly the estimates are quite close to the optimal ones.
The quality oftthe control can be determined from the accu-
mulated loss sgl y(S)Zu The accumulated loss at t = 2000
when using STUREl is 2447, while when using the optimal
regulator (2.19) the loss is 2430. The accumulated loss is

shown in figure 2.2.

The good behaviour is somewhat unexpected. The LS-identifi-
cation gives biased estimates in case the variables {v(t)}
are dependent, Astrédm - Eykhoff (1971). Also, for depen-
dent noise the minimum variance control law is not given

by (2.16). These two effects, however, compensate each
other. It is shown in Astrdém - Wittenmark (1973) that if

the regulator converges it must converge to the minimum vari-
ance control regulator. One of the main questions treated

in this report is whether the algorithm actually converges.
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Fig. 2.1 Parameter estimates when the system (2.18) is con-
trolled with STURELl. The dashed lines show the values corre-
sponding to the optimal regulator (2.19).
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Fig. 2.2 The accumulated loss when the system (2.18) is con-
trolled by STUREL.
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3. LEAST SQUARES IDENTIFICATION OF CLOSED LOOP SYSTEMS

In Section 2.2 least squares identification of parameters in
different equations was described. The convergence proper-
ties of the method are well known in case the input is per-
sistently exciting and independent of the noise, Astrdm -
Eykhoff (1971). However, for adaptive regulators, the in-
put is determined as output feedback and will consequently
be correlated with the noise. Moreover, the coefficients

in the feedback law are time varying and depend in a complex
way on previous input and output. The convergence under

such conditions is treated in Section 3.1.

In Section 3.2 the results are applied to the self-tuning
regulator STURELl. This analysis concerns basically the con-

vergence of the regulator parameters.

It should be emphasized that the results of this chapter are
valid only if the assumptions made about the model structure
are true. This means that the LS noise condition is assumed
to be satisfied. Furthermore, By and the time delay k must
be known, and the model orders must not be underestimated
(i.e. ﬂzn, &am*). The convergence properties when these
assumptions no longer are true;are discussed in the following

chapters.

3.1 Consistency of least squares estimates.

Consider a system that is described by (2.3):
y(t+k+1l) + a y () + ...+ o y(t-n+l) = Bo[u(t) + Bqult-1) +
T Bm,u(tmm')] + e(t+k+1) (3.1)

Suppose that k and B, are known constants, and that upper

~

bounds n and m respectively for n and m' are known. Then
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the model of (3.1) 1is

eakil) + ayy(t) + ... + oly(t=n+l) = B_[u(t) + ... +

+ B uCt-m)] ¢ e (kL) (3.2)
Introduce

9 = (cxl3 cee O 0,00 v50, By ot Bm,,O,..,,O); 5 - n and

m - m'zeros respectively.

Then (3.1) and (3.2) can be written

y(t+k+l) = 6 1 x(t) + B_u(t) + e(tkel) (3.4)
y(t+k+l) = ol x(t) + sou(t) + ;(t+k+l) (3.5)

To show consistency (with probability one, w.p.l) of 8 the

following assumptions are usually made (see e.g. Astrdm -
Eykhoff (1971)):

o {e(t)} is a stationary sequence of random vari- (3
ables with zero mean values and bounded fourth
moments, such that e(s) and e(t) are independent
for |t - s| > k.

o The polynomial (3
zn+k + ulzn“l U an
is stable, i.e. all roots have magnitude less than
one.

o The input sequence {u(t)} is independent of {e(t)} (3

o The input sequence is persistently exciting of (3.
order %.

Condition (3.6¢c) excludes systems with feedback. To show

consistency also for closed loop systems the following

assumptions are introduced:

.6a)

.6b)

.bae)

6d)




o {e(t)} is a sequence (not necessarily stationary) (3.7a)
of random variables with uniformly bounded second

moments and zero mean values, such that e(t) and

e(s) are independent for |s - t| > k.
. 1
o lim sup § XV (t) < o W.p.1l (3.7b)
N+ t=1
. 1 ¥
lim sup & T u"(t) < e W.p.1l
N->eo t=1
o u(t) is independent of e(s) s > t + k (3.7¢)
1l N T 2
o {6]1lim inf § I le” x(©)]% =0} = {0} w.p.1 (3.74)
N-oo t=1

Clearly, (3.7abc) corresponds to (3.6abc) and are weaker con-

ditions. Condition (3.7d) deserves some discussion. Let
w(t) = [ult-1) u(t-2) ... u(t-m)]"

y(t) = [y(t) y(t=1) ... y(tmn+l)]T

Thus

x(t) = Tl(t)
B ult)

Then condition (3.6d) can be written

lim &= z[euT g(t)]z exists w.p.l and is strictly positive for
N—eo 1

A

any non-zero vector o, of dimension m.

The relationship between (3.6d) and (3.7d) is now quite clear.

We have:

) = A T
8- x(t) = ey y(t) + 8, 8, E(t)




16,

If the system is open loop, i.e. if (3.5c) is satisfied, it

is easy to show that

1 N
lim inf T r [
N-roo 1

T x(t)}2 = 0 implies w.p.l that ey = 0. Thus,

in this case (3.7d) means

N
1im inf 2 2 [6 * u(t)1% =0 =98 =0
N u - u
Noveo 1

which essentially means that {u(t)} must be persistently
exciting. It is, however, somewhat weaker, since it does not
require that the limit exists. In case the system operates
under output feedback, relationships between u and y exist.
Condition (3.7d) states that these relations must not be of

a certain kind. For example, if 5 = 2, & = 1 and the feed-
back is u(t) = -y(t), then (3.7d) is not satisfied. The
vector 6 can be chosen as (0 1 l)T and all terms are identi-

cally zero.

The condition is formulated for limit inferior, since it is

not known that the limit of

N
% z [eT X(t)}2
1
exists. This would require stationarity of the closed loop

system, and might not be true in a number of applications.

Of the conditions (3.7) only (3.7d) is restrictive in prac-
tice. It can be interpreted as an identifiability condition
for systems operating in closed loop. Such problems are
digcussed in a more general context in Gustavsson-Ljung-
S8derstrdém (1974). Conditions that are sufficient for (3.7d)

to be satisfied are given there.

A theorem on consistency for LS estimates can now be formula-

ted. The main tool to overcome the difficulties with non-
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stationary processes {y(t)} and {u(t)} is the convergence

theorem for martingales, see Doob (1953).

Theorem 3.1 Consider the system (3.1). The system parame-

ters 6, are estimated using an ordinary least squares crite-
rion (cf. Section 2.2). Suppose that (3.7) is satisfied.
Then the estimates 6 (t) converge with probability one to

their true values as the number of data tends to infinity,

Proof: Let k = 0 for convenience. The LS criterion +o be

minimized with respect to 8 at step N is

N

V(8 % : [y(t+l) - g_u(t) - o x(t)1? =

N
= 2 : [Co_-8)Tx(t) + e(t+1)1? =

N i N N A
= E D oe(t+1)? 4 25 3 e(t4l) (o) Tx(t) + 21 [Co ~e)Tx(e)1? 2

i N o N o)

1 1 1
L) (2) (3)
= VN + ZHVN SQ) + VN (8)

Let the minimizing 6 be denoted by 6(N). Let F. be the
o-algebra generated by {e(0),e(l),...,e(t)}. It is no loss of
generality to assume that Ee(t)2 = 1. Then

E{[e(t+l)y(t)]2$Pt} = y(t)2
Let

s(t) = y(r)2 + 1 s(0) = 1

r

1 ™+

1

and consider
T
z(t+1) = ¥  e(r+l)y(r)/str), z(1) = 0O

r=1

The sequence [z(t), F is a martingale, since

.
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E[z(t+l)LFt] = z(t) + E[y(t)a(t+l)ls(t)]?t] =

- ) v(t) ~
= Z(t) + é(t) E(E(t+l)‘Ft) - Z(t)
Consgider
N 3 N
2
Ez(D” = 1 E(z(»)” - z(e-1)) = E 1 Elz()” - 2(e-D7|F__ 1 =
=2 r=2
N 2 N-1 Y 2
= Bz E[(z(r) - z2(r-1)|F ] = E I  y@?* /s(r)
r=? 1
N-1 N-l- |
< E i [s(r) - s(r-1)1/s(r)s(r-1) = E i Ty T S(P)JS 1

Hence z(N) converges with probability one due to the martin-
gale convergence theorem. Kronecker's lemma (see e.g. Chung

(1968)) now gives that

N —
L I e(t+l) y(t) ~ 0 w.p.l as N»=,
s(N) 1
Since
N > § for N > Ng from (3.7b)
s (N)

this means that

e(t+1l) y(t) - 0 w.p.1l as Noe,

=z
o=

This 1is the first element in the column vector

% e(t+1) x(t)

=z

Repeating the argument, it can be shown that also the other

elements of the vector tend to zero w.p.l. Hence, the term
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N
va(e) =5 Lo -017 : e (t+1) x(t)

tends to zero uniformly in 8, w.p.l.

As the second step in the proof it will now be shown that

such that
(3.8)

Ve, 3 N (that depends on the realization) and §

(3) '
if N > N_(w), then le - BOI > e =V (8) > ¢

N 1

If (3.8) is true, then

_ (1)
VN(6) > VN(GO) + 61/2 (where VN(GO) = Vy o‘

and N > N(w). Since 6(N) minimizes Vy(8), this implies that

) for |s - o > €

6(N) - 6, w.p.1l as N»w, i.e. the assertion of the theorem.

Suppose that (3.8) is not true. Then there exists a sequence

{%N} such that

c > IENi > 6

and
Nj
v 1 T 2 .
V., (6 46, ) = =— ¥ [0 x(t)]® » 0 as i+» for a subsequence
N. "o "N. N. N. :
1 1 11 i
Y
{GN.}
i
Let 6§ be a cluster point to this subsequence. Then with
N
Re = & 5 x(t)x ()T
N N
1
(3) g _o=TL = v\ T - = n T =
Var (6,68 ) = 87Ry, © 2(8=0y0 )7 Ry 0+ (8-6, )7 Ry (8-6, )
1 1 i i i i i 1
V)
But Ry is bounded according to (3.7b), |8 - eN.I tends to
i

zero along a subsequence and 6TRNi 5 > 83 according to (3.7d).
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N-<3)<90+6N-) cannot tend to zero and (3.8) follows.

1 1

Hence V

This concludes the proof of the theorem, . a

(2)

Remark: In case k > 0, the sum VN has to be split up into

k sums:
k=1 N

VN(2)(6> - % > % elkttr+l)[o _-6]
r=0 t=1

T % (kt+r)

in order to apply the martingale theorem.

In case (3.7d) does not hold, the estimates may converge to

several different limits depending on the realization. The

set of possible convergence points is characterized in the
~following corollary, which is obtained by a slight modifica-

tion of the proof of the theorem.

Corollary: Suppose (3.7abc) holds. Define the set

N
Dy = {o|lim inf & £[Ce-0 )" x(t)1% = 0}
N+ 1 ©

(which depends on the realization w).

Then 6(N) - Dy w.p.l.

Furthermore,

N

lim & 5 [G(N)l x(t)]2 = 0 W.D.1
N -
N0 1

Remark. The corollary can be seen as a special case of Theo-

rem 5.1 in Ljung (1974Db).

"By this it is meant that inf |6(N,w) - 8] > 0 as N-+= a.e.uw.

GEDI(w)
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3.2 Self-tuning regulators.

In this section Theorem 3.1 is applied to the self-tuning
regulator STUREL, described in Section 2.5. According to
the corcllary of this theorem,

B (N) ~ D; w.p.l as N»w

It will be shown that all elements in DI actually give the

. . . R . . Y
desired minimum variance control law. That is, if 6€D

then the feedback law (let B, = 1)

Iﬁ

T x(t)

u(t) = -¢
gives the output

y(t) = e(t)

Since

yCt+l) = o1 x(t=k) + u(t-k) + e(t+1)
this implies that

(eo=8)T x(t) = 0 all t.

Consider a feedback law

F(q™h) ut) = 6(g™ 1) y(e)

where
F(z) = 1 + flz ... f&z
G(z) = g1 T gpz t ... + glz

and qml 1s the backward shift operator.
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If the polynomials F(z) and G(z) have common factors, this

feedback law will generate x(t)-vectors that lie in a cer-

tain subspace of R™T, Let the subspace corresponding to
the minimum variance control law be denoted by H. The
dimension of this subspace is m - m' + n - n.

We will by a somewhat heuristic argument show that

BEDI = (6, - 8) 1L H
This implies that all elements in D give the minimum vari-

ance control law, since

VT T

ul(t) = 8T x(t) = eg () + (5 = 00T () = 8% x(t)

0

and

y(t) = e(t)
for x(t)eH.
Suppose first that 6(N) gives the minimum variance control
law for some N. The produced x(t) then belong to H and the
obtained estimates 6(k), k=N,... must then satisfy

(6(k) - 684) L H

since, according to the corollary of Theorem 3.1

]2

[6(0) 7T x(t)
1

-~ 0 as k » o

~
o~ A

t

These estimates consequently also give the minimum variance
control law, which shows that minimum variance control will

continue if 1t once has started.
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Suppose now that the estimates B(Nk) tend to a point 6% that
does not give minimum variance control. Then the produced
x(t) are not orthogonal to 69 - 6*, and the obtained new es-
timates will move away from 6*. When doing so, the produced
x(t) will eventually span either the whole space or H. In
both cases an estimate that gives minimum variance control
results, and according to the discussion above, it will con-
tinue thereafter.

Hence, if ﬁ > n, & > m', DI consists of parameters which
give the desired minimum. variance control law, so even if
the estimates do not converge to their true values, they
will still give the desired controller. It also follows
that if n = n, n = m', the estimates will actually con-

verge to the true parameter 60.
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4. TOOLS FOR CONVERGENCE ANALYSIS

4.1 Background.

In Chapter 3 the self-tuning regulator STURELl was analysed
in case the assumptions about orders and noise characteris-
tics were true. It was remarked in example 2.1 that this
self-tuning regulator has desired behaviour also in some
cases when the assumptions are not satisfied. The analysis
of these cases cannot be formulated as consistency 'ques-
tions for the identification. This i1s clear, since there
no longer are any "true' parameter values and no consis-

tent estimates.

When the LS noise condition is not satisfied, the estimates
will in general be biased. The bias depends on the feed-
back law. The effect is clearly seen from the following

example:

Example 4.1 Consider the system

y(t+1l) + ay(t) = u(t) + e(t+l) + ce(t) (4.1)

where {e(t)} is white noise with variance A and |c| < 1.

The following model is assumed:
y(t+1) 4 ay(t) = ult) + e(t+l) (4.2)

It is straightforward to show that if u(t) is chosen as
white noise with variance u, independent of e, then the LS

estimate of a tends to

cx(lma2)

5 (4.3)
A(l+c=-2ac)+u

QL >
1

On the other hand, if u(t) is determined as output feedback,

u(t) = g y(t)
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then the LS estimate of a tends to

o _c 1 - (amg)z)
1+ c2 - 2(a=-g) c

Q
i
8

(4.4)

For the self-tuning regulator, STUREL, the feedback
coefficient g at time t 1is chosen as the current estimate
of a. It is thus time varying, which makes it difficult
to analyse the behaviour of the algorithm. In Astrdm -
Wittenmark (1973) an attempt is made to heuristically
analyse it when applied to the system (4.1). The feed-
back coefficient is assumed to be fixed = &k over a long
time period. During this period the estimated of o con-

verges to

. (1= (a=a)”)
o = a - : = (4.5)
lord 1+ c2 - 2(a-a, ) c
Xk
which 1is taken as the next feedback coefficient, etc. It

i1s then argued that if (4.5) converges to the desired regu-
lator (o = a=c), this should be taken as an indication of

convergence of the self-tuning regulator.

In this heuristic analysis the important feature, that the
feedback coefficient actually changes in every step, is
neglected. To include it, consider the change of the esti-
mate over just one step, instead of over a very long time

period. The estimate of o at time t, oy is given by (2.15).

~

Ol"t—}']_ = c,;t + %gzw«?«mm {y(t‘l’l) + (;_ty(t) - U(t>}

z y2(k)
1

~

Since u(t) is chosen as aty(t) we have

Gy - 0y - z<t>Y<t+l> . 1 CE YDy (erl)  (4.8)

1 1
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The first factor is disregarded in this intuitive discussion.
Consider Ey(t)y(t+l). This value of the covariance function
depends on the feedback coefficient, since the closed loop
behaviour is affected by the feedback. The expectation
exists only if the closed loop system is stable. Let the
feedback be

ult) = ay(t)

and denote

E y)y(t+l) = f(a)

~

In (4.6) the difference &t+l ~0y tends to zero as t tends to
infinity. Hence an increasing number of sample points, say T,
are r%%%ired to change o a given small distance. Let

At = I 1/k. The change is caused by a large number of
random variables y(t)y(t+l), which all have approximately

the mean value f(&t). It is reasonable to assume that due to
some "law of large numbers," the change is proportional to

f(&t):
+ AT f(&t)

This scheme can be seen as an approximation to the ordinary

differential equation (ODE):

i jay

a = F(a) (4.7)

[m}

[a¥

T

From the example it seems plausible that the trajectories of
(4.7) in some sense describe the sequence of estimates. 1In
fact, in Section 4.2 it is shown that stability of (4.7) im-
plies convergence of the algorithm. In Section 4.3 it is
shown that the trajectories of (4.7) actually can be inter-
preted as "expected paths'" for the sequence of estimates.
The results are shown for the general linear self-tuning re-

gulator (2.15) with (2.15c). The regulator is treated as a
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general recursive algorithm:

6(t+1l) = 0(t) + v(t) QCt, 6(t)y ..., 6(0), e(t+1)) (4.8)

Similar convergence results for such algorithms are shown in
Liung (1974).

4.2 Convergence.

Consider the class of self-tuning algorithms (2.15) with
linear feedback (2.15c). Some additional assumptions about
the noise, the gain sequence {y(t)} and the closed loop

behaviour are first introduced.

Introduce

£f(8) = E x(t) [y(t+£+1) - eT

x(t) - éou(t)] (4.9)
T
Gl(e) = B x(t)x(t)

(4.10)
Gz(e) = E x(t)Tx(t)

where the expectation shall be taken, assuming that the sys-

tem 1s regulated by the time invariant feedback law
u(t) = F(o) x(t)

It shall be assumed that the input and output sequences have
reached stationarity, i.e. effects of initial values are neg-
lected. This statement deserves some discussion. In the
algorithm (2.15) strict stationarity for the input and out-
put sequences 1s never achieved, mainly due to the time
varying feedback. The expected change in the variables
actually depends on all previous feedback laws. It would be
quite impossible to calculate the expectation values in (4.9),

(4.10) taking such dependences into account. It is therefore
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a significant result if these effects can be neglected. The
functions f and G, are simple functions of certain cova-

riances.

Stationarity can be achieved, and hence the functions f and
Gidefined, only 1if the closed loop system obtained with
u(t) = F(8) x(t) is stable. Therefore a condition that
assures that the closed loop system i1s not unstable all the

time must be introduced:

The feedback regulator is such that there w.p.l ex-

ists a subsequence Nk’ (which may depend on the rea-
lization) such that e(Nk) belongs to a closed subset

of the area that gives stable closed loop systems,

and such that[x(Nk)|is bounded. If the area which (''1i1)
gives stable closed loop systems is unbounded, it is
assumed that the estimates are prevented from tend-
ing to infinity by some suitable projection algorithm,
cf. Ljung (1974) Chapter 5.

The convergence of the algorithm (2.15) also depends on the
sequence {y(t)} and on the noise {e(t)}. Assume that e(t)
is obtained as filtered white noise:
c(g™H
e(t) = =3—= e(t) (4.12)
D(g ™)
where {e(t)} is white noise, C(z) and D(z) are polynomials
and q—l is the backward shift operator. The polynomial D(z)

is assumed to have all zeroes outside the unit circle.

Further assume that

4D
Ele(t)] < Cy P integer (4.13)

The sequence {y(t)} is taken as



29.

y(t) = th“ 1/p<s <1l < >0, (4.14)

Theorem 4.1 Consider the algorithm (2.15) with linear feed-
back (2.15c). Suppose that the feedback 1law F(8) is

Lipschitz continuous and such that the stability condition
(k.11) is satisfied. Let (4.12) - (4.14) hold for the noise
and for the gain sequences. Let f(98), G,(8) and G,(8) be
defined by (4.9), (4.10). Consider the ODE

g__; B(t) = S, (1)F(0(1)) (4+,15a)
%? S;(1) = 8,(t) - §,(1)6;(8(1))S, (1) (4.15b)

where for the LS algorithm (2.15e) i = 1, and for the SA algo-
rithm (2.15f) 1 = 2. Assume that it has a stationary point
(6*,8*%) that is globally asymptotically stable.” Then the so-
lution of (2.15), 6(t), tends to 0% Ww.p.l as t tends to infi-
nity.

Remark: Notice that for the SA algorithm,S2 is a positive
scalar. Then, instead of (4.15), it is sufficient to require
that the 0DE

%e(ﬂ = F(8(1)) (4.16)
T

is asymptotically stable. Notice also that (4.15b) can be

written

d -1 - _ -1

Io S, (7) = G.(8(1)) s, (1)

Proof: The theorem is proved quite analogously to theorems

3.1 and 4.1 in Ljung (1974).

T1n the region where Si is strictly positive (definite).
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The proof is technically involved. The basic idea is how-
ever, simple. The idea is that the sequence {6(t), Si(t)}

behaves like solutions to the ODE (4.15). In the proof the
intuitive arguments on page 26 are formalized. The fol-
lowing lemma characterizes the local behaviour of the esti-
mate sequence and a connection with the ODE (4.15) is es-

tablished.

Lemma 4.1 Suppose 6(n) and 8 Dbelong to the area where f

and G; are defined. Let m(n,At) satisfy
m(nyAt)

T vy (k) > At as n-o

n

Suppose that |[x(n)| < C (C may depend on the realization).
Then for sufficiently small At and (e(n),Si(n))sufficiently

close to (5,§i)

6(m(n, At)) o(n) + AT§if(5) + Rl(naAT,g, 50 + RQ(H,AT365§i>

(4.17)

n

3]

Si(m(ngﬁr)) + Si] + Rl(njArseﬁSi) +

i - =
+ RQ(naArge,Si)

where

1R, (n,87,8,8.)] < AteKi]e(n) - 5| +S.(n) - B.|1 + A(sr)?
1 R | ) : i i

and

RO 6,5
5 n,At,8, i) - 0 w.p.l as n-w, 1

The lemma is proved in appendix A. It implies that for large

n, 6(n) will follow the ODE (4.15) locally. Consider from
now on the SA algorithm and assume that (4.16) is asymptotical-

ly stable. The LS case is treated analogously.
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From Krasovski] (1963) the existence of a Lyapunov function
V(8) for the ODE (4.16) is inferred. The function V is

infinitely differentiable, positive definite and has a nega-
tive definite time derivative along solutions to (u.16). It
1s readily shown that (4.17) implies that, for sufficiently

small At and large n, and 6(n), 82(n) sufficiently close to

Dy

5 §2 we have

VIe(m(n,at))] < V(8) - at5,8/2 (4.18)
where
d v -
=6 = 5= V(e (1)) =V (8) £(8)
T ==
8=0
Consider from now on a fixed realization w. In order to use
eq. (4.17) a sequence {e(nk(w)} tending to 68(w) as n, tends
> 9
to infinity will be considered. The existence of such a
sequence follows from (4.11). The argument w is suppressed

in the sequel. DNow, applying (4.17) and (4.18) to the
sequence {e(nk)} gives, cf. Ljung (1974)

V(o (mlny ,41))) < vV(g) - S,(ny )88 /6Y

It is gquite clear that 82<nk) is, possibly after extraction
of a new subsequence N, , bounded from below by a positive con-

stant. Hence
Viem(n, ,a1))] < V(B) - Ars 8!

In lemmas A.2? amnd A.3 in Ljung (1974) it is formally shown
that the inequality above, which holds for any clusterpoint

6 #6%, and sufficiently large n, implies that 6(n) - 8%

k
as n+» for the chosen realization. This holds for almost

every realization (cf. Ljung (1974)) and the theorem follows.

u]
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|
Let us apply the theorem to the system in Example 4.1, gov- F
erned by the self-tuning regulator STURELl. Clearly, F(8) =
= -6 1is Lipschitz continuous. It is quite straightforward
to show that (4.11) is satisfied, see Section 5.1. Let the
noise {e(t)} be normally distributed and take y(t) = £t
Then (4.12), (4.14) are satisfied. Let the feedback be

u(t) = ay(t). The function

flo) = E y()y(t+l)

is then easily calculated and the ODE (4.16) 1is

(c-a+a) (l=cla-a))

o = - defined for |g-a| < 1  (4.19)
2
1 - (a-a)
With z = o - a + c
7 = -z A-cle-z) defined for |z-c| < 1

1 - (c-2)°
Clearly, the solution z* = 0 is globally asymptotically stable.
It now follows from the theorem that

~

a(t) ~ a-c as toow

which gives the minimum variance control law u(t) = (a-c) y(t).

In Chapter 6 more general systems are analysed.

