
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Operator Interaction and Optimization in Control Systems

Åkesson, Johan

2003

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Åkesson, J. (2003). Operator Interaction and Optimization in Control Systems. [Licentiate Thesis, Department of
Automatic Control]. Department of Automatic Control, Lund Institute of Technology (LTH).

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/13ae4ca3-9d18-4cb6-bf4d-6b408d56a06c

Operator Interaction and
Optimization in Control

Systems

Johan Åkesson

Department of Automatic Control
Lund Institute of Technology

Lund, December 2003

To Katarina - my loving wife and partner

Department of Automatic Control
Lund Institute of Technology
Box 118
S-221 00 LUND
Sweden

ISSN 0280–5316
ISRN LUTFD2/TFRT--3234--SE

c© 2003 by Johan Åkesson. All rights reserved.
Printed in Sweden,
Lund University, Lund 2003

Contents

Acknowledgments . 7

1. Introduction . 9
1.1 Background and motivation 9
1.2 Contributions . 11
1.3 Future directions . 14

2. Manual control . 15
2.1 Introduction . 15
2.2 Preliminaries . 16
2.3 Phase plane analysis 21
2.4 A cascaded saturations controller 25
2.5 Experiments . 28
2.6 Results and conclusions 31
2.7 Relations to other work 31
2.8 References . 31

3. A framework for grade changes 33
3.1 Introduction . 33
3.2 Relations to previous research 35
3.3 Assumptions . 37
3.4 Sequential control and JGrafchart 38
3.5 Dynamic optimization 40
3.6 Grafchart representation 48
3.7 An example . 51
3.8 Conclusions . 59
3.9 Future work . 60

5

Contents

3.10 References . 61

4. Tools for model predictive control 64
4.1 Introduction . 64
4.2 Linear model predictive control 66
4.3 Quadratic programming algorithms 79
4.4 MPC tools for Matlab 81
4.5 Case studies . 85
4.6 References . 93

5. Integral action ­ a disturbance observer approach . 94
5.1 Introduction . 94
5.2 Square plants . 95
5.3 Non­square plants . 102
5.4 Conclusions . 111
5.5 References . 111

6. Compensation of computational delay in MPC 113
6.1 Introduction . 113
6.2 MPC formulation . 115
6.3 Termination criterion 118
6.4 Dynamic real­time scheduling of MPCs 120
6.5 Case study . 122
6.6 Conclusions . 130
6.7 References . 130

A. Parameter values for the Furuta pendulum 133
A.1 Moment of Inertia of the Pendulum 134
A.2 Moment of Inertia of the Arm Assembly 134

B. Matlab tools for MPC . 135
MPCinit . 136
MPCOptimizeSol . 140
MPCSim . 142
MPCController . 143
MPCfrsp . 145
qp_as . 147
qp_ip . 149
getfeasible . 150
B.1 References . 151

6

Acknowledgments

Acknowledgments

In the course of the work presented in this thesis, many people have
helped me and inspired me. I would like to take this opportunity to
express my gratitude to you all.

First I would like to thank my supervisor Karl­Erik Årzén for
skillfully guiding me through my first three years as a PhD student.
Karl­Erik is a never­ending source of ideas and inspiration, and I look
forward to continue this collaboration. As my second supervisor, Per
Hagander has been the ultimate discussion partner, and I have very
much enjoyed our, not always control related, discussion sessions. I
also would like to thank Karl Johan Åström for bringing my atten­
tion to the field of automatic control. When Karl Johan hired me as a
trainee during the summer of 1999, he also introduced me to the excit­
ing field of control, and for this I am very grateful. Further, would like
to thank Tore Hägglund for valuable comments regarding my work on
Grade Change Control.

During the academic year of 1999/2000 I was an exchange student
at the University of California, San Diego. During this time I had the
privilege to attend courses taught by Robert E. Skelton and Robert
Bitmead. My experiences from theses courses strongly affected my de­
cision to apply for the PhD program in Lund. I am also indebted to
Robert E. for inviting me to work with his research group in the spring
of 2000.

It is a very pleasant experience to work at the Department of Auto­
matic Control in Lund. I would like to thank my friends and colleagues
at the Department for making my working days brighter and for ea­
gerly discussing whatever issue I have come up with ­ control­oriented
or not. Henrik Sandberg is the perfect room­mate. Apart from being a
terrific source of information about linear systems, he is also the DJ
of our room. He even plays Gessle from time to time and, needless to
say, he is thus a very good DJ. Pop on! The work on Flexible Real­Time
Scheduling of MPC Controllers presented in Chapter 6 is a joint work
with Dan Henriksson, a collaboration I have very much enjoyed.

Leif Andersson keeps our computer systems healthy ­ his work has
undoubtly saved me many hours of computer hassle. Also, Leif is a
keen teacher of the mysteries of Linux, and I very much appreciate his
teaching efforts. Anders Blomdell knows the answer to any questions

7

Contents

about programming (at least as far as I can tell), and I would like to
thank him for generously sharing his knowledge with me whenever I
run into a syntax error. I also would like to thank Rolf Braun for letting
me mess around in his lab, it has been very rewarding. The dynamic
trio on the fifth floor consisting of Eva Schildt, Britt­Marie Mårtensson
and Agneta Tuszynski has helped me with numerous administrative
(and other) matters. I don’t know what the Department would be like
without you girls, and I am quite sure that I don’t want to know.

In the spring of 2003 I had the opportunity to get a first­hand
experience of the paper making industry when I spent a week at the
Stora Enso Hylte Mill. I would like to thank Per Malmros at Stora
Enso for making this possible. I also would like to thank Olli Saarela
for inviting me to visit KCL, Helsingki, in the spring of 2003.

I am grateful for the financial support provided by the
EC/GROWTH CHEM project, aimed at developing advanced deci­
sion support systems for different operator­assisted tasks, e.g., process
monitoring, data and event analysis, fault detection and isolation,
and operations support, within the chemical process industries. The
CHEM project is funded by the European Community under the
Competitive and Sustainable Growth Programme (1998­2002) under
contract G1RD­CT­2001­00466. The work presented in Chapter 2 was
supported by the Swedish Research Council for Engineering Sciences,
grant TFR 281­1998­618.

Sometimes, when my mind has been a bit too set on work, my dear
friends have helped me focus on non­control related essentials in life
such as whisky, computer gaming and cooking. I am very happy to
have you all. My parents, Lena and Bo­Evert Åkesson have supported
me and always encouraged me to do the things I have set my mind to
do, from day one ­ you are the best! As my more practically oriented
brother, Erik keeps reminding me that a good monkey wrench may be
an excellent idea when I might have suggested something a bit more
theoretical. It is very rewarding to be your brother.

Finally, I would like to thank my beloved wife Katarina for her love
and encouragement. You have shown me what really matters and I am
a very lucky man to have you by my side. I love you.

Johan

8

1

Introduction

1.1 Background and motivation

In many control systems a human operator, or user, is an essential
ingredient. The role of the operator may include interaction at several
levels, ranging from actually closing the control loop to mere supervi­
sion of an automatic system. As an example, consider an airline pilot.
During take off and landing and the associated climb and decent, the
pilot actively controls the aircraft and thereby closes the control loop.
In contrast, during cruise flight, an auto­pilot controls the aircraft, and
the role of the pilot is then to supervise its operation.

For a comparison, consider an embedded control system, e.g. track­
ing and focus control in a DVD­player. The problem is certainly tech­
nically challenging, requiring advanced hardware as well as sophis­
ticated control techniques. Never the less, the user of a DVD­player
controls the equipment at a high level, and is actually placed far out­
side of the control loop.

As an example from the process industry, consider a paper produc­
tion plant. The plant consists of the wet end, where the pulp is put on
the wire, the drying section consisting of several steam heated cylin­
ders and finally the reeling part. Several operators attend a plant of
this size and complexity. The task of the operators is highly depen­
dent on the state of operation of the plant. In stationary operation the
operators mainly supervise the production and maintain the process
equipment. However, if a sheet break occurs, the operators are very

9

Chapter 1. Introduction

much involved in recovering a normal state of operation. These activi­
ties require team work, as several control loops must be manipulated
manually and, at the same time, the paper web should be led through
the machine. Other cases where there is a high degree of operator
interaction is during start­ups, shut­downs and grade changes.

The presence of an operator in the control loop offers challenges
for the control designer that require special attention in the control
system design. There are at least four important aspects that must
be considered for such control systems. The list is not exhaustive, but
should capture the essence of the problem.

• Safety
Many control systems are mission critical, in the sense that fail­
ure may damage equipment, environment or humans. Failure
may also have less dramatical consequences, but never the less
serious; the financial impact of production loss may be severe.
The challenge for the control designer is to ensure safe opera­
tion of equipment, even in the face of erroneous behavior of the
operator.

• Performance
In order to utilize process equipment efficiently, it is important
to strive to maximize the performance of the control system. In
commercial applications, the monetary incitements to optimize
performance may be huge, and in competitive businesses even a
requirement for survival.

• Interaction
The mechanism through which the operator communicates with
the control system is also of importance. The design of the user
interface should support the operator in the decision making pro­
cess and enable efficient operation of the plant.

• Acceptance
Usually, the operator is responsible for the operation of indus­
trial equipment. In this situation, it is important that the op­
erator trusts the control system and know its functionality and
its strengths as well as its limitations. Therefore, operator ac­
ceptance is a key parameter to consider in the design of such
systems.

10

1.2 Contributions

This thesis treats examples of control problems where these issues
are important. Mainly, the applications will be taken from the process
industry, but examples are taken also from other fields, with the inten­
tion to illustrate the trade­off between the often conflicting objectives
listed in this section.

1.2 Contributions

In this section, the contributions of the thesis are summarized.

Chapter 2: Manual control

Control of the inverted pendulum is a classic control problem, and
stabilization of pendulums are part of literally all control theory ed­
ucations. In Chapter 2, a variation of the classic problem is treated.
The aim of the control system is to enable the operator, or pilot, to
control the velocity of the pivot point of the pendulum, while keeping
the pendulum in upright position. Although representing another area
of application, this example illustrates the trade­offs between safety
and performance present also in many process industries. The motiva­
tion of the problem is taken from avionics; the task of a control system
for an unstable fighter aircraft is to stabilize the plane, while enabling
the pilot to perform agile maneuvers. In the pendulum application, the
control system should guarantee safe operation (stability), regardless
of the reference commands given by the operator. Also, the remaining
control authority should be used efficiently to enable swift maneuvers.
The example in this chapter serves as an illustrative example of a con­
trol system where safety, performance and operator interaction must
be regarded. The chapter is based on the publication

Åkesson, J. and K. J. Åström (2001): “Safe manual control of the Fu­
ruta pendulum.” In Proceedings 2001 IEEE International Confer­

ence on Control Applications (CCA’01), pp. 890–895. Mexico City,
Mexico.

Chapter 3: A grade change framework

Dynamic optimization is commonly used in the process industry to
improve control performance. Specifically, the performance of produc­

11

Chapter 1. Introduction

tion transitions, or grade changes, may be significantly improved using
optimization techniques. Chapter 3 focuses on methods for increasing
operator acceptance of optimization techniques. A decision support sys­
tem based on a method for dynamic optimization in combination with
a tool for sequential control, JGrafchart, is proposed. The approach is
motivated by the observation that operators, when performing man­
ual grade changes, commonly apply a sequence of actions to the plant.
Example of such actions are steps and ramps. By parameterizing the
optimal control trajectory as a sequence of actions, it may be imple­
mented in JGrafchart, which offers a structured and hierarchical way
of representing complex sequences, as well as an execution environ­
ment. The presentation is based on the publication

Åkesson, J. and K.­E. Årzén (2003): “A framework for grade changes:
An optimization and sequential control approach.” Preliminary
accepted to ESCAPE­14.

Chapter 4: Tools for MPC

Model predictive control (MPC) is a control strategy that has won
wide­spread use in the process industry. Its main advantages is that
it handles, explicitly, control and state variable constraints and offers
a structured method for dealing with MIMO plants. However, an MPC
controller is quite complex to implement and analyze. In particular,
the behavior of the associated optimization algorithm that is executed
on­line complicates the analysis. Also, the computational complexity
is large. When implemented, the controller offers a rather intuitive
interface for tuning, but the internal functionality of the controller is
often hidden for the user. Intuitive and easy to use tools that enable
detailed analysis of the controller behavior is therefore desirable. In
Chapter 4, tools for analysis of a standard formulation of a linear MPC
controller are presented.

Chapter 5: Integral action - a disturbance observer approach

One of the most basic requirements for a process control system is
to achieve error­free tracking. This is usually achieved by introduc­
ing integral action in the control loop, commonly implemented by PID
controllers. Centralized control of potentially large MIMO plants, for
example MPC, calls for other solutions, however. A well established

12

1.2 Contributions

technique for ensuring offset­free tracking is the use of a disturbance
observer, assuming constant load disturbances. It is straight forward
to show that this method actually translates into integral action in the
SISO case, and also for the case of square plants. However, if there are
additional measured signals, the standard method fails, and results in
stationary errors. This chapter offers a rigorous treatment of this case,
and provides a method for ensuring integral action resulting in error­
free tracking. The material is based on the publication

Åkesson, J. and P. Hagander (2003): “Integral action ­ a disturbance
observer approach.” In Proceedings of European Control Confer­

ence.

Chapter 6: Compensation of computational delay in MPC

The computational complexity of MPC controllers often prevents its
application to plants where fast sampling is required. The delay intro­
duced by on­line solution of the associated optimization program can
be significant, and may even jeopardize the stability of the system.
In Chapter 6 the behavior of a specific MPC implementation is stud­
ied in detail, down to the behavior of the optimization algorithm dur­
ing individual samples. Two mechanisms affecting control performance
are identified. Firstly, the iterative optimization algorithm minimizes
a pre­specified cost function, and produces a sequence of solutions,
where the last one is optimal. Secondly, there is a computational delay
associated with each optimization iteration, which potentially reduces
performance. Using recent results for stabilizing sub­optimal MPC, a
strategy for reducing the effects of computational delay is proposed.

This chapter represents joint work with Dan Henriksson. The tools
used for analysis of the MPC controller were supplied by the author of
this thesis, whereas the real time simulations, and the associated tools,
were supplied by Dan. The results regarding the delay compensation
scheme are a result of joint work. The material is based on the following
publications

Henriksson, D., A. Cervin, J. Åkesson, and K.­E. Årzén (2002a): “Feed­
back scheduling of model predictive controllers.” In Proceedings of
the 8th IEEE Real­Time and Embedded Technology and Applica­

tions Symposium. San Jose, CA.

13

Chapter 1. Introduction

Henriksson, D., A. Cervin, J. Åkesson, and K.­E. Årzén (2002b): “On
dynamic real­time scheduling of model predictive controllers.” In
Proceedings of the 41st IEEE Conference on Decision and Control.
Las Vegas, NV.

Henriksson, D., J. Åkesson, and K.­E. Årzén (2004): “Flexible real­
time implementation of model predictive control using sub­optimal
solutions.” Submitted to the 2004 American Control Conference,
Boston, MA.

1.3 Future directions

The topics treated in this thesis offer several interesting subjects for
future research. In particular, in Chapter 3 a method capturing many
of the aspects of operator interaction and optimization techniques is
outlined. The proposed method offers a novel technique for operator
support for grade changes, in combining state of the art optimization
techniques and a tool for sequential control, JGrafchart. However, in
order to create a framework for grade changes applicable to large and
complex processes, further research is necessary. For example, the is­
sues of robustness, scalability and hierarchical structuring of grade
change sequences have to be investigated in detail. For an extended
discussion of future directions in this field, see Section 3.9.

14

2

Manual control

2.1 Introduction

Many systems are controlled by a combination of automatic and man­
ual control, aircrafts beeing the typical example where stability aug­
mentation systems have been used for a long time to simplify the task
of the pilot. The combination of manual and automatic control is partic­
ularly crucial for unstable systems with actuator constraints. A severe
problem with such systems is that the feedback loop is broken when the
actuator saturates and the system may reach a state where stability
cannot be recovered. The system can be driven to such a state unin­
tentionally by manual control or by a combination of manual control
and disturbances. The Swedish Fighter JAS 39 Gripen is an aircraft
which is unstable in some flight conditions, in order to achieve high
performance. The flight control system is mission critical because in
some flight conditions the unstable mode is so fast that a pilot can­
not stabilize the system. The flight control system should thus fulfill
the dual task of stabilizing the aircraft without restricting the ma­
neuverability unnecessarily. The saturation in this case is actually a
rate saturation caused by the hydraulic actuators driving the control
surfaces, see [Rundqwist et al., 1997].

The essence of the problem can be captured in the following for­
mulation. Consider an unstable system with actuator saturation, see
Figure 2.1. Find a control strategy that stabilizes the system and pro­

15

Chapter 2. Manual control

ur
xStabilizing Control

Reference Following

Unstable

Plant

Figure 2.1 An illustration of the problem formulation dealt with in this work.

vides facilities for manual control. The strategy should be such that
the pilot can manipulate the system easily but without driving the sys­
tem unstable. In this paper we discuss a problem of this type, namely
stabilization of a Furuta pendulum, which is a pendulum hinged on
a rotating arm, see [Furuta et al., 1994]. The tasks are to keep the
pendulum stabilized in the upright position while permitting manual
control of the arm. These tasks are conflicting because both have to
be done using the same control variable, the torque on the pendulum.
Since the torque is limited, manual control could drive the torque to
saturation. When this happens it might not be possible to stabilize the
inverted pendulum. This problem is similar to the aircraft problem.
In both cases we have to stabilize an unstable system. The constraints
are, however, different because there is a rate saturation in the aircraft
case.

The problems associated with control system constraints are well
documented in the literature. Ideas from [Åström and Brufani, 1997],
[Patcher and Miller, 1998] and [Teel, 1996] will be used in the analysis
and controller design. This chapter gives contributions on the transla­
tion of a theoretically motivated controller into a working implemen­
tation.

2.2 Preliminaries

In this section we will define the nonlinearity of interest, the saturation
function. Further, a mathematical model for the Furuta pendulum will
be presented. Finally a linear controller design will be performed. The
linear controller will be needed in the nonlinear control design.

16

2.2 Preliminaries

Table 2.1 Parameters of the Furuta Pendulum

Parameter Description

r Length of the arm

l Distance from the pivot point to the center of
mass for the pendulum

mp Mass of the pendulum, including weight

J ′
p Moment of inertia of the pendulum, with re­

spect to the center of mass

Jp Moment of inertia of the pendulum, with re­
spect to the pivot point

J ′
a Moment of inertia of the motor and arm

Ja Moment of inertia for the motor, arm and pen­
dulum with θ fixed to 0

The saturation nonlinearity

The saturation function that will be used in the following is assumed
to be defined by

σ µ(x) =











−µ x < −µ

x −µ ≤ x ≤ µ

µ x > µ

Pendulum model

Consider the Furuta pendulum in Figure 2.2. The physical parameters
are given in Table 2.1 and numerical values are found in Appendix A.
The angle of the pendulum, θ , is defined to be zero when in upright
position and positive when the pendulum is moving clockwise. The
angle of the arm, ϕ is positive when the arm is moving in counter
clockwise direction. Further, the central vertical axis is connected to a
DC motor which applies a torque proportional to the control signal u.
By introducing the coefficients

a = Ja = J ′
a + mpr2 b = Jp = J ′

p + mpl2

c = mprl d = mpnl

17

Chapter 2. Manual control

Figure 2.2 The Furuta pendulum

the equations of motion for the Furuta pendulum may be written

cϕ̈ cosθ − bϕ̇ 2 sinθ cosθ + bθ̈ − d sinθ = 0

(a + b sin2 θ)ϕ̈ + 2bϕ̇θ̇ sinθ cosθ + cθ̈ cosθ − cθ̇ 2 sinθ = σ µ(u).
(2.1)

As mentioned above, a linear model of the system will be needed for
controller design in the following. Introduction of the state vector

x =
[

x1 x2 x3

]T

=
[

θ θ̇ ϕ̇
]T

and linearization of the system (2.1) around

x0 =
[

0 0 ϕ̇0.
]T

18

2.2 Preliminaries

gives

ẋ =







0 1 0

α 0 0

γ 0 0






x +







0

β

δ






σ µ(u) (2.2)

where

α = abϕ̇ 2
0 + ad

ab − c2 β = −c

ab − c2

γ = −bcϕ̇ 2
0 − cd

ab − c2 δ = b

ab − c2

Notice that the linearized model is parameterized with respect to ϕ̇ .
The reason for this is that our objective is to perform velocity con­
trol of the Furuta pendulum arm. This means that we will force this
state to have different values during a typical control sequence, and
in particular, ϕ̇0 cannot assumed to be zero. Since this term is also
very influential on the resulting linearized model, it will be taken into
account in the design procedure.

A gain scheduled controller

In the following sections a nonlinear controller will be designed. In
this procedure a linear controller that stabilizes the pendulum system
without the saturation nonlinearity is assumed. Since all state vari­
ables are available as measurements from the real pendulum, state
feedback will be used for this purpose. However, a critical feature of
the linearized model is that it is highly dependent on the arm veloc­
ity ϕ̇0. As we can see, ϕ̇0 enters both α and γ as a quadratic term.
In order for a controller based on the linearized state space model to
successfully control the system for a wide range of ϕ̇ , this fact must
be accounted for. A simple, but effective, way to do this is to use gain
scheduling. A gain scheduling controller based on linear state feedback
can be written

u = L(ϕ̇)(r − x) (2.3)
where r is the reference signal to be tracked and L(ϕ̇0) =(l1 l2 l3). r

is a vector; rT = (0 0 xr
3), where the two zeros indicate the desired

values of the states θ and θ̇ . The feedback gains L(ϕ̇) were calculated
using LQ design assuming constant values of ϕ̇ ranging from 0 to 20
rad/s with a resolution of 1 rad/s. The values were stored in a table.

19

Chapter 2. Manual control

At runtime, linear interpolation was used to obtain an approximation
of the correct feedback vector. This approximation proved to work well,
and moreover, it was essential to perform successful control over the
full range of arm velocities.

Friction

There were also other practical complications. There was substantial
friction in the motor driving the arm and in the slip rings. The friction
gave a significant limit cycle oscillation. This is illustrated in the ex­
periment shown in Figure 2.3 where the limit cycle in the arm angle
has an amplitude of about 0.45 rad. Several methods for friction com­
pensation are discussed in [Olsson et al., 1998]. A friction compensator
based on the Coulomb friction model

Ff (ϕ̇ , v) =































F+
c ϕ̇ > 0

F+
c ϕ̇ = 0, u > F+

c

u ϕ̇ = 0, F−
c < u < F+

c

F−
c ϕ̇ = 0, u < F−

c

F−
c ϕ̇ < 0

(2.4)

was designed. An estimate of the friction force was calculated using
this model and added to the control signal computed from the control
law (2.3). The control signal is thus

v = L(ϕ̇)(r − x) + F̂f

where F̂f is an estimate of the friction based on the model (2.4). In
the following, it is assumed that friction compensation is used but we
do not show it explicitly in the controller expressions to simplify the
presentation. Figure 2.3 shows the drastic improvements obtained by
friction compensation. Friction usually changes with the operating con­
dition and friction compensation should therefore be adaptive, [Olsson
et al., 1998]. This was not done in the experiment, but if necessary
the parameters of the friction model were re­tuned at the start of the
experiments.

20

2.3 Phase plane analysis

15 20 25 30
−0.1

−0.05

0

0.05

0.1

15 20 25 30
−0.4

−0.2

0

0.2

0.4

15 20 25 30

−0.5

0

0.5

15 20 25 30
−0.5

0

0.5

15 20 25 30
−2

−1

0

1

2

θ
[ra

d]
ϕ

[ra
d]

θ̇
[ra

d/
s]

ϕ̇
[ra

d/
s]

u
[g

]

t [s]

t [s]

Figure 2.3 The effect of friction compensation. Notice the significant reduction
of the amplitude of the limit cycle for the arm angle, φ . Initially, there is no
friction compensation. Friction compensation is activated at t = 23 s.

2.3 Phase plane analysis

We will now analyze the behavior of the linearized saturation con­
strained system. This means that the control signal saturation is the
only nonlinearity in the model, which simplifies the analysis. A phase
plane analysis will be performed, which will lead us to a design of a
nonlinear controller.

The prime objective of the controller is to stabilize the states x1 = θ
and x2 = θ̇ . Motivated by the fact that the state x3 does not affect x1

and x2 we will start analyzing the subsystem

ẋ1 = x2

ẋ2 = α x1 + βσ µ(u).
(2.5)

21

Chapter 2. Manual control

Now, assume a control law on the form

u = −l1x1 − l2x2.

The controller gains l1 and l2 are chosen to stabilize the system. When
huh ≤ µ the system operates linearly, and is then stable. The interesting
question is how the system behaves when the control saturates, i.e.
huh > µ. To answer this question, let us examine the phase plane of the
system.

When the control signal saturates, the system is described by

ẋ1 = x2

ẋ2 = α x1 ± β µ .

This system has two equilibria:

(x
eq
1 , x

eq
2) = (p, 0) =

(

β µ

α
, 0
)

(2.6)

(x
eq
1 , x

eq
2) = (−p, 0) =

(

− β µ

α
, 0
)

. (2.7)

Further we can conclude that the equilibrium points are unstable, since
the system matrix has the eigenvalues λ1 = √

α and λ2 = −√
α . To

reveal the qualitative behavior of the system, consider the following
expressions;

θ̈ = αθ ± β µ

θ̇θ̈ = αθ̇θ ± β µθ̇

1
2

d

dt
θ̇ 2 = 1

2
α

d

dt
θ 2 ± β µ

d

dt
θ

1
2

θ̇ 2 = 1
2

αθ 2 ± β µθ + C

0 = α (θ ± p)2 − θ̇ 2 − pα + C

where the last expression describes a hyperbolic function. The hyper­
bolic axes are given by θ̇ = ±√

α (θ ± p) and corresponds to the stable
and unstable eigenvectors of the system matrix given by the system
(2.5).

22

2.3 Phase plane analysis

Figure 2.4 shows the behavior of the system (2.5). In the figure,
the axes of the hyperbolic trajectories can be seen, as well as the lines,
u = µ (dashed) and u = −µ (dashed). We can also see that the state
trajectories are stable for some initial conditions, but diverge for others.
That is, the phase plane is divided into one stable, and two unstable
regions.

In the plot, five different regions are marked, corresponding to dif­
ferent modes of operation.

• Ω0: In this region the system operates linearly, i.e. the control
law is

u = −l1x1 − l2x2.

and the trajectories converges to (x1, x2)T = (0, 0). The region is
defined by the lines u = µ and u = −µ.

• Ω+
1 : The control signal saturates, u = µ. The region is bounded

from below by the line u = µ and from above by the line corre­
sponding to the stable eigenvector of the right equilibrium. The
most significant characterization of this region is that the solu­
tions are stable; trajectories starting in Ω+

1 , converge to origin.

• Ω−
1 : Equivalent to Ω+

1 , but bounded by the lines u = −µ and the
line corresponding to the stable eigenvector of the left equilib­
rium.

• Ω+
2 : Also in this region the control signal saturates. The differ­

ence from Ω+
1 and Ω−

1 is that trajectories in this region are un­
stable.

• Ω−
2 : Equivalent to Ω+

2 ; unstable.

To conclude, we have shown that there exists a region of attraction for
the constrained system. An important observation is that saturating
control inputs do not necessarily cause instability, and that the stable
region is significantly larger than the one implied by the saturation
limits.

Let us now discuss the consequences of introducing also the state
x3 = ϕ̇ in the model,

ẋ1 = x2

ẋ2 = α x1 + βσ µ(u)
ẋ3 = γ x1 + δ σ µ(u)

(2.8)

23

Chapter 2. Manual control

−0.6 −0.4 −0.2 0 0.2 0.4 0.6
−6

−4

−2

0

2

4

6
Phase Plane

θ̇

θ

Ω0 Ω+
1

Ω−
1

Ω+
2

Ω−
2

p−p

Figure 2.4 Phase plane for the constrained system (2.5). The solid curves
are actual state trajectories. The dashed lines marks the saturation limits. The
important conclusion to be drawn from this phase plot, is that the state space
is divided into a stable region (unshaded) and two unstable regions (shaded).

The control law is now assumed to be

u = σ µ(−l1x1 − l2x2 − l3(x3 − xr
3)). (2.9)

That is, we strive to achieve (x1 x2 xr
3 − x3)=(0 0 0), and in particular,

we want this relation to be true in stationarity for constant xr
3.