The theorem is formulated for linear feedback laws. In a
number of applications the input is limited. If, in such a
case, the open loop system is stable, then (4.11) is trivially
satisfied and the ODE's are defined everywhere. This kind

of nonlinear regulator requires some minor modifications of
the proof of Theorem 4.1. Limitation of the input signals
naturally affects the function f(8). Therefore limitation

may affect both convergence and limit point.
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It is relevant to ask what connection Theorem 4.1 has to stoch-

astic Lyapunov functions. These have been discussed e.g. by
Kushner (1967). A stochastic Lyapunov function is a positive
supermartingale. It is assumed that the process for which con-

vergence shall be shown (i.e. {6(t)} in the present case) is

a Markov process. However, for the present application {8(t)}
is not a Markov process. Also, a Lyapunov function for (4.15)
is generally not a stochastic Lyapunov function for the se-

quence of estimates. This means that it i1s more difficult to
find a stochastic Lyapunov function for the sequence of esti-
mates than to show stability for (4.15). This is illustrated

in the following simple example.

Example 4.2 Consider the algorithm

Coyp = ¢y * yn(en—cn); Y, = 1/n
where {en} is a sequence of independent, random variables with
zero mean values and unit variances. This example is much

simpler than the algorithms considered in Theorem 4.1. It is

readily shown that the corresponding ODE is

the stability of which easily is shown, e.g. by means of the
Lyapunov function V(c) = 1/2 o?, However, V(c) is not a
stochastic Lyapunov function for c, since

2

E{V(c ;) - V(e ) |e gl = -1/n e+ I (e f+1)/2

Ny oo, O

:Sil——’
N

The RHS i1s greater than zero for c, = 0.

4.3 Behaviour of the algorithm.

The ODE (4.15) is important not only for the gquestion of con-
vergence. It can, in fact, be shown that the trajectories of

(4.15) also govern the behaviour of the sequence of estimates
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{6(t)} obtained from (2.15).

The result is formulated as follows. Let {6(t)}be generated
by (2.15). Introduce a fictitious time t Dby
n

TG i y(t)

Suppose that the estimates 6(t) are plotted against Ty

H‘ »
ty T T

Let E(T; T, @(to)3 5(to)) be the solution of (4.15) with

Plot also this

T
initial valie e(to), S(to) at time T

. . . o
solution in the same diagram:
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Let I be a set of integers. The probability that all points
6 (t); t€l simultaneously are within a certain distance e from

the trajectory is estimated in the following theorem:

Theorem 4.2 Consider algorithm (2.15) with the same condi-

tions on {e(k)} and {y(k)} as in Theorem 4.1. Denote

T, T ; v(s). Assume that the right hand side of (4.15)

1s cofitinously differentiable. Denote the solution of (u4.15)
with initial condition e(to), S(to) at v = T by 5(1; o oo
8(t ), S(t )). Consider the ODE (4.15) lineaPized around®this
solution. Suppose that there exists a quadratic Lyapunov
function for this linear, time varying ODE. (See e.g. Breckett
(1970)). Let I be a set of integers, such that inf e TjI:

= D > 0 where 1#) and 1,Jj€I. Then there exists a K, 60 and
o> Such that for e < e, ly(to)x(to)| < 8-

P {sup |6(t) = §(t,5 1, , 6(t ), S(t))] > e} «
teT t to e} O

T>t
o
r N
STy roep (4.20)
r .-
€ 7=t
o
where N = sup t, which may be =, o
tel

The proof is based on Lemma 4.1 and follows from this lemma
in exactly the same way as Theorem 6.1 in Ljung (1974) is

proved.

Since the sum

oy (¥

1

is convergent, the RHS of (4.20) can, for fixed ¢, be chosen
arbitrarily small by taking t, sufficiently large. Thus, the
theorem states that the trajectories of the ODE (u4,15) arbi-

trarily well describe the behaviour of the algorithm (2.15)
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for sufficiently large time points.

It should be remarked that, although the proof of Theorem 4.2
provides an estimate of K, it is not practically feasible to
use the theorem to obtain numerical bounds for the probabi-
lity. The estimates are too crude. The main value of the
theorem is that a basic relationship between the trajectories

and the algorithm is established.

To summarize, Theorems 4.1 and 4.2 state that analysis of the
time invariant, deterministic ODE (4.15) gives valuable in-
sight into the behaviour of the time varying, nonlinear stoch-
astic difference equation (2.15). In Chapter 6 the ODE's

that correspond to the self-tuning algorithms, STURE(O and
STUREL, are derived and analysed.
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5. STABILIZATION PROPERTIES

The self-tuning regulators STUREl and STUREO, were defined
in Section 2.5. They were originally, Wieslander - Witten-
mark (1971), designed for control of system (2.1) when the
LS noise condition is satisfied. The analysis in Chapter 3
shows that the regulators have desired behaviour in this
case. If the noise has a more general structure, the para-
meter estimates will be biased. The bias depends on the
control law and this in turn depends on the current esti-
mates. This makes it quite difficult to follow the estima-
tion process. The performance outside the stability region

of the closed loop system is considered in this chapter.

To apply Theorem 4.1l it is required that the stability
condition (4.11) is satisfied. 1In Section 5.1 it is shown
that both self-tuning regulators have this desired property
for quite general noise sequences. The time delay k must
be known, and the orders of the system must not be under-

estimated.

In Section 5.2 a stronger result is shown for STUREl. It

is shown that

y(k)2

N
I%z
-1

k

is uniformly bounded in N w.p.l. This result ensures a
stable behaviour of the closed loop system. This holds also
1f the open loop system is unstable. Thus STUREL stabilizes

any system, provided the time delay is known.

5.1 A general stability property.

The stability properties of the self-tuning regulators, STUREL

and STUREO, are investigated in this section. It is shown

that these regulators satisfy the condition (4.11). To make
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the discussion easier to follow, some of the arguments are
kept on a somewhat heuristic level. It should, however,
meet no difficulties to convert the discussion into a fop-

mal proof.

Consider the system (2.3) and the model (3.4). Assume that
k = k, and that m > m', n » n. For simplicity in the for-
mal treatment, the time delay k is supposed to be zero in

this section.

Form the following vector from the parameter values o Bj
and the estimates ai(t)3 Bi(t)
B ~ B . - B A
§(t) =log - =2 G I e () ey = =2 (),
Bo Bo s
8 B - B+ B B . .
T’j; - iggy Bl(t)a 9 T’I’n" - "Z‘"o“ B y(t)j s "7\'=9° BA(t>]T
> g 8 B B g
o o) o o o
Then, with u(t) = - %w e(t)T x(t), (2.15a) and (2.3) can
be rewritten as Bo
Y ny : T BO n
6Ct+1) = g(t) = y(t+1l) S(t) x(t)[x(t)* =2 §(t) - e(t+1)] (5.1)
o
y(t+1) = FC)T x(t) + e(t41) (5.2)

The sequence e(t) is supposed to satisfy

=

()2 < KN s N, (5.3)

=z
™

t=1

where K may depend on the realization. For STURFE1

P(t)
1o+ oyt [x B PCE) x(£) =1]

S(t) =
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where P(t) is given by (2.15d). For STUREOD

B 1
S(t) = — -
T oetx(s)x(s)
s=1 °©
where
T
£ y(s) (1-v(3)); gE: v (t)
S J=s+1

Decompose §(t) into one component parallell to x(t), denoted

by 8"(t) and one orthogonal to x(t), el(t):

HICO RN MG e (5.4)
The symmetrical matrix x(t) x(t)T has all eigenvalues but one
equal to zero. The non-zero eigenvalue is x ()" x(t), and
the corresponding eigenvector is x(t). Hence

x(£) x0T §6) = x0T xe) F (1)

Introduce also

(t+1) x() T x(t)

Aty = J
Loy T (5.5)
Z & x(s)” x(s)
1 s
Clearly
0 < x(t) £ 1 (5.6)
Eq. (5.1) can now be written
Bo o
B+l = B =a(t) == &) (1) + y(t+1)S(t)x(t)e(t+1) (5.7)

Fo




40.

!
When [x(t)| is sufficiently large, say > K , the last term in

(5.7) can be neglected, and the following relation is obtained:

; B 2 Bo 2 2
1Fee+1) |2 = (B % - oace) <2 B, 017+ an? 2 8, O
o ' Fo
(5.8)
B
If 0 < =— < 2, it follows from (5.8) and (5.5) that
fo
n 2 v 2 o )
| 6(t+1) |7 < |8(t)|° - er () |6y (1) c >0 (5.9)
From (5.2) follows that for large |x(t)|
ly(t+1)]? = \8“<t>[2 % ()] % < l%n(t)|2 » max(y(g)?, u(s)?y-un’
tgsgt-n
) (5.10)
- Assume that the system is minimum phase, i.e. that the
polynomial
B(z) = B+ B,z + B 22 4 + B zmY
o 1~ 2 T m'
has all its zeroes outside the unit circle. Then |u(t)| is

not significantly much larger than |y(t)].

Assume now that (4,11) does not‘hold, l.e. that the feedback

wlt) = =2 o ()T x(t)

fo

gives an unstable, closed loop system for all t > N. We will
lead this assumption into contradiction. Distinguish between
the following two cases:

Case a.

lim sup |6(t+1) - 8¢t)| = 0

to

In this case the feedback law and hence the parameters of
the closed loop system change arbitrarily slowly as t in-

creases. Consequently |x(t)| increases exponentially for
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sufficiently large t. This dimplies that (5.9) holds, and
also that A(t) 1s bounded from below by a strictly positive
number. From (5.9) now follows that f%u(t)l ~ 0, which from
(5.10) implies that |y(t)| and |[x(t)| start to decrease when
|§”(t)| is sufficiently small. This contradicts the expo-

nential increase of |x(t)

)

Case Db,
lim sup {%(t+l) - %(t)| = 8 > 0

too

According to (5.7) such "jumps" in the estimates are possible

only if |x(t)| assumes arbitrarily large values. Therefore
(5.9) is valid as soon as the estimate Jjumps. A Jjump may
cause |[x(t)| to decrease drastically. In fact, it is the

only way for |x(t)| to decrease if the closed loop system is

unstable. Consider the following figure

|xt)| &

%
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The only possibility for }%(t)| to increase is when (5.9)

is not valid, i.e. when |[x(t)| < K'. ©Now, each such period
must be preceded by a jump; [g(t+l)| S ‘8(t)| - 8., Also,

the length of a period when [x(t)| < K' is essentially bounded
by a fixed length. The unstable modes are excited by the

noise terms and |x(t)|quickly starts to increase. During
such a period [3(t+l) - %(t)] is arbitrarily small, and the
possible increase in ]8(t)| becomes eventually less than
§/2. Hence, it follows that I%(t)’ decreases with the net
amount of at least ¢§/2 infinitely many times which, of

course, 1s impossible.

Consequently the assumption that 6(t) belongs to the area
which gives unstable, closed loop systems for all t > N is

contradicted and (4.11) follows.
The self-tuning regulator STURELl is treated analogously.

To summarize, the regulators STUREQ and STUREL satisfy con-
dition (4.11) in case the time delay, k, is known (only the
case k = 0 has been treated in this section), and in case
the system orders are not underestimated. The estimate éo

must be so good that

B

0 < % < 2 (5.11)
Bo

The process has been assumed to be minimum phase. The noise

e(t) may be gquite general as long as

L N 2
lim sup iz e(t)” < = W.p.1
N=oo 1
It has so far only been shown that (5.11) is a sufficient con-

dition for the stability condition to hold. The following

simple example shows that (5.11) is in fact also necessary.




Example 5.1 Consider the system

y(t+l) + ay(t) = ul(t) + e(t+1l)
and the model

Y(t+1) + ay(t) = Bult) + e(t+1l)

i

Then, with v(t) = 1/t and a = 0

a(t+1) = S (t) + z(t)y(t+l) = o) - (i+6)u(t)y(t) N z(t)e(t+l>
z y(s)2 ) y(s)2 z y(s)2
1 1 1
2

Suppose that &(O) > Neglect the noise term y(t)e(t+1).
Straightforward calculation shows that then &(k) alternates
between positive and negative values so that |&(k)[ tends to
infinity. Consequently, this system has no stabilization pro-

perty. o

Remark. Notice that the upper bound on BO/BO that 1s neces-

sary to obtain a stable behaviour depends on several features

of the regulator. For example, if {y(t)} is chosen as
V) = A S
| x(t) |

then the closed loop system will have the stability property

(4.11) as soon as g /é is positive.
o' Po P

Also, 1f the open loop system is stable and the input to the
system is limited, then clearly the overall system is stable

and (4.11) holds trivially, irrespectively of BO/BO.
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5.2 Overall stability of STURE 1.

To give an idea of the stabilization property of STURELl, con-
sider first Example 4.1. It was there shown that a white
noise input signal with variance p gives the following esti-

mate of «a

N ~ e (1-a”)
A(l+c2m2ac) +1

Q
l
o

Consequently, the bias depends on the signal to noise ratio.
A large variance of the input gives small bias. In a simi-
lar manner, the bias depends on the regulator parameter if

u(t) is formed as output feedback

u(t) = g y(t)

Then the estimate is

R 2
oo, . e ga g))
l+c“-2(a-g)e
If the closed loop is almost unstable, i.e. |a-g| is close

to 1, then the bias term is small.

The example suggeststhat unstable, or nearly unstable,
closed loop systems give system parameter estimates with
insignificant bias. This, in turn, gives a closed loop
system with all poles close to the origin. NThus the closed
1 _ 2

Tz y(t)~ cannot

increase without limit. This result is formally proved in

loop system is stable, in the sense that

the following theorem:

Theorem 5.1 Consider self-tuning regulator STURE1l applied

to the system (2.3). The sequence {e(t)} in (2.3) may be any

sequence such that
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1 N 2
lim sup 7z e(t)” < o w.p.l (5
N-> 1

Suppose that the time delay, k, is known and the system

orders m' and n are not underestimated. BO is assumed to
be known. Then

1 2
lim sup T y(t)™ < » w.p.l (5
N> 1

If the system is minimum phase, then also

. 1 N 2
lim sup & ¥ u(t)” < «» w.p.l (5

N0 N 1

Proof: Introduce §(t) as in Section 5.1. Then

y(t+k+1l) = 5(t)Tx(t) + e(t+k+1) (5.

Denote

2
l”’yy("t'.)t) = o ) }7(8)

Then

1 t t!o-
r_ (t',0) T ryy

— 7
vy T (t',t)

+,0 +
Pyy( ,0)

Suppose that lim sup ryy(t70) = », Then it is possible for

toe

arbitrarily large K to find t,t' such that

N
A

it
A
H

t < 58 < tf a, > 1

~
"
3
<
B
N
98}
o
"
0]
)_]
=~

212

.13)

L1W)

15)
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and ryy(t,o) is not a negligible part of ryy(t',O). Not

all terms in ryy(t‘,t) must be larger than c,K. However,

y(t) cannot increase arbitrarily fast, and a number of

terms must be larger than K. This number increases as cy
increases. Choose cq such that at least n + m terms are
larger than K. Introduce as in (2.9)
-1 1t T
R(t) = P ~(t) = T I x(s~k~1) x(s-k-1)
s=1

The LS criterion (2.1) can then be written

T T
vo(H) = BROE 4 22 1 8Tx(s-k-1) e(s) + £ 1 e(s)?
t T - T -
s=1 s=1
Since 6 = 0 is a possible choiece, the optimal §(t) must
yield a value less or equal to
t
V.(0) = 3 1 e(s)?
s=1
This implies that
N T Y t v T
B(E) R(LIB(E) + 2/t £ 6(t) x(s-k-1L)e(s) < O
s=1
Hence
0 T 2 2| Yo p 2
[6(t) R (EI]" < W/t T 6(t) x(s-k-1)e(s) <

g=1

o T T v
< H/t{ 2 6(t) x(s-k=-1)x(s~-k-1) eﬂtﬂ&l}/t T e (sﬁ
s=1 s=1
(Schwarz inequality) or

_RCE)
r (t,0)
Yy

v 4
6(t) < ¥

UK, (w)
c(s)?/r (t,0) ¢ —=%
< vy

o T
o) €T CE,0)
yy

(5.16)

H o™t

1

Now take K >>Ky and choose t,t' as above. Eq. (5.16) then

implies that §(s) must lie arbitrarily close to the null space of
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R(s)/ryy(st) for t ¢ 5 ¢ t! (5.17)

Since

s - T

R(s) = = R(t) + R(s,t) and &3 1/2
we also have that all e(s), s = t, ..., t' lie arbitrarily

close to the null space of R(t)/ryy(tao).

From the assumption that (5.13) does not hold, it follows
that y(s) is '"large'" for a number of s = t, ..., t'. In
view of (5.15) this means that %(S)T x(s) also is "large'.
Since §(s) is arbitrarily close to the null space of
R(t)/ryy(tso)5 x(s) cannot belong to the range space of
R(t)/ryy(tao). (Since the matrix is symmetric the null space

and the range space are orthogonal). Consequently
oy T
R(E',t) = gr=r I x(s)x(s)’

T+l

gets a significant contribution from matrices with range
space not belonging to the range space of R(t)/ryy(t,@),

In other words, the rank of R(t)/ryy(t,o) isAles§ than that
of R(t‘)/ryy(t'ﬁO)° Repeating the argument n + m times,

it follows that

R(t")/r_ (t",0)
Yy

has full rank, yielding the only possible choice ¥ =0 (i.e.
the true parameters). This gives y(t) = e(t), which contra-

dicts the assumption that ryy(tao) increases without limit.

If the system is minimum phase, the inverse system is stable.
If the input of the inverse system, y(t), satisfies (5.13),
then the output, u(t), must satisfy (5.14). o
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This stabilization property of STUREl is an important fea-
ture. It implies that the regulator stabilizes the system

even 1f the parameters do not converge.




49,

6. ANALYSIS OF THE SELF-TUNING REGULATOR '"STURE".

Theorems 4.1 and 4.2 provide a tool for analysis of the class
of self-tuning algorithms defined by (2.15). In this chapter
the regulators STUREO and STUREl are considered. The basis

of the analysis is the ODE defined in Theorem 4.1. In Sec-
tion 6.1 the ODE's that correspond to the present regulators
are determined. These equations are investigated in Section
6.2 under the assumption that the LS noise condition is satis-
fied.

One important result in Astrdm - Wittenmark (1973) is that
the regulator seems to be equally well behaving also for more
general noise structures. That this really might be the case
is shown in Section 6.3. There it is proved that the regu-
lator converges to the optimal one in a simple case when the

LS noise condition is not satisfied.

In Section 6.4 the differential equations for the general
case are linearized around the desired solution. Analysis
of the linearized equations shows that they may be unstable,
provided the noise has certain properties. Thus, in these

cases the self-tuning algorithms will not converge.

6.1 Derivation of the associated differential equations.

The regulators STUREO and STUREL are given by (2.15) with
u(e) = 8 (t) Tx(t)

0 (t+1) = 8(t) + v(t+L)S(E)x(t=k)[y(t+1) - 8(t) x(t-k) +
.- .
+o({t~-k) x(t-k)] (6.1)

When computing to corresponding ODE, the two last terms can-

cel. For the algorithm of SA-type, STUREO, the ODE (u4.16) is




- 4156
ryy(< ;0

e
.

~

=ryy(k+n36)

f= ' (6.2)

Boruy(k+2,6)

8o

~

L?Oruy(k+l+mae)

where ryy(i,e) is the autocorrelation for the stationary

process defined by

| B
y(t+k+1) =[eo - 7364 x(t) + e(t+k+l) (6.3)
BO
8 B
Here 6, = (ay +ve 0 5 O, «ov 0, == Bo e =B 05 ver 0,)
BO BO

Eq. (6.2) is suitable for numerical solution of the ODE.

This is further discussed in Chapter 7.

For analysis it might give better insight to rewrite (6.1)

using (6.3), provided k = k

w

p(t+l) = o(t) + y(t+1)8<t>x(t~k){xT(t~k)[eom — 8(t-k)] -

w >

@]
- (L) + 8(t-k) + e(t+1)} (6.4)

The ODE (4.16) corresponding to this form of the algorithm

then is
d o
gT 6 = Gl(e) (GO = == 0) + E[x(t-k)e(t+1)] (6.5)
Fo
where Gl(e) = E x(t)x(t)T, and where all expectations are
evaluated, given that the feedback law 1s constant and ex-
pressed by u(t) = - %m 8l x(t).
B

O
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For the regulator STURELl the ODE corresponding to (4.15)

becomes
%; 6 = S(1) F(e(t))

| (6.6)
& 5(x) = s(0) - 8(ne (a(D)sn)

where Gl(e) is defined as above and f(8) is the right hand
cide of (6.2). This ODE contains more variables than (6.2)
and may be more difficult to analyse theoretically for this
reason. In Lijung (1972) a reparametrization of (6,FP) = c

is made, so that the transformed ODL has the structure:

d _ .
37 C * hl[hQ(c)] - c (6.7)

where the range space of h, has the same dimension as 0.
This structure. can, as shown in Ljung (1972), be utilized

for the analysis in some cases.

Tn a number of cases theoretical stability analysis is prac-
tically impossible. Then, numerical solution of the ODE's 1is
a possibility to obtain detailed information about the stabi-
1ity that may suffice from a practical point of view. Eq. (6.6)

can be used straightforwardly for numerical solution.

6.2 Convergence in case the LS noise condition is satisfied.

The case when the self-tuning regulator STURED is used 1is

treated in this section. If the LS noise condition is satis-
fied, the noise is independent of x(t-k). Hence (6.5) is
d 6 = (6) (0 . _° 5) (6.8)
dr Gl o) é

o)

S

Now take y(t) = Cyt— . g > 0. In Section 5.1 1t was shown
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thatgthe stability condition (4.11) is satisfied in case
0 < ?g < 2. Suppose that Eleﬁﬂlg < C,where B > U/0. Then

O .. . .
all conditions of Theorem U.1 are satisfied.

The analysis in Astrém - Wittenmark (1973) implies that in

case m = m' and n = n, there is only one stationary point of
o)

(6.8), namely 6% = — 8 .
By ©

Since G1(8) is a non-negative definite matrix, all solutions
tend to this stationary point unless they tend to the bound-
ary of the area where the closed loop system is stable and

Gl(e) defined.

It should therefore also be shown that the trajectories of
(6.8), near the boundary'of the area where the closed loop

system is stable, point into this area. This conclusion is
indicated in the analysis of Section 5.1, but no formal

proof of it will be given here.

Assuming this result, it now follows from Theorem 4.1 that
6(N) %Q 6, w.p.1l as N»+«, which gives the desired minimum

. o
varliance controller.

In case the open loop system is stable and the output of the
controller (i.e. the input to the system) is limited, the
ODE (6.8) is defined everywhere. Then there are no problems
with stability regions and asymptotic stability of (6.8)

follows straightforwardly.

6.3 Analysis of a simple system.

So far, in Chapter 3 and in the previous section, convergence

of the regulators STUREO and STURE1l has been shown in case the
LS noise condition is satisfied. Convergence for a simple sys-
tem for which the LS noise condition is not satisfied is shown

in this section. See also the analysis on page 32.
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Example 6.1 Consider the system

y(t+l) + a y(t) = b u(t) + e(t+l) + c e(t) 3 |c| < 1
where the sequence {e(t)} is white noise with zero mean value

and unit variance. The minimum variance control regulator

for this system is

u(t) = (a=-c)/b y(t)

The regulator parameter is estimated using the model
y(t+1l) + oay(t) = gult) + e(t+1)

where B8 is a priori fixed but not necessarily equal to b. In

this case with one regulator parameter the regulators STUREOD
ans STUREL are identical. The feedback law is

u(t) = a(t)/B  y(t)

From (6.2) the corresponding ODE 1is
v = ~r__ (1)

. vy

where

(c=a+ab/g)(l-c(a-ab/pJ)

Fyy (P 1 - (a-ab/g)”
The desired convergence point a* is o* = (a-c)B/b
Introduce z = ¢ = g*. Then
b (l-c(c- % z)) 5
Z = = = Z s el < 13 |e-z E( < 1 (6.9)

8 1 - (c-z b/g)°

It is easy to show that the last factor in (6.9) is positive
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where it is defined. Hence, (6.9) is globally asymptotically
stable if b and B have the same sign.

The stability condition (4.11) is satisfied if 0 < % <2, as
shown in Section 5.1. Hence Theorem 4.1 assures that o(t)

tends to o* w.p.l as t-w,

Summing up the results of this section and of Section 5.1 we

have

o If % < 0, the regulator will not converge. The closed
loop system becomes eventually unstable, whereafter the
pole of the closed loop system is forced to infinity.

o If 0 < % < 2, the regulator converges to the desired

value w.p.1l.

o) If % > 2, the regulator converges to the desired value
as long as the closed loop system is stable. However,

there is a non-zero probability that the estimate tends

to infinity.

6.4 Linearization of the differential equations.

Consider the system
y(t+1) + aly(t) + ...+ any(tun+l) = u(t) + ... + bmu(t~m) +
+ e(t+l) + cle(t) + ...+ cne(t=n+l) (6.10)

where {e(t)} i1s a sequence of independent, random variables
with zero mean values. Suppose that this system is controlled
by the regulator STUREO. Then the corresponding ODE is (6.2)
with k = 0 or (6.5). Suppose that the correct model orders
m and n have been chosen. Then the only stationary point of
the ODE i1s the minimum variance control law, c<f. Astrém -

Wittenmark (1973), given by
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g* = (a.-c .a_~-C b

17Cq e @70 ,,bm)

1
We will now linearize (6.5) around this solution. The result

is formulated as a lemma.