As stated above, the states x1 and x2 are not directly affected by
x3. That is, for any value of x3, the behavior of x1 and x2 when the
control signal saturates is determined by the hyperbolic expression
(2.8). Thus, the orthogonal projection of the hyperbolic axes on the
x1 − x2 plane will be as in figure 2.4. Further the planes (√α s ± p,
s, t), s, t ∈ R, constitute boundaries between important regions in the
state space. Trajectories starting in the region between these planes
may, but does not necessarily, converge. Trajectories starting outside

24

2.4 A cascaded saturations controller

this subset however, will never converge. This observation is essential,
and will be used in the following.

Now, the location of the linear region Ω0 is critical. The expression
for the saturation planes that determine Ω0 are

x2 = − 1
l2

(±µ + l1x1 + uc)

where
uc = −l3(x3 − xr

3)

As we can see, the orthogonal projection of the linear region onto the
x1 − x2 plane will be translated in the x2 direction depending on the
value of uc. The location of the linear region determines which of the
two saturated trajectory sets that governs the behavior of the system.
Moreover, if the projection of the linear region Ω0 overlaps with any
of the regions Ω+

2 or Ω−
2 the system may enter these unstable regions

from where recovery is not possible. This is equivalent to the regions
Ω+

1 and Ω−
1 disappearing. In order to prevent this, the existence of the

regions Ω+
1 and Ω−

1 should always be enforced, so that the projection
of the linear region never overlaps with the unstable regions.

To conclude, if we succeed in restricting the movements of the pro­
jected linear region as describe above, the states of the system will
not diverge for any combination of set point changes in xr

3. This result
assumes that the projection of the initial conditions are contained in
the region of attraction in Figure 2.4, which is reasonable.

2.4 A cascaded saturations controller

With this insight, we are ready to suggest a controller for the system
(2.8), that prevents destabilization the system for all possible changes
in the reference value xr

3. As above, we assume that the initial condi­
tions are not unrecoverable. The troublesome term in the control law,
and also the one that has to be restricted, is uc. Motivated by this fact,
we introduce the revised control law

u = σ µ(−l1x1 − l2x2 + σ µ c(uc)).

25

Chapter 2. Manual control

This control law offers the possibility to restrict uc, in such way that
the regions Ω+

1 and Ω−
1 always exist in the phase plane.

This control strategy using cascaded saturations is well known and
documented in the literature. Work on similar problems reported in
[Teel, 1996]. An example of its applications is given in [Burg et al.,
1996]. The controller structure presented here also has common char­
acteristics with the one suggested in [Åström and Brufani, 1997].

It now remains to calculate admissible values for µ c. The condition
for guaranteed stability is, as stated above, existence of the regions
Ω+

1 and Ω−
1 . The situation may be illustrated as in Figure 2.5. We will

assume that the boundary line between Ω+
1 and Ω+

2 and the line u = µ
are parallel. This can be achieved by introducing a diagonal weighting
matrix Q ≥ 0 and a control signal weight R > 0 in the LQ­design, and
choosing the elements

q11 = α q22 q22 = 2ρR
√

α

β
− ρ2R, −2

√
α

β
≤ ρ ≤ 0

This choice of Q gives (l1 l2)=(ρ
√

α ρ) and saturation lines parallel
to the stable eigenvectors. This result is for the reduced system (2.5),
but can be generalized to the full system (2.8).

Further assume that we desire a safety margin for stability. In
Figure 2.5 the margin is defined by ε q where q = β µ/√

α and ε ∈ [0, 1].
This gives us an upper bound for µ c:

µ c < −l2(1 − ε)q − µ

In Figure 2.6 and Figure 2.7 simulations of the linear constrained
system controlled by the cascaded saturations controller are shown.
In the simulations, the saturation limits were set to µ = 0.07. As we
can see, the controller successfully stabilizes the system, and provides
reference following for the pendulum arm velocity. From the phase plot
in Figure 2.6 it is clear how the controller prevents the system from
leaving the region of attraction. Also, the system does not enter the
safety region defined by the dash­dotted lines. The step responses can
be seen in Figure 2.7 for a few different step sizes.

The benefit from the cascaded saturations controller is obvious, if
compared to the performance of a pure linear controller. In the simu­
lations, stability is lost for some combinations of set point changes for

26

2.4 A cascaded saturations controller

−0.06 −0.04 −0.02 0 0.02 0.04 0.06
2.6

2.8

3

3.2

3.4

3.6

Phase Plane

θ̇

θ

Ω0

Ω+
1 Ω+

2

ε q

Figure 2.5 Calculation of admissible µc. ε may be used to obtain desired
minimal size of the region Ω+

1 .

the state x3 when the linear controller is used. When the cascaded sat­
urations controller is engaged, the system will remain in the specified
region in the state space.

This result can readily be interpreted in terms of the control task,
safe manual control. Given that the state of the system initially is
contained in the stable regions, as described above, there exists no ref­
erence trajectory that will drive the system out of these regions. That
is, the controller guarantees that stability is preserved, independently
of the applied reference.

The analysis presented in this section solves the problem for a lin­
ear plant, with constrained input. However, our analysis does not sup­
port the same claims for the constrained nonlinear plant with gain
scheduled control. The region of attraction, which is the basis for the
analysis will be different for the nonlinear pendulum model and it will

27

Chapter 2. Manual control

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−4

−3

−2

−1

0

1

2

3

4
Phase Plane

θ̇

θ

Ω+
2

Ω−
2

Figure 2.6 A θ − θ̇ plane plot of two simulations. The solid curve shows the
system behavior if the cascaded saturations controller is engaged. The dashed
curve represents a simulation of the system controlled by a regular linear con­
troller. As we can see, the linear controller fails to stabilize the system.

be necessary to investigate the full nonlinear problem.
Having said this, we shall now explore the applicability of the cas­

caded saturations controller on the real Furuta pendulum. Our ambi­
tion is to show that the controller designed for the linear model can,
with some modifications, be made to work in practice on the real plant.

2.5 Experiments

One of the objectives in this work has been to implement a well working
control strategy for a real Furuta pendulum. When applying a control
strategy designed for a linear model to a real plant as in our case, the
potential difference between the model and the plant may be a source

28

2.5 Experiments

0 5 10 15 20 25

−0.5

0

0.5

0 5 10 15 20 25

−1

0

1

0 5 10 15 20 25

−10

0

10

0 5 10 15 20 25
−0.1

0

0.1

θ̇
ϕ̇

θ
u

time [s]

Figure 2.7 The state trajectories for the simulations. The solid curves repre­
sents the case when the cascaded saturations controller is engaged, where as
the dashed­dotted curves shows the response when a pure linear controller is
used. The control signal u is normalized with respect to n.

of problems. This application proved to be no exception. Various prob­
lems, for example friction, noise and the inherent nonlinearities of the
pendulum made the implementation far from straight forward. The
friction problem was solved by introducing friction compensation in
the control loop. The compensation algorithm was based on Coulomb
friction with stiction and improved the performance considerably. Our
main tool in dealing with the difference between the linear and non­
linear model has been gain scheduling. This technique was used for all
controller parameters that depended on the system model. The proce­
dure was described for the state feedback vector L, see equation (2.9),
above, but also the saturation limit µ c depends on the linearized model
and should thus be gain scheduled. However, these modifications were
not sufficient. The value µ c also depends on the actuator saturation
limit µ, which is different from the effective saturation limits in the

29

Chapter 2. Manual control

0 5 10 15 20 25

−0.2

0

0.2

0 5 10 15 20 25
−1.5

0

1.5

0 5 10 15 20 25
−20

0

20

0 5 10 15 20 25

−0.5

0

0.5

θ̇
ϕ̇

θ
u

time [s]

Figure 2.8 Results from experiments performed on the real Furuta pendulum.
The control signal u is also here normalized with respect to n.

presence of friction and friction compensation. The difference in the
control signal magnitude compared to the simulations accounts for the
friction. The design parameter ε was set to 0.5 in the experiments.

With these modifications, the controller achieved the results shown
in Figure 2.8. As we can see, the controller produces slower step re­
sponses compared to the simulations, but it keeps the pendulum in
upright position and in stationarity achieves xr

3 − x3 = 0. Under the
same circumstances, a pure linear state feed back controller failed to
stabilize the system. The fact that the responses are slower may be
explained by the fact that the modifications made to the controller
resulted in a less aggressive controller.

30

2.6 Results and conclusions

2.6 Results and conclusions

In this paper, we have investigated the behavior of an unstable system
subject to manual control, in the presence of control signal saturation,
theoretically and practically. The inverted pendulum has served as an
illustrative example for the analysis and design as well as the experi­
mental part of this work.

The analysis of the constrained linearized pendulum model resulted
in a controller design, that solved the stabilization problem. The non­
linear case, however, is not clear and would be a natural extension of
this work. The cascaded saturations controller was also implemented
on a real Furuta pendulum. The controller succeeded, after some mod­
ifications striving to make it less aggressive, in stabilizing also the real
pendulum.

2.7 Relations to other work

In the course of this work, we have also investigated other approaches
to solve the problem of constrained control. In particular, we have in­
vestigated the applicability of the methods presented in [Gilbert and
Tan, 1991] and [Gilbert et al., 1994] which are based on very elegant
analysis using admissible sets and the reference governor. There were
some difficulties in applying these ideas to the Furuta pendulum, al­
though they performed well in simulations. The main reason was due
to the difficulty in computing the admissible sets accurately for the
real pendulum which has friction and measurement noise.

2.8 References

Burg, T., D. Dawson, C. Rahn, and W. Rhodes (1996): “Nonlinear
control of an overhead crane via the saturating control approach.”
In Proc. of the 1996 IEEE International Conference on Robotics and
Automation, pp. 3155–3160. Minneapolis, Minnesota.

Furuta, K., M. Yamakita, S. Kobayashi, and M. Nishimura (1994): “A

31

Chapter 2. Manual control

new inverted pendulum apparatus for eduction.” In IFAC Sympo­

sium on Advances in Control Education, Boston, MA, pp. 191–196.

Gilbert, E., I. Kolmanovsky, and K. Tan (1994): “Nonlinear control
of discrete­time linear systems with state and control constraints:
A reference govenor with global convergence properties.” In Proc.
33rd Conference on Decision and Control, pp. 144–149. Lake Buena
Vista, Florida.

Gilbert, E. and K. Tan (1991): “Linear systems with state and control
constraints: The theory and application of maximal output admissi­
ble sets.” IEEE Trans. on Automatic Control, 36:9, pp. 1008–1020.

Olsson, H., K. J. Åström, C. C. de Wit, M. Gäfvert, and P. Lischinsky
(1998): “Friction models and friction compensation.” European
Journal of Control.

Patcher, M. and R. Miller (1998): “Manual flight control with saturat­
ing actuators.” IEEE Control Systems, February, pp. pp. 10–19.

Rundqwist, L., K. Stål­Gunnarsson, and J. Enhagen (1997): “Rate
limiters with phase compensation in JAS 39 Gripen.” In Proc.
European Control Conference. Saab Military Aircraft, Linköping,
Sweden.

Åström, K. and S. Brufani (1997): “Manual control of an unstable
system with a saturating actuator.” In Proc. 36th Conference on
Decision and Control, pp. 964–965. San Diego, California.

Teel, A. (1996): “A nonlinear small gain theorem for the analysis
of control systems with saturation.” IEEE Trans. on Automatic
Control, 41:9, pp. 1256–1270.

32

3

A framework for
grade changes

3.1 Introduction

Typically, chemical processes are designed and optimized for steady
state operation. Also, processes are often controlled by local and inde­
pendent control loops implemented in a Digital Control System (DCS).
A DCS may achieve satisfactory control in stationary operation but
often it offers little help to the operator for controlling transient phe­
nomena like grade changes, start­ups and shut­downs, [Ihalainen and
Ritala, 1996]. In these cases, the control performance relies on the ex­
pertise of the operator. In many cases this may be satisfactory, whereas
for critical or frequent grade changes efficient operator support would
be desirable.

As a typical example of a process where grade changes are impor­
tant, consider a paper machine. As discussed in Section 1.1, during
normal operation, the control system of a paper machine operates in
stationary mode, striving to keep critical process variables such as
basis weight and moisture level at the specified target values, which
define a certain paper grade. However, a control system optimized for
stationary operation is not adequate for grade changes, as it would
produce to slow transitions and unnecessarily large production losses.
Efficient support for grade changes is of major importance to achieve

33

Chapter 3. A framework for grade changes

Grade A

Grade B

Figure 3.1 A grade change transfers a process from one operating condition
to another. The shaded region represents constraints that must be respected.

superior production performance in this type of plants, see [Forsman,
2002] for a recent case study.

There has also been a shift towards diversification and tailored
products in chemical process industry. This trend has made grade
changes a more frequent mode of operation in many industries, which
also motivates development of improved operator support for this type
of control mode, [McQuillin and Huizinga, 1994]. In addition, there are
usually safety regulations that must be respected, e.g. process vari­
ables that may not exceed specified values.

The aim of a grade change may be complex. A grade change can
be seen as a state transition, where the task is to transfer, safe and
as fast as possible, the state of a process from a starting point to a
terminal point in the state space of the process. In addition, there are
usually constraints on the control variables and process variables that
must be respected. Typically, actuators like pumps and valves have
a limited region of operation, and critical process parameters should
be kept within certain safety intervals. The problem is illustrated in
Figure 3.1.

The framework outlined in this chapter has been developed with­
out a specific target application in mind. Rather, the aim has been to
formulate a widely applicable method suitable for process industries
in various fields, such as pulp and paper, petroleum and food indus­
tries. An important assumption, however, is that the target process is
continuous, as opposed to a batch process. Application of the proposed

34

3.2 Relations to previous research

method to batch processes would require somewhat modified assump­
tions, and would be an interesting extension.

Industrial application of optimal control profiles requires operator
acceptance. In many cases, the operating personnel are responsible
for the operation and safety of the equipment. Operator confidence in
any control method to be used is therefore crucial. This observation
has important consequences for design of operator support systems.
Specifically, it is important to recognize that the mechanism for pre­
senting and executing grade changes is a key issue. To the authors
knowledge, little work seems to be done in this area compared to the
efforts to develop dynamic optimization schemes.

In this chapter we consider dynamic optimization in combination
with tools for sequential control as building blocks for an operator
support system for grade changes. The development in the field of
dynamic optimization has been significant during the last decade. On­

line applications like MPC have won widespread use in industry, see
for example [Qin and Badgwell, 2003]. Another branch of the theory
is concerned with off­line optimization applied to large scale systems,
see for example [Biegler et al., 2002] for an overview.

We propose the use of Grafcet, see [David and Alla, 1992], to provide
a more operator friendly representation of grade change sequences. In
particular, a dynamic optimization problem is formulated and solved
off­line so that the solution is given by a sequence of actions often used
by operators, e.g. steps and ramps.

3.2 Relations to previous research

There are several possible approaches to the grade change problem.
A very active field of current research is Nonlinear Model Predictive
Control (NMPC). This control strategy explores a nonlinear dynamic
process model, and solves, at each sampling instant, a dynamic opti­
mization problem. Several successful applications in the process indus­
try have been reported. A few illustrative examples can be found in
[Bemporad and Morari, 1999; Magni et al., 1999], where NMPC appli­
cations based on nonlinear and hybrid dynamic models are described.

The benefits of using NMPC in a grade change context are obvious.
Firstly, the control strategy performs well for grade changes where

35

Chapter 3. A framework for grade changes

the dynamics of the process changes with the operating conditions
(given that a good nonlinear model is available). Secondly, the NMPC
controller may be employed also during stationary operation, and pos­
sibly improve control performance further. The application of NMPC
to complex plants is not straight forward, however. On­line solution of
nonlinear optimization programs is computationally demanding, which
requires long sampling intervals. Also, the optimization algorithm may
fail due to infeasibilities or local minima, although techniques for re­
ducing such problems have been developed. From an operators point
of view, an NMPC controller represents a complex control structure.
Without profound knowledge of the internal principle of the controller
it may be difficult to understand its behavior, which may be, although
optimal with respect to a given criteria, foreign to normal operator
procedures. As argued above, operator acceptance is critical in pro­
cess industries where the operator is responsible for the safety and
functionality of the plant. In this respect, there remains open research
problems in the field of NMPC.

Some industrial control systems also offers support for improved
grade change performance. In [Forsman, 2002], implementation of a
control system from ABB Process Industries AB for a paper machine is
described. The control system software also offers a grade change func­
tion; “Fast grade change”, which may be used to improve performance.
In [Murphy and Chen, 1999] and [Murphy and Chen, 2000] written
by ABB researchers, a technique for performing grade changes aimed
at paper machines is described. The method described there assumes
linear dynamic first order process models with time delay, which relate
the important controlled and manipulated process variables. The strat­
egy explores operator expertise in offering highly machine dependent
design parameters, notably transition speed, for the operator to choose.
In [Murphy and Chen, 1999] a real application example is reported,
showing significantly improved grade change performance compared
to a transition executed manually by operators.

In [Ihalainen and Ritala, 1996] an approach to grade changes based
on dynamic optimization for a paper making process is reported. The
idea presented in that paper is based on the use of “valley functions”,
and provides an interesting discussion about choice of optimization
criterion and consequences thereof for the dynamic optimization algo­
rithm.

36

3.3 Assumptions

The method for decision support for grade changes that will be
described in the following uses model based optimization as a key in­
gredient. The quality and availability of a dynamic model describing
the plant of interest will inevitably have a major impact on the perfor­
mance of the resulting grade change sequence. Modeling of paper ma­
chines, however, is currently an active field of research, and significant
efforts is done in the field, see for example [Askaner, 2003; Balderud
et al., 2001].

3.3 Assumptions

In many process industries, the controlled process is accessed through
a DCS, where the DCS implements local controllers, such as PID con­
trollers, tuned for stationary operation of the plant. Normally, the DCS
takes care of the stationary control of the plant, but it is usually possi­
ble for operators to put loops in manual mode and set control variables
directly. For each grade, or stationary point, we assume that there is
a corresponding set of reference values for the local controllers. Refer­
ence values for all loops may not specified, they can also be generated
internally in the DCS, for example in the case of cascaded control
loops. Typically, during production transitions, critical control loops
are put in manual mode by the operators, and the control variables, or
possibly reference values for low level control loops, are then manip­
ulated directly during the transition. A more elaborate description of
operating procedures for grade changes is given in [Sundarraman and
Srinivasan, 2000].

Using the standard terminology of control theory, this transition
control strategy corresponds to feedforward control, whereas the con­
trol strategy in stationary operation corresponds to feedback control.
The combination of feedback and feedforward is a well established con­
trol strategy [Åström, 2002]. For a schematic view, see Figure 3.3.

It is natural to regard the transition problem as an open loop op­
timal control problem for the plant. That is, we would like to find the
optimal solution, according to some criteria, that transfers the system
from one grade to another. The solution will include a control variable
trajectory, u, as well as the expected response of the plant, y. A nat­
ural way to use the optimal trajectories for process transitions is to

37

Chapter 3. A framework for grade changes

u y

Feedforward

Reference

DCS

Control
Feedback Plant

Figure 3.2 A structural figure of the proposed frame work

use u as a feedforward signal for the DCS, and let y be the reference
trajectory for the local control loops. This way, feedforward is used to
achieve performance, whereas feedback is used to obtain robustness.

We will assume that the optimization of the transition sequence is
performed off­line. Potentially, the optimization may be time consum­
ing, and there may also be a variation in calculation time between dif­
ferent grade changes. With this approach it is also possible to maintain
a data base that stores transition sequences for frequently performed
grade changes.

In Figure 3.3 the structure of the proposed grade change framework
can be seen. During stationary operation, the reference values for the
DCS are fixed. When a grade change is initiated, the transition com­
mands are instead supplied by a grade change controller, supervised
by the operator. When the process has reached the new grade, the con­
troller returns to the stationary control mode. The proposed process
transition scheme utilizes the DCS for feedback and feedforward con­
trol, as opposed to using primarily manual control during transitions.

3.4 Sequential control and JGrafchart

Grade changes are sequential by nature. In order to ensure operator
acceptance of a grade sequence generation tool it is important to use
formats and notations that are well accepted. A common way of ex­
pressing sequential actions in automation systems is to use Grafcet
(Sequential Function Charts; IEC61131­3, [Lewis, 1996]). In Grafcet a
sequence is represented by a sequence of steps interconnected by tran­

38

3.4 Sequential control and JGrafchart

Reference

Commnads

Reference

Commnads

Controller

Sequential

DCS

Plant

Stationary Operation

Grade Change Operation

Feedfoward

 Commands

Figure 3.3 A schematic figure of the proposed grade change framework. A
sequential controller is used to apply reference commands to the DCS.

sitions. The steps contain actions that are executed when the step is
activated, when it is deactivated, or periodically while the step is ac­
tive. The transitions contain boolean conditions. When a step is active,
the conditions of the transitions following the step are evaluated, and
when one of them becomes fulfilled, the preceding steps are deactivated
and the succeeding steps are activated. A grade change sequence could
be represented by steps representing step changes or ramp changes
in reference signals or feed­forward signals. Using Grafcet it is also
straight forward to express parallelism and synchronization.

Grafcet is commonly used as a language to express sequential con­
trol structures in DCS and PLC systems. However, the execution of
the Grafcet is often implemented at a low level in the control system,
without the possibility of operator interaction. In particular, the graph­
ical Grafcet representation is normally not shown to the operator. The
graphical feature of Grafcet is usually used only for programming and
reconfiguration purposes, possibly performed by an expert rather than
an operator. A key benefit of using Grafcet for sequential control is
then left unexplored. By enabling the operator to follow the Grafcet
execution graphically, operator acceptance and understanding for the
control system as well as the process could be increased.

39

Chapter 3. A framework for grade changes

Using the graphical representation of Grafcet, a sequence could be
executed automatically, semi­automatically, or manually. In automatic
mode the sequence is executed without operator intervention, whereas
in semi­automatic and manual mode the operator is required to either
acknowledge the actions before they are executed or execute them fully
manually, i.e., in the latter case the grade sequence could be viewed
as a suggestion.

JGrafchart (see Figure 3.4) is the name of a Java­based version
of Grafchart, see [Johnsson, 1999], an object­oriented extension to
Grafcet/Sequential Function Charts that also includes part of the func­
tionality of Statecharts, currently under development [Årzén et al.,
2002]. The language elements are placed on a workspace and con­
nected together graphically. After compilation the function charts are
executed by the runtime system within the editor. JGrafchart includes
a number of language features that support abstraction and re­use. It
is also possible to implement graphical user interfaces and user dia­
log management. Hence, using JGrafchart it is possible to present the
generated grade change sequences to the operator in a familiar format
and to also execute the grade changes.

In the following, a few elementary operations representing com­
mon operator actions expressed as Grafcet elements will be introduced.
Such operations include application of steps and ramps to the plant.
By exploring the hierarchical features of Grafchart, very complex grade
change procedures may be implemented in a structured manner. This
gives us a suitable platform for a decision support system for grade
changes.

3.5 Dynamic optimization

During the last five decades, the theory of dynamic optimization
has received much attention. In 1957, Bellman formulated the cele­
brated Principle of Optimality, and showed that Dynamic Program­
ming was applicable to a broad range of applications, [Bellman,
1957]. Following this work, the dynamic programming technique has
been applied to various fields, notably inventory control, economics,
statistics, engineering etc. For a modern description, see [Bertsekas,
2000a],[Bertsekas, 2000b]. However, although a very elegant theory,

40

3.5 Dynamic optimization

Figure 3.4 The screen layout of JGrafchart.

dynamic programming has proven difficult to apply to large optimal
control problems. In particular, the presence of nonlinear dynamics
and state or control variable constraints may lead to computationally
intractable problems. However, recent initiatives have shown that it
is possible to calculate approximate (with pre­specified error bounds)
solutions of the dynamic programming problem, increasing the appli­
cability of the technique to complex systems, see [Lincoln, 2003].

Another branch of the theory is concerned with open loop opti­
mal control, as opposed to dynamic programming which is a closed
loop strategy. The former branch is closely related with the calculus of
variations. Using this formulation, the solution of the optimal control
problem includes solution of a two­point boundary­value problem. For a
detailed treatment, see [Bryson and Ho, 1975]. There are several vari­
ations of this theme. Also, numerical algorithms for solving trajectory
optimization problems are available, for example RIOTS [Schwartz,
1999].

The applicability of a particular optimization method is highly
model dependent. For example, in the case of linear dynamics,

41

Chapter 3. A framework for grade changes

quadratic cost function and no constraints, the solution is a linear
state feedback control law which may be computed from the solution of
the associated Ricatti equation. For nonlinear system models or in the
presence of constraints, the situation is more involved. The framework
presented in this chapter is intended for large and complex plants,
and accordingly, the dynamic optimization method of choice should be
suited for this type of problems.

Commonly, chemical processes are modeled using Differential Alge­
braic Equations (DAE) obtained from first­principle equations or iden­
tification experiments. It is therefore reasonable to formulate the op­
timization problem so that this, quite general, model structure can be
used. A common formulation of an optimal control problem of this type
is the following

min P(x(t f), u(t f), t f)
subject to

f̄ (ẋ(t), x(t), u(t)) = 0 (DAE dynamics)
x(t0) = x0 (initial conditions)

n(x(t f), u(t f)) = 0 (terminal constraint)
re(ẋ(t), x(t), u(t) = 0 (equality path constraints)
ri(ẋ(t), x(t), u(t) ≤ 0 (inequality path constraints)

(3.1)

where P is a scalar objective function, x(t) ∈ Rn is the state of the
system and u(t) ∈ Rm is the control signal. This formulation covers
many common optimal control formulations, e.g. minimum time prob­
lems. The apparent limitation that state and control variables are only
penalized at the final time is not severe. For example, an integral per­
formance measure is easily included by adding an additional state
governed by the dynamics

ẋi(t) = L(x(t), u(t))

where L is a suitable function.
In the field of process control, there are two major groups of algo­

rithms for solving the dynamic optimization problem (3.1) in an off­line

42

3.5 Dynamic optimization

context: simultaneous and sequential. Using simultaneous methods,
both the state space and control variable space is discretized, yield­
ing a finite dimensional non linear programming (NLP) problem. The
number of optimization variables is generally very large, and special­
ized NLP algorithms are required, see [Biegler et al., 2002]. Also, using
a simultaneous method, the dynamics of the DAE system may be sat­
isfied only at the optimal point. An advantage of this method is that
state and control variable constraints are straight forward to include.

Sequential methods, or control parameterization methods, on the
other hand, use standard DAE solvers to integrate the system equa­
tions and evaluate the cost function. Only the control variable space is
discretized, yielding a significantly lower number of optimization vari­
ables in the NLP problem. A main advantage of sequential methods
is that the solution at each NLP iteration is feasible with respect to
the dynamics of the system, which enable premature termination of
the algorithm. On the downside it should be mentioned that integra­
tion of the DAE equations, which is required at each iteration, may
be computationally demanding. Also, path constraints requires special
attention. For a detailed treatment of sequential methods, see [Vassil­
iadis, 1993].

Both methods use polynomials to parameterize the control profiles.
The control interval [t0 t f] is usually divided into a fixed number of
segments (or elements), where a polynomial of predefined degree is
used to represent the control signal in each segment. Steps and ramps
correspond to zero and first order polynomials, and either method could
in principle be used to generate grade change sequences suitable for
Grafcet representation.

A control parameterization method

To demonstrate the idea in this chapter, a simplified version of the se­
quential method described in [Vassiliadis, 1993] has been implemented,
mainly because of its conceptual simplicity and the fact that it does
not require a specialized NLP solver. The original method is quite
general, and is applicable to multistage DAE systems with general
junction conditions and inequality as well as equality path constraints
on state and control variables. Junction conditions are useful for ex­
ample for describing system behavior at the boundary between two
stages in a chemical reaction. In this formulation, implementation of

43

Chapter 3. A framework for grade changes

the method requires a DAE integrator and an algorithm for solving
nonlinear programming (NLP) problems. In this section a simplified
version of this scheme, still capturing the important features, is de­
scribed. We assume that the system dynamics is the same over the
optimization horizon, that the dynamics is given by an ODE and that
path constraints are only enforced for the control variables. These re­
strictions simplifies presentation as well as implementation, but they
could easily be removed to obtain a more generally applicable grade
change frame work. The notation introduced in the following closely
follows the presentation in [Vassiliadis, 1993].

We consider the following simplified problem

min P(x(t f), u(t f), t f)
subject to

ẋ = f (x(t), u(t)), (ODE dynamics)
x(t0) = x0 (initial conditions)

n(x(t f), u(t f)) = 0 (terminal constraint)
uL ≤ u(t) ≤ uH (inequality path constraints)

(3.2)

where P, x(t) and u(t) have the same interpretation as previously.
The main differences compared to problem (3.1) is that ODE instead
of DAE dynamics is assumed and that only path constraints on the
control variables are included.