Lemma 6.1: Consider the system (6.10) controlled by the regu-
lator STUREQ. Assume that the system is minimum phase. Linea~-
rization of the corresponding ODE (6.5) around 6* gives with

A = 6 = 8%

A9 = Ma® (6.11)
where
[T e (t) 7]
M = -E : [8(t) ... (t-n+l) U(t) ... J(t-m)]
e(t-n+1)
u(t)
| u(t-m) ]
where
S(t+1) + clé(t> o+ cn%<t»n+1> = e(t+1) (6.12)
Y(t+1) + clﬁ(t) + ... + cnﬁ(tmn+1) = u(t+l) (6.13)
and
ul(t) + blu(t=l) oL, + bmu(t—m) = (almcl)e(t) +
+ ...+ (anmcn)e(t—n+l) (6.14)

Proof: Let

~ ~

o = (als.g,a byyseesb )

n? 1’ m

~

where a. is the estimate of a. . Then M = d_ f(e). Denote

de
the elements of M by mijn Then
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m.. = = —— v_ (7J) i, J ¢ n
ji sa. VY ’
i
= - 9
M5 ien) T b Pyy(]) e Josen
i
m(j+n)i R ruy(3+1) 1 £n, J <£m
Jsa.
i
m, . . = 2 (3+1) i ¢ m j ¢ m
(3+n) (i+n) 2 uy - T s
i
Now
D () = 2 E ytye+d) = Bl vty yeed) o+
5a. 7Y da. Ba.
i i
d .
+ oy (t) —— y(t+])
oa.
i
Since y(t) = e(t) in the point in which the expression is

evaluated, the first term in the RHS is zero.

Cansider ? y(t+3). Introduce the polynomials

24 .
1
ACz) = 1 + ayz + ...+ anzn
- 2 . m+1
B(z) = z + blz + ... 4 bmz
~ B - o n
Alz) = 1 + ajz + ... a z
° B S 2 ~ooom+l
B(z) = z o+ blz + ..+ bmz
C(z) = 1 + Z + + oozt
C(z) = ¢y . n

Then the closed loop sgystem is given by

1

(acq HE@™ - Blqg™HIAWE™) - 11yt = Ba™Heg M e

where q © is the backward shift operator,
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~

Take the derivative with respect to a.:

[a0g™HBGE ™ - B(a™HAGW™ - 11— y(o) -
aa.
1
- B(g H—2— A" Dyt = 0
24 .
1
The derivative is to be evaluated at 6 = 0% i.e. A = A - C + 1,

~

B = B. Then y(t) = e(t) and
AB - B(A-1) = BC
Hence
B(q"Dc(a ™= y(t) = B(a™H ¢t e(t)
aa .
1
Introduce &(t) by
Clq T)é(t) = e(t)

Then

0 y(t) = (-1

E e(t)é(t+j-1) = L e(t-j)&(t-1i)

>E

3
L
i

Consequently, the upper left block matrix of M is

e(t)
-5 | - [ 18¢e) ... 0 B(t-n+1)]

»

e(t—n+lf

The rest of the lemma is proved analogously. o
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The properties of (6.11) will now be discussed. It is easily
seen that the upper left block in the matrix M is triangular
with -1 in the diagonal. This means that in case there are

no b-parameters to estimate, the linearized equation is asymp-
totically stable. However, the diagonal elements in the

lower right block are more interesting. They are, see Astrdm

(1970) , given by

" _1 1
-L u(t) u(t) = S é ”C”Z‘“;j‘ C&uu(ZJ dz
where
_ (A(z) - C(z)) (A*(z) - C*(z))
Ct>uu(Z) - B(z) B*(z)
1s the autospectrum of u. Here A*(z) = 2" A(zml), etc.

The element E u(t) uU(t) can be made negative with arbitfary
magnitude. To do so, choose the parameters Cqse++5C, SO
that C(exp(iw)) has negative real part for some w. This is
possible as soon as the degree of C(z) is greater than or
equal to 2. Then choose A and B so that the system UKq~l)—
- C(q_%]/B(qml) has a resonance for the frequency w. In

this way it is possible to make
Y
tr M = - [n + m E u(t) ult)]

positive. This means that M must have at least one eigenvalue

with positive real part.

An example of such a system is given below.
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Example 6.2. Consider the following system

y(t+l) = 1.6 y(t) + 0.75 y(t=1) = u(t) + ult-1) +
+ 0.9 u(t-2) + e(t+l) + 1.5 e(t=1) + 0.75 e(t-2) (6.15)

For this system the C-polynomial has a megative real part

on the unit circle for 1.78 < w < 2.48. The system 1/B(z)
has a sharp resonance for w = 2.10. This is sufficient to
make (6.1a),i.év the differential equation linearized around

6 = 6*, have positive eigenvalues.

According to Astrdm - Wittenmark (1973) there is only one
possible convergence point; 6*. Since this has proved to

be an unstable stationary point of the ODE (L.16), the self-
tuning algorithm is not likely to converge. According to

the results of Section 5.1 the estimates do not tend to infi-
nity. Thereforethey must vary in a bounded area without

converging to any point.
The minimum variance regulator for (6.15) is given by

u(t) = =3.1 y(t) - u(t-1) - 0.9 u(t=-2) (6.16)

PN

In figure 6.1 the behaviour of STUREL with §_ = 1, n = 2,
m = 2 and k = 0 is shown. The sequence {y(t)} was chosen
such that it decreases very slowly in order to accentuate
the behaviour of the system. The initial values are the
values of the optimal regulator (6.16). The average loss
per step from one simulation was about 2.90, while the op-
timal regulator gave the average loss 1.02 for the same

noise sequence.

From figure 6.1 it is obvious that the algorithm tries to
reach the optimal values. When the estimates come close
to the optimal ones, they are thrown away. This behaviour

is in good agreement with the results of the analysis.
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Parameter estimates

i
&~

0 - 1000 2000

Fig. 6.1 Parameter estimates when the system (6.15) is controlled by
STUREL. The dashed lines show the values corresponding to
the optimal controller.
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7. NUMERICAL EXAMPLE
In this chapter some of the theoretical results in the pre-
vious chapters will be illustrated through some numerical

simulations.

Example 7.1 The first example will show the significance

of the expected trajectories obtained through the differen-

tial equations described in Chapter 4. Consider the system
y(t) + a y(t=-1) = b u(t=-1) + e(t) + c e(t-1) (7.1)

where a = -0.95, b = 1 and ¢ = ~0.45. The sequence {e(t)}
is white noise. The optimal control law is given by
a - ¢

ut) = S/ y(t) = -0.5 y(t)

Let the model be
y(t+l) + ay(t) = ul(t) + e(t+l)

With Gl<e): ryy(O), the differential equations (6.6) for the
self-tuning algorithm STUREl will be

(c-a-ba)(l-c(a-ba))
1 - (aﬂbu)z

2
s? .. (0) = S - 32{} ' (C“afba) 2}
7 1 - (a-ba)

¢ = =S «r_ (1) = -S.
Yy

(7.2)

®

w
¢
w
I

The equations (7.2) are simulated using a program package,
SIMNON, for simulation of nonlinear differential equations
available at the Division of Automatic Control in Lund, see
Elmgvist (1972).

Figure 7.1 shows the trajectories for different initial values

a when S(0) = 5. The system (7.1) is also controlled using
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STURE1l, with
y(t) = —-

The values used in the algorithm were e, © 0.002 and s = 0.0645,
According to Theorem 4.2 the time in the differential equa-

tion (7.2) is related to the number of samples, N, through

\/(_’1_) = o n R

N N
5 1
- s

1 Y oi=1 i

The value of s was chosen rather small in order to get a
reasonable value of N. With the chosen values, 5 time units
correspond to H000 steps. Tigure 7.2 shows the parameter
estimates for different starting values of the parameter o.
The initial value of S was S(0) = 5. The parameter estimates
correspond well with the trajectories of the differential

equation.

If cY or S(0) are increased, the estimates will vary more in
the beginning, but after a short period of time the estimates
will behave as in figure 7.2. If o 1s outside the stability
boundary of the closed loop system, then Egq. (7.2) is not
valid. The self-tuning regulator has, however, a stabiliza-
tion property, cf. Chapter 5,and will rapidly give an estimate

which makes the closed loop system stable. o

Example 7.2 Consider the system

yv(t) + a y(t-1) = u(t=-1) + b u(t-2) + e(t) + ¢ e(t-1) (7.3)

with a = -0.99, b = 0.5 and ¢ = -0.7. The optimal control
law 1is
u(t) = —22C0 v 029y

}._l

+ bq 1 + 0.5q
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Fig. 7.1 Trajectories for the initial values a (0) = 0, -1
and -1.9 respectively of the equation (7.2) and
where S(0) = 5.
1
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3
2 ﬁ
g
E -
'
0
Q
E =
3
[]
£
5
a2 l
0 2000 4000
Time
Fig. 7.2 The parameter estimates for different starting

values when the self-tuning algorithm is used

with S(0) = 5, ¢ = 0.002 and s = 0.0645 on
the system (7.1).
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In the self-tuning algorithm STURE(O the parameters have been

estimated from the model
y(t+1) + ay(t) = ult) + éu(twl) +e (t+1)

The differential equations are in this case

3 -r_ (1)
I =5 vy
8 T, (2)
y (7.4%)
a1 _ -1
S = -8 + ryy(O) +r o, (0
The equations for o and g are difficult to analyse. The

equations have been simulated with different starting values
of the parameters o and g and with S(0) = 10. The phase
plane is shown in figure 7.3. At the beginning parts of the
trajectories every 2nd time unit is indicated. From the
starting point a(0) = -1.5 and o(0) = -0.1 it takes about 9.7
time units before the estimates are within a distance of 0.1

from the convergence point. Corresponding curves are shown

in figure 7.4 for one realization when the system is controlled
by the self-tuning regulator STUREO. The values o, = 0.002

and s = 0.1 were used. The value of cY 1s much smaller than
one would use in a practical ecase. This value was, however,
chosen in order to better see the agreement between the para-
meter estimates and the trajectories of the differential

equations (7.4).

When the self-tuning regulator STUREl is used, the differen-

tial equations will be

- =mryy(l)

Qo

w™e
i
~~
N
p—

(7.

[ea]
~
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Parameter B

-1

I I
-3 -2

-1 0
Parameter a

Fig. 7.3 Phase plane of the differential equations (7.4) for

different starting values when S$(0) = 10.

The para-
meter values corresponding to the optimal regulator

are indicated by a dot. The triangel shows the sta-

bility boundary of the equations (7.4). At the first

parts of the trajectories every 2nd time unit is marked.

e

-

Parameter B3

-3 -2 -1
Parameter « :

Fig. 7.4 Phase plane of the parameter estimates when the sSys-—

tem (7.3) is controlled by the self-tuning regulator
STUREO with CY = 0.002, s = 0.1 and S(0) = 10.
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The phase plane of (7.5) is shown in figure 7.5. Compared
with STUREOC the trajectories in this case are leading more
directly to the optimal point. The starting directions of
the parameter estimates are determined by the initial value
of S, which in this case was 10+I. The convergence time 1is

also shorter in this case. For the starting values o(0) = -1

and 8(0) = =0.1 the convergence time 1s about 5.7 time units.

Parameter 3

| ]
-3 -2 2 -1 0
Parameter o .

Fig. 7.5 Phase plane of the differential equations (7.5) for
different starting values. The initial value of S

was 10-1. Every second time unit is indicated in

the beginning of the trajectories.

Example 7.3 1In this example the differential equations of

a more complex self-tuning regulator than STUREO and STUREL

are simulated. 1In the previous examples the control law

was linear in the parameter estimates, but in this case the

control law is determined in a more complex way.

.5
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Consider the system
y(t) + a y(t=1) = b u(t-3) + e(t) (7.86)

where a = -0.9 and b = 1. The parameters a and b are esti-
mated using (2.15f) with the model (B.4), (see appendix B).
The minimum variance regulator based on the estimates is
then computed as

u(t) = 2 /b — (o) (7.7)

1 - aqwl + ;2q

The corresponding differential equations are given by (4.16):

°
~

>

~

= - 1) - I 0) + b 2

a Pyy( ) a fyy( 2 Pyu( )
® (7u8)

b = ryu(3) + a ryu(Q) - b ruu(O)
Trajectories of (7.8) are shown in figure 7.6. Since the LS

noise condition is satisfied, the estimates converge to the
true parameter values. The covariance function of the closed
loop system, ryy(O), corresponding to the estimates in

figure 7.6 is given in figure 7.7. It is interesting to no-
tice that the expected variance of the output actually

~

increases for some values of a, b.

The examples in this chapter show that the differential
equations defined by (4.15) and (4.16) are very useful for
the analysis of the different self-tuning algorithms. It

is possible to determine the transient behaviour, as well

as to investigate the convergence properties. The diffe-
rential equations also have the advantage that the stoch-
astic part is removed from the analysis. It is, however,

in most cases difficult to analyse the differential equa-
tions. When only one parameter is estimated, it is possible
to carry through the analysis. One example 1is given in

Wittenmark (1973). If the system contains two or more para-
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estimates given in figure 7.6.
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meters, it is difficult to investigdte for instance the
stability. The differential equations can, however, be
simulated and much insight can be gained in this way. The
computations will be rather extensive even for systems of

low order.

The self-tuning regulators can without any difficulties be
simulated with many parameters, but many simulations have
to be done in order to investigate the convergence proper-
ties. The self~tuning algorithms are also more timecon-
suming than the differential equations since the time in
the differential equations is related to the number of
steps through 1 = g y(t), and the number of steps per time

unit is rapidly increasing since y(t) is decreasing.
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APPENDIX A. PROOLI OF LEMMA 4.1

Lemma 4.1 Suppose 6(n) and 6§ belong to the area where f

and G; are defined. Let m(n,At) satisfy
m(n,at)

pX v(k) = At  as n-oe

n

Suppose that |x(n)| < C (C may depend on the realization).
Then for sufficiently small At and (e(n),Si(n))sufficiently
close *o (gjgi)

e(m(n,At)) = 6(n) + ATéif<§> + Rl(n,AT,53§i) + R2<naﬂfj§3§i>
(A.1)

) _ o , o
Si(m(n,AT)) = Si(n) + Ar[“Si Gi(ﬁ) Si+8i] + Rl(n,AT,G,Si) +

1 - —_
+ R2(H3AT3938i> (A.2)
where
1R, (n,a1,8,5.0] < srex(]e(n) - 8] + [S.(n) - Bl + ACsr)°
1 ? [ = 1 i '
and
") ) .
R, (ngATye,Si) + 0 w.p.l as n-=e, al
Prqgi: To abbreviate notation the term

()] x(t) = B_ult-k) = x(©)T[6(t) - 8 F (0 (t-k) ]

in (2.15) will be omitted, since it is treated in the same

way as x(t) y(t+£+l)o The variable k will be taken as zero.

The analysis will be carried out for a given, fixed realiza-
tion w. Many of the variables below depend on w, but this
argument is suppressed. The technical problem with non-

countable unions of null sets can be treated in the same way
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as in Ljung (1974), appendix A, and is not explicitly dealt

with here.
Consider first

m(n,At) T
5 y(t)x(t)x(t) (A.3)
n

It will be shown that, if |8(n) - 8| is sufficiently small,

m(n,At) T - -
z y (D)x()x(t) ™ = A1G,(8) + Ry(n,at,0) + R, (n) (A.4)
n
where
- ] - : 2
[Ry(n,at,0)| < stoColfetn) - 8]} + Cye(ar)
and
Ru(n) »~ 0 w.p.1l as n=e,
The vector x(t) can be seen as a state vector for the system
(2.3) with feedback u(t) = F(8(t)) x(t). The closed loop
system can be written on a state space form:

x(t+1) = AC9(t)) x(t) + Be(t+l)

Let x(t) * = n,... denote the sequence of vectors that are

obtained by

x(t+1) = A(8) x(t) + Be(t+l); Xx(n) = x(n)
Let X(t) = x(t) - X(t)

Then (A.3) can be written as

m(n,At) mi{n,At)

I oy (OX(ORT + T oy (O IROXOT ¢ ¥ aL5)

n n
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Consider first the second term of (A.5). We have

- t-n t =t-k i -

x(t) = A x{n) + © A Be(k); A = A(s) (A.8)

k=n

and

by € ¢ ~t-k .

*x(t) = % onA.| - A Be(k); A. = A(8(3)) (A.7)
k=n k+1 jJ J

Since F(s) is Lipschitz continous we have
|ACs(t)) - AGe)| < C le(t) = o

Since g gives a stable closed loop system

“t“kl

]A < C_ A

If m%xkle(t) ~ 8| is sufficiently small, say less than §, it
N<T <K
follows that

T
[ I A-[ < C Atak

k+1 ]

Then we have

t
| m A, - At“k| < max |8(i) - o] c7ax§"k Ay o<1
k+l I nsict
for t < K. Introduce gq(n,t) = max |8(i) - 8|. Assume that
ngict
le(n) - 8| < & and lSi(n) - §] < § and denote by K(n) the

first number = n such that

e (K(n)) - 8] 2 8 or

|85 (K(n)) - S| = ¢
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Introduce

kin,At) = min(m(n,At), K(n))

Then
X)) ] ¢ qln,t)-v(t) t ¢ k(n,At)
where
T

vty =z coont M Be() ]|

k=n
Similarly
- t-n
[ x(t) s v(t) + Cehry |x(n)|

Hence the second term of (A.5) satisfies

k(n,AT)

I (O OROT + 2%y ¢
n
k(n,AT) 2 kin,at) -
< 2q(n,k(n,a0))e Ty (V)T + Cp X YAy (A.7)

n n

The first term of (A.5) is quite similar to the first term of
(A.7): Dboth are formed as sums of products of stochastic
variables (x(t) and v(t) respectively) that are obtained from
white noise ({e(t)}) through exponentially stable filters
(giving first e(t) and then x(t) and v(t)). The convergence

of such sums is considered in the following lemma:

Lemma A.1 Let the random variables f,(t) and f,(t) be gene-
rated from white noise {e(t)} with zero mean value and unit

variance:

£.00) = .

i~ 8

gi(tgk) e(t-k) 1= 1,2
0

where (oK) < Ckk A< 1 i
g5

i
et
N
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Suppose EIe(t)qu < C and that the sequence {y(t)} satisfies
(4.14).

Then

Dkl
z y(t)[fl(t)ef2<t> - Ef{(£)-f,(0)] » 0 w.p.1

t:nk

as k»w, where the subsequence {nk} satisfies

M1 ]
lim sup y(t) = L < 5
ke n
X
Proof of Lemma A.l: For simplicity denote n, = n and n =m

k k+1
and £,(3)+£,(3) - Ef{(3)-£,(3) = £(3) and consider

m 2p
|E| = v (O Tk | =
n

m m
= |E 'Z— . ) Y(jl)-.o.*Y(jzp)f(jl)e..,-f(jzp)ls
i,=n Jop=n
5 m m ’ _

< y(mP w3 IEf(jl)°.;.-f(32p)[ <

]l:n jzp:n

2p
: Lo(k+es)

< v(m)?P 3. 5 ) ) ) ) {K P

Jq=n ij:n kl:O 21:0 k2p:0 RZp 0
]E[e(]l=kl)e(jl=ll) - 5klzlJ* [e(j2 mkzp)e(jz m22p> -
-8, 1]

“2p*2p

Since e(3J) and e(k) are independent for j = k, the expectation

in the above sum 1s zero unless for each r
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gjs - Kk jsr‘= ksv
Jp =k, = {or and . - 4, = (or (A.8)
(]s " i Jgr= g

for some s, s' § r.

Regard ki§ Qi and jlgn.,ﬁjp as fixed. Then the other jp+l3

°3j2p are determined by (A.8) (up to permutations, the
number of which depends on p and not on m-n). Hence p of
the outer summing indices can be eliminated. Summing first

over k., and 2. gives a finite result C()) depending only on A.

Thus

m Zp 5 m
Elz vOOFGD) | « y(mP 3 JOPI

n 3 '
1 P (A.9)

< v PPem-mPecn) <y Py m)Pee (1) ¢ v (PC, ()

The second inequality follows from
m

(m-n)y(m) < ¢ y(t) < 2L (A.10)
n

From (A.10) we also have

[B - l]amws < 2L/n
n

+3

z < 1 + 2L z <1+ 2L 2 since s ¢ 1

n n n

which gives

2 < L Const (A.11)
n S 21 = e

This inequality implies the last inequality in (A.9).
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From Chebysjev's inequality it follows that

e+l )
: . P

n E| = (3)EC3) |

k+1 Nk
P(| = Y(IPEC) | > €) s 5 <

j'—‘nk e P
¢ y(nPec /e’P (A.12)
Now
5 y(nk)P < 1 oy(oOP = 3 c, +78P ¢ &
k=1 t=1 t=1
since sp > 1. Application of the Borel - Cantelli lemma

yields, in view of (A.12) and (A.13) that

T+l
z y(t)E(t) >~ 0 w.p.1l as k » o
n
k
and Lemma A.l is proved. )

With this lemma applied to (A.5) and (A.7) we obtain

k{n,at)

oy (Dx(Dx()T =
n
k(n,At) _ _ T _
= ) Yy(E)E[x(t)x(t) "1 + Re(n) + Rg(n,at,8) (A.14)
n

where R5(n) ~ 0 w.p.l as n » «», and where
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R.(n,At,0) <
6

k{n,ot) kin,a1)

< latn,kn,a)e T Y (v 4 Cg I y(OATT <
n n
5 m(n,At)
< g(n,k(n,81t))<[E v(t)“]- 5 Y(t) + Ro(n) <

n -

€ Cqg qln,k(n,At))at + R7(n)

with R7(n) > 0 as n » », The same result naturally holds

for

kin,At) T
b2 v(E)x(t)x(t+1)
n

 Consider now (y(t) = Pl % ()

k(n,At)
16 (k(n,at)) = 8(n)] = | Ioov(t) 5.(t-1) x(D)y(t+)] s
n

_ k(n,At) T _
|S. I oy(t) x(t) x(t+1)" D[+ max |S, - S.(t)]-
i i i
n ngtgk

A

kin,AT) T _ B
I oy ()x(t)x(t+1)" D] s(ISi{+d)(C1]eAT+R8(n)> (A.15)
n ; i

where R8(n) + 0 w.p.l as n-+w

1 -1 k(n,at) T 1
ISi elnyae)) = 8, ") | = | Doy (O Ix(Ox()™ 8, ()] ¢
n

< AT“C12 + Rg(n); where Rg(n) + 0 w.p.l as n-»e
It follows from (A.1l5) that 8(k) and Si(k) can be made to
differ arbitrarily little from 8(n) and S;(n) for large n.
This means that, for sufficiently small At, k(n,At) = m(n,At)

for sufficiently large n. It also follows that
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sup |68(n) - 8(t)]| =

ngt<m

sup |S(n) - S(t)]| «

ng<tsm

Combining (A.14%), (A.15) and

ly small At

C13°AT

R, ~(n)

10

C e AT

14

Rll(n)

+ Rlo(n);

- 0 w.p.l as n »
(A.16)
+ Rll(n);

+~ 0 w.p.l as n + o

(A.16) we obtain for sufficient-

m
le(m(n,81)) = 6(n) - S, [E x()x(t+1)DI+2 y()| <

A

5.
1

N

b

B

5.

Now using that

E x(t)x(t+1)D = £(8)

m(n,At)
T v(t) - At
n

and

=R5(n) + R6(n) + max ]Si - Si(t)
ngtgm

as n-ew

n

-[|S] Rg(n) + Ro(n)] <

[S;1+Rg(n)IL + Cqpeo7 + Ryq(n) + 1S, = s; (|1 +

[q(n,m(n,AT))eClOeAr + R7(n)] [1 + Ciyedt Ryp(m) +

(A.17)

a(n,m(n,at)) < Cygeat + Ryg(n) + Jo(n) - 8]

and rearranging the terms of (A.17) gives the desired relation

(A.1). Eq. (A.2) is obtained analogously. o
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APPENDIX B. RESULTS FOR OTHER MODEL STRUCTURES

In Section 2.1 four different model structures were briefly
mentioned. One of them, (2.4), was chosen as the basic model
and has been used throughout the report. In this appendix

i1t is shown how the other model structures can formally be

treated in exactly the same way as (2.4).

B.1l Model structures.

The chosen model (2.4),

yOtekel) + aqy(t) + ...+ asyCtrl-n) = g _[ult) +
(B.1)
+ Byult-1) + ... + g u(E-m)] + e(t+k+l)

will be referred to as model A.

In case the variable By is estimated, a more natural model

structure is, cf. (2.2)

y(t+k+1) + uly(t) L., F aﬁy(t+l°n) = Bou(t) + glu(tml) +
N N R - (B.2)
+ ...+ B&u(tmm) + e (t+k+1)

This model will be referred to ag "model B."

In the models A and B, the system (2.1) is written on "predic-
tor form," which is suitable for the self-tuning regulators
STUREO and STURE1l. More straightforward models are

y(t+l) + aly(t) + .. 4 éﬁy(t+l=ﬁ) = Eo[u(tnﬁ) + ... 4
(B.3)

+ Bﬁu(tmﬁm&)] + é(t+1>

and
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v(t+l) + aly(t) ool F any(t+lwn) = bou(twk) + ... 4
. A . (B.4)
+ bﬁu(t“k=m) + e(t+l)

These models will be called '"model C" and "model D" respec-
tively. Clearly, if k = 0, models A and C and models B and

D, respectively, are identical.

B.2 Modifications of the results of Chapter 2.