Control parameterization Control parameterization is a key is­
sue, both for the optimization method, and for the Grafcet representa­
tion of the grade change sequence. In particular, parameterization of
the control variables significantly affects the convergence of the NLP
algorithm. For example, a very large number of parameters makes the
search problem harder, and the risk of obtaining sub­optimal solutions
due to local minima increases.

Commonly, Lagrange polynomials are used to parameterize the con­
trol signal. Using polynomials, the degree of the polynomials is a key
design parameter. For our purposes, zero and first order polynomials
correspond to steps and ramps, which makes this approach very well
suited for the application at hand. In Figure 3.5, a typical example of

44

3.5 Dynamic optimization

t0 t1 ti tNs
.

t

Figure 3.5 A control variable trajectory parameterized by first order polyno­
mials.

a control trajectory parameterized by first order polynomials is shown.
The elements of the control horizon are defined by the switching in­
stants ti, i = 1 . . . Ns, where Ns is the number of segments. For each
segment i in the horizon, the control variable u j is defined by

u
[i]
j =

Mj
∑

k=1

ui jkφ
(Mj)
k (τ [i])

t ∈ [ti−1 ti]
(3.3)

where ui jk is the k:th polynomial weighting coefficient over the i:th

segment of the j:th control variable,

τ [i] = t − ti−1

ti − ti−1
∈ [0 1]

is the normalized time over the i:th segment and φ are Lagrange poly­
nomials. The order of the Lagrange polynomials (which equals Mj −1)
may be chosen arbitrarily. However, we will only use zero and first
order Lagrange polynomials, which are given by



















φ
(1)
1 (τ) = 1

φ
(2)
1 (τ) = τ − τ2

τ1 − τ2

φ
(2)
2 (τ) = τ − τ1

τ2 − τ1

(3.4)

45

Chapter 3. A framework for grade changes

The parameters τ1 and τ2 may be chosen arbitrarily, but if τ1 = 0 and
τ Mj

= 1, then control variable inequality constraints for constant and
piecewise linear polynomials are easily enforced by

uL ≤ ui.1 ≤ uH Mj = 1, i = 1 . . . Ns

uL ≤ ui.k ≤ uH Mj = 2, i = 1 . . . Ns, k = 1, 2

It is also possible to enforce other types of constraints, for example,
continuity of the control trajectory is obtained by including

ui−i, j,Mj
= ui j0

as a constraint in the optimization procedure.
This control variable parameterization gives the following set of

optimization parameters

p = {ui jk, hi j}

where ui jk is defined as above and hi j is the length of the i:th segment of
the j:th control variable. The lengths of the segments are usually used
as optimization variables instead of the switching times. The choice of
Lagrange polynomial order and the number of segments are key design
parameters that must be chosen carefully for each application. Also,
this choice has significant impact on the performance of the optimiza­
tion algorithm. For example, a large number of segments may lead to
an over­parameterized problem yielding slow convergence in the NLP
algorithm. In order to reduce the number of optimization parameters,
it is possible to let the switching times be fixed, in which case only the
ui jk:s are optimization variables. Also, in the case of multiple control
variables, the switching times may be defined for each control vari­
able, common for all variables or a combination thereof. In particular,
the number of segments need not be the same for all control variable
trajectories.

The infinite dimensional dynamic optimization problem has now
been translated to a finite dimensional approximation of the original
problem. This approximation procedure enables the use of a standard
NLP algorithm for optimizing the criteria

P(x(t f), u(t f), t f) = P(p).

46

3.5 Dynamic optimization

Gradient information Most NLP algorithms require information
about the gradient of the optimization criteria with respect to the
optimization variables, and sometimes also the second derivative i.e.
the Hessian. For dynamic optimization, this problem is considered in
[Rosen and Luus, 1991], where three methods for gradient evaluation
are considered. The first, and most intuitive method is to estimate
the gradient by calculating finite differences. This is also the easiest
method to implement, but it may require careful scaling of perturba­
tions, which yield a less robust method. A second method explores the
adjoint system associated with the Hamiltonian function, that appears
in the solution of the optimal control problem based on Pontryagin’s
maximum principle, [Bryson and Ho, 1975]. Thirdly, the state trajec­
tory sensitivity equations may be used. [Rosen and Luus, 1991] offers
a thorough discussion about which method should be used, concluding
that the use of the sensitivity equations is computationally less de­
manding than using the adjoint system, and more accurate than using
finite differences.

The sensitivity equations for a given parameter p can be written

dxp(t)
dt

= V f

V x
xp(t) + V f

Vu

Vu(t)
V p

. (3.5)

This ODE describing the evolution of xp(t) = V x(t)
V p

over the optimization
horizon can be integrated, using the additional relations

xp(t0) = 0

xp(t+
i) = xp(t−

i) +
(

f (x(t−
i), u(t−

i)) − f (x(t+
i), u(t+

i))
) V ti

V p

(3.6)

which represent initial conditions and boundary conditions at the
switching times. The second equation (3.6) accounts for the fact that
the full derivative of of the state trajectories with respect to the param­
eters must be evaluated. Derivatives of the control variable trajectories
u(t) with respect to the optimization parameters p, Vu(t)

V p
, can be found

in [Vassiliadis, 1993].
The gradient of the cost function with respect to the optimization

47

Chapter 3. A framework for grade changes

variables may now be evaluated from the expression

V P

V p
(t f) = V P

V x

(

xp(t f) + f (x(t f), u(t f))V t f

V p

)

+ V P

Vu

Vu

V p
(t f) + V P

V t f

V t f

V p
.

(3.7)

The gradient information can now readily be used by the NLP algo­
rithm to determine a search direction. Obviously this method for cal­
culating gradients involves numerical solution of several differential
equations, which is potentially computationally demanding. However,
it is possible to solve simultaneously, the ODE:s representing the sys­
tem dynamics (which is necessary in order to evaluate the cost func­
tion) and the sensitivity equations for increased efficiency.

It is also possible to evaluate second derivatives using similar tech­
niques. In [Vassiliadis et al., 1999] it is shown the the performance
of the NLP algorithm in terms of faster convergence can be improved
using this method. Evaluation of second derivatives using sensitivities
was not included in the implementation described here, however, but
would be a reasonable extension.

Implementation

The algorithm has been implemented in Matlab using ode45 to solve
differential equations and Optimization Toolbox to solve the NLP prob­
lem. The Optimization Toolbox function fmincon, which implements a
Sequential Quadratic Programming (SQP) algorithm (see for example
[Fletcher, 1987]) was used to solve the NLP problem. The algorithm
requests, at each iteration, gradient information, which is calculated
by integration of the sensitivity equations. Cost function evaluations
are also initialized by the optimization algorithm.

3.6 Grafchart representation

The mapping between the solution of the optimal control problem and
a corresponding Grafchart sequence is a key part in the proposed
method. Using the proposed method, generation of grade change se­
quences should be done off­line, where the grade change Grafcets are

48

3.6 Grafchart representation

generated automatically from the solution of the optimization problem.
For a particular plant, a library of frequently occurring grade changes
may be created and used by the operating personnel. Used in this
context, the Grafcet representation offers two important benefits.

Firstly, it serves as a complement to trend plots and offers a struc­
tured and hierarchical view of complex transition procedures. For a
complex transition, the number of control variables may be very large,
and structuring the transition sequence into different levels of detail
can be most helpful for the operator. For example, there may be subsys­
tems of the process that requires detailed but not critical operation,
and accordingly, the corresponding Grafchart sub­sequence could be
encapsulated and accessed only if needed by the operator. The hierar­
chical structuring of the grade change information assists the operator
in maintaining an overview of the procedure.

Secondly, when implemented in JGrafchart, or an equivalent en­
vironment, it enables the operators to execute and supervise a grade
change at a desired level of detail. As pointed out previously, a se­
quence can be executed with different levels of operator involvement.
Simple tasks can be executed automatically, whereas critical sequences
may be executed when acknowledged by the operator. For a detailed
description of JGrafchart, see [Olsson, 2002].

Three types of Grafchart elements have been defined in order to
express Grafchart sequences, namely steps, ramps and function tables,
see Figure 3.6.

• The step element
One of the most basic operations performed by operators is to
apply a step to a control variable or a reference value. When the
step element is activated, an instantaneous change in the asso­
ciated control variable value is performed, which is implemented
as an action that is executed when the step becomes activated.
The transition following the step element specifies the length of
the time interval that should elapse before proceeding to the next
element in the sequence. This is expressed as a condition eval­
uating to true when the step element has been active for the
specified amount of time.

• The ramp element
The ramp element is defined similarly. When the ramp element is

49

Chapter 3. A framework for grade changes

Figure 3.6 Grafchart elements for representation of grade change sequences.
The variable u1 is assumed to be the name of a control variable.

activated, an action is executed at each cycle updating the asso­
ciated control variable. When the transition condition specifying
the time for which the ramp element is active evaluates to true,
the execution proceeds.

• The function table element
Potentially, more complex functions have to be used. For example,
it was suggested above that the expected response of the plant
should be used as reference values for local control loops. The
predicted response of a complex plant is generally not possible
to parameterize using only steps and ramps, which calls for a
more sophisticated element. The function table element offers
the possibility of defining arbitrary functions.

Using these three basic elements as building blocks, very complex
grade change procedures may be described. In addition, other features
of Grafchart, such as synchronization elements may be used to ex­
press parallel and synchronized tasks. Another useful element of the
Grafchart language is the macro step, which can be used to encap­
sulated sub­sequences and thereby achieve hierarchical structuring of
grade change procedures.

Figure 3.7 shows an example of a typical sequence encapsulated
in a macro step. The time function representing the control variable
trajectory is shown in the left plot and the corresponding Grafcet in
the right figure. In Figure 3.8 a more complex sequence involving two
control variables, u1 and u2, as well as synchronization elements is
shown.

50

3.7 An example

2

1

1 2 3 4
t

Figure 3.7 A sequence of a ramp and a step represented as a time function
and a Grafcet sequence respectively. The update interval of the runtime system
is assumed to be 10 ms.

3.7 An example

The quadruple­tank laboratory process, see Figure 3.9, has been used
to demonstrate the proposed grade change framework. The model pre­
sented here is derived in [Johansson, 1997]. The process consists of
four tanks, organized in pairs (left and right), where water from the
two upper tanks flows into the two lower tanks. A pump is used to
pour water into the upper left tank and the lower right tank. A valve
width fixed position is used to allocate pump capacity to the upper and
lower tank respectively. A second pump is used to pour water into the
upper right tank and lower left tank. The control variables are the
pump voltages. Let the states of the system be defined by the water
levels of the tanks (expressed in cm) x1, x2, x3 and x4 respectively. The
maximum level of each tank is 20 cm. The dynamics of the system is

51

Chapter 3. A framework for grade changes

Figure 3.8 A more complex Grafchart representing a grade change sequence.

given by

ẋ1 = − a1

A2

√

2nx1 + a3

A1

√

2nx3 + γ 1k1

A1
u1

ẋ2 = − a2

A2

√

2nx2 + a4

A2

√

2nx4 + γ 2k2

A2
u2

ẋ3 = − a3

A3

√

2nx3 + (1 − γ 2)k2

A3
u2

ẋ4 = − a4

A4

√

2nx4 + (1 − γ 1)k1

A4
u1

(3.8)

52

3.7 An example

Tank 2Tank 1

Tank 3 Tank 4

u1 u2

γ 1 γ 2

1 − γ 1 1 − γ 2

Pump 1 Pump 2

Figure 3.9 A schematic picture of the quadruple tank process

where the Ai:s and the ai:s represent the cross section area of the tanks
and the holes respectively. The parameters γ i:s determine the position
of the valves which control the flow rate to the upper and lower tanks
respectively. The control signals are given by the the ui:s. The objective
is to control the levels of the two lower tanks, i.e. x1 and x2. Numerical
values of the parameters are given in Table 3.1.

An interesting feature of this multivariate process is that the lin­
earized system has an adjustable zero. By adjusting the parameters
γ 1 and γ 2 it is possible to obtain a zero with negative real part, or a
non minimum phase zero with positive real part. For the simulations,
the valve positions were set to γ 1 = 0.30 and γ 2 = 0.30, yielding a
non­minimum phase system.

In order to evaluate the proposed scheme, three grades were de­
fined, see Table 3.2. Grade changes transferring the plant from grade
A to B, grade B to C and grade C to A were calculated using the
optimization procedure outlined above. The optimization criterion was

P(x(t f), u(t f), t f) =
∫ t f

0
(u0 − u(t))T R(u0 − u(t))dt (3.9)

53

Chapter 3. A framework for grade changes

Table 3.1 Parameter values of the Quadraple Tank

Parameters Values Unit

A1, A2 28 [cm2]
A3, A4 32 [cm2]
a1, a2 0.071 [cm2]
a3, a4 0.057 [cm2]
k1, k2 3.33, 3.35 [cm3/Vs]
kc 0.50 [V/cm]
n 981 [cm/s2]

Table 3.2 Stationary values for grade A, B, C.

Grade x0
1 x0

2 x0
3 x0

4 u0
1 u0

2

A 7.0000 12.0000 3.1720 6.3169 2.8870 2.4321

B 9.0000 12.0000 4.9060 5.2061 2.6209 3.0247

C 7.0000 14.0000 2.7689 8.1416 3.2776 2.2723

where R = I, reflecting the fact that the control energy should be
small. The target values for the control variables u0 are assumed to be
the values of the new grade. A terminal constraint ensuring that x(t f)
corresponds to the new grade was also imposed.

The parameterization of the control variable trajectories is an im­
portant part of the optimization procedure. The solution obtained by
the optimization algorithm, and also the convergence of the algorithm,
are highly dependent of this choice.

As a first attempt, the control variables of the quadruple tank were
parameterized by first order Lagrange polynomials, using 2 segments
for each variable. The final time of the optimization horizon was as­
sumed to be fixed, yielding one switching time for each control variable.
Continuity of the control trajectories was also imposed. This choice of
control variable parameterization results in 10 optimization variables;
4 polynomial weighting coefficients and one interval length for each

54

3.7 An example

Figure 3.10 Grade change Grafcets.

control variable.
Figure 3.10 shows the Grafcet representing the optimal sequence

for transferring the plant from grade A to B. Apart from steps and
transitions, parallel split and join elements are used to obtain syn­
chronization between the two sequences. The right Grafcet in Figure
3.10 shows the hierarchical possibilities of JGrafchart. Each macro
step encapsulates a grade change sequence; the transitions are usu­
ally triggered by the operator. For complex grade changes, it should
be possible for operators to supervise the procedure more closely and
accept manually sub­sequences at an increased level of detail. Figure
3.11 shows the state and control profiles produced by the optimization
algorithm. This simple example corresponds to a production schedule
in which the grades A, B, and C should be produced.