Introduce
~ ~ ” ~ T
05 (ul, cees a7 Bys +oeo Bm)
~ N ~ ~ T
0p = <ul’ > als By R Bn)
(B.5)
~ o " 2o\ T
0o = (al, cyoats blﬁ . bm)
~ o 9 " ~ o\ T
6 = (ags «-.» ajs bgs Dby, , br)
6% =(a o5 O 0, 6./p 6 /8 _, O 0T
A 190 e Opo 3 e 03 3 1 o0? m! o° 5 20 ey
(n - n and m - m' zeroes respectively) (R.6)
T
9%:((119 e sy @na L Boa Ble ooy erboa , 0)
0% = (a a_, 0 0, b,b /b b b /b, 0 0yt
C 19 2 n5 bl bl 3 :I_O Oﬁ bl m- o OS 9 2
6% = (a a_, 0 0, b, b b, 0 o’
D l) M n9 2 * 5 9 05 19 9 m9 b 9
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x, () = [-y(0), ..., =y(y+l-n), B ule=1), ..., &_u(t-m)]"

kg (£) = [=y(t), ..., —y(t+l-n), u(t), ult=1), ..., u(t-m)]7

(B.7)

H]

Xo(t=k) = [=y(£), ..., y(t+l-n), bou(t-1-k), ..., b_u(t-k-m)]T

[-y(t), oy y(telon), ult=k), ult-k-1), ..., u(t-k-m)]"

xp (t=I)
Then formulas (2.5) to (2.15) are valid for any subscript

A, B, C, or D, provided all explicit BO are set to zero for
models B and D. For model C, BO should be replaced by bo’

The minimum variance control law (2.17) has no direct counter-

part for models C and D. For model B, u(t) should be chosen

as the solution of
6. (t)r x.(t) = 0 (B.8)
B B :

B.3 Modifications of the results of Chapter 3.

Theorem 3.1 and its corollary are valid for all model struc-
tures if in (3.7d) the corresponding x-vector according to
(B.7) is chosen. The discussion in Section 3.2 can be carried

out for model B 1if

B x(t) = 0"

Y
i _
(SO 8)
is replaced by
i v -~ 1
6 x(t) = 0

and the corresponding modifications in the following are made.

B.4 Modifications of the vresults of Chapter 4,

The only modifications necessary are directly implied by the
modified form of (2.15).
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B.5 Modifications of the results of Chapter 5.

Here only models A and B are relevant, since the discussion
is concerned with the special regulators STUREO and STUREL.
The discussion in Section 5.1 and the proof of Theorem 5.1

are based on the variable

n Y _ 29 +
g(t) = eA(t) = eA GA(L)

If this is replaced by

% _ o) _
GB(t) = 6p GB(t)
and BO/BO 1s replaced by 1, the discussion remains unaltered.

Consequently the results of this chapter, like those of
Section 3.2 are valid for STURE with model B (i.e. the

variable B is estimated) without any restrictions on B, and

~

8o




Convergence of Recursive

Stochastic Algorithms

Lennart Ljung




ABSTRACT

Convergence with probability one for a class of recursive,
stochastic algorithms is considered. The class contains
stochastic approximation algorithms like the Robbins -
Monro scheme and the Kiefer - Wolfowitz procedure. Tt also
contains other estimation and control algorithms that are

common 1in stochastic control theory.

It is shown that the problem of convergence can be separated
into a deterministic problem and a stochastic one. The
analysis of the deterministic problem reduces to stability
analysis of an ordinary differential equation (ODE). For
the stochastic problem it is sufficient to show consistency
for a simple algorithm that estimates the mean value of a

random variable.

Using this technique, the usual conditions for convergence
can be extended. Correlated observations can be treated
and the conditions on the gain sequence can be traded off

against conditions on the moments of the noise.

The behaviour of the algorithm can also be described using
the ODE that is associated with the convergence problem.
Based on the trajectories of the ODE future values generated
by the algorithm can be predicted. Numerical solution of
the ODE therefore is a valuable tool to analyse the asympto-

tic properties of the recursive stochastic algorithn.
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1. ALGORITHMS.

Recursive algorithms where stochastic observations enter,
occur in many fields of applications, such as estimation,
filtering and control theory. In this report convergence
of a certain class of recursive algorithms will be consi-
dered. The class includes stochastic approximation algo-
rithms and also other algorithms that are common in con-
trol applications. The obtained results are more general

than earlier reported ones.

In this chapter some examples of recursive, stochastic
algorithms that fit in the formulation are given. Chapter
2 contains a short survey and classification of previous-
ly reported convergence criteria. A theorem that separates
the considered problem of convergence into a deterministic
problem and a purely stochastic one is shown in Chapter 3.
The stochastic part is further discussed in Chapter 4. In
Chapter 5 conditions are given that assure bounded esti-
mates. In Chapter 6 the question of convergence rate is
discussed and a theorem is shown, which connects the be-
haviour of the recursive algorithm to that of a determi-
nistic ordinary differential equation. Finally, in Chap-

ter 7, the results are summarized and discussed.

1.1. A General Recursive Algorithm.

A general version of a recursive algorithm can be written
X = Xn""'] + Hn(xangwn> X. = X (1

where'{xn} is a sequence of vectors. These vectors will
be called estimates and it is supposed that they are es-

timates of some desired or optimal value x*, which is in-

1)




dependent of n. It is then desirable that the sequence
{Xn} tends to x™ as n tends to infinity.

The correction Hn(x @n) is a function of the previous

n-17

estimate X1 and of an observation @, obtained at time

n.

The observations are in general functions

9, = @n(en’en«1’°"°’eOBXn~1°°"9XO) (1

of the previous estimates {xi} and of a sequence of vec-
tor valued random variables {ei} that is independent of
{x;}. In case the experimenter has some test signal at
his disposal, this can be included in the sequence fe.l.
In many cases the observations do not depend on previous
estimates. Then the sequence {ei} can be taken as the ob-

servations themselves:

Another common special case is that the observation de-
pends only on X 9o i.e.

P

Since it is desired that {xi} converges, the correction
Hn<xn—1’wn) caused by a single stochastic observation 9
must tend to zero as n tends to infinity, i.e.

( n
iy Xn~13wn) - Yan(Xnﬂﬂg@n)
where {yn} is a sequence of positive scalars tending to

zero. The variables may either be predetermined scalars,

which gives the algorithm

n - @n(xn—1’en) (1,

.2)

. 3)

4)




v
= +
%n Xn—1 Yan

or functions of the observations, giving
H ) (1
Xp 7 Xpeq Fovp (e H (X gy

In some cases it is convenient to specially treat the

n
case when Hn is multiplied by a matrix Sn<mn’°"’@0):
A%
Xp F X g4 0¥ ynSn(mn,n.,,@O)Hn(xn_1,wn) (1

In (1.6) and (1.7) y, and S respectively have to be up-
dated recursively. Therefore, it is always possible to
rewrite (1.6) and (1.7) in the form (1.5) by extending
the estimate vector x, . However, in some applications it

is more favourable to directly consider (1.6) and (1.7).

The results of this report are mainly concerned with the
Y
cases (1.3) and (1.4). Then H_(x__,,¢ ) can be written

explicitely as a function of X .4 and e

o
Hn(xnw1’$n(xn«1’en)) = Q_(x

n n—1°en>

Hence the basic algorithm to be considered here is

Xy 5 OXo_gq 0% YnQn(Xn—1’en) (1.

The techniques that are used also apply for the general
case (1.2) if the influence of old estimates {Xi} on ©_
decreases sufficiently fast. Certain algorithms with ©_

as in (1.2) are treated in Ljung-Wittenmark (1974),

In Sections 1.2 and 1.3 several examples of algorithm

(1.1) are given. These examples will, hopefully, clari-

(x__q50,) (1.

5)

.6)

. 7)

8)




fy the classification of Hn5 and show that a number of

control theory applications fit in the structures (1.1) -
- (1.8).

1.2, Stochastic Approximation Algorithms.

"Stochastic approximation is concerned with schemes
converging to some sought value when, due to the
stochastic nature of the problem, the observations

involve errors." (Dvoretzky (1956))

The original scheme was devised by Robbins and Monro
(1951).

Example 1.1 - The Robbins~Monro (RM) scheme.

Consider the problem to solve

E_Q(x,e) = 0 (1.9)
for x. Let the solution be x™. Observations @, = Q(x,en)5
n=1,... are available for any x. Robbins-Monro proved

that under certain conditions the scheme

X = X
n n-1

+ YnQ(Xn=1°en) (1.10)
converges to x*. These results were extended by Blum

(1954b) to the multidimensional case. The conditions for
convergence are discussed in Chapter 2. Let us just re-

mark that among the necessary conditions we have

1) ”Ee” denotes expectation with respect to e, while the

vector x is considered as a fixed parameter




;Ynzw (1.11a)
o 2
;Yn<°° (1.11D)

In this report it is shown that (1.11b) can be replaced

by a weaker condition.

Comparing with the formalism of the previous section the
observation © has the form (1.4), and (1.10) is thus a
simple special case of (1.8). The sequence {yn} is deter-
ministic as in (1.5). In some applications, see Section
1.3, Q(xnmqgen) is itself not a primary observation, but

formed from observations and from Xpeq

As a simple example of the RM scheme, consider the prob-
lem to find the mean value of a stochastic variable e.
Let Fe = x™, This value x* can be found as the solution
of

Ee(e—x) = 0

Now take in (1.9) Q(x,e) = e - x and apply the RM scheme:

Xo ® Xoq vy e mx ) (1.12)

With the choice Yo T 1/n, which clearly satisfies (1.11)

we obtain

which is an efficient estimate of x*




In many applications it is interesting to minimize a func-

tion

EVJ(xgv) = P(x) (1.13)

with respect to x. If the derivative é% J(x,v) can be cal-
culated the stationary points of (1.13) can be found as

solutions of

)
Ev : 3;~J(x,v). = 0

This i1s a problem that can be solved using the RM scheme.
If the derivative cannot be calculated, it seems natural
to replace it with some difference approximation. This

was suggested by Kiefer and Wolfowitz (1852):

Example 1.2 - The Kiefer-Wolfowitz (KW) procedure.

Consider the problem to minimize (1.13) with respect to x.
Observations J(xjvn), n=1..., of the criterion are
available for each chosen x. The distribution of vn is in-
dependent of x. Kiefer-Wolfowitz (1952) and Blum (1954b)
suggested that the minimizing'point x*should be estimated

recursively.

v )/al (1.14)

where

J(x,a,v) = (J(x—aui,vjf - J(x,vi), v

J(x—aum,vjm) - J(xgvi)}




m is here the dimension of the vector x and'{ui} are the
unit vectors in R™. Consequently, to advance one step with
(1.14), m+1 measurements are made and m+1 outcomes of the

noise v enter.

Blum (1954b) has shown convergence with probability one
for (1.14) under certain conditions. The conditions on

the sequences {yn} and {an} are

. [ee] co [oe] 2
lim a = 03 ) Yo T @ ) a vy, < 2y /a )’ <=
n->w 1 1 1
In this procedure the observation 9, consists of J(Xn-1+

+aui9Vji> and is of the type (1.4). The noise vector e

in (1.4) must be chosen to include m+1 values of v. Clear-
ly (1.14) is a special case of the basic algorithm (1.8).
Notice that Qn(xnm1,en) = J(Xn—1’anﬁvn>/an actually is

time varying in this case.

In the KW procedure the minimization is performed with a
steepest descent method. Recently, Kushner (1972), (1973),
and Kushner-Gavin (1973) have considered more general mi-
nimization routines. This approach seems to promise bet-

ter numerical behaviour of the algorithms.

Dvoretzky (1956), considers a version of stochastic app-
roximation algorithms, which includes both the RM and KW

schemes. He writes the recursion

Xopq © Tn(xn’°"’x1) el (1.15)
where
ECe 4 ! Xqseos% ) = 0



Under certain conditions on the transformations Tn’ (1.15)

converges with probability one. Dvoretzky considers prima-
rily the case with scalar valued x. Extensions to the mul-
tidimensional case has been given by Derman-Sacks (1959).

Also (1.15) fits in the formulation (1.1) with general ob-

servations (1.2).

The term '"stochastic approximation algorithms" will be
used frequently in this report. By this term will be meant
the algorithms discussed in this section, in particular

the RM and KW procedures.

1.3. Applications to Control Theory.

Learning systems.

Tsypkin (e.g. 1968, 1971, 1973) has applied stochastic
approximation techniques to a broad variety of problems
in control theory. The approach is known as "learning
systems". In short, the "goal of learning" is defined as
to minimize some criterion P(x) with respect to the vec-
tor x. However, only noisy observations J(x,v) of the

criterion are available, where

EVJ(X,V) = P(x) (1.16)

If the derivative 5% J(x,v) can be formed the RM scheme

can be applied to

9 .
Ev[-_a—SEJ(XN):} = 0

If not, the KW procedure can be applied to (1.186).




In this framework estimation and identification problems

("learning models"™), adaptive systems, supervised and un-
supervised pattern recognition ("learning pattern recog-

nition systems" and "Self-learning systems of classifica-
tion") etec. can be treated. Similar approaches are consi-
dered by several other authors, see e.g. Fu (1969), Sari-
dis et al (1969), Sakrison (1967).

Basically, the learning algorithms rely upon the RM scheme
(or KW scheme) and convergence criteria for these can be
applied. However, it may happen that the usual criteria

are not applicable in a given case.

An approach that is related to stochastic approximation is
suggested by Aizerman, Braverman and Rozonocer (e.g. 1964ab,
13970). Their "Potential Function Method" can be applied to
various problems in machine learning. The connection with

the RM scheme is discussed in Alzerman et al (1965),.

Estimation.

A common problem is to estimate the coefficients in a dif-

ference equation
y(t+1) + ay(t) + ..t amy(tnm+1) =

= bou(t) o, bmu(tmm) + v(t+1) (1.17)

where {v(t)} is a sequence of independent, random variables

with zero mean values. The variables y, u and e are sca-
lars. Measurements of the input u and of the output y are
available.

Let x* denote the vector of true values:
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T
x* = (aqa..,gamabo,..a,bm)
and let
e = (~y(), o myEmme ) yule) .. ult-m))

denote the vector of observations. Then (1.17) can be

written

gzx* = v(t+1) (1.18)

y(t+1) -
A reasonable "goal of learning" for this estimation prob-
lem is to find the vector x that minimizes the criterion

T 2

P(x) = E|ly(t+1) - €% (1.19)

This function can be minimized by taking the derivative

and applying the RM scheme:

—P'(x):EeQ(x,e) = 0 (1.20)
where

Qlx,ep 4) = e y(e+1) - gtggx‘ 5 €iyq T (gt,y(t+1))

Then

Xopq = %, * Yn+1{£nY<n+1) - gnggxn} (1.21)

The variables Y, can be chosen in several ways. Let it
first be a sequence of scalars. This stochastic approxi-
mation version of least squares estimation is treated

e.g. by Wieslander (1969), Tsypkin (1973) and Mendel (1973),
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where also other variants are discussed.

For normalization reasons Yo is often chosen as

-

I
Tn+t 7 H[gngnJ
or

n -1

_ T
Tnet1 ~ [kZO Ekgk]
Comparing with Section 1.1, the observation W4 T (Ena

y(n+1)) does not depend on {xi} and is consequently of
the type (1.3). The algorithm (1.21) with the discussed

cholces of {yn} is a special case of (1.6).

Generally speaking, when we are faced with a problem (1.9),

to solve
EeQ(x,e) = 0

for x, it seems desirable to solve

Hne~—13

]
— Q(x,e,) =0 (1.22)
N2 k
for x at time n. This is likely to give a good estimate
x,+ In the case (1.4) the basic observations 00x 45
. ¥ . .
from which H(kaqgmk) = Q(xy _4,e,) is formed,depend on
X, _q+ It is then not clear how the function Q(x,ey ) could

be formed from @(xk“1,ek)u Hence, it is not possible to
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solve (1.22).

In the present estimation problem, however, (1.22) can be

. . _ B T
solved, since the function Q(X,ek+1) = [gky(k+1) gkgkx)
can be formed for any x, as soon as y(k+1) and £y are known.
Furthermore, in this special case Q(x,e) is linear in x.
Then it is actually possible to solve (1.22) recursively

with a special (matrix) choice of y_ in (1.21):

Example 1.3 - Real time least squares.

For the estimation problem (1.20) Eq. (1.22) is

1y
Q(XDe ) = -
1 kK® o ngy

Sl
H~1 3

e [y ety = gix] = 0 (1.23)

which can be solved for x if only

° T
E g, & = R (2mx2m matrix)
120 k "k n

A
n+1

is known. The solution of (1.23) can be written recursive-
ly (Astrdm (1968)):

_ 1 -1 T
“ne1 T Xn toaET Ry [gny(n+1) gngnxn] (1.24)
In Eg. (1.24) the correction can be written

Hn = ynSn(en,...an) o Q(Xn=1’en)

where S_ = R;1 and y_ = 1/n, which is of type (1.7).

1)

This expression holds only asymptotically as n tends

to infinity.

1)
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Notice that if Rn is included in the estimate vector X

(1.24) can be written on the form (1.8).

Remark: A recursive solution of (1.22) can be obtained as

soon as ¢ _ = e  and Q(x,e) = gq(x)gz(e) + g3(e). o

Example 1.4 - General recursive estimation algorithms.

Algorithms (1.21) and (1.24) give biased parameter esti-
mates in case {v(t)} is not a sequence of independent va-

riables. A more general model is

v(t+1) + a1y(t) + ... + amy(t“m+1) =
= bou(t) oL, * bmu(t—m) +
+ e(t+1) + cqe(t) + .. F cme(t«m+1) (1

where {e(t)} is a sequence of indevendeni random variables.

Let the vector of true parameters be

* T
x" = (a1,...,a ’bo""’bm’c1"°"cm)
and let an estimate be

~ ~ ~ - 3 ~ ~ T
X = (aq,...,am,bo,...,bm,c1,...,cm)

Then a suitable criterion is to minimize
~ 2
Ely(t+1) - y(t+1lt,x)] = P(x) (1

where §(t+1lt,x) is the predicted value of y(t+1) given
{ut),...,ul0),y(t),...,y(0)} and given that the system

.25)

.26)
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parameters are assumed to be x. This value can be obtained

as the solution of

;(s+1lsgx) + 519(518“19x) .. 4+ cmy(s”m+1ls=m3x) =
= (c1ma1)y(s) A (cm“am)y(Smm+1) +
+ bou(s) ..+ bmu(s—m) (1.27)
where s = 0,...,t. Suitable initial values must be chosen.

Eq. (1.26) corresponds to minimization of the prediction
error, and clearly (1.19) is a special case (c; = 0) of
(1.261,

One way to determine the estimate x at time n is to mini-

mize

1% 2

= LyGe)y - yele=1,x)] (1.28)
1

with respect to x. This is possible to do, using (1.27)
if the observations {u(t),...,u(0),y(t),...,y(0)} are
available. However, in the general case it is not pos-
sible to write the sequence of estimates that minimize
(1.28) recursively as in Example 1.3. This is due to the
fact that the criterion is a more complex function of x

in this case.

The RM scheme can be applied to the derivative of (1.26).

This gives

N R
Xpgq = Xp yt+1{5; y(t+1!t5xt)[y(t+1!t,xt) - y(t+1)]} (1.29)

It is important to notice that it is possible to exactly
calculate &(t+1lt5xt) according to (1.27) only i1f infi-

nitely many old y(s) and u(s) are known. This means that
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(1.29) is no recursive algorithm.

For an on line algorithm only a relatively small number
(say r) of old values can be kept in memory. Hence &(t+1l
|t,x) can be replaced by some approximation §(t’Xt’Xt—1’
,,,XO) that is obtained from (1.27) starting with s=t-r.
The initial values are determined from previous predic-
tions. The same holds for g% §(t+1|t3xt).
With the terminology of Section 1.1 this means that the
observation ® consists of y(n-s), uln-sl), s = 0,4...,0,
and the initial values y(n-r-s), s = 0,...,m. The obser-
vation UM is of the general type (1.2) since it depends
on all previous estimates via old y(t). Consequently the
resulting approximate algorithm (1.29) is of type (1.5)
or (1.8) with ¢ as in (1.2),

The sequence {yn} can be multiplied by a sequence of mat-
rices as in (1.24). The properties of approximations of
(1.29) with various choices of A and matrices are dis-
cussed e.g. by S8derstrdm (1973). No cocnvergence results

for these algorithms are available.

Adaptive systems.

Adaptive systems concern the control of processes with un-
known dynamics. An adaptive system may contain a feedback
regulator of some given structure, the parameters of which
are automatically determined. A performance index P(x) for
the behaviour of the adaptive system can be defined as a
function of the regulator parameters x. Usually, only a
stochastic function of the performance index J(x,v) can

be observed or formed from the observations. It is supposed
that (1.13) holds. If the derivative é% J(x,v) can be cal-

culated, the RM scheme can be applied to minimize P(x). How-
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ever, for adaptive systems, calculation of this deriva-
tive requires that the characteristics of the system are
known. Therefore this approach cannot be applied straight-

forwardly. The KW procedure can be used instead.

A different approach is to estimate the system dynamics
and use the estimates for design of the regulator. The
regulator is updated recursively. In Ljung (1972) is dis-
cussed how such adaptive structures fit in the formula-
tion (1.1).

Example 1.5 - A class of self-tuning regulators.

Suppose algorithm (1.21) or (1.24) is used to estimate
the system dynamics. The estimate at time t can be used

to determine the next input from old input output data:

u(t+1) = h(xt’gt> (1.30)

Astrdm-Wittenmark (1973) consider a minimum variance
control law, which gives several nice features to the

resulting adaptive (or self-tuning) regulator.

It is important to notice that since u(t) depends on Xio
also the observations £ and y(t+1) will depend on X
Xi_qse++>¥Xg. This means that ¢ has the general form (1.2)

and Q defined in (1.20)

n
Q(xt,et+1) = H(xt,@ )Et(x s X )

4 SRR L

T
. [y(t+1;xt9...5xo) - €t<Xt’°"5XO)Xt]

is no longer a linear function of x In particular (1.24)

"
no longer gives the estimates that are solutions to (1.22).
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The convergence properties of the class of self-tuning re-
gulators under consideration are treated in detail in

Ljung-Wittenmark (1974),

]
It is of interest to compare Examples 1.3, 1.4 and 1.5.
In all these cases the objective is to solve

E Q(x,e) =0

for x. In Examples 1.3 and 1.4 the basic observations
{y(£)} and {u(t)} do not depend on x. From these obser-
vations the function

Qt(x,et) or Qt(x,et,...,eo)

can be formed for any x. It is then possible to solve

4 I

= ; Q(x,et) = 0 (1

for x, which gives the estimate X

In Example 1.3, because of the linear dependence of x in
Q(x,e), it is possible to calculate the sequence of so-
lutions to (1.31) recursively as in (1.24). In Example
1.4 Q depends on x in a more complex way, and the solu-
tion to (1.31) cannot be written as recursions containing
a fixed and finite number of observations. In Example 1.5
also the basic observations y(t) and u(t) depend on Xy .
The estimate at time t is used for a decision that af-
fects future observations, which is a typical feature of
an adaptive system. It is then not possible to calculate

Q(x,et) for arbitrary x and (1.31) cannot be solved.

<31)
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An automatic (self learning)classifier is an example of
an adaptive way to estimate mean values of two stochastic

variables.

Example 1.6 - Self learning classification (Unsupervised

pattern recognition).

A classifier receives scalar valued signals e which may
belong to either of two a priori unknown classes A and B.
The classifier must find a classification rule, i.e. a
number e such that e is classified as A 1if e € Cp and
B otherwise. The number c can e.g. be determined as fol-

lows
_ A B
S (xn+xn)/2
where
x + (e mxA ) if e is classified as A
ol Yn ®n *n-1 n
A
X, = (1.32)
xA otherwise
n="

Xi is defined analogously. Clearly, xﬁ is the mean value
of the outcomes classified as A. This scheme is proposed

e.g. by Tsypkin (1968).

Algorithm (1.32) can be considered as an RM scheme to

solve
XA = Efele€A(x)) = E(ele « %(XA+XB)) = EeQA(xA,xB,e) = 0
xB = E(eleEB(x)) = E[ele > %(XA+XB)) = EeQB(xA,XB,e): 0
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where

e if e ¢ %(XA+XB)
QA(XAng,e) = and QB analogously

x if e > %(XA+XB)

Since the clasgification e € A or e € B depends on x, the
right hand side depends on x. For the simple algorithm
(1.12), where the mean value of a stochastic variable is
estimated, this is not the case. As in Example 1.5, the
adaptive nature of the algorithm makes Q a more complex

function of x.

To summarize, we have in this chapter seen examples of a
variety of algorithms in control theory, that have a
structure giVen by (1.1). In this report the convergence
properties of such algorithms are treated. The results
will also imply new convergence criteria for stochastic
approximation algorithms. The results are summarized in
Chapter 7.
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2. CLASSIFICATION OF CONVERGENCE CRITERIA.

The convergence properties of some of the algorithms dis-
cussed in Chapter 1 have been treated by many authors.

However, there does not seem to exist a unified approach.

Convergence of stochastic approximation algorithms is
treated in a number of papers. A selection of these fol-
lows below. However, most of the given results cannot be

applied to cases with correlated observations.

The potential function method is extensively treated in

Alizerman, Braverman and Rozonoer (1370).

Convergence of the real time least squares method (Example
1.3) follows from the consistency of least squares estima-
tion, see e.g. Astrdm and Eykhoff (1971). Convergence for
the more complex cases of general recursive identification
schemes (Example 1.4) and self-tuning regulators (Example

1.5) does not seem to be treated in the literature.

The objective of this chapter is to illustrate what types
of conditions that are usually imposed to assure conver-
gence with probability one (w.p.1). The discussion here
is basically confined to the Robbins-Monro scheme. This
procedure and variants thereof are extensively treated in
the literature. The convergence criteria can be classi-
fied into three classes. This conclusion is supported by
several examples. The chapter can therefore also be read
as a short and incomplete survey of previous results. As
such it is not essential for the rest of this report, but
it serves as a background to the new results presented

here.
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2.1. Problem Formulation.

In Example 1.1 we have introduced the RM scheme as a re-

cursive method to solve

E Q(x,e) = f(x) =0 (2.1)
by
X, 0% X gt YnQ(Xnm19en) (2.2)

Many papers and books deal with convergence w.p.1 of (2.2)
to the desired point x*3 see e.g. Blum (1954ab), Dvoretz-
ky (1956), Burkholder (1956), Derman and Sacks (1959),
Gladysjev (1965), Albert and Gardner (1967), Wazan (1969)
and Aizerman et al (1970). Various criteria have been sug-

gested.

It is possible to classify the conditions into three main

classes.
Eq. (2.2) can be written

L Yn[f<xnm1) + (Q(Xn—1’en) - f(xnﬁq))]

The term Q(Xn~1’en) - f(xn—1) can heuristically be regar-

ded as noise added to the deterministic algorithm

n n-1 * Ynf(xnw1) (2.3)

Since the noise term is not likely to improve the conver-
gence of (2.2), it is reasonable to require first of all
that the algorithm (2.3) should converge to xf Convergence
of (2.3) which is an ordinary difference equation, depends

on the "step size" y_ , as well as on the function f(x). A
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necessary property of £(x) is that (2.3) shall converge
for sufficiently small y_. The corresponding maximal mag-
nitude of Y, may depend on the initial value Xg- Condi-
tions that assure this property will be referred to as

stability conditions.

The variable N tends to zero as n tends to infinity. Now,
in the beginning of the recursion (2.3) Y, can still be
too large and | Xn’ may increase rapidly. If then also
|f(xn)\ increases, the sequence {y_} may not decrease suf-
ficiently fast to yield small corrections Ynf(xn) and con-
vergence of (2.3). Therefore conditions that assure boun-
dedness of X, must be introduced. These will be called

boundedness conditions. Boundedness and stability condi-

tions together imply convergence of (2.3) to the desired

point x*, if

y_ >0 as n - o and (2.4)

)
A1 g
<
3
i
8

The second condition 1s necessary, since otherwise X,

could move only a given distance from the initial value.

Furthermore, certalin conditions on the noise Q(x,en) -~
- f(x), and on the sequence Yh must be introduced to as-
sure that the influence of the randomness in algorithm
(2.2) is sufficiently small. Such conditions will be re-

ferred to as noise conditions.
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2.2, Stability Conditions.

In the original paper by Robbins and Monro (1951), only
mean square convergence of (2.2) was considered. Conver-
gence w.p.1 was first shown by Blum (1954a). He consi-
dered the scalar case and introduced the following condi-

tions on f(x):

f(x) > 0 for X < X
(2.5)

f(x) <0 for x > x*
where x* is the solution of f(x) = 0. Blum also assumed
that
inf [f(x)]| > 0 for all &, > §, > 0

§,<|x=x*]<s 2 !

1 2 '
In this simple case the stability of the iterative me-
thods to find the solution of f(x) = 0 is, of course, de-

termined by the way the curve f(x) intersects the x-axis.

Albert and Gardner (1967) use as criterion that é% £(x)

be negative for all x.

Dvoretzky's (1956) criterion is valid not only for the

RM case, but also for the more general algorithm (1.15).
The criterion is based on a contraction mapping property
and implies (2.5) for algorithm (2.2) in the case of sca-
lar valued x. For vector valued x and Q Dvoretzky suggests
the following criterion:

*

|x_ - x - ynf(xn)] < Fn‘Xn - X
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Blum (1954b) has suggested to use functions with Lyapunov

properties. The existence of a function V(x) with proper-

ties
Vix) 3 0
inf V(x) = v(x™ | >0 Ve>0
€<}X~X*|

, 1)
sup Vi(x) f(x) < 0 V e >0
e<|x-x*

is assumed. These properties obviously guarantee that the

ordinary differential equation

4 x = f(x)

dt

is stable.

Braverman and Rozonoer (1969) and Aizerman et al (1970)
have given similar and Slighfly more general stability

criteria.

In e.g. Braverman and Rosenoer (1969) and Krasulina (1972)

special attention is paid to the case when the equation
f(x) =0
has several roots.

Gladysjev (1965) has introduced a less general criterion,

1)

The derivative V' is regarded as a row vector.
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which is more easily checked than the one above. It has
the form

inf (x=x*)TE() > 0 Ve s 0 (2.6)
£< X¢x*|<1/e

Obviously it is a special case of Blum's approach, with
Vix) = %]x - x*|2 The criterion (2.6) is also used by

Tsypkin (1971).

When the RM scheme is applied to minimize a function as
in (1.13) the function P(x) = EVJ(X,V) can be used as a
Lyapunov function for the problem. This approach has been

persued by Litvakov (1968) and Devyaterikov et al (1969).

2.3. Boundedness Conditions.

Consider first an example that shows how divergence in
the algorithm (2.3) can occur, even if the stability con-

ditions are satisfied.

Example 2.1. Let f(x) = - x3. Then (2.3) gives

Xp 7 Xnnﬂ - Ynxn“1

(2.7)
Clearly f(x) satisfies any of the cited stability condi-
tions. However, with Yo © 1/n and x, = 2 the sequence of

0
estimates 1is

X4 = -6 Xo 102 Xy = -353634

and Ixnl tends to infinity as n tends to infinity. For

this initial value, convergence would be obtained if
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2

Y, € 1/2, n = 1,... In general y must be less than Z/XO

to assure convergence. There consequently exists no se-
quence {y_} that yields convergence for (2.7) irrespec-

tively of the initial value.

Some restrictions to rule out cases like Example 2.1 must
be introduced. For (2.2) there is a non zero probability
that x_  may belong to a given area arbitrarily far away
from x*. Therefore such restrictions cannot be obtained
by conditions on the sequence {y_} related to the initial

value Xq o but conditions on f(x) must be introduced.
Blum (1954a) uses
|f(x)] < a + blx]|

for the scalar case. Albert and Gardner (1967) consider

truncated algorithms of the type

x\o= Xy + YnQ(an1sen)
x o= ox! if B < x' < A
n n n
(2.8)
X, F B 1f x! ¢ B
x_ = A if x' » A
n n

For the Lyapunov function approach, additional assump-
tions on the Lyapunov function V(x) must be introduced.
Blum (1954b) assumes that

Va(x) = Eewa(x,ege) < K for all a,x

where
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Wa(xaeae) = Q(xae)TV”(x+eaQ(x,e))Q(x,e)

The variable 8 is a number between 0 and 1, that may de-
pend on e. V'"(x) is the matrix of second order derivatives
(the Jacobian) of V(x), the function introduced in Section
2.2,

In Aizerman et al (1970) a more general condition 1s as-

sumed:

Ee[max W (xgeﬁe>} € CV(x) = CV'(IE(x) + Cy (2.9)
0g8¢g’ n

Devyaterikov et al (1969) use a similar condition.

Gladysjev (1965), Litvakov (1968) and Tsypkin (1971) use
a criterion that is similar to the one due to Blum in

the scalar valued case:

EG[Q(x,e)TQ(XBe)] g C1(1+XTX)

This is a special case of (2.9), with V(x) = | x - X*IQ.
All these boundedness criteria state, in various forms,

that Q(x,e) must not increase faster than x| as |x| tends

to infinity.
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2.4, Noise Conditions.

In statistical literature, like in Blum (1954ab), Burk-
holder (1956), the problem (2.1) is often formulated as

follows. Consider a family of stochastic variables Y(x)

having distribution H(-:|x) and conditional expectations
f(x) = EY(x). The function f(x) is called the regression
function with respect to the family Y(x). The equation

f(x) = 0 is then solved recursively

where Yo is a random variable whose conditional distri-

bution has the property

H(C.

X X
n’

3“e,)(1:;,371‘1_“19.”,371) = H(- xn)

n-1
For the formulation (2.2) this means that the distribu-
k+1)>k = n-1,...,0 and

Xk=k Z Ny...s0 may depend only on X, In particular, the

tion of Q(xngen+1) given Q(xkge

distribution of e must not depend on e_,...,eq. Con-

sequently, the segz;nce {ei} must consist of‘independent
random variablesg. When the Lyapunov function approach is
used, as in e.g. Blum (1954b), Aizerman et al (1370),
Litvakov (1968), this independence assumption is criti-

cal to evaluate
Ee{vi(xn)Q<Xn’en+1)[V(X1)"""V(Xn)}

Comer (1964) points out that the assumption on indepen-
dence is not very realistic in process control applica-
tions. He considers the case

Q(xnae ) = f(xn) + e

n+1 n+1
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where the variables {en} fulfil a condition weaker than
independence. However, he does not show convergence with
probability one for such a process. Wasan (19698) uses
Comer's result for a convergence theorem for dependent

noise. This theorem, however, does not seem to be corrects

A more general stochastic approximation algorithm is con-
sidered by Albert and Gardner (1967). They allow time va-
rying regression functions fn(x) and

.Yn = yn(xqg,.,,xn)

They give a sufficient condition for convergence of such
an algorithm also for dependent noise. This result is
not applicable in the present case, since it requires

that

Z inf £'(x) inf vy = w
n=1 x n X n

z sup y. < =
1 X n

which obviously cannot be fulfilled for time invariant

regression functions.

The conclusion is that the assumption on independent ob-
servations has been critical to prove convergence w.p.1
for (2.2). In this report results valid also for depen-

dent observations are presented.

Together with this assumption, it is also usually assumed
that

Ee[Q(Xje) - f(x)]T[Q(xge) - f(x)] < GQ(X) for all x (2.10)
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and

In some papers a condition (2.10) is included in condi-

tions of type (2.9).

Krasulina (1969) has shown convergence for the Kiefer-

Wolfowitz procedure in case

E, | JG,v) - Px) [P ccC 1 <p <2

and

b o
ng1 (yn/an) <

where a, is the search length as in Example 1.2. It is
thus not assumed that the variance of the noise exists.

Krasulina (1972) has also shown convergence in case

Eg | Q(x,e) = f(x) ]2 5 0% > 0 for all x

E_]QGhe) - £ | ™S s c e 550

-1/2
n

Tn
where the condition

2
Ty, <

is not satisfied.
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In this report convergence with probability one for a
set of algorithms that includes (2.2) 1is considered.
Some new conditions of the discussed types are derived.
The noise conditions in the convergence theorem of this
report are more general than those discussed above. Al-
so, less restrictions will in general be imposed on the

sequence {yn}a
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3. A SEPARATION THEOREM.

Consider the basic algorithm (1.8)

A -1 Qe tx g sey) (3.1)

where {Yn} is a sequence of scalar valued variables that

may be random:

Yo F Yn(eng...geo)

The RM scheme (2.2) is a special case of (3.1). In the
previous chapter different criteria to assure convergence
of the RM scheme were discussed. It was found to be con-
venient to classify the criteria into three classes:

A) Noise Conditions, Bd Boundedness Conditions, and C)

Stability Conditions.

In this chapter conditions for the convergence w.p.1 of
(3.1) are given. They are of general nature and can usual-
ly be applied in practice only after further investiga-
tions. Such analysis is given in the following chapters.
The main idea of the theorem is that the question of con-
vergence 1s separated into three conditions that can be

studied as problems of their own.

In Section 3.1 a heuristic interpretation of the theorem
is given. The separation theorem is stated in Section 3.2

and in Section 3.3 some examples are given.
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3.1. A Heuristic Interpretation.

Suppose that we shall solve the equation (1.9)

EeQ(X,e) = f(x) = 0

where measurements Q(xgen) are available for any chosen
x. An intuitive and simple-minded approach to this prob=-

lem is as follows:

1) TFix an xT .

2) Obtain a large number of samples Q(xlgek)3 k=1,...,0.

3) Form an estimate of f(x) as a weighted sum of these

samples:

. n . .
£(xM) =1216£Q(xl3ek) = zn(xl)
<z

If 6? can be expressed as

n
n .
B, = v Ti (1=v.)
k k i=k+1 =

the sum can also be defined recursively as

”1(xi)] 3 2,=0  (3.2)

zk(xl) = zkgq(xl) + Yk[Q(Xl,ek) - 2 0

4) Based on this estimate, determine a new x-value
147 1

_ v i .
X = xXT o+ Yi+1zi(x ) (3.3)

5) Take this xrM as the new x and repeat from 2).
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This scheme has two phases: an estimation phase (3.2) and

a decision phase (3.3). Now,let the number of samples in
each estimation phase tend to infinity. The resulting, hy-
pothetic, algorithm would then converge if'a) the gstima—
tion phases give consistent estimates: zn(xl) > £(x") w.p.1
as n » », and b) the decision phase, which is a determinis-
tic difference equation with zn(xi) replaced by f(xi)5 con-

verges to the solution of f(x) = 0.

Now, the Robbins-Monro scheme (3.1) can in fact be seen as
an ingenious mixing of the two phases. A decision is taken
in each step, but as n tends to infinity, more effort is

paid to the estimation, since Y, tends to zero.

The separation theorem states that, in spite of the mixing
of the phases, convergence of (3.1) still follows from con-
sistency in the estimation phase and convergence in the de-

cision phase. More precisely, the conditions

al zn(xo) -+ f(xo) w.p.1T as n + « for all x9 where

N
11

0 0 0
= 2 GO F r (QGTe) =gy ()]

b) x_ - x* as n + » where f(x*) = 0 and

X = X

Kk k-1 VcF O )

are the main conditions for convergence of (3.1) to the de-

. %
sired value x

In Theorem 3.1 the condition b) above is split up into a

boundedness condition and a stability condition.
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3.2. Separation.

Theorem 3.1. Consider the algorithm (3.1)

X F X gt oy Q(x e ) x € R

n-1°7?

and let D be a compact subset of R™.  Let Qn(x,e) be Lip-
schitz continuous in an open region pYsD for fixed e, with
Lipschitz constant Kn(e). Assume that the sequence of

positive scalars (random variables) {Yn} satisfies

Yy, > 0 asn-+ « and Zyn T @ (w.p.1)

Let zn(xo) and r_ be recursively defined by

0y .

2 (xD= 2 (xP) vy o (xP,e ) -z (x) 0 (3.u)
n n-1 nt<n n 1

n

roo=r 4o+ oy [K (e ) - Pn“1] r, 0 (3.5)

where XO is a fixed element in D.
Assume that
a) Zn(XO) converges w.p.1 for any xY€D and define the function

f(x) = 1lim Zn(X)
N—>co

r ~converges Ww.D.1.

b) x, €D infinitely often (i.0.) w.p.1. (This means
that w.p.1 there exists a subsequence {Xnk} that be-

longs to the region.)

c) The ordinary differential equation
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o= F () (3.6)
dt

has a stationary point «* which is an asymptotically
stable solution with domain of attraction Dy 2 D.
(That is, all solutions with initial values 1in Dy tend
to x¥ as t tends to infinity.)

*

Then x, ~ X w.p.1 as n =+ o.

The proof is given in Appendix A.

Notice that the only condition in Theorem 3.1 for the se-
paration to hold is that Q (x,e) is Lipschitz continuous

for fixed e. This 1s quite a weak condition. In particu-

lar, the separation is obtained without any conditions

on the noise e.

Condition a) in Theorem 3.1 will be called the noise con-

dition. It concerns the convergence w.p.1 of the two al-
gorithms (3.4) and (3.5). These have the same structure

as the simple example (1.12) of the RM scheme where the
mean value of a stochastic variable is estimated. The con-
vergence of these algorithms 1is investigated in Chapter 4.
There Q (xo,e ) is considered as a random variable for
which EeQn(xO,en) exists. If Z (X ) > f(x ) W, p 1, it

then follows under weak assumptlonsﬁ that

f(xo) = lim EeQn(xoge)

e

This connects the two different definitions of f(x), the

1 Existence and uniqueness of solutions to (3.6) follows

from the Lipschitz continuity of Q and from condition

al.

1)
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one in (2.1) and the one in Theorem 3.17.

Condition b) will be called the boundedness condition. TIn

its given form it is clearly necessary for convergence,
but may be difficult to apply directly. Conditions that
imply the boundedness condition are given in Chapter 5.
Notice that if it does not hold, and D can be taken as
any compact region, this means that x, tends to infinity

with non zero probability.

Condition c¢) clearly is the stability condition. It can

be checked using Lyapunov stability theory, see e.g. Kra-

sovskij (13963).

The techniques to find Lyapunov functions are not dis-
cussed here. In practical situations, sufficient insight
into the stability properties of (3.6) might be obtained
by numerical solution. The importance of the ODE (3.6) is,
however, not restricted to the question of convergence of
(3.1). In Chapter 6 it is shown that the trajectories of
(3.6) are related to the asymptotic behaviour of (3.1).
Therefore, when investigating the properties of (3.1),
numerical solution of (3.6) can be a valuable complement

to simulation of (3.1).

Remark. Basically, the theorem does not deal with conver-
gence in a stochastic setting. A fixed realization for
which a) holds on a dense subset of D and for which b) and
the conditions on{yn}hold is considered throughout the
proof. Convergence of (3.2) is shown under these condi-
tions. The theorem thus also can be applied for each rea-
lization, and the stochastic convergence concept "w.p.1"
can be omitted. In particular, this means that the limit
function £(x), as well as the convergence point x™* might
be random variables: f(x) = f(x,w). Then in condition c)

the ODE x = f(x,w) should be asymptotically stable with
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stationary point x®(w) for almost every w, i.e, c) must

hold w.p.1.

Several extensions of the theorem are possible., It holds

also for the algorithm

*n T *p-q YnQn(an1’°°°’XO§en>

if the dependence of old X; on Q  decreases sufficiently

fast. In Ljung-Wittenmark (1974) such an extension

proved for a special class of such algorithms,

In some applications, like real time least squares
1.3), Qn is multiplied by a matrix that depends on

values of the noise:

X_ = X S (e

n n--1, * Tnon 19" ”en>Qn(an1’en)

This case 1s considered in the following corollary.

Corollary 1. Consider algorithm (3.7). Suppose the

tions of Theorem 3.1 hold with Qn replaced by SnQn'

is

(Example

old

(3.

condi-
(The

limit function £(x) may be a random variable.) Then X, >

*
> X W.p.1 as n » o,

In case there are several stationary points of (3.

6) it

may be easier to use the following variant of the stabi-

lity condition.

Corollary 2. Consider algorithm (3.1). Suppose that con-

ditions a) and b) of Theorem 3.1 hold. Assume that
exists a twice differentiable function Vix), x € D

where D1 is an open set that contains D, such that

there

’[ 2

7)
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VI(x)f(x) ¢ 0, V x € D,, and VI(x)f(x) = 0 ® X € DC.
Assume further that V(x) = const and V'(X)f(X) < 0 for
x belonging to the boundary of D. (This assumption can
be omitted if D, can be taken as R™.) Then X, > D ow.p.1
as N > o . Furthermore, if D, consists of isolated

points, then X, x*(w) w.p.1 as n > @, where x*(y) € D.-

The proof of this corollary is indicated in Appendix A.

3.3. Examples of Application of the Theorem.

Theorem 3.1 is applicable to a variety of algorithms.
Some examples of cases that can be treated are given be-
low. In general no convergence results can be obtained
at this stage, since the noise and the boundedness con-
ditions remain to be analysed. Hence it is demonstrated
only how the separation can be achieved and how the con-
ditions can be reformulated. Some of the examples are

continued in Chapter 7.

Example 3.1 -~ Minimization of a function when derivatives

are available.

This common case can be formulated: Minimize P(x) = EVJ(xgv)ﬂ
x € Rm9 with respect to x. The derivative ﬁ% J(x,v) is
available, and the Robbins-Monro scheme can be applied

tTo solve

- 8 4 -
f{x) = Ev ™ J(x,v) = 0

R By this is meant that inf ]xn=§| -0 as n > » w.p.1.

XEDC
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for x. Examples include various estimation problems as
shown in Chapter 1. In this case the boundedness and sta-

bility conditions can be interpreted in a special way.

Suppose that P(x) is continuously differentiable. Under
weak conditions it follows that fT(x) = - P'"(x). It is
now possible to choose P(x) as the function V(x) in Co-
rollary 2. Then V'(x)f(x) = P'"(x)f(x) = = fT(x)f(x) < 0

v x € rR". Consequently, if X belongs to some bounded
region i.0. it will tend to a solution of f(x) = 0. If it is
not bounded i.o. it tends to infinity. To summarize: If
the noise condition is satisfied, X, either tends to in-

finity or to a stationary point of P(x) w.p.1 as n - .

Example 3.2 -~ The Kiefer-Wolfowitz procedure.

If the minimum of P(x) in the previous example is to be
found and no derivatives are available, the Kiefer-Wolfo-
witz procedure can be applied, as described in Example 1.2.
The sequence {an} tends to zero as n tends to infinity.
Consider (1.14). To apply the theorem, take

_ g -
Q% _qse ) = L(J(Xnm1“anu13vj1) J(Xn~1’vi))/an"°‘

Suppose that P(x) is twice continuously differentiable
with respect to x. Then

Q

— i 1
n(xnm1’en) =P (an1) + anP (gn) + qn(xnﬁq,en)/an

where

_ - - - _
Uy (Ko e8y) = [J(Xna1'anu1’vj1) EijJ(Xnmwfdnu1’Vj1>

T
- J(Xn"‘/l 3Vi) - EViJ(Xn"’/‘ 9Vi)5.eo]
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The condition on Lipschitz continuity of Q gives a con-

dition
lg (x45e) = a (x,,e)| ¢ K (e)]x, = x,| (3.8)

The noise condition takes the form

z m1(xo) + yn(Qn(xogen) -z _1(x0)] = (3.9)

z (XO)
n n

n

= Zn(XO) +“P'(XO) w.p.1 as n » o,

ro=ro_4 0t Yn(Kn(en) - rnm1) =r =+ 71 w.p.l asn - = (3.10)

. .. . 0
O,e) contains a deterministic component - P'(x7) +

Now , Qn(x
+ anP”(gn) where £ ~ x% as n » ». This implies that P”(gn)
is bounded and so anP”(gn) + 0 asn » «». It is easy to

show that (3.9) is equivalent to

0y

N,
z_ (x

0 0 0
0 = EHGW(X )+ yn(qn(x se d/a - %n~1(x ))

= %n(xo) + 0 w.p.1T as n » (3.11)

Consequently, if (3.8), (3.10) and (3.11) are satisfied,
then X tends w.p.1 either to infinity or to a stationary

point of P(x).

Example 3.3 = Minimization of a function using noise cor-

rupted measurements.
A common special case of Example 3.3 is that

J<X’en> = P(x) + e,
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where the distribution of e does not depend on x. If the
KW procedure is applied to this case, the noise conditions
are simpler than in Example 3.2. Obviously, since a, does
not depend on x,(3.8) and (3.710) are trivially satisfied.
Hence X, tends w.p.1 either to infinity or to a stationary

point of P(x) if z, + 0 w.p.1 as n » «, where

)y z, = 0

+ yn(en/an -z 0

n n-="1 ="

Example 3.4 - Real time least squares.

In Example 1.3 it was found that the solution of (1.23)

can be written as

] 1 -1 T
Xaer T X P TRy [gny(n+1) gngnxn] (3.712)
n+1
where
1.0 T
R = — ) &£ (3.13)
D4 k=g KK

Assume that {gk} is a stationary stochastic process. Then

T
Rn » R = Egkgk as n -+ o wWw.p.

It is assumed that R is nonsingular. In this case

1

- ~ T
Qn(xae) = Rn Eny(n+1) £ 8%y

This function clearly is Lipschitz continuous, since
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-1 T
IQH(X1”en> h Qn(XZ’en)¥ g an gngnHX1 - X2| g

-1 T = -1 T
I el 1R - R el [y - xgl

= Kn(en)|x1 - X2]

Therefore Corollary 1 of the separation theorem can be

applied to (3.12). The noise condition is that

0, _ 0 10 .-1 T 0 ~ 0
2, (x7) =z (x7) 4 H{Rn [gngnx * g y(n+1) 24 (x )] (3.14)

. c 0
converges w.p.1 to some limit f(x ).

The solution of (3.17) is

T

A0 Tk 0 )
S S gke(k+1>] )

1

0 1
Zn(X ) ;

i~

k

= R_1[{% g gkgi}{x* - XO} + % 3 gke(k+1)} +
10 =1 o T, %_.0
= ; (R -R ){gkgk(x -x7) + %<e(k+1)}
It is not difficult to show that
zn(xo) - quEgkgE(x*uxO) = x* - %0 = e W.p.1 as n - o

The second noise condition is that r_~converges WeDo 1
. . . -1 T
where r_ is defined by (3.1), Kn(en) is equal to |R Enbn

| +
I R T
IR R Iygngn\ and




bu,

10 1

-1 T LI

- T
x R Ilgkgk]

n n n

1

which converges w.p.1 since |R™ Ekgil is a stationary pro-
g

. -1
cess and since |R = - R []gkgkl + 0 W.pei as n > «,

The ODE in the stability condition becomes

which clearly is globally asymptotically stable.