In a second attempt, piecewise constant polynomials and two seg­
ments for each control variable was assumed. The optimization hori­
zon was assumed to be fixed, and was determined individually for
each grade change. This control variable parameterization yields 6 op­

55

Chapter 3. A framework for grade changes

Figure 3.11 The plot shows a simulation run, where the optimal grade change
sequences are applied to the plant. The shaded areas mark the grade changes.

timization parameters; two polynomial weighting coefficients and one
switching time for each control variable. The resulting grade changes
are shown in Figure 3.12. As we can see, the objective of each grade
change is fulfilled; at the end of the optimization horizon the state of
the process corresponds to the new grade.

It is tempting to increase the complexity of the control variable pa­
rameterization, in order to improve performance. It is reasonable to
assume that the additional degree of freedom would render a better
approximation of the corresponding optimal control problem without
any restriction on the control variable parameterization. In a third at­
tempt, piecewise linear polynomials and four segments for each control
variable were assumed. As before, continuity of the control variables
as well as fixed optimization horizon were assumed. This parameter­
ization yields a more complex search problem for the optimization al­
gorithm, and potentially degraded performance in terms of slow con­

56

3.7 An example

Figure 3.12 The optimal solution assuming 2 segments and piecewise con­
stant control variable trajectories.

vergence. In this case however, no such problems were encountered.
The result of the optimization is shown in Figure 3.13.

An interesting question is how well do the optimal solutions pre­
sented above approximate the solution of the optimal control problem
without restrictions on the control variable parameterization. In order
to investigate this, the Matlab toolbox RIOTS (Recursive Integration
Optimal Trajectory Solver) was employed. See [Schwartz, 1999] for
details on the usage of, and the theory behind this tool. The optimiza­
tion problem with cost function (3.9) and terminal equality constraint
was solved using RIOTS for the grade changes defined above. A large
number of segments were used to discretize the optimization horizon.
The resulting trajectories are shown in Figure 3.14 for the grade A to
grade B transition. For comparison, the solutions described previously
are included. As we can see, the simple control variable parameteriza­
tion based on piecewise constant polynomials approximate the RIOTS

57

Chapter 3. A framework for grade changes

Figure 3.13 The optimal solution assuming 4 segments and piecewise linear
control variable trajectories.

solution quite well, if the state trajectories are considered. In the case
of four segments and piecewise linear control trajectories, the differ­
ence is neglectable. To further quantify the performance improvement
obtained by the increased level of detail in the control variable param­
eterization, the optimal values of the cost function are summarized
in Table 3.3. Apparently, in this case, little improvement is achieved
by introducing additional degrees of freedom in the control variable
parameterization. Consequently, the grade change sequences in this
example are well suited for Grafchart representation, since close to
optimal performance can be achieved using only a small number of el­
ements. This conclusion, however, cannot be drawn in general. Accord­
ingly, a similar analysis should be done in each particular application.

58

3.8 Conclusions

0 10 20 30 40 50 60 70

4

6

8

x
3
,

x
4

0 10 20 30 40 50 60 70
6

8

10

12

14

x
1
,

x
2

0 10 20 30 40 50 60 70
0

2

4

6

t [s]

u
1
,

u
2

Figure 3.14 The solid curves represent the optimal solution obtained using
RIOTS. For comparison, the dashed curves representing the case with piecewise
constant control variables and the dotted curves representing the case with
piecewise linear control trajectories with four segments are included. Notice
that the difference between the latter case and the RIOTS solution is barely
visible in the plot.

3.8 Conclusions

In this chapter we have shown how dynamic optimization methods
can be used to generate grade change sequences expressed in the se­
quential language Grafcet. The motivation for the proposed method is
the importance of operator acceptance of decision support systems. In
JGrafchart, grade change sequences are expressed in a structured and
hierarchical manner, offering an operator friendly complement to regu­
lar time plots. Further, JGrafchart enables automatic, semi­automatic
or manual execution of grade change sequences, offering an environ­
ment suitable for operator support systems.

59

Chapter 3. A framework for grade changes

Table 3.3 Optimal cost function values obtained with different control variable
parameterizations.

Grade change PWC, 2 seg. PWL, 2 seg. PWL, 4 seg. RIOTS

A→B 1.5309 1.2190 1.2148 1.2143

B→C 1.1255 0.8950 0.8664 0.8655

C→A 0.9753 0.7900 0.7864 0.7861

3.9 Future work

The work presented in this chapter can be extended in several direc­
tions, with the objective of creating a framework for grade changes
applicable to large and complex plants. An important issue that must
be treated is robustness. For example, it is necessary for the method
to be robust to modeling errors and disturbances, but also to uncertain
initial conditions. In the method outlined in this chapter, local control
loops implemented the DCS ensures some robustness by introducing
feedback. However, feedback could be introduced directly in the Grafcet
sequence as well. In the method presented above, the grade change se­
quence evolves with time, i.e. the transitions in a Grafcet sequence
are triggered by time conditions. An attractive complement would be
to let the transition conditions depend on the evolution of the plant,
e.g. state triggered transitions. In this way additional robustness could
be achieved.

Another convenient extension would be to generate Grafcet se­
quences automatically, given the optimal solution from the optimiza­
tion algorithm. This problem includes development of methods for au­
tomatic hierarchical structuring of sequences, as well as graphical lay­
out of Grafcet elements. An related issue is scalability. The presented
framework is intended for large and complex processes, and accord­
ingly, finding methods for structuring that grants for good scalability
is essential.

By parameterizing the control variable sequences as steps and
ramps, the obtained solution is obviously sub­optimal. Also, the num­
ber of segments, i.e. the number of steps and ramps, also affects the

60

3.10 References

performance of the method. In this chapter, RIOTS has been used to in­
vestigate sub­optimality of solutions. An extended comparative study,
quantifying the sub­optimality of the proposed method would be inter­
esting.

As noted previously, the availability of a dynamic model is impor­
tant in order for the proposed method to perform well. Specifically, the
structure of the model influences the choice of optimization method. In
this chapter, the use of dynamic models based on non­linear ODE:s has
been explored. However, other types of models may require a different
approach to the dynamic optimization problem.

3.10 References

Askaner, M. (2003): “Simulerad kartongmaskin sparar pengar.” Pro­

cess Nordic, No 1.

Balderud, J., C. Haag, and D. I. Wilson (2001): “Large­scale dynamic
paper machine models.” In 6th World Congress of Chemcal Engi­
neering. Melbourne, Australia.

Bellman, R. (1957): Dynamic Programming. Princeton University
Press, Princeton, N.J.

Bemporad, A. and M. Morari (1999): “Control of systems integrating
logic, dynamics and constraints.” Automatica, 35, pp. 407–427.

Bertsekas, D. P. (2000a): Dynamic Programming and Optimal Control,
vol 1. Athena Scientific.

Bertsekas, D. P. (2000b): Dynamic Programming and Optimal Control,
vol 2. Athena Scientific.

Biegler, L., A. Cervantes, and A. Wächter (2002): “Advances in simulta­
neous strategies for dynamic optimization.” Chemical Engineering
Science, 57, pp. 575–593.

Bryson, A. E. and Y.­C. Ho (1975): Applied optimal control. Hemisphere
Publishing Corporation.

David, R. and H. Alla (1992): Petri nets and Grafcet: Tools for
modelling discrete events systems. Prentice­Hall International
(UK) Ltd.

61

Chapter 3. A framework for grade changes

Forsman, K. (2002): “Lägesrapport från världens mest automatiserade
pappersbruk.” In Reglermöte 2002. Linköping, Sweden.

Ihalainen, H. and R. Ritala (1996): “Optimal grade changes.” In Pro­

ceedings from Control Systems ’96, pp. 213–216. Halifax, Canada.

Johansson, K. H. (1997): Relay Feedback and Multivariable Control.
PhD thesis ISRN LUTFD2/TFRT­­1048­­SE, Department of Auto­
matic Control, Lund Institute of Technology, Sweden.

Johnsson, C. (1999): A Graphical Language for Batch Control. PhD
thesis ISRN LUTFD2/TFRT­­1051­­SE, Department of Automatic
Control, Lund Institute of Technology, Sweden.

Lewis, R. (1996): Programming Industrial Control Systems Using IEC
1131­3. IEE, London.

Lincoln, B. (2003): Dynamic Programming and Time­Varying Delay
Systems. PhD thesis ISRN LUTFD2/TFRT­­1067­­SE.

Magni, L., G. Bastin, and V. Wertz (1999): “Multivariable nonlinear
predictive control of cement mills.” IEEE Transactions on Control
Systems Technology, 7:4, pp. 502–508.

McQuillin, D. and P. W. Huizinga (1994): “Reducing grade change time
through the use of predictive multi­variable control.” In Proceedings
from Control Systems ’94, pp. 275–281. Stockholm, Sweden.

Murphy, T. F. and S.­C. Chen (1999): “Transition control of paper­
making processes: Paper grade change.” In Proceedings of Interna­

tional Conference on Control Applications, pp. 1278–1283. Kohala
Coast­Island of Hawai’i, Hawai’i, USA.

Murphy, T. F. and S.­C. Chen (2000): “Fast grade change for paper
making processes.” In Control Systems 2000. Victoria, Canada.

Olsson, R. (2002): “Exception handling in recipe­based batch control.”
Technical Report Licentiate thesis ISRN LUTFD2/TFRT­­3230­­
SE. Department of Automatic Control, Lund Institute of Technol­
ogy, Sweden.

Qin, S. J. and T. A. Badgwell (2003): “A survey of industrial model
predictive control technology.” Control Engineering Practice, 11,
pp. 733–764.

62

3.10 References

Rosen, O. and R. Luus (1991): “Evaluation of gradients for piecewise
constant optimal control.” Comput. chem. Engng., 15:4, pp. 273–
281.

Årzén, K.­E., R. Olsson, and J. Åkesson (2002): “Grafchart for proce­
dural operator support tasks.” In Proceedings of the IFAC World
Congress, Barcelona, Spain.

Schwartz, A. (1999): “The riots home page.” http://www.accesscom.

com/~adam/RIOTS/.

Åström, K. J. (2002): Introduction to Control. Department of Automatic
Control, Lund Institute of Technology.

Sundarraman, A. and R. Srinivasan (2000): “Decision support for
monitoring transitions in chemical plants.” In Third International
Conference on Loss Prevention (Saftey, Health and Environment)
in the Oil, Chemical and Process Industries. Singapore.

Vassiliadis, V. (1993): Computational solution of dynamic optimization
problem with general differnetial­algebraic constraints. PhD thesis,
Imerial Collage, London, UK.

Vassiliadis, V. S., E. B. Canto, and J. R. Banga (1999): “Second­order
sensitivities of general dynamic systems with application to optimal
control problems.” Chemical Engineering Science, 54, pp. 3851–
3860.

63

4

Tools for model predictive
control

4.1 Introduction

The key feature that distinguishes MPC from most other control strate­
gies is the receding horizon principle. An MPC controller solves, at each
sampling instant, a finite horizon optimal control problem. Only the
first value of the resulting optimal control variable solution is then ap­
plied to the plant, and the rest of the solution is discarded. The same
procedure is then repeated at each sampling instant, and the prediction
horizon is shifted forward one step. Thereby the name receding horizon
control. This strategy includes solving on­line an optimal control prob­
lem, which enables the controller to deal explicitly with MIMO plants
and constraints. On the downside are the computational requirements.
Solving the optimization problem may introduce computational delay,
which, if not considered, may degrade control performance. Also, MPC
is a model based control strategy, and a model of the process to be
controlled is a necessary requirement for MPC.

Historically, there has been two major selling points for MPC; it
works well for MIMO plants, and it takes constraints into account
explicitly. Both these issues arise frequently in many practical appli­
cations, and must be dealt with in order for a control design to be
successful. MPC has been particularly successful in the area of pro­

64

4.1 Introduction

cess control, which is also the field from where MPC originates. Tradi­
tionally, MPC has been mainly applied to plants with slow dynamics,
where the computational delay is small compared to typical sampling
intervals. However, recent reports of MPC applications include plants
with fast dynamics, ranging from air plane control to engine control.
For a review of industrial use of MPC, including a historical review of
the evolution of MPC, see [Qin and Badgwell, 2003]

During the last decade, there has been significant research efforts
to sort out the theoretical issues of MPC. Notably, the problem of for­
mulating a stabilizing MPC scheme has received much attention. As
a result, several techniques to ensure stability have been presented,
see [Mayne et al., 2000] for a review. The theory for MPC based on
linear systems is well developed, and strong results ensuring robust
stability exists, see [Maciejowski, 2002] for an overview. Also, the op­
timization problem resulting from linear MPC is a Linear Inequal­
ity Constrained Quadratic Programming (LICQP) problem, which is
a convex optimization problem, and efficient solution algorithms ex­
ist. In particular, existence of a unique global minimum is guaranteed.
For non­linear system, there exist MPC formulations that guarantee
stability under mild conditions. However, the resulting optimization
problem is, in general, non­convex and usually no guarantee of finding
a global minimum exits. Non­linear MPC remains a very active field of
research and recent results have shown that optimality is not a neces­
sary condition for stability, see [Scokaert et al., 1999]. These promising
results show that many non­linear MPC schemes may be stabilizing
although finding the global minimum is difficult.

In this chapter, Matlab tools for a standard formulation of linear
MPC will be presented. State estimation, error­free tracking and sta­
bility are important issues that will be covered in the following. The
aim of developing the MPC tools have been to simulate, in detail, the
behavior of an MPC controller. In particular, the tools has been used
to study the effects of computational delay as described in Chapter 6.
A detailed analysis of controller behavior also requires understanding
of the algorithm used to solve the LICQP problem. Accordingly, the
tools include implementations of common LICQP algorithms for this
purpose.

65

Chapter 4. Tools for model predictive control

4.2 Linear model predictive control

In this section, an MPC formulation based on linear discrete­time state
space models will be described. The presentation is based on [Ma­
ciejowski, 2002].