If the boundedness condition does not hold, X would tend
to infinity with non zero probability. This is easily con-
tradicted. Hence all conditions in Theorem 3.1 are satis-
fied and

*

x, 7 Xx wW.p.1 as n » =

follows.
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4. THE NOISE CONDITION.

The noise condition in Theorem 3.1 is that the two algo-

rithms

(XO)] 7

[}
[a»]

0 0 0
z (x7) = 2 (x7) 4y [Q (x sep) Tzl g

r =

n n-1 tovplKaCe) - Th-1] rg =0 (4.

converge w.p.1 (for fixed xo).

In Theorem 3.1 no assumption about the statistics of the
variables Qn(xosen) was made. In this chapter Qn(xoyen)
is considered as a vector valued random variable for
which EenQn(XOwen) exists for every n. Furthermore, the
sequence {yn} is here supposed to consist of determinis-
tic scalars as in (1.5). If the original sequence {v,}

in (3.1) is stochastic, v, and Qn in (3.1) can be rede-

fined as
Y
v.Q (x,e ) = vy |1 + ’n Q (x,e ) = v Q¥(x,e*)
nn "’"n n - n "’"n Tn<n""2%n
"n
- - N - o= . . S
where Yo T Eyn and Yn T Yq Yo which gives a determinis

tic sequence {;n},

For a specific application, it is possible to study the
convergence of (4.7) using the special structure of the

problem as in Example 3.4. In this chapter general con-

(4.7

2)

ditions to assure convergence of (4.1) w.p.1 are discussed.

The objective is to give results that cover practical si-
tuations, rather than to elaborate on the sharpness of the

theorems.

In Section 4.1 it is shown that the convergence problem
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for (4.1) can equivalently be formulated for a simpler
algorithm. In Section 4.2 the common case when the se-

quence’{yn} asymptotically decreases as 1/n is considered.
Expressions for the absolute moments of z  are derived in

Section 4.3 and these are used in Section 4.4 to obtain

more general convergence results.

4.1. An Equivalent Problem Formulation.

In this section i1t 1s shown that it is sufficient to ana-

lyze convergence of the algorithm

yn - ynm1 * Yn[fn N ynF1] Yo © 0 (4.3)

where {yn} are gcalars, {yn} a sequence of deterministic
positive scalars and {fn} a sequence of scalar valued ran-
dom variables with Efn = 0 all n.

Algorithm (4.1) is more complex than (4.3). It involves

vector valued random variables with time varying mean

values.

Lemma 4.1. Let zn(xo) and y_ be defined by (4.1) and (4.3)
respectively. Suppose that

BeQn(xO,e) + F(x?) as n » o (4, 4)

and that
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Then

zn(xo) - £ (xD) W.p.1 a8 n -+ w

if and only if

Vo 0 w.p.1 as n » o for fn = Q;l)(xo,en) - EeQ;l)(xO,en)

i=1,...,m, where Q(l) denotes the i:th row of the column

Proof. Since (4.1) is linear in z_

(i)
Z

0 (XO) =y o+ v

n n

where v is defined by

Yn T Vnm1 * Yn[dnmvnm1] Vo © 0

- (i),.0
d = EeQn (x ,en)

It clearly is sufficient to show that (4.4) implies that

v, f(l)(xo) as n tends to infinity. This is done as

follows.
(i)

Eq. (4.4) means that ldn - f (xo)] < ¢ for n > NO(E)‘

Then

N0+m N%Tm N0+m
\Y = 11 (1=v.)v,, + B. d
No+m 3 =N+ 17 Ny el 41 ]
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where

j 3

Now VN
that

Ny

T
JN g+

+m

and consequently

v
N0+m

Hence

|V - f
n

for

lim v
n—>®©

N
n (1=v.) if §J <N
. i
1=+
= 1 and dj = 1 gives v. = 1;
No+m N +m
<1«yj> + ) B4 = 1
]:NO+1
No+m
S AL RNCP Y B N N C P
j:NO+1 J
N0+m NO+m
+ z B £
j=Ng+1 J
(1“Yj) + 0 as m > ® since
<l)(XO)| < 2e

sufficiently large n and so

d

(4.5)

NO’ which means

- f<i)(x0) +
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Remark. Assumption (4.4) can be replaced by the weaker

.. i,.0 . . .
condition v, o f7(x”) as n » «, where v, is defined as in

‘the proof of the lemma.

As a consequence of the lemma it is sufficient to study

convergence of the simple algorithm (4.3).

4.2. The Case y_ ~ A/n For Large n.

It has already been remarked that Egs. (4.1) and (4.3)
correspond to estimation of mean values. As shown in
Example 1.1 a suitable choice of {yn} then is Yo 1/n.
Also in the case (3.1) Yy T B/n for large n (but not for
small n, cf. Chapter 6) seems to be a good choice. The
convergence properties for the case Y, T bn/n where

b - B as n + «, therefore deserve special interest.

n

In algorithm (4.3) ynQn(xnge ) = bn/n Qn(xn,en+1) can

n+1
be redefined as

st *
1/n Qn(Xn°en+1> where Qn = ann

Apply the separation theorem and (4.71) becomes

zn+1(xo): zn(xo) + % Qz(xoaen+1) - zn(xo)

Consequently the convergence analysis for (4.3) with Yo F
= 1/n covers all sequences that asymptotically behave

like B/n.

With Yo 7 1/n in (4.3)
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and ergodic theory can be applied to obtain convergence
of S
According to Cramer-Leadbetter (1967) (4.6) converges to

zero w.p.,1 if

P, D
Ef, f ¢ —2 S 0 < 2p < q < 1 (4.7)

17+ |k - s]¢

The condition (4.7) imposes a restriction on the depen-

dence of the sequence {fk}° that is quite weak.

4.3. Asymptotic Moments of Vo

We will now consider a general sequence {yn} and general
distributions of fn' As a convenient regularity condi-
tion on fn will be chosen that the absolute moments up
to a certain order p exist. The corresponding moments

of y, then also exist. In this section upper bounds for

these moments are calculated.

To facilitate the calculation, certain conditions on the

sequence {yn} are introduced. They are chosen as

(4.8)

c) Tn+1 2 Yn(qun+1)

d) {vy? is decreasing as a function of n
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Notice that it is always possible to redefine Yn and Qn

so that the sequence Y, ¢an be scaled arbitrarily. Condi~
tion (4.8a) therefore is not restricting. Condition (4.8c)
states that in the sum y, each observation fk has a weight
no less than the previous one. As will be discussed in
Chapter 6, this is the interesting case. The conditions

(4.8) are satisfied for the common choice
Y, F A/n® 0 < o < 1 all Ay a = 1 A s 1 (4.9)

Some conditions on the dependence between the wvariables
fk also must be imposed. Conditions involving only second
moments as (4.7) are not sufficient in the general case.
Since most stochastic processes occuring in control theo-
ry have been generated as white noise through some linear

(time varying) filter, we adopt the following condition:

Let fn be obtained from white noise as

< 1 (4.10)

and (eks k =0, #1,...) is a sequence of independent ran-

dom variables with zero mean values.

Remark. If {f.} is a stationary, regular stochastic pro-
cess, it can always be represented as filtered white
noise as in (4.10), Doob (1953). The conditions on hk,n3
however, do rot follow automatically from stationarity

only.

It is now possible to prove the following lemma.
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Lemma 4.2. Consider the algorithm (4.3)

Yn © ynmﬂ * Yn(fn“ynmﬂ) Yo 7 0

Assume that the sequence {y_} satisfies (4.8). Assume fur-

ther that fn satisfies (4.10) and that {an} is a non de-

creasing sequence of numbers and

E]ekip < C

which implies

E’f |p < C' . oGP
n n

where p 1s an even integer. Then

Ely 1" < K (e 0Ty 72 1 <r <o (4. 11)

The proof is given in Appendix B.

a]
The lemma extends the results given by Chung (1954).
There, (4.11) is obtained in the special case

a = Y, © n 1/2 < o < 1 and fn indep. variables,

However, Chung considers a more general regression func-

tion.

The estimates on the moments can be used to obtain con-

vergence criteria. This is treated in the next section.
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4.4, Convergence With Probability One.

Using the estimates of the absolute moments of Vg it is

easy to establish convergence of Vo to zero w.p.1l:

Theorem 4.1. Consider the algorithm (4. 3) with the same

assumptions as in Lemma 4.2. Suppose

) E/zuﬁ < » where p is defined in Lemma 4.2.
n="

Then Vo, > 0 as n » © w.p.1.

Proof. From Chebysjev's inequality and Lemma 4.2

/2
P g l®
(;yn‘>€) § -P £ p

[ [

and

1i0~1 8

- /2
Pllypl>e) « == T vy fon <
1 ol n=1

The Borel Cantellili lemma now assures

Yy 0 as n + o w.p.1,

Theorem 4.1 shows that it is possible to trade off con-
ditions on the sequence (Yn9 n=1,...) against condi-

tions on the moments of fn'

Thus the usually given criterion
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is in fact not necessary to achieve convergence w.p.1.
It can be violated if more regularity of £ is required.
For example, if all moments of fn exist and are uniform-

ly bounded, it is sufficient that
Z yg < for some sufficiently large D

which is satisfied e.g. for Yo F nwaﬁ 0 < o < 1.

However, (4.12) can be violated only if higher moments

of f exist. This is seen from the following example.

Example 4.1. Let fnj n="71,..., be a sequence of indepen-

dent random variables where fn has the distribution
1/y, with probability (yn>P

0 with probability 1 - (y )7

Then P(‘Ynfnlzq) = (y)
The moments E[fn]S are uniformly bounded only for s < r.

Assume that

Y. = o and Y, < o for some ¢ > 0

Z y% < o for the Robbins-Monro case (b,

12)




. - v
nz1 P(ly £ 031) = HZ Y, F o

and since the variables <fn) are independent

|Ynfn‘ 5 1 i.0. w.p.1

from the Borel-Cantelli lemma. With algorithm (4.3)

Yn © <l_Yn)yn—l,'k Ynfn

Yy will consequently w.p.1 not converge to any limit., To

{2(}?“"6)

be able to apply the theorem E\fn would have to

be uniformly bounded. Thus the moment conditions on fn
cannot be dispensed with.

A common case is when the variables fn are normally dis-
tributed. Then also Yy has normal distribution. The pro-
bability that |y _[>e can now be determined directly which

gives the following theorem:

Theorem 4.2. Consider algorithm (4.3)

yn B yn—l * Yn(fn_yn—l)

Let the variables fn have normal distribution with zero

\
mean value. Assume that

]Ef f \ < 2o a all n and some A < 1,
n n+r n n+r

~

where {a_} is a non decreasing sequence.

Let the sequence {Yn} satisfy (4.8) and suppose that
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-e/y aZ
e nnc e for all & > 0

H~18

Then Yo~ 0 as n > > w.p.1.

Proof. As in Lemma 4.2 it follows that

2
Eyn ) KZYnan
Now
2 2 2
-x"/2Ey -e" /K,y _a
P(!yn[>e) = (- [ e fax < % Ce 2'n
ZﬂEyg {Xy>€

Application of the Borel-Cantelli lemma completes the

proof.

So far in this section the cases with dependent and in-
dependent random variables have been dealt with simulta-
neously. If we confine ourselves to the case of indepen-

dent variables a refinement of Theorem 4.1 can be obtained:

Theorem 4.3. Consider the algorithm (4.3)

Yn = Yn-1 Yn<fn“yn~=1)

where {fn} is a sequence of independent random variables.
Suppose {Yn} satisfies (4.8). Let Eifn{P < uﬁ for some
real p > 1, where {an} is a non decreasing sequence, and

suppose that
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) YE aﬁ < o where p' = min(p,1+p/2)

The proof is given in Appendix C.

m}

Remark. The condition (4,8cd) is not used in case 1 < p < 2.

Krasulina's (1969) result corresponds to the case 1 < p < 2.

The usual condition

Ef2 < C and Zy2 < o
n n

is obtained as a special case of the theorem (p=2).

Summing up, Theorems 4.1 - 4.3 give weaker and more gene-
ral conditions for convergence of (4.,1) than usually re-
ported. Dependent random variables can also be treated.
These pesults can now be applied to the general algorithm
(3.1) via Theorem 3.1. In Chapter 7 some applications of

this kind are given.
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5. THE BOUNDEDNESS CONDITION.

In the separation theorem in Chapter 3 it is assumed known

that the estimates{xn},obtained from

X % Xgq t YnQn<Xn«1’en) (5.1)

with probability one, infinitely often are inside a cer-
tain bounded region D. Criteria which assure such beha-
viour will be discussed in this chapter. Here (v, ! is as-

sumed to be a sequence of deterministic scalars.

In Section 2.3 some suggested criteria were reviewed. Con-
dition (2.9) restricts the choice of Lyapunov functions

for the problem. A similar condition is discussed in Sec-
tion 5.71. It is shown that under weak conditions on the
noise and on the sequence {Yn} convergence in probability
to the desired value x* can be established. Now, conver-
gence 1in probability implies convergence w.p.1 along a
subsequence. Consequently, Xh will w.p.71 belong to any

open region containing x* i.0. This gives the desired boun-

dedness property for any region D.

From a practical point of view the question of boundedness
of the estimates may seem uninteresting. In many cases the
desired convergence point x* of (5.1) is a priori known to
belong to some bounded region. It is therefore natural to
construct the estimates X such that they belong to this
area. A straightforward way is to project the right hand
side of (5.1) into the area in question. Such algorithms

are discussed in Section 5.2.
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5.1. Lyapunov Function Approach,

In this section Q is supposed to be time invariant. With
slight modifications the results hold also for general

an Denote

EeQ(x,e) = f(x)

A Lyapunov function for the ODE

< x = f(x); f(x) = 0 = x = x* (5.2)

dt
will now be introduced:

Let V(x) be a twice continuously differentiable function

satisfying
a) V(x) 2 03 V(x) = 0 & x = x

b) V'(x)f(x) = W(x) g - CV(x), C > 0
(5.3)

c) Ee[Q(xge)TV”(gn(e)}Q(x,e)] < - AW(x) + By x € R™, A,B > 0

where gn(e) = X + eynQn(xje) 0 ¢ 6 ¢ 1 n s N

Condition (5.3c) restricts the choice of functions V(x).
All Lyapunov functions to (5.2) do not satisfy (5.3c).
Also, as will be shown below, there exists functions f(x)
for which (5.3abc) cannot be satisfied for any V(x), but

for which (5.3ab) can be satisfied.

Notice that in (5.3c) En(e) depends on e. This condition

thus also requires certain regularity of the noise.
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In (5.3) like everywhere before, the expectation of a

function h(x,e)

Eeh(xge

is taken with respect to e, while x is regarded as a fixed
parameter. Let now X be generated by the algorithm (5.1).
Then X, depends on the noise terms Eqseeese . If {ei} is a
sequence of independent variable e, is independent of X1
Hence

Eenh<xn”7°en> - E[h(xn=1aen>‘xnm1]

where the RHS denotes conditional expectation given X

and

Ehix__,,e ) = E B, hix_ _ .e) (5.4)
n=1 ™n

If {e;} are dependent, also X .q a@nd e are dependent and
(6.4) is no longer true. However, X1 contains informa-
tion about recent ey only to a decreasing extent. There-
fore, under quite mild conditions on the noise {ei}ﬂ X
and e become less dependent as n increases. Then the fol-

lowing relation holds:

Eh(x__4s.e ) - Exnquenh(Xnm1’en> > 0 as n -+ o (5.5)

for any function h for which Eh exists.

Based on the function V in (5.3) a theorem that guaran-

tees convergence in probability can be shown.




61,

Theorem 5.1, Consider the algorithm

A YnQ(Xn&T’en) (5.6)
where

) vy == and y, >0 asn>w

1

Let the function V(x) satisfy (5.3). Assume that the sto-
chastic process {ei} is such that condition (5.5) is sa-
tisfied and that EV(xn) is finite for all n (but not ne-

cessarily uniformly bounded).

Then x_ ~ x® in probability as n » » and consequently

x, €D i.o. w.p.1, where D i1s any open region containing
o

Proof. By expansion into Taylor series:

Vix ) = V[Xnm1+ynQ(xn“1sen)] = Vix, _1) + v h(x _;se)

where

h(x e ) = V'(x )Q(x e ) + Q(x e )TV"(g ) .
n=-1’"n n-=1 n-1°"n n n-1°’"n n

» Qlx _qsep)

- 1 T A
Eenh(xnaﬁﬁen) =V (xnm1)f(xn—1) + YnEenQ(Xnm1’en) v (gn) .

1

> Q(Xnmqgen) < W(Xn_1> - YnAW(Xn—1) + By, ¢

< - (1=ynA)CV(Xn¢1> + Byn
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Now

3

EV(x_) EV(x_ ) 4 y Bhix_ _,.e ) =

i

EEV(anﬂ) * YnEenh(Xn—-’I’en)] * Yngn $

2 2
E[(1-y C+CAY DV(x_ _)+By ] + Y&y

N

where g+ 0 as n » = according to (5.5)

For sufficiently large n, Y, < 1/2A and then we have
EV(x_) < EV(x )+ ¢ (g_+B )£ - EV(x )
n’ ° n-1 Yn 7] 8n"PYn’C n-1

It now follows from Lemma 4.1 that since gn+Byn + 0, we
have EV(x ) - 0 as n » «. This implies, according to (5.3a)

that X, = x™ in probability as n + =. o

Remark. Notice that the function V(x) assures the bounded-
ness condition as well as the stability condition in Theo-
rem 3.71. If also the noise condition is satisfied, the
conclusion of the theorem can‘be strenghtened to yield

convergence w.p.1.

Example 5.1. Consider the simple case

2

Qix,e) = e - x, Ee = 0, Ee® = 1, {en} indep. variables
which gives
Xn 7 *p-q T Yn<enmxna1)3 Yp > O ) Yn ° %
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Choose as function V(x) = x2e Then (5.3a) is trivially sa-

tisfied. Since
Wix) = V'(X)Ee(e~x) = - 2x

also condition (5.3b) is satisfied with C = 2. Now

E[(e-x)2(e-x)] = 2 + 2%

and so condition (5.3c) holds with B = 2 and A = 1. Theo-

rem 5.1 now states that X, > 0 in probability.

If, on the other hand,

Q(x,e) = e = %3

we can still try V(x) = xQ. Again (5.3ab) are satisfied,
but

Ee[(euxg)Z(emxg)] = 2 + 2x°

and (5.3c) cannot be satisfied for any B and A. Indeed,

X, may very well tend to infinity as shown in Example 2.71.

O
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5.2. Projection Algorithms.

In most applications algorithm (5.1) will in fact Dbe
*n T [anﬂ ¥ YnQn(Xnm13en)]D (5.7)
where

£ if £ € D

(£, =
some interior or boundary point of D if £ ¢ D

where D is some closed bounded region.

The sequence {xn} will thus by definition belong to a
bounded area. This means that condition b) of Theorem

3.1 is automatically satisfied. However, the theorem
cannot be straightforwardly applied, since the behaviour
of{xn}cloee +o the boundary of D is not governed by (5.1).

To use the separation theorem, it must be shown that

where pY is a subset of D such that aDO N 3D = ¢ (3D =
boundary of D). Within the set DO, the projection algorithm
(5.7) coincides with (5.1) for large n.

It is assumed that D is described by
D = {x|U(x) < A}

where U is a twice continuously differentiable non nega-
+tive function. The region D cannot be chosen arbitrarily.
Loosely, the algorithm (5.1) shall not have a tendency
to move out of the region. It is thus assumed that the

trajectories of (5.2) do not intersect 3D "outwards', i.e.
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sup U'(x)f(x) < 0 (5.8)
xegaD

where

f(x) = 1lim EeQn(xse)

T=-co
(Assume that the convergence is uniform in x € D).

Assume further that

Ee[qn<x5e>TU“(gn<e)]Qn(x,e)] < B x €D (5.9)
where
En(e) = X o+ eynQn(xse) some 6 0 < 6 g 1

This condition much resembles (5.3c). However, (5.3c) is
basically a, rather restrictive, condition on Q(x,e) as
a function of x as shown in Example 5.1. Condition (5.9)

is a quite weak condition on the noise e.

Theorem 5.2. Consider algorithm (5.7) where D is defined
as above. Assume that (5.8) and (5.9) hold, and that f(x)

is continuous in a neighbourhood of 3D. Let {Yn} and {en}
satisfy the conditions of Theorem 5.1. Then X, € DO i.0.

w.p.1 where DO is a subset of D, such that 50Y n 3D = 4.
Proof. Since W(x) = U'(x)f(x) is continuous, (5.8) implies
that

sup W(x) = § < 0
XEADg
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where ADQ is some neighbourhood of 3D. Define DY as the

difference between D and ADE:

0 * *
D™ = DN[DNaD, ] = complement

Suppose that
x (w) ¢ DY 21l n > N(w) for » € @' wheve P(Q') = g > 0.

Define the random variable

j as above for w € Q'
NCw)

L 0 for w ¢ o

and consider the following modification of algorithm (5.7),

yielding the estimates {in}.

Let kn be defined as

2] —— -

*n T *n- * YnQn(Xnﬁ1een)

and let

- = R - 0
X T X g if n > N(w) and x__, €D
- “fm] h .

Xn = Xn D otherwise

Then ;n(w) = xn(w) for w € Q' and

P(xn(w) € aD_) >38/2  for n > N,

Introduce
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U(x) X € AD

Ulx) =
0
0 x € D
Then
£l (% (% Ge¥ ) - EU(R)
bU(Xn+1) - EU(xn) < EU(Xn+1 X ) g

-~ § 8/2 P(N<n) + AP(Nsn) + EUT(x, ) -

N
-
3
Py

. [EeQn(xn,e) - f(xn)] + YnB}

But P(Nzn) - 0 and EeQn<Xn’e> - f(xn) + 0 as n > o.

,\J had ° 3
Since Ly, ® « this implies that EU(xn) +~ = o which is
impossible.
. : 0 .
Hence P(Q") = 0, i.e, X, € D7 1.0, w.p.1.

Remark. By modifying the proof, condition (5.5) can be
replaced by the (essentially stronger) condition a) of

Theorem 3.1.

Example 5.2. Consider again the case Q(x,e) = e - x3

Choose D = [-VA,/A] and U(x) = x2. It is easy to see that

U(x) satisfies (5.6) and (5.7). Theorem 5.2 now guaran-
tees that X, 1s strictly interior to D i.o. if algorithm
(6.6) is used. From Theorem 3.1 then follows that X, T 0
w.p.1 as n + « under weak conditions on the noise e, - The
projection into a bounded area is thus not only a formal
trick to achieve theorems on convergence. It also makes
divergent schemes converge. Intuitively, the estimate
"rests" at the boundary until Y, is so small that the ad-
justments YnQ(Xnﬁﬂ”en) force X into the interior of the

area D.
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6. CONVERGENCE RATE.

In this chapter the importance of the ordinary differen-
tial equation (3.6) associated with the algorithm (1.8)
is discussed. It is shown that the ODE is intimately con-
nected with the selection of the sequence {Yn} to obtain
fast convergence of {x_ ). The usefulness of slow conver-
gence of {yn} is illustrated and explained. The import-

ance of small Y initially is also discussed.

In Section 6.7 some numerical examples are given, where
slow convergence of {Yn} is favourable. A heuristic ana-
lysis of the connection between convergence rate and choice
of {Yn} is given in Section 6.2. In Section 6.3 it is shown
that the sequence {Yn} in many cases must be bounded from
above to obtain acceptable stability properties. A theorem
that connects the trajectories of (3.8) with the sequence
{Xn} defined by (1.8) is proved in Section 6.Uu. There also
the implications of this result on the choice of {Yn} are
illustrated.

6.1. Choice of {Yni°

Consider as in the Robbins-Monro case the probilem to solve
EeQ(xse) = f(x) =0 (6.1)

for x. As remarked in Chapter 1, a suitable estimate of

x at time n is obtalined as the solution of

;D
=) Q(xgek) = 0 (6.2)
=

oy
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In the simple case (1.12) when Q(x,e) = e - x the equa-
tion (6.2) is linear in x and the solution can be obtained

recursively as

) (6.3)

1
+ E(enuxn_1

n n-1
which is the RM scheme with Y, F 1/n. The same analysis
can also be done in the more general case when x is a vec-
tor, see (1.24). The resulting algorithm is of the form

(1.7) with vy, = 1/n and S tending to a constant matrix.

However, in general when Q(x,e) does not depend linearly
on x, & more complex situation arises. This is the case
for the adaptive algorithms in Examples 1.5 and 1.6, for
the general recursive estimation algorithms of Example
1.4, and a variety of other cases. It is recognized by
most people who have applied such algorithms that a con-
siderable increase in convergence rate is obtained if Y
is chosen to decrease more slowly than 1/n. Some specific

examples are given below.

Example 6.1 ~ Self-tuning regulator.

An example with a self-tuning regulator (see Example 1.5)
is shown in Fig. 6.1 (from Wittenmark (1973)). It is rea-
dily seen that the parameters tend to the desired values

more rapidly for a constant y_ = y, than for y_ = 1/n.

Example 6.2 - Recursive maximum likelihood.

In Fig. 6.2 (from S8derstrdm (1973)) the result of recur-
sive approximate maximum likelihood estimation is shown.
Cf. Example 1.4. Again the curve that corresponds to a

slower decrease in Y shows faster convergence.
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Parameter estimate

L
]

Parameter estimate
H
N
|

]
w

0 500 - 1000

Time

| .
0 500 1000

Time

Fig. 6.1 (Wittenmark (1973)) - Convergence for a self-tuning regu-
lator, with one parameter. The algorithm is of type (1 24D,
(1.30) with a) v, = 1/n and b) y, = constant = 0.01.
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-15 I —*
0 500 1000
Number of
samples
Iy

|

0 | 500 1000
Number of
samples

Fig. 6.2 (Séderstrbm,(1973)] - Convergence for C parameter estimates
of a linear system (1.25). An approximate maximum likelihood
method (1.29) has been used. The upper curves correspond to
Y, F 1/n in (1.29). The lower curve is obtained if restarts
are used. These make Yy decrease more slowly than 1/n.
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Also in the RM scheme with improved convergence rate,

suggested by Kesten (1958)'{yn} is reduced slowly.

6.2. Heuristic Analysis.

Consider again the problem to solve (6.1) from measure-

ments Q(x,ek)3 k = 1,... It is convenient to introduce

8(x,e) = Q(x,e) + x

Then (6.1) can be written

EeQ(Xge) = x (6.4)

The Robbins-Monro scheme (1.10) is one possibility to

obtain estimates X, recursively:

X % Xpoq t v QUx_ _4se ) Xy = 0 (6.5)

It is straightforward to show that x, defined by (6.5)

can be written

I
X, = Z BkQ(Xk=1’ek> (6.6)
k=1
where
n n n
B = ¥ m (T=y.) k< ny g =y
k k 3=k ] n n

In this section (6.6) is heuristically interpreted as
an approximate solution of (6.2), which can be written

as
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o a a,
Z Q(x 3ek)g fn<xn) (6.7)

Eq. (6.7) is to be solved for X This canzot be done
straightforwardly. One difficulty is that fn<X) is not
available as a function of x. Even if it were, (6.7) is
a non linear equation that must be solved. This can e.g.

be done in the iterative manner

ED ISP

N e ) (6.8)

If just one iteration is made and the previous estimate

Xn 1 is used as a starting value we have
N 1 n. .a
X, = fn(x ,1) = = kg1 Q(Xn~1’ek) (6.9)

i oy
Now , Q(xn_13ek) are not known, and fn<xn—1) caﬁnot be
calculated. One possibility is to approximate Q(Xn—1’ek)

v
with Q(ka1ﬂek) and so the sum in (6.9) is replaced by

1 Y
- QCsp g rey) (6.10)

1~ 3

k=1
Now, the last terms in (6.10) are likely to be better
approximations than the first ones. Therefore it is rea-

sonable to assume that a weighted sum

n o
kg1 BkQ<ka1ﬁek) (6.11)

is a better approximation of the RHS of (6.9) if Bi in-
creases with k, than if BE = 1/n as in (6.10). Combining

(6.11) with (6.9) the following approximate solution to
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(6.7) 1s obtained

n A
Xn 7 k§1 BkQ<Xk~1’ek)

where Bn are sultable weilghting coefficients:
k g

n

=z Bk

all k < n (6.12)

<

n
n n
g Bics 1

8
P
The estimate given by (6.12) is exactly of the form that

the RM scheme gives, i.e. (6.6).

It is interesting to see what the property (6.12) means

in terms of Y Some calculation shows that

n n . 1T p
Ble < Biyq @ —— < 1 (6.13)

Y141 Tk

This means that 1/yk increases more slowly than k, or
that Yic decreases more slowly than 1/k. The fact that
such choices give faster convergence rates in practice
can therefore be explained with the more suitable weigh-

ting of old observations in (6.6).

Remark. The analysis is just a heuristic one. The func-
. Y . .
tion Q(x,e) was chosen as Q(x,e) + x. A similar analysis

could be performed for

6i(x,e) = Q(x,e) + Ax

The estimate X defined by (6.5) then is
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n n-1 @

- n n _ _ ;

X = ;Z Bk(A)Q<Xk=1’ek) where g (1) = v T (T=2y;)
k=1 K+

Also the iterative scheme (6.8) has another convergence
Y
dynamics for this Q. The goodness of the correction ob-

tained in one iteration, as in (6.9) depends on A. There

is consequently some interaction between the convergence
dynamics of (6.8) and the weighting coefficients in (6.6).
This is not stringently accounted for in the above analy-

sis,

6.3. Bounds on the Sequence {Yni°

The choice of {Yn} affects not only the convergence rate.
In many cases too large values of Y, May cause instabili-

ty effects in the algorithm (6.5),.

Example 6.3. Consider the following scheme:

n T Xpe 7 Yn<ennAan1) (6.74)
with
§ w
A = s 8 >0
= $

Introduce P_ = EXHXE' Suppose that {en} is a sequence of
independent variables with normal distribution and zero

mean value. Then

o T, 2 T
Pn+1 - Pn Yn<APn+PnA )+ Yn[APnA +1]
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where I = EeneE° Suppose ¢ = I. It is then straightfor-

ward to show that tr P > tr P_ unless
n+1 n

28 tr Pn

'Y <
L S L P_

A necessary condition for this relation to hold obvious=

ly is
v < =28 (6.15)

However, applying Theorems 5.1, 3.1 and 4.3 to this algo-
rithm, it can be shown that Xy > 0 w.p.1 for any sequence

{yn} such that

Ty, = ® and Zyg < » gome real p > 0 (6.16)

Consequently, bounds on {y_ } like (6.15) are not necessa-
ry to achieve convergence. Such bounds, however, are of
great importance to obtain convergence in practice. Algo-
rithm (6.14) with w = 5 and & = 0.5 has been simulated

for some choices of {yn} that all satisfy (6.16) and theo-

retically give convergence. The results are shown in Table
6.1. o

Another example of bounded sequences. {yn} is the estima-

tion algorithm (1.21):

i T
Xowr = % 7 Yn+1{gny(n+1) gngnxn}

To avoid that X, @ssumes too large values {yn} must be

normalized. The choices
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or

n -1

. T

Tn T { Z gkgk} .
k=1

have the effect that the sequence{y&-is appropriately
bounded. Notice that the real time least squares algo-

rithm corresponds to

Yoo =

n -
T
nn ; Ekng

Table 6.1 - Simulation of (6.14) with 6 = 0.5, w = 5 and

£ = I for some sequences {yn}. The numbers shown
are ]xn’.
}
. n 1/n 1/n0 % 0.04/n 5/(500+n)
0 1,142 1,42 1,42 1.u7?
1 6.99 6.99 1.39 1.41
2 17.55 31.58 1.1 1.41
5 66.99 2691.2 1.43 1.42
10 129,21 3+ 10° 1,42 1.42
100 191.28 A10°0 1.36 1.31
25000 8.70 107 1.22 0.02
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6.4. Trajectories.

So far, it has been observed that {y } must be chosen to
be sufficiently small to avoid unstable behaviour of (6.5),
We have also indicated that (6.13) should be satisfied in
order to improve the convergence rate. However, we have
not been able to give any rules or quantitative estimates
how to choose {yn}. It may be argued that the more Qlx,e)
changes with x, the less welght should the first terms in
the sum (6.11) have. Clearly, if Q is independent of Xy
all terms should have the same weight. We will try and

formalize such an argument.

The separation theorem 3.1 states that the ODE

4 x = f(x) = E Qlx,e) . (6.17)

is important to decide convergence of (6.5). It can, in
fact, be shown that the trajectories of (6.17) also go-
vern the behaviour of the estimates X s obtained from
(6.6). Loosely, the trajectories are the "expected paths"
of {Xn}’

The result is formulated as follows. Let Xs i = Ngseees
be generated by (6.5). The values can be plotted with
the sample numbers i as the abscissa. It is also possible

to introduce a fictitious time 1 by

Suppose that the estimates X; are plotted against this
time t:




’
Th T

Let %(TBT sXp ) be the solution of (6.17) with initial
I'IO HO

value Xn, at time g *

Let I be a set of integers. The probability that all
pointsxi, i€ I, simultaneously are within a certain
distance e from the trajectory is estimated in the fol-

lowing theorem.
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Theorem 6.1. Consider algorithm (6.5). Let Q(x,e) be Lip-

schitz continuous for fixed e with Lipschitz constant K(e).
Assume that EIQ(X e )!2p < C and E[K(e )IQD < C and sup-
pose that Q(x 5en) K(en) and {y_ } satisfy the conditions
of Lemma 4.2. Assume that f(x) is continuously differenti-

able. Denote

n
; Yi T Ty

i=1

and denote the solution of (6.17) with initial condition
X<Tn0) S by %(rgrnogxo), Consider the ODE (6.17) linea-

rized around this solution:

d
—— Aax = f'{(x(ry1_ ,x ))Ax
dr ) nO g,

Assume that there exists a quadratic Lyapunov function
for this linear, time varying ODE (see e.g. Brockett
(1970)). Let I be a set of integers such that iniji“TjI
= D > 0 where i # j and 1,3 € I. Then there exists a K and

an g such that for e < EO

f " K N o
1sup!x - x(rn;rn 5% )| > E} S =5 (L) rs<p  (6.18)
nel 0 0 € j:no
where N = sup i, which may be o,
1€T
The proof is given in Appendix D.
o

If the sum ZYi is convergent, the right hand side of
(6.18) can, for fixed ¢, be chosen arbitrarily small by
taking nosufficiently large. Thus the theorem states that
the trajectories of the ODE (6.17) arbitrarily well de-
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scribe the behaviour of the algorithm (6.5) for suffi-

ciently large time points.

We have in Section 6.3 observed that in some applications
(v} has to be bounded by quite a small constant. For
example, in the estimation algorithm (1.21) with Yy ©

= (zgggk) T large observation |g; | causes all y_ to be

small. In these cases

is small and so the probability that the points X, are
outside a certain region around the trajectory also is

small.

Although the proof of the theorem provides an estimate

of X from given constants, we do not intend to use (6.18)
to obtain numerical bounds for the probability. The point
of the theorem is that a connection between the ODE (§.17)
and the algorithm (6.5) is established.

Example 6.4. Consider again Example 6.3, with § = 0.5,

w = 5 and ¢ = I. Then, according to (6.5), Y has to be
smaller than 0.0L to assure a stable behaviour. The ge-

quence {yn} has been chosen as

a) Yo ® ovou/g\
b) Y, 7 1/(100+n)
c) Y, F 0.01

In Fig. 6.3 the results from simulations are shown. The
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sequence {xn} is there plotted against n and against the

fictitious time

n
Tn T ; Tk
Corresponding phase planes are also shown.

The different choices of‘{yn} can be seen as different
scaling of the time. The slower {Yn} decreases, the fas-

ter runs the corresponding time.

Due to Theorem 6.1 the estimates have to follow the solu-
tion of the associated ODE. This is shown in Fig. 6.U4.
The way to make the estimates approach the desired point

x* = 0 fast, is to speed up the time, i.e. to make

n

; Yk

as large as possible, while keeping the bound Yo < 0.0k,
This clearly implies that {Yn} shall decrease slowly. How-
ever, the effect of the noise must be taken into conside~-
ration when the estimates are:close to the origin. A com-
parison between Fig. 6.3c and Fig. 6.4 shows that the ef-
fect is not negligable.

The agreement between the simulations and the trajectories
depends critically on the bound on Y that has to be cho-
sen to avoid instability effects. If the trajectories are
"straight", Yy, can be chosen larger and the noise has
greater relative influence. In Fig. 6.5 simulations of
(6.14) with 6 = 5, w = 5 and £ = I are shown. In this case
large {Yn} can be chosen initially, and X quickly gets

close to the origin. Then Y4 must decrease faster than in
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a. X7 b. X9

1 | ﬁ\
\/\/\/ S 1@2 %

-1

Fig. 6.4 - Solution of the ODE associated to the algorithm (6.14)
with 6 = 0.5, w= 5. In Fig. a, also the curve of Fig.

6.3¢c 1s shown.

Fig., 6.5 - Simulation of (6.14) with 6 = 5, w = 5 and £ = I for
a) Y, G 0.25/n and b) Y, = 0.05, n=1,...,100. The so-

lution of the associated ODF is also shown.
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the previous case, in order to reduce the predominating

influence of the noise,

In Fig. 6.6 simulations of the self-tuning regulator of
Example 1.5 are shown. The regulator parameter estimates

o and B8 for the system
y(t+1) = 0.99y(t) = ult) + 0.5u(t-1) + e(t) - 0.7e(t=-1)

where {e(t)} is white noise, are plotted in a phase plane.
These curves are compared with the trajectories of the
corresponding ODE. It is seen that the trajectories well

describe the behaviour of the algorithm.

To summarize, Theorem 6.1 and these examples show that nu-
merical solution of the ODE (6.17) can be a valuable com-
plement to simulation of the algorithm (6.5). The effect
of various choices of the sequence {yn} can also be under-
stood in terms of this ODE. The advantage with sequences
that decrease slowly (in the beginning of the procedure)
can be clearly seen as in Example 6.4. This conclusion is

the same as that of the heuristic analysis in Section 6.2.
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-3 -2 -
Parameter a

[ i |
-3 -2 -1
Parameter a T

Fig. 6.6 - a) Simulation of the self-tuning regulator (1.21) with

(1.30). The sequence Yy is chosen as 0.002n=0'1°

b) Trajectories of the corresponding ODE.
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7. SUMMARY AND DISCUSSION.

The separation theorem together with the results of Chap-
ters 4 and 5 can be combined into several theorems on con-
vergence. For a specific application it is,of course, pos-
sible also to tailor noise and boundedness conditions. In
Section 7.1 two convergence theorems are given that seem
to cover a large variety of applications. Some examples
are given in Section 7.2. In Section 7.3 the significance

of the results of the report are discussed.

7.1. Convergence Theorems.

Suppose in this section that {Yn} is deterministic. The

sequence {Yn} in the algorithm

n n-1, YnQn(Xnm1’en) (7.71)

iz often chosen such that

Y o A as n » = (7.2)

For this choice Theorem 3.1 can be combined with (4.7)

and Theorem 5.2 to yield the following result.

Theorem 7.1. Consider algorithm (7.1) with {Yn} satisfy-
ing (7.2). Assume that the estimates are projected into
an area D = {x|U(x) ¢ A} where U satisfies conditions
(5.8) and (5.9). Let Qn(xgen) be Lipschitz continuous in

D for fixed e with Lipschitz constant Kn(en). Introduce

f(x) = 1im EeQn(x,e)

N>

and assume that the convergence is uniform 1in x€D.
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Suppose that the ODE

x = f(x)

has an asymptotically stable solution x(t) = x*, with do-

main of attraction = D. Suppose that

nP + P
Cov (K (e ),K (e )] < C - 3 0 < 2p < q <1
1 + |n - m

and

Cov[Qn(xO,en)st(xoﬁem)] < C -

Then X, x* w.p.1 as n » =.

Tor more general sequences {Yn} the conditions on the

noise terms must be somewhat strengthened:

Theorem 7.2. Consider algorithm (7.1) with the same con-

ditions on D and f(x) as in Theorem 7.1. Suppose that

{yn} satisfies

Z Yo T ®5 z aipyp < « (p integer);
n=1 n=1
. . 1 1
{yn} decreasing; 1lim sup - | < e
nee Yn+1 ’n

Assume that
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o, (x",e ) |?P o o2PL(x") ang BIK o) PP ¢ PP

where {ay} is nondecreasing, and that the stochastic pro-

cesses

Qn(xoaen) - Ee Q(xogen) and Kn(en) - EKn(en)

n
can be considered as filtered white noise as in (4.10).

Then Xy = x* Wep.1T as n +» o.

These theorems are only examples of convergence results
that can be synthesized from the results of Chapters 3-5.

Some specific applications are given in the next section.

7.2, Applications.

1:_The Robbins-Monro_scheme (cf. Example 1.1)
Theorems 7.1 and 7.2 are directly applicable +to the RM
scheme. In terms of the classification of Chapter 2 the
stability condition has another formulation, but is eg-
sentially the same as the one due to Blum (1954b). The

boundedness condition (projection algorithm) is maybe

more natural. The most important feature is that the

noise condition is substantially weaker. Correlated ob-

servations can be handled and the conditions on the se-
quence {y } are weaker. If all moments of the noise exist,

it is only required that

Zyﬁ < «© some p
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This is e.g. true for Y, © n % 0 < o < 1. The usual re-
sults allow just 1/2 < o ¢ 1. The discussion of Chapter
6 shows that slowly decreasing sequences {Yn} are of in-

terest as a way to obtain faster convergence.

Example 7.1. Consider the algorithm of Example 6.3. Sup-

pose that {e } is a sequence of normally distributed, ze-
ro mean valued random variables, with a covariance func-
tion Eegen+s that tends to zero exponentially as s tends
to infinity. In this case

Q(xnmjﬁen) = - Axmm1 + e

which clearly is Lipschitz continuous, with a Lipschitz
constant that does not depend on e - The ODE x = - Ax is
globally asymptotically stable with stationary point x¥ =
= 0. There exists a quadratic Lyapunov function that sa-

tisfies (5.3). Consequently, if

) T S5 YE < » gome p > O [or even ; exp(-e/y, ) < o
1 1
all ¢ > O]
and
. ]
lim sup - =< @
N>

Y+ Yp

then x_  » 0 Ww.p.1 as n -+ «.
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(Cf. Examples 1.2 and 3.3)

Consider as in Example 3.3 minimization of a function

h(x) when only noise corrupted measurements are avail-
able:

J(X,en) = h(x) + e

where e_ is a sequence of random variables with zero mean
and uniformly bounded 2p moments. Let {en} be obtained
from independent variables by linear, exponentially stable
filtering. The minimization is performed with the Kiefer-
Wolfowitz procedure with step size Y, and increments a,
for numerical differentiation. Combining the results of

Example 3.3 and Theorem 4.1 we have:

%, tends w.p. either to infinity or to a stationary point

of h(x) if for some p

n—)-oo

z Y= o {Yn} decreasing; 1lim sup{ L - ;L} < oy
1

Z(Yn/ai)P < w oa_ >0 (7.3)
1

These conditions are considerably more general than the
usually reported ones:

Iy, = =% Z(Yn/an)2 < ©, g >0 ¥y.a < ® (7.4)

n nn

Taking Y, T cqn“u and a, = cznwB conditions (7.4) imply

that (a,8) must lie in the shaded region in Fig. 7.1. If
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we assume that all moments of the noise exist, our con-
ditions, (7.3), require (a,B) to lie in the triangle A,

which contains the shaded region.

b4

1/2 +

NN

A

Rw

T ~
1/2 1

Fig. 7.1 - Values of (a,B) that give convergence in the Kiefer-Wol-

. . =0 -Rg
fowitz procedure with Yp T 0o a, =n .

Region A: according to (7.3). Region B: according to (7.

Applications to real time least squares estimation has
been considered in Example 3.4. The more complex problem

with self-tuning regulators based on least squares esti-

.

mation (Example 1.5) is treated in Ljung-Wittenmark (1974).

The self-learning classifier, suggested by Tsypkin (1968)
(Qee also Braverman (1966)), can be analysed using the

same tools:
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Example 7.2. Consider the self-learning classifier de-

fined in Example 1.6. Let e have the distribution shown

in Fig. 7.2, consisting of two triangular distributions:

tp

; .' -
e

Fig. 7.2 - Probability density function of the random variable to be

classified.

The probability of outcomes in the left triangle is 2.
Clearly, it is desirable that the classification rule,
the number Cpo should converge to some value between -1

and +1. Introduce as in Example 1.6

Then (1.32) can be written

*n 7 *n-1 ¥ YnQ(Xn—’15en)

EeQ(x,e) = f(x) is readily computed as follows. For a
given x the corresponding classification point is c(x) =
= (x1+x2)/2, f1(x) is then the mean value of the distri-
bution left of the point c(x), minus x,. fz(x) is found
correspondingly. The algebraic expression for f(x) as a

function of x and ) is lengthy and is omitted.
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The trajectories of the ODE x = £(x) are shown in Fig. 7.3

for two choices of A. In case x = 0.5 the variable x con-
verges to x" = (-2,2) which gives a correct classifica-
tion rule c* = 0. The case » = 0.99 corresponds to a com-

mon situation, when errors that occur rather seldom (1%),

"outliers", shall be detected. In this case there are two
possible convergence points, x* = (-2,2) and x** = (-2.3,
-1.4). The latter gives a classification rule SRR I

which classifies 39% of "correct values" as outliers. For
any starting value X there 1s a positive probability that

R . s ok
the classification rule converges to ¢ .

In this example it is straightforward to numerically solve

the corresponding ODE. It is quite cumbersome to find

suitable Lyapunov functions for the problem.

7.3. Conclusion.

In this report it has been shown that an ordinary diffe-
rential equation can be defined for certain classes of re-
cursive, stochastic algorithms. These algorithms cover a
variety of control applications. The ODE has been shown

to contain information about éonvergence of the algorithms
as well as about convergence rates and behaviour of the
algorithm. In the analysis it has been possible to sepa-

rate the stochastic part from the rest of the problem.

Martingale theory, which is the traditional tool to show
convergence, has not been used. This causes some proofs to
be more technical, because instead of just referring to

the martingale theorem it is in fact necessary to go through
some arguments that are used in the proof of it. However,
the application of martingale theory requires some extra

conditions, that can be removed with our approach.
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I § Xz

o | @

Fig. 7.3 = Trajectories for the ODE that corresponds to self-

learning classification for the distributions defined

in Example 7.2.
a) x = 0.5 b) A
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APPENDIX A.

Proof of Theorem 3.1.

Before procdeeding to the proof, let us first remark that
although Zn(XO) converges w.p.1 for each fixed xo9 this
does not imply convergence if ¥ is a random variable. To
treat such problems in a strict way, introduce a denumer-
able subset of D

Dd = {X(1)5X<2)5.,,} < D

which 1s dense in D.

Let @ denote the sample space and denote the elements of

2 by w.

Assumption a) implies that zn(x(l)) converges w.p.1, 1.e.

(1) (1)

for all w € Q s, Where Q has measure 1. Let

where QA is the set of all realizations for which r ~con-
verges, condition b) is satisfied and Y, 7 0% Iy, = =
Then also 2¥ has measure 1. In the rest of the proof only

such realizations w are considered that belong to ¥,

The basic idea of the proof is that the sequence of esti-
mates {Xn} obtained from algorithm (3.1) behaves like so=
lutions of the ODE (3.6) asymptotically and locally. This

result is shown in the following lemma:
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Lemma A.1. Let X €D, and ¢ € 0%, Let t < toﬂ where t

d 0
does not depend on x and . Define the sequence m(n,t,w)

so that

m(n,t,wn)
Z yk(w)-+‘casn—>oo
k=n

0

Then, if xn(w) belongs to a closed subset of D7,

Xm(nytaw)(w) = xn(w) + tFf(x) + R1(t3n,w5§) + R2<tanswa§> (A.1)

where

[Ry Ctonye, 30| < tK]x (w) - X| + At?
and

Rz(tgngwsg) > 0 as n > =

Proof of Lemma A.1. Consider the sequence {zn(i,w)} de-

fined by (3.4). Let n < j(n,w) < m(n,t,w). Then

J(n,w)

Zis

jln,w) Yi(w){Qi(z’ei(N)) - ziw1(§,m)}

(x,w) = zn(;gw) +
1i=n+1

Let now n tend to infinity. Since

lim 2.

](njw)(Qﬁw) = lim zn(iyw) = f(x)

n-+e n-=>ow

it follows that

J(n,w) _ ~
lim ) Yi<w){Qi(X’ei(w>) - zi_1(x9w)} = 0

n+eo i=n+1
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or
3 (n,w) ) ) j(nz,w) .
v:(w)Q. (xse.(w)) = £(x) yi:lw) =
TR (e ()] izn+1 *
= Ry (3 (n)snyuw,x) (A.2)

where Rg(j(n)snbw,QJ ~ 0 as n » =,

Analogously
min,w) m(n,w)
lim ) yi(w)Ki(ei(w)) = r_ lim ) vi(w) = r .t (A.3)
N~ n+1 n—-o n+1
where r_ = lim r
nv>oo

Consider now

J(n,w)
Xj(n,w)(w) = xn(w) + an Yi(w>Qi(Xiaq(w)5ei(w>) -
Jj(n,w) )
= Xn(w) + Z Yl(w)Ql(X,el((Q)) +
i=n+1
J(n,w) .
+ } Yi(w){Qi(Xi_1(m),ei(wn - Qi(x,ei(w))}
s (A.u)

The first sum of the RHS of (A.4) can be approximated
using (A.2). To approximate the second sum, use the Lip-

schitz continuity of Q;*

19z (g )es (] = 0 (oo ()] e o) = X[k (e ()
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(Assume for a moment that X3 Mog i ¢ 3J(n,w) belong to Dog

so that the Lipschitz continuity holds. This assumption

is removed below. )
Hence

Jn,w) 3
Yi<w){Qi(Xim1(w)5ei(M>) - Qi(x3ei(w))}, <

i=n+1

mi{n,t,w)

< max .]Xi(w) - X’ . Z yi(w)Ki(ei(w)) <
ngig] izn+1

< max  [x;(e) - x[{r t + R,(t,n,0)} <
ngigm

¢ [max  [x () = x () [][r_t + Ry(t,n,uw)] (A.5)
ngigm ®

where Ru(tanaw) + 0 as n » « according to (A.3).
Assume that

max [xi(w) - Xn(w)l = S(n,t,w)
ngism(n,t,w)

is attained for i = j§*(n,w). Then taking j = 3% and in-

serting (A.5) and (A.2) in (A.4) for this J gives

S(n,t,e) = [xa(o) = x ()] € 1860 T vatw) + 2o (5 n,0,5) | 4
J n n+1 * 3

+ [S(n,t,w) + |xn(w) - x|[r_t + R, (t,n,0)]

or
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S(n,t,w)[1 - r t - Ru(tgngw)] < | fx) [t o+ R3(j(n)3n3w5x] +

+ ’§ - Xn(w),[rmt + Ru(tjngw)]

For sufficiently small t, t < tys and sufficiently large
n, r_t + Ru(tsn,m) < 1/2 and since xn(w) and x € D we

have

|, (o) = %] < C,

Hence

S(n,t,w) s 2[]|f(x)] + rwcqjt + Rg(j(n)gn,wBQ] + CqRu(tgnew)
= C,t o+ RS(j(n),n,wBQ)

where RS(j(n),nawai) ~ 0 as n > =,

Now choose j(n,w) = m(n,t,w) in (A.4) which gives, using
(A.2) and (A.5)

| x - xn(w) - tf(x) ]

N

m(nat,w)<w)

< R3(t9n5§,w) + ]f(x)][ i

3~

Y. - t] +

+ {Czt + RS(t3n5§5w) + |§ - xn(w)l}{rmt + Ru(tanﬁw)} =

= Cortf 4 v ][R - x_(6)| + R, (t,n,%,0)

where RZ(tBnSQ,m) + 0 as n » «.