Receding horizon control

The MPC scheme makes use of the receding horizon principle, illus­
trated in Figure 4.1. At each sample, a finite horizon optimal control
problem is solved over a fixed interval of time, the prediction hori­
zon. We assume that we would like the controlled variables, z(k), to
follow some set point trajectory, r(k). The optimal control problem is
formulated using a cost function penalizing deviations of the controlled
variables as well as variations in the control signal. A common choice
is to use a quadratic cost function, which in combination with a linear
system model yields a finite horizon LQ problem. Figure 4.1 shows the
predicted optimal trajectories ẑ(k + ihk) and û(k + ihk) starting at time
k.

The predictions necessary to solve the optimization problem is ob­
tained using a model of the controlled system. The prediction of the
controlled variable z is performed over an interval with length Hp

samples. The control signal is assumed to be fixed after Hu samples.
Hp and Hu are referred to as the prediction horizon and the control
horizon respectively. The distinction between the prediction and con­
trol horizons is useful since the number of decision variables in the
optimization problem increases with Hu, but is independent of Hp.
Normally, Hu < Hp in order to reduce the complexity of the optimiza­
tion problem.

When the solution of the optimal control problem has been obtained,
the value of the first first control variable in the optimal trajectory,
u(khk), is applied to the process. The rest of the predicted control vari­
able trajectory is discarded, and at the next sampling interval the
entire procedure is repeated.

66

4.2 Linear model predictive control

t

r(k)

z(k)

ẑ(k)

u(k)
û(k)

k k + Hu k + Hp

Figure 4.1 The idea of MPC. Here r(k) is the set point trajectory, z(k) repre­
sents the controlled output and u(k) the control signal.

Model assumptions

We assume that a model on the form

x(k + 1) = Ax(k) + Bu(k)
y(k) = Cyx(k)
z(k) = Czx(k) + Dzu(k)

zc(k) = Ccx(k) + Dcu(k)

(4.1)

is available. Here y(k) ∈ Rpy is the measured output, z(k) ∈ Rpz the
controlled output and u(k) ∈ Rm the input vector. The state vector
is x(k) ∈ Rn. The MPC controller should also respect constraints on
control variables as well as the constrained outputs, zc(k) ∈ Rpc

∆umin ≤ ∆u(k) ≤ ∆umax

umin ≤ u(k) ≤ umax

zmin ≤ zc(k) ≤ zmax

(4.2)

where ∆u(k) = u(k) − u(k − 1) are the control increments.
The distinction between controlled and constrained variables is nat­

ural, since only the controlled variables have specified reference values.

67

Chapter 4. Tools for model predictive control

This distinction is not made in [Maciejowski, 2002], but is quite use­
ful. For example, there may be plant variables that must respect con­
straints, without having corresponding reference values. In some cases
the constrained variables may not be included in the set of measured
variables. In this case, an observer can be used to obtain estimates
of such variables. The constraints are then enforced for the estimated

outputs, which may not be equal to the true constrained outputs. The
same argument applies to the controlled outputs, which will be dis­
cussed further in the section dealing with error free tracking.

An optimal control problem

We will now formulate the optimal control problem that is the core
element of the MPC algorithm. Consider the following quadratic cost
function:

J(k) =
Hp+Hw−1
∑

i=Hw

iẑ(k + ihk) − r(k + ihk)i2
Q +

Hu−1
∑

i=0

i∆û(k + ihk)i2
R (4.3)

where ẑ(k + ihk) are the predicted controlled outputs at time k and
∆û(k + ihk) are the predicted control increments. The matrices Q ≥ 0
and R > 0 are weighting matrices, which are assumed to be constant
over the prediction horizon. The length of the prediction horizon is Hp,
and the first sample to be included in the horizon is Hw. Hw may be
used to shift the control horizon, but in the following presentation we
will assume that Hw = 0. The control horizon is given by Hu. In the cost
function (4.3) ∆u(k) is penalized rather than u(k), which is common
in LQ control. The reason for this is that for a non­zero set point,
r(k), the corresponding steady state control signal u(k) is usually also
non­zero. By avoid penalizing u(k), this conflict is avoided. A different
method that has been used is to introduce a set point also for the
control variable, ru(k), and to penalize deviations of u(k) from ur. This
approach may be implemented in the above formulation by choosing
Cz = 0 and Dz = I, and thereby let u(k) be part of the controlled
variables.

The cost function (4.3) may be rewritten as

J(k) =
∥

∥Z (k) − T (k)
∥

∥

2
Q

+ i∆U i2
R

68

4.2 Linear model predictive control

where

Z (k) =









ẑ(khk)
...

ẑ(k + Hp − 1hk)









T (k) =









r(khk)
...

r(k + Hp − 1hk)









∆U (k) =









∆u(khk)
...

∆u(k + Hu − 1hk)









Q =













Q 0 . . . 0

0 Q . . . 0
...

...
. . .

...

0 0 . . . Q













R =













R 0 . . . 0

0 R . . . 0
...

...
. . .

...

0 0 . . . R













By deriving the prediction expressions, we can write

Z (k) = Ψx(k) + Γu(k − 1) + Θ∆U (k) (4.4)

where

Ψ =



















Cz

CzA

CzA2

...

CzAHp−1



















Γ =



















Dz

CzB + Dz

CzAB + CzB + Dz

...

Cz

∑Hp−2
i=0 Ai B + Dz



















69

Chapter 4. Tools for model predictive control

Θ =































Dz 0 ⋅ ⋅ ⋅ 0

CzB + Dz Dz

CzAB + CzB + Dz

. . .
...

...
. . . 0

Cz

∑Hu−2
i=0 Ai B + Dz ⋅ ⋅ ⋅ Dz

...
. . .

...

Cz

∑Hp−2
i=0 Ai B + Dz ⋅ ⋅ ⋅ Cz

∑Hp−Hu−1
i=0 Ai B + Dz































Also, let
E (k) = T (k) − Ψx(k) − Γu(k − 1).

This quantity could be interpreted as the free response of the system,
if all the decision variables at t = k, ∆U (k), were set to zero. Inserting
the prediction expressions into the cost function (4.3) we obtain

J(k) = ∆U TH ∆U − ∆U TG +E TQ E (4.5)

where
G = 2ΘTQ E (k)
H = ΘTQ Θ +R

The problem of minimizing the the cost function (4.5) is a quadratic
programming (QP) problem. If H is positive definite, the problem is
convex, and the solution may be written on closed form. Positive defi­
niteness of H follows from the assumption that Q ≥ 0 and R > 0. The
solution is given by

∆U = 1
2
H −1G .

Notice that the matrix H −1 does not depend on k, and may be pre­
calculated. In fact, the controller is linear, and may be calculated off­
line. This will be discussed in detail in Section 4.2.

Constraints

Let us now introduce constraints on the constrained and control vari­

70

4.2 Linear model predictive control

ables, zc and u. In general, linear constraints may be expressed as:

W∆U (k) ≤ w (4.6)
FU (k) ≤ f (4.7)

GZ c(k) ≤ n (4.8)
(4.9)

This formulation allows for very general constraints, but in the follow­
ing, only the constraints specified by (4.2) will be considered. Using
(4.2), we obtain

W = F =































1 0 ⋅ ⋅ ⋅ 0

−1

0 1
...

−1
...

. . . 0

1

0 ⋅ ⋅ ⋅ 0 −1































G =































1 0 ⋅ ⋅ ⋅ 0

−1

0 1
...

−1
...

. . . 0

1

0 ⋅ ⋅ ⋅ 0 −1































w =



















∆umax

−∆umin

...

∆umax

−∆umin



















f =



















umax

−umin

...

umax

−umin



















n =



















zmax

−zmin

...

zmax

−zmin



















Notice that W and F may not be of the same size as G, though the
structure is the same. SinceU (k) and Z c(k) are not explicitly included
in the optimization problem, we rewrite the above constraints in terms
of ∆U (k). This gives







F

GΘc

W






∆U ≤







−F 1u(k − 1) + f

−G(Ψcx(k) + Γcu(k − 1)) + n
w






(4.10)

71

Chapter 4. Tools for model predictive control

where

F =































1 0 ⋅ ⋅ ⋅ 0

−1

1 1
...

−1 −1
...

. . . 0

1 1

−1 ⋅ ⋅ ⋅ −1































F 1 =





























1

−1

1

−1
...

1

−1





























The definitions of Ψc, Θc and Γc are equivalent to those of Ψ, Θ and Γ.
As we can see, the left side of the inequality is not dependent on k, and
could be calculated off­line. The right side depends on the last control
signal and the present estimation of the state vector, and should thus
be evaluated at each sample.

The optimization problem can now be rewritten using (4.3) and
(4.10)

min J(k) = ∆U TH ∆U − ∆U TG +E TQ E

subject to Ω∆U ≤ ω

The problem is still recognized as a quadratic programming problem,
but now with linear inequality constraints. The problem is convex, but
due to the constraints, it is not possible to write the solution on closed
form. Rather iterative algorithms have to be employed. This issue will
be discussed further in Section 4.3

Stabilizing MPC algorithms

The problem of formulating stabilizing MPC schemes has received
much attention in the last decade. The conditions for stability are now
quite well understood, and several techniques for ensuring stability
exist, including methods based on terminal penalty, terminal equality
constraint and terminal sets, see [Mayne et al., 2000] for an overview.
These results are valid both for linear and non­linear MPC, although
for linear systems the situation is less complicated due to the convexity
of the optimization problem.

The following theorem summarizes the important features of a sta­
bilizing MPC scheme based on a terminal equality constraint [Bem­

72

4.2 Linear model predictive control

porad et al., 1994]. Without lack of generality we assume that r(k) is
zero.

THEOREM 4.1
Consider the system (4.1) controlled by the receding horizon controller
based on the cost function (4.3), subject to the constraints (4.10). Let
r(k) = 0. Further assume terminal constraints x̂(k + Hp + 1) = 0 and
û(k + Hu) = 0, Q ≥ 0 and R > 0 and that (Q

1
2 Cz, A) is a detectable

pair. If the optimization problem is feasible at time k, then the origin
is stable, and z(k)T Qz(k) → 0 as k → ∞.
Proof:

Let
∆U ∗

k = (∆û∗
k(k), ∆û∗

k(k + 1), . . . , ∆û∗
k(k + Hu − 1))

denote the optimal control sequence at time k. Obviously,

∆U k+1 = (∆û∗
k(k + 1), . . . , ∆u∗

k(k + Hu − 1), 0)

is then feasible at time k + 1. Consider the function

V (k) = J(k, ∆U ∗
k, x(k))

with r(k) = 0. Then we have the following relations:

V (k + 1) = J(k + 1, ∆U ∗
k+1, x(k + 1))

≤ J(k + 1, ∆U k+1, x(k + 1))
= V (k) − z(k + 1)T Qz(k + 1)
− ∆u(k)T R∆u(k).

(4.11)

Since V (k) is lower­bounded and decreasing,

z(k)T Qz(k) → 0

and
∆u(k)T R∆u(k) → 0

as k → ∞. Further, using the fact that (Q
1
2 Cz, A) is a detectable pair,

it follows that
ix(k)i → C < ∞

as k → ∞.

73

Chapter 4. Tools for model predictive control

REMARK 4.1
To prove the stronger result that the origin is asymptotically stable, the
additional assumption that the system (4.1) has no transmission zeros
at q = 1 from u to z could be imposed. Notice also that the sensible
assumption that Q > 0 implies that z(k) → 0 as k → ∞, which is,
however, automatically achieved if the transmission zero condition is
fulfilled.

There are several important points that should be stressed. The as­
sumption that there exist an initial feasible solution (subject to the
constraints (4.10) and x̂(k + Hp + 1) = 0) is non trivial; for some re­
gions in the state space a feasible solution may not exist. However,
in an actual application, it is often possible to use the control signal
∆û(k + 1) calculated at the previous sample, in hope that the opti­
mization problem at the next sample is feasible. Also, using a more
sophisticated stabilizing technique, such as a terminal penalty and a
terminal set the feasible region may be extended.

Recent results explore another important feature of Lyapunov­
based MPC stability proofs; optimality is not necessary for stability.
In [Scokaert et al., 1999] it is shown how stability can be achieved
by ensuring feasibility of the solution, with respect to some criterion,
rather than optimality. Using this technique, it is recognized that it is
sufficient to ensure that the cost function is decreasing in each sample
in order for the stability proof to work. An application of these results
is found in Section 6, where premature termination of the optimization
algorithm is considered in order to reduce the effects of computational
delay. Another area of importance is non­linear MPC, where finding
the optimal solution may be difficult due to multiple local minima.

State estimation

The algorithm for obtaining the optimal control signal at each sam­
ple assumes that the present state vector is available. Since this is
often not the case, state estimation is required. The celebrated separa­
tion principle, stating that the optimal control and optimal estimation
problems solved independently, yields a globally optimal controller for
linear systems, suggests an attractive approach. We let the solution of
the optimization problem be based on an estimate of the state vector,
x̂(k) instead of the true state vector x(k). For this purpose, a Kalman

74

4.2 Linear model predictive control

filter,

x̂(k + 1) = Ax̂(k) + Bu(k) + K (y(k) − Cy x̂(k)).

can be used. If the covariance matrices of the states, W, and the mea­
surement noise, V , are assumed to be known, the gain matrix K may
be obtained by solving an algebraic Riccati equation, see for example
[Åström and Wittenmark, 1990].

Apart from estimating the state of the system, an estimator could
be used to estimate disturbances, assuming that a disturbance model
is available. For example, error­free tracking may be achieved by in­
cluding a particular disturbance model in the observer.

Error-free tracking

In practical applications, there are always modeling errors and dis­
turbances present. The MPC formulation described above contains no
explicit mechanism to deal with these complications. In order for the
controller to be useful in practice, these problems have to be consid­
ered. Commonly, the controller is designed so that it contains integral
action, which ensures zero steady­state error. There are several meth­
ods for achieving integral action in a controller. For SISO systems,
introduction of integral action is quite straight forward. A common
approach is to introduce an integrator state in the state space model:

[

x(k + 1)
xi(k + 1)

]

=
[

A 0

−Cz I

]

x(k) +
[

B

0

]

u(k) +
[

0

I

]

r(k)

y(k) =
[

Cy 0
]

z(k) =
[

Cz 0
]

.

A stabilizing feedback control law may then be calculated based on the
extended model. The integrator state is implemented in the controller,
and used for feedback together with the true or estimated states. From
the definition of the extended system model, it is clear that in steady
state, z = r. This approach does not work so well for MPC controllers.
In particular, it is not clear how the integral state should be introduced
in the cost function in order for the integral action to work properly.