It now remains only to remove the assumption X: € DO3

n<is mln,t,w). If this assumption does not hold, let




108.

i = j(n,w) be the first time X ¢ Y. Then apply the re-

sults above to j(n,w) = j(n,w), which gives

ng(naw) - xn(w)! ¢ C,t + Ry where Ry » 0 as n » =,

For sufficiently small t, this contradicts the definition

of J.

It follows from the converse stability theorem (see Kra-
sovski]j (1963)) that assumption c) implies the existence

of a function V(x) with properties
o V(x) is infinitely differentiable

0 0 ¢ V(x) <1 = x & D1 and V(x) = 0 » x = X

0 ﬁ% V(x) = V'(x)f(x) is negative definite in D,

Consider from now on a fixed realization w € %*. All va-
riables below depend on w, but this argument will be sup-

pressed.
An outline of the rest of the proof is as follows:

Step 1: A convergent subsequence {xnk} tending to X is
considered. Then {xnk} is close to X infinitely often,
and according to Lemma A.1, Xm(ny,t) will approximately
be xp;  + tf(X). This means that V(Xm(nk,t)) is strictly
less than V(xpy ) if X # x*. A complication in this step
is that X may not belong to Ddu The formal proof is some-
what lengthy and involves several elaborate choices of
constants. The result is, however, intuitively clear.

The proof of step 1 follows over the next few pages and
extends to eq. (A.10).
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Step 2: From the above result it is quite clear that x*
must be a cluster point to'{xr'l}9 since V(x_) has a ten-
b

dency to decrease everywhere in D except for x = x

That this actually is the case is shown in Lemma A.?2.

Step 3: %f there is another cluster point to {Xn} than
x*, say x, the sequence must move from x* to x infinite-
ly many times. But then V(xn) is increasing, which con-
tradicts the result of step 1. Hence only one cluster
point exists and convergence follows. The formal proof

of this claim is given in Lemma A.3.

From condition b) there exists at least one cluster point
%3 to the seqguence {xk} in D. Hence there is a subsequence
Xnj That tends to X as k > ». Since D; is dense in D,
there is for arbitrary ¢ > 0 an element x = Q(Q,e) €D

d
such that |x - %[ < e/2. Consequently

Ix_ = %] < ¢ k > Ky(e) (A.6)

Consider now

v (x - Vi(x_ )

m(nkgt) .
where m is defined as in Lemma A.1. Denote N = k' and
m(nkat) = k", and use the mean value theorem. This gives
V(Xk”) - v(xky> = v'(g}<) (Xk””}(k') =

= VTR (=%, ) + (£ =X)TVI(E ) (x =% ) (A.7)
klt kr k k k” kl ®

where

- — N 1 - -
& F Xt 81(Xk” xk,), €k = Xyt 62(5k xk,), 0<6.<1.




Now apply Lemma A.1 to X T Ky which gives
Xjw = Xy F tf(x) + R1(t5nk9§) + RQ(tank,Q)
where
IR, (t,n, ,x)| < tK|x_ - x| + At? (4.8)
1 k n
k
and
Rz(t,nkgx) > 0 as k » o (A.9)

Insert this in (A.7):

V(x Vix ) = TtV (x) £(x) + Ra(t,nk9§)

kH)

where

Rg (£,ny,%) = (5 =%) U (g 1) (x 0=, ) + V'(X) (Ry + R,)

Now suppose that the cluster point X is different from

the desired convergence point x™. Then V'(X)f(¥X) = - §,
§ > 0. This implies that 3 €y such that

VI(x)E(x) < - 8/2 if % - %] < €4

Denote

sup_ |[viCe)| = Cys sup|V'(x)| = Cqs

]g“X!<€O X€D

|f(x)| + Aty + e = C,Ce)

Then
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- - T t 1 - . y 2
I(gk x) V'(Ek)(xk".xk')w < Cq[tcz(e) + R2]
First choose e = min(eo9 6/(403K))and k> Ky(e). Then

lv'<§>R1l < t[s/4 + Acgt]

- 2
[Rg(tony ,x) | = qutCz(e) + R2] + t(8/4+At) + R, =

A) + R,C, +

= t8/4 + t7(C,Co0e) + C ,Cy

3

2
+ 01R2 + 2R2C1C2(€)

Now choose

§

t € —
BC(e) + C4A

which gives

N

IRB(t,nkax)l € 3t8/8 + R,Cy + C Ry + 2C,C,(e)R,

PO

Finally choose K > KO<E) so that

2
R203 + C1R2 + 2C1C2(€)R2 < £8/16 for k > K

which is possible since Rz(tgnk,x) + 0 as k + =,
Hence

VOqon) = Vix ) < = £6/2 + Rg(t,ny ,x) < = t8/32

k”

or




V%,
( m(nkgt))

. RY . . . . .
Since Xy * X as k - « and V 1s continuous this implies

v ( < V(X) - t5§/64 kK > K (A.10)

X
m(nkat))

This means that if ¥ is a cluster point different from
x™ the sequence X will i.0. be strictly interior to

{x|V(x) s V(X) - ts&/64}. This region is compact. Conse-
quently another cluster point must exist that yields a
smaller value of V., In Lemma A.2 it is shown that this

implies that also x*™ must be a cluster point, i.e. that

l1im inf V(xn) = 0 (A.11)

n-—eo
To conclude the proof it must also be shown that

lim sup V(xn) = 0 (A.12)

N—>oo

This is done in Lemma A.3.

Lemma A.2. Suppose (A.10) holds for any subsequence
{xnk} that converges to a point different from x®. Then
(A.11) holds.

Proof. Consider inf V(x) taken over all cluster points

in D. Let this value be U. Since the set of cluster points
in D is compact, there exists a cluster point %, such that
V(x) = U. If now U > 0, VI(x)E(x) will be strictly nega-
tive (= -¢) and from (A.10) V(Xk) takes a value less than
U - ¢t/64 infinitely often, which contradicts U being the
infimum. Hence U = 0, which means that x* is a cluster

point.




Lemma A.3. From (A.10) and (A.11) it follows that

lim sup V(xn) = 0

n—+eo

Proof. If Xy € D the difference

§
bl
!

tYnQn(xn’en+1>‘ s Yn‘Qn(x*’en+1)‘

+ IXn - x*[vann(en+1)| <

IZaS

2 q () = 2 GOy 2 ] e

=
e - + A
* Ixn * l{!rn+1 pn‘ {nrn}
. ' *
tends to zero since zn(x ) and rconverge. Suppose that

lim sup V(xn) = A >0

n—-w

Consider the interval I = [A/3, 2A/3 ] 1>, This interval
is then crossed "upwards'" and "downwards" infinitely many

times. Since the step size x = Xg tends to zero when

n+1
X, € D, there will be a subsequence of V(xn) that belongs
to I. Consider now such a special convergent sequence of

"upcrossings”. Let {Xnﬁ} be defined as follows:

V(Xn£@1) < A/3 V(Xnﬁ) 2 A/3 V(xn},<+sk

where s, is the first s for which V(Xnﬁ+s )] ¢ I and

Xny > ¥ as k » . Clearly V(X) = A/3.

T tfas 1 take I = [1/3, 2/3].



Now, from (A.10)

V(Xm(nﬁst)) < A/3 - st/6n

This means that V<XH&+SK) ¢ I where s, = m(nl,t) - L.

But, if t is sufficiently small, no s, smaller than S
can have made V(Xng+s) > 2A/3, according to Lemma A.1
and the continuity of V. This contradicts the definition

of the subsequence nﬁ.
Hence no interval T can exist, A must be zero and the

lemma follows.

Lemma A.3 implies that X, > x* for the chosen realiza-
tion. The set of all w for which this holds, ¢*, has mea-

sure 1. This concludes the proof of the theorem.

Proof of Corollary 2. The proof of Corollary 2 is very

much like the proof of the theorem. Eq. (A.10) is obtained
straightforwardly if 5 ¢ Dc’ The only differences are
caused by the weaker properties of V(x) in this case. In
particular need the area {x|V(x) < V(X)} not be bounded.

Therefore the closure of the set
{x|V(x) € V(X)) n D

i1s considered instead. The conclusion of the corresponding
Lemma A.2 therefore is that inf V(x) taken over the clus-
ter p01nts in D 13 assumed at a cluster point Xy such that

either x € 3D or x € DC

If x € 8D, eq. (A.10) implies that {xn} is outside D in-~

finitely often. Since it also is inside D infinitely often,




there must be another cluster point ; on the boundary. At
this point the trajectories are pointing into the region
D and V(x) is decreasing. This contradicts X giving the
infimum of V(;) since V(g) = V(g).

Hence ; € D, is a cluster point. Now suppose that there )
is another cluster point ¥ ¢ D_. Then clearly, V(X) > V(x)
and {xn} moves from x to X infinitely many times, corre-
sponding to increasing V(x). As in Lemma A.3 this is con-

tradicted, and the corollary follows.




APPENDIX B

Proof of Lemma 4.2.

Lemma 4.2. Consider the algorithm (4.3)
Yy & Yooq ¥ Yn(fnmyn=1) vy = 0 (B.1)

Assume that the sequence {v,? satisfies (4.8). Assume
further that fn satisfies (4.10) and that {un} is a non

decreasing sequence of numbers and
Ele |P < ¢
which implies

Elf 1P < cal

where p is an even integer. Then

r/?2

r r
Elyn! N Kr(ocn) (yn) T < (B.2)

A
g

Proof It is evidently sufficient to show (B.2) for » = p,

since Lyapunov's inequality

1/r ot 1/r!
(E[x]rj < (E]x]7 ) 1 <1 ¢! < o
gives
/v 1/p
E 7n r|_n lp 1/p
p— < | B < (KD 1 < v ¢
o Y, N D P




and so

T / /2
E(ly,|7) ¢ (PRI T

The solution of (B.1) can be written

n 9 1’21 n
y.. = [ m (1= )Jy + g T
n I =m+ 1 KPPmo o pe K

where 8; is defined by (4.5).
Then, according to (U4.8c)

n n
< =
Bk S Bn Yh k ¢n

Choose a subsequence N s such that

This is possible since

diverges and y_ - 0. From (4.8d) we have

Z Y % (nkgnkmﬂ)Yn

(B.3)
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/v, (B.4)

The lemma will now be proved by first (Lemma B.1) esti-

mating E

to Yoo

Tk{peﬁuithen extending (Lemma B.2) this estimate

Lemma B.1. With the assumptions of the theorem

E[T P ¢ x_oP vP/2
Pome Ny

Proof of Lemma B.1.

n n
k k n n
ETY s ] C B]k“. -BjklEf P P B
j1znkm1+1 jp:nkm1+1 1 D 1 ]p
< p L] o
< yﬁk Z .Z IEfj . fj | (B.5)
SPT N 1 D

Now consider

.Z,,..ZIEfj REERES | <
11 Jp 1 P
S5 RVID 1 S SO I U = e ||
. K K -k -~k
P L 1231 p’dp J17 I
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Consider

Ee. ° ...,
j1=k1 ]Dﬂk

If some index jimki occurs only once in the product above,
the expectation value is zero, since e, and e, are inde-

pendent with mean value zero for n #* m.

Suppose that kjgo,.,kp are fixed. The term Eej1¢k1“-
»ejp_kp is independent of the order of the indices. Each
term can be obtained in at most p! ways. In every non ze-

ro term each index occurs at least twice. Therefore

.z.,...ZIEfj ; oL e
I I 1 2 kKidg 3, kg K

IEej1“k1°°"’nej “x |

where the prime denotes that the summation is restricted
to terms for which each index jimki3 T €1 < p/2, equals
at least one of the indices jn“kn, p/2+1 < n < p, and vice

versd.

Suppose now that k“,.a,kpgjq,..,ajp/2 are fixed in the
sum above. Then the number of terms that are obtained as
jp/2+15.g.£jp vary over [nkm1’nk] 1s less than or equal
to (p/2)"" %, and independent of M=y g

Since |[Ee. Sk teretes | < Elel® < ¢ this gives
175 jp D
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o p
Joon JIBES cooiify | o p! (p/2)P’ %c DR {;z »xk] <
P j'p 1 D k 19 .D/ 2 k=0

¢ o® C'(p,1)(ny-n,_)P/?

k

and from (B.5)

. /2 /2
ETR ¢ v2 of (np-n, 0P 7C) ¢ cyP/%P

K Mk . Ko Tk
o

Lemma B.2, Under the assumptions of the theorem
E|T, |P < B,oP P72

k T"n,_'n

k 7k

implies
Ely_ |P < Bo® /7 where B, = B /(1-et/")P (B.6)

ny. 2 ny 'ng 2 1

Remark. This result holds for general p > 0.

Proof of Lemma B.2. Introduce

e
Ak = ._n” +1<1"Yi>
RSN
-2t -t/2 .
It follows that e < Ak < e for sufficiently large
k. Then from (B.3)
Yoo T Tt ALY (B.7)

k k-1




Suppose that (B.6) is valid for k-=1:

o)

]“/P 1/p 1/2
< B2 Y o
M1

Ely l
[ M1 M1

Minkowski's inequality, applied to (B.7) then yields

1/p 1/D 1/p
Ely, 1] < [EITIP] T afEly, 1P
[ o K LTy
Now
n n
k k
Ay = B < B =y
<Imey Ny DMy

since Vi satisfies (4.8). Hence

1/p
[E]y [p] < [Bl/qu/z + AQ/ZB;/qu/Q]an <
M e e K
‘ [Bq/p N et/MB;/p]YW/Za : B;/py1/2a
A e M O My
Consequently
/2
E[yn !p < BZYE aE kK = 1,250,
k k k
since

E(yn P = glT,|P < BﬂYi/Qup < B Yp/ZOLp

121.
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To complete the proof of the theorem it remains only to

be shown that (B.2) is valid not only for the subsequence

n, as in (B.6) but for all values of n. But for Ny _4 < RS
< le
J nk -1 d Dy
Yy 7 m U=ygy o+ T Uy ) By Ty =
1:nkm1+1 k-1 i=7+1 1:nk¢1+1
n :
k ] n
-1 k
= m (l=vy.) Ay + ) g. f ]
R R I S S B

J n p J J
E Bikfl < yi ) ) ]Efj . fj | <
nkm1+1 Ik qunk¢1+1 ijDkﬂ1+1 1 D
< C'yp/QuP
nk J

Application of Minkowski's inequality as in Lemma B.?2

now gives

1/2
o

(Ely3 1) < 2Vp

k L

and hence

Elyjip < e
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APPENDIX C.

Proof of Theorem 4.3,

Theorem 4.3. Consider the algorithm (4.3)

Yn 7 Yp-q Yn(fnuynmﬂ)

where {fn} is a sequence of independent random variables.
Suppose {yn} satisfies (4.8). Let E!fnlp < QE for some
real p > 1, where {an} is a nondecreasing sequence and

suppose that

© t

Z Yp P < w where p' = min(p,1+p/2)
nsq noon
Then
Vo 7 0 as n-> o w.,p.1

T, = ) B. f. 3 ) v: >t as ko> o
]

and first obtain estimates of E!Tk[p where p is a real
number > 1. Thus Lemma B.1 cannot be applied, since p is
there assumed to be an even integer. Consider first 1 <
< P <£2. In this case a theorem due to von Bahr-Esseen
(1965) is applicable:

sSuppose Sn is a sum of independent variables
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n
Sn = ; =
Then
n
Bls |P < (2=1/n) ; Ele,|® 1 <pg?
In our case:
P . P . M
BT P <2 ] B E]fjlp <KX y?a?
j:nkm1+1 JEny ¢+l

Clearly, using Chebysjev's inequality and the Borel Can-

telli lemma

+ 0 as k + = w.p.1.

p © . .
) (Yjaj) < implies that Ty

3=1

As follows from the lemma below, this implies that y, > O

as n > ° w.p.1.

Lemma C.1 (Petrov (’1972)}° Let B, » »as n » «, and sup-
1

pose there exists a subsequence Bnk and constants cq >

and 02, such that
Bn

cy < Kk < ¢,
B
Mg

for all sufficiently large k. Let Sn be a sum of indepen-

dent variables with zero mean value. Let Tk = (Snk"snkuq)Bnk°




125,

if and only if

Tk > 0 w.p.1T as n » =

Introduce
n -1
8§, % v, N (1~Yi)
1=1
n
Sn - Z kak
n
Bn = 1 (1”Yi)

Then Vo ann’ Bk = 5an and
M Dy n
(s_ -S B = ) 48.B = 7 efe =T
R S TS B S NPT
k-1 k-1

The proof of the assertion now follows from Lemma C.1 in

case 1 < p £ 2.

Now, we turn to the case p > 2. The following result,
due to Dharmadhikari and Jogdeo (1969) will be used:

Let {ei} be a sequence of independent zero mean valued

random variables
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n
5, = ; e
Then
n
B|s, | ¢ cnP/?] 2 Ele. |P D 3 2
n D . i

Applying this result to T, the following estimates are

obtained:

n
(p/2)-1 f
&’]+

My

p
E!Tk!

”m

o, P
- ky¥ D p
C(ny-ny ) 1<sj ) ajE]fjl <

P/2.P P p 1 P/2.D
Me M P P Ty

A

Cp(nkanka1)

The second inequality follows from property (4.8). The
third inequality follows from (B.4). From Lemma B.2 now

follows that also

P . P/2.D
Elyn| € Koy ey : (C.3)

The estimate (C.3) will now be applied to the following
lemma by Zolotarev (1965).

Lemma C.2 [Zolotarev (1965)). Let Cqseesey be indepen-

dent random variables with zero mean values. Let

Let 9(x) be a function defined for x > 0, nondecreasing,




convex and

w(0) = 0 plxy) < o(x)oly) X,y x 0
Let
n
Sn = ; e.
Then
1 +
P(max BkSkax) < - {w(Bn)E w(Sn) +
mgkgn ©ix)
n-1 N
+ kzm(W(Bk) = ©(B,_ ,))E m(sk>}

for any x.

Here

EYo(x) = [ o(x)dF(x)
0

where F(x) is the distribution function for x.

Take now in Lemma C.2.

where

127.
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Then Yq = © S_ and

n s
1 o, " e p
Pmax  |yy[>e) < - p{E‘an‘ Bl (BB R[Sy | }
mgkgn |e | =
Now
D _ P - nPl4 (4o D D
B = Biyq = Bplt —Uoy 0P ] < by g0 since 0 ¢ vy <

Choose a subsequence Ny such that

I oh ¢
k K

This is possible since

v 1
g P(max ]yj|>e) $ — p{k

nksjénk+1 el

D v P
I oEly, 1P+ I onely I} <

- /2 p v p/2+1 p
< C{Z Yp o + Z Y o < @
T Dy ny 1 k k

and consequently Yo 7 0 w.p.1 as n » o,

This completes the proof ofethe theoremn.
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APPENDIX D

Proof of Theorem 6.1.

Lemma A.1 states that the sequence {Xn} locally and asymp-
totically follows the trajectories of (6.17). This result
will be extended to global estimates by linking a chain of

local estimates (A.1).

Order the set of indices I = {ni} such that n, < Ny < e <
i N < My < «eo Denote ATk = Tnpyeq ~ Tnge Then, taking
X = X in (A.1) yields

2
X = X + bt f(x_ ) + AbT. + R, (AT ,n, ,x_ ) (D.1)
N4y Ny k Ny IS 2 k?k Ny

By going through the details of the proof of Lemma A.1 it
is found that

nk+1
Rp(bmyomyenx, )=
k 1unk+1

Yi{[zQ(Xn ,ei) - K(ei)] -

k

- E[ZQ(xn ,ei) - K(ei)]}

k
Applying Lemma 4.2 gives

b

2p
E|R, | < Loy

k

and so from Chebysjev's inequality

P(]Rz(ATk,nkgxnk)! > 61) S L1Y§k/€$p (D.2)
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Also,
¢ X ) = x4 Ar flx )+ Loaxl (D
T ST = T
nk+1 nk ny nk k Ny 27k
Combine (D.1) and (D.3):
" 2
| x - x(7 5T ,x_ )] < (A+L,dat. + R (at,_,n, ,x. ) (D,
I Npepq My 0y 2 k 2 k?7k >k
Define L3 = A + LQ.

According to the assumptions of the theorem there exists

a function V(Ax,t) which is quadratic in Ax and such that

Cq}AX!Q ¢ V(ax,t) < C2|AX[2 (D
and

L viax,) < - A]Ax]z 5 A >0 (D.
drt

along solutions of the variational equation.

We will now give an outline and a heuristic interpreta-
tion of the rest of the proof before we proceed to the

formal treatment.

The idea of the proof can geometrically be expressed as

follows:

«3)

4)

.5)

6)
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B

///////”’—'—_——_——_—__-§-~*
v C

, T: TK B T=TK + AT
Nominal trajectory

o xno)

Assume that the estimate at time Ty is in the interval A,
The trajectories that start in A belong at time Tt Aty
to the interval B The length of B is given by (D.6). If

Viax,t) = | AXI , then B ¢ (1- “Abty JA. Now, the estimates
obtained by the algorithm differ from the trajectories
2

with less than Labty + R (Ark,n}ﬁxnk) according to (D.4).
Denote this distance by C. During the time interval Ar]3
the estimates have not diverged from the nominal trajec-

tory if A ¢ B + 2C, i.e., if

2
A (=M1 08 + LAt ? 4 Rpbryony,x )

k

or

AATkA < L AT2 + RZ(AT

3% T oy X )

k

To achieve this, A and ATk must be chosen with care. The
interval ATk must be large enough to let +he trajectories
converge sufficiently, and small enough to limit second

order effects and the noise influence.
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We now turn to the formal proof.

Select first e (corresponding to A 1in the discussion above)
such that

8DL3C1C2
g < s €

A

Since Ark > D, it follows that

AE

< AT all k.

C,‘CQL3 - 8

Possibly by extending the set I, it is thus possible to

obtain

re < bty < 3Are (D.7)
° L 2 8
C1C2L3 8 c.C

Now suppose that

2623
2
1

+ bY

A
{RZ(ATkynk,Xn )| o<

2
k L3C2C
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Then
V1/2[(%<Tn ST 43X ) - X 5T 1 <
k+1 Tg D0y My g1 e 41
< v 2%, T %y ) T X gr x0T
k+1 0 Do k+1 k? T 2oy
1/2[ A
+ v [ %< ST aX_ ) = x ], ] <
Oeeq” M oy Mes1™ " Ty
S {’l - A ATkJV/I/Q[(;J{(T 5T, X ) - x )9T ] +
2C,, k Mo ng M7 My
+ CZJQ(T 5T 53X ) = x | <
R L MR e I My
£ 11T = —~a7 ?e + C, L AT2 + C,|R, (AT, ,n. .x )| o«
§ K 2H38 Ty 21 BTy sy s
2C1 k

n

N
m

o[ g o - )
8C,]C2L3 8C,IC2L3

The first inequality follows since VT/2 is a norm, the
second follows from the properties of V. The third and
fourth inequalities follow from the assumptions made just
above. The last inequality follows fromn (D.7). In other

words, if

1/ 20 0
v [(%Cr_ 3¢ X )= x Jyt_ ] < e
N’ gty Nty

then

1/2p oo
v [(x(< 5T X ) = x ), ] <«
Mepq” g’y Mepq” My
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with probability at least

' 3122
k 64C1 oL

2.2
6uL.C-C
s 1 - Ll 3 ; 11 Yp/eup
3 Nk
Now the event
Q = {Sup[xn - ;(TngT X )] > et
ne I Mg Ty
172 N, N
< {sup V [(x. - xXCt 371 ,x )),t.] > eC e n @
ne T n noongting n ! g K

where

] "3 Mo 3
1/72 n
v [( - x(1 T Xad) st > eC }
Me41 Nyypq” D70 ) nk-M] !
and thus
N succ.L.]1%P L. N
25153 1 5
P(R) < ) P(O) s |-ty ; T &k
1 32 e P j:nO J

and the theorem is proved.