75

Chapter 4. Tools for model predictive control

A different approach to achieve integral action is to use a distur­
bance observer. In summary, the extended system model







x(k + 1)
va(k + 1)
d(k + 1)






=







A 0 B

0 I 0

0 0 I













x(k)
va(k)
d(k)






+







B

0

0






u(t)

z(k) = yz(k) =
[

Cz 0 0
] [

x(k)T va(k)T d(k)T
]T

ya(k) =
[

Ca I 0
] [

x(k)T va(k)T d(k)T
]T

is used. It is assumed that the number of controlled outputs, z, equals
the number of inputs, u. Additional outputs, if any, are denoted ya.
Also, the controlled variables are assumed to be included in the set of
measured variables. A detailed treatment of this method is given in
Chapter 5.

Blocking factors

In some situations it may be advantageous to let the control signal
be fixed over several consecutive predicted samples. In this way, the
control horizon may be increased without increasing the complexity of
the optimization problem. Also, ringing behavior of the control signal
may be avoided. For example, suppose that the control horizon has to
be increased in order to increase closed loop performance. If the con­
trol horizon is increased, the time to solve the optimization problem
will also increase. If this is not acceptable, one approach might be to
include only every other decision variable in the optimization prob­
lem, assuming that the the control signal is fixed over two consecutive
sampling intervals. We denote the set of predicted sample indexes for
which the control signal is allowed to vary by Iu.

In the MPC formulation given above this means that some ∆û(k +
ihk):s are set to zero for certain i:s. This means that the corresponding
columns in the matrices Θ, W and F may be neglected.

In a similar way it is possible to generalize the prediction horizon.
Instead of including all predicted values in the interval [k...k+ Hp −1],
we introduce the set Ip consisting of all sample indexes for which the
corresponding predicted output values are included in the cost function

76

4.2 Linear model predictive control

and for which the constraints are enforced. The last point is critical.
It may be tempting to introduce a sparse set of predicted sampling
instants in order to obtain a longer prediction horizon. However, since
the inter­sample behavior is neglected, this may lead to the constraint
in effect being violated at some points.

This generalization is easily introduced by neglecting the rows of
the matrices Ψ, Γ, Θ and G corresponding to sample indexes not
present in Ip.

Using the notation introduced above, the cost function may be
rewritten as

J(k) =
∑

i∈Ip

iẑ(k + ihk) − r(k + ihk)i2
Q +

∑

i∈Iu

i∆û(k + ihk)i2
R . (4.12)

Linear properties of the MPC controller

The behavior of the MPC controller is intrinsically nonlinear, since con­
straints on state and control variables are taken into account. However,
if no constraints are present in the problem formulation, the controller
is linear. Also, the controller behaves linearly during operation when
no constraints are active. In the first case, the control law, could (and
should) be calculated off­line, whereas in the second case, the opti­
mization procedure must be done each sample. There are however,
methods for avoiding on­line solution of the optimization problem. Us­
ing the observation that the MPC control law is piecewise linear in
the states, it is possible to calculate, off­line, all possible control laws.
The on­line optimization problem is then transformed into a search
problem, where the objective is to find the appropriate partition in the
state space, identifying the corresponding control law. This approach
is described in [Bemporad et al., 2002].

We will now analyze the linear properties of the MPC controller.
The analysis is valid for the case when no constraints are present or
the controller operates so that no constraints are active. In this case,

77

Chapter 4. Tools for model predictive control

the minimizing solution of the quadratic programming problem is

∆U (k) = (ΘTQ Θ +R)−1ΘTQ E (k)

= (ΘTQ Θ +R)−1ΘTQ

















I

...

I









−Γ −Ψ















r(k)
u(k − 1)

x̂(k)







= K̄s







r(k)
u(k − 1)

x̂(k)







Now, since only the first of the predicted control signals are applied
we can write the control law as

∆u(khk) = ∆u(k) = Ks

[

rT(k) uT (k − 1) x̂T (k)
]T

=
[

Ksr Ksu Ksx

] [

rT(k) uT(k − 1) x̂T (k)
]T

where Ks is given by the first m rows of K̄s. This control law is linear,
and the constant gain matrix Ks may be calculated off­line. The block
diagram of the controller may now be drawn as in Figure 4.2. In this
figure, the transfer function (matrix) of the plant is given by P(z), and
Hu(z) and H y(z) represents the observer. This block diagram is readily
converted into a feedback system on standard form shown in Figure
4.3, with

P(z) = Cy(zI − A)−1 B

F(z) = Ksr

H(z) = −Ksx H y(z)

K (z) = z

z − 1

[

I − 1
z − 1

Ksu − z

z − 1
Ksx Hu(z)

]−1

H y(z) = (zI − A + K Cy)−1 K

Hu(z) = (zI − A + K Cy)−1 B

It is now straight forward to apply standard linear analysis methods.
For example, the poles and zeros of the closed loop system may be
calculated, as well as the sensitivity of the system.

78

4.3 Quadratic programming algorithms

−

Ksr

Ksu

−Ksx

Ksx

P(z)

Hu(z)

H y(z)

r(k) ∆u(k) u(k) y(k)

z−1 I

z
z−1 I

Figure 4.2 The block diagram for the MPC controller

−

P(z)

H(z)

F(z) K (z)
r(k) u(k) y(k)

Figure 4.3 A standard feedback structure.

4.3 Quadratic programming algorithms

An important element of the MPC algorithm described above is the
algorithm for solving the LICQP problem. The problem at hand is

min J(k) = ∆U TH ∆U − ∆U TG +E TQ E

subject to Ω∆U ≤ ω .

This problem has several nice features. For example, the objective func­
tion is convex, since it is quadratic with positive definite Hessian. Also,
the constraints are also convex. Given these conditions, it is a well
known result that a local minimum, if it exists, is also a global mini­
mum. (See for example Theorem 4.3.8 in [Bazaraa et al., 1993].) When
designing numerical algorithms, this property is of course very valu­

79

Chapter 4. Tools for model predictive control

able, since we know in advance that if we find a minimum, it is indeed
a global minimum.

There exist several algorithms for constrained optimization, see for
example [Fletcher, 1987]. For quadratic programming problem the two
most common approaches are primal­dual internal point methods and
active set methods [Maciejowski, 2002].

The active set algorithm assumes an initial point in the decision
variable space that fulfills the constraints. The active set is defined as
the set of all active constraints at this point. A constraint is said to be
active if a particular point in the search space is at the boundary of
the feasible region defined by the constraint. In the case of linear con­
straints, these boundary surfaces are given by hyper­planes. In each
iteration step, a quadratic programming problem with linear equal­
ity constraints (namely those in the active set) is solved. The solution
of this problem may be written on closed form. Possibly this solution
leads to the introduction of a new constraint into the active set. By cal­
culating the Lagrange multipliers for the problem at each iteration, it
is possible to conclude if a constraint may be relaxed, that is, removed
from the active set. The algorithm terminates when the gradient of
the associated Lagrange function is identically zero, and all Lagrange
multipliers are positive.

One problem remains to deal with; the feasible initial point. In
order to start the active set algorithm, we need a feasible solution, that
is, we would like to find a solution that fulfills the constraints Ω∆U ≤
ω . Of course, such a solution is not likely to be unique. Several methods
exist for obtaining the desired solution. For example, the problem may
be cast as an LP problem, and solved by the simplex algorithm. Another
and possibly more attractive alternative is given in [Fletcher, 1987].
This strategy employs an active set technique similar to the one for
solving the main quadratic programming problem. However, in this
case, the objective function is defined at each iteration as the sum of
the violated constraint functions.

Primal­dual interior point methods on the other hand, explores the
Karush­Kuhn­Tucker conditions explicitly. The name of this family of
QP algorithms stems from the fact that the primal and the dual prob­
lems are solved simultaneously. It is important to note however, that
the term interior point refers to the fact that the algorithm maintains
a solution in the interior of the dual space. In fact, the primal solution

80

4.4 MPC tools for Matlab

may not be feasible during the optimization run, except at the opti­
mal point. This constitutes an important difference between active set
methods and primal­dual interior point methods. Specifically, in the
former case it is possible to terminate the optimization algorithm pre­
maturely and still obtain a feasible, but sub­optimal, solution whereas
in the latter case, the algorithm may terminate only when the optimal
solution is found.

Concerning performance, both methods have advantages and dis­
advantages when applied to MPC. Rather, the key to achieve good
performance lies in exploring the special structure of the MPC QP
problem. See [Bartlett et al., 2000] for a comparison between interior
point and active set methods.

4.4 MPC tools for Matlab

In this section, Matlab tools implementing the algorithms described in
the previous sections are presented. The main objective for implement­
ing the MPC tools has been to enable detailed study of the behavior
of an MPC controller. In this section, the functionality of the tools is
described briefly, see Appendix B for a detailed description.

A quadratic programming solver

Obviously, a quadratic programming solver is essential for the imple­
mentation of the MPC controller. A solver of this type is available for
example from the Matlab Optimization Toolbox; quadprog. However,
the aim of the development of the Matlab tools has been to create a
complete implementation of an MPC controller. Since this also includes
an algorithm to solve the QP problem, a solver based on active sets as
well as a primal­dual interior point QP solver have been implemented.
In addition, an algorithm for finding an initial feasible solution for the
active set solver has been implemented. The following Matlab functions
implement the necessary algorithms:

• getfeasible

This function obtains a feasible point given the constraints Ax ≤
b. The algorithm is described in [Fletcher, 1987, p. 166].

81

Chapter 4. Tools for model predictive control

• qp_as

This is an active set solver, based on [Fletcher, 1987, p. 240]. The
algorithm finds the solution of the optimization problem

min
1
2

xT Hx + f T x

s.t.

Ax ≤ b

using an initial solution x0 as starting point. The possibility of
starting the algorithm from an initial solution is quite useful
when implementing the MPC controller. Usually, the solution ob­
tained at the previous sample is a good initial guess, and the
number of iterations may be reduced by supplying this solution
to the QP algorithm

• qp_ip

This function solves the same quadratic problem problem
as qp_as. The algorithm implements the Mehrotra predictor­
corrector primal­dual interior point method based on [Wright,
1997].

The MPC controller described in the next section enables the user to
explore either quadratic programming method, as well as the Opti­
mization Toolbox function quadprog.

MPC tools

The Matlab functions presented in this section implement an MPC
controller as described in Section 4.2. The tools enable the user to sim­
ulate a linear or nonlinear plant model, with an MPC controller en­
gaged. Most of the features described in Section 4.2 are implemented,
including constraint handling, observer support, blocking factors and
error­free tracking. Also, a basic tool for analyzing the linear properties
of the controller is supplied.

In summary, the same assumptions as in Section 4.2 are made for
the Matlab implementation of the MPC controller. We assume that a
linear discrete time model on the form (4.1), with linear inequality
constraints (4.2) is available. Also, we assume that the design vari­
ables Hw, Hp, Hu and the blocking factors are specified, as well as the

82

4.4 MPC tools for Matlab

weighting matrices Q, R and, if applicable, W and V for the design of
a Kalman filter.

An important goal in designing the MPC tools has been to enable
the user to experiment with different configurations of the MPC con­
troller. Consequently, the MPC tools support several modes of opera­
tion:

• Mode 0: State feedback.

• Mode 1: State feedback with explicit integrators.

• Mode 2: Observer­based output feedback.

• Mode 3: Observer­based output feedback with explicit integra­
tors.

• Mode 4: Observer­based output feedback with a disturbance
model that gives error free tracking.

Both state and output feedback is supported. Also, two different strate­
gies for achieving error­free tracking are provided; explicit integrators
and an observer based solution. Both methods are described in Section
4.2.

The MPC tools are implemented in five functions:

• MPCInit

Typically, MPCInit is used to initialize the MPC controller. Most
of the matrices needed to solve the optimization problem may be
calculated off­line in advance, for example the Hessian of the QP
problem. MPCInit implements pre­processing of matrices, which
drastically improves the performance of the controller.

• MPCSim

MPCSim simulates a linear plant model controlled by the MPC
controller. Reference trajectories as well as input disturbance tra­
jectories can be supplied. The function produces the state and
control variable trajectories, as well as the predicted trajecto­
ries for the controlled and control variables. The latter feature
enables the user to examine the predicted solutions obtained at
each sample, and explore the effect of different choices of predic­
tion horizons.

83

Chapter 4. Tools for model predictive control

• MPCfrsp

As noted in Section 4.2, the MPC controller behaves linearly if
no constraints are active. It is then interesting to use standard
tools for analysis of linear systems. The function MPCfrsp pro­
vides frequency response plots for relevant transfer functions cor­
responding to, e.g., the closed loop system and input and output
sensitivity functions.

• MPCOptimizeSol

MPCOptimizeSol is a low level function used by other functions
rather than by the user. This function provides the control signal
of the MPC controller given the current state measurement (or
estimation) and reference value.

• MPCController

Most real world plants are nonlinear. It is therefore of interest
to investigate the performance of the linear MPC controller ap­
plied to a nonlinear plant model, if it is available. This func­
tionality is provided by the simulation environment Simulink
for Matlab. The MPC controller has been adapted to Simulink,
and is implemented by a Matlab S­function. The S­function is
a standard block in Simulink, which may in turn be connected
to arbitrary blocks. For an example, see Figure 4.4. The name
of the S­function is MPCController, and is intended for use
with the Simulink S­function block. It takes the argument md,
which is a data structure created by the MPCInit function. The
MPCController block takes as its inputs a vector signal consist­
ing of the measured outputs of the plant and the reference value.
Its output is a vector signal consisting of the control signal u,
and the internal state estimation of the controller, x̂. The latter
may, apart from the estimated states of the plants, also include
estimated disturbances or integrator states.

Using the MPC tools described above, it is possible to simulate, at
a high level of detail, the behavior of an MPC controller. For example,
the consequences of various assumptions regarding measurements, in­
tegral action schemes, choice of QP algorithm and prediction horizons
are easily explored. Also, the use of Simulink significantly increases
the applicability of the tools, enabling the user to simulate the behavior
of the MPC controller when applied to nonlinear plants.

84

4.5 Case studies

Figure 4.4 A Simulink model where the MPC controller is used to control a
nonlinear plant.

4.5 Case studies

In this section, two cases studies are reported, illustrating the main
functionality of the MPC tools.

The Quadruple Tank

In Chapter 3, the Quadruple Tank process was described. The process
is nonlinear, and in order to apply the MPC tools, a linearized model
must be derived. Introducing ∆x = x− x0, ∆u = u−u0 and ∆ y = y− y0,
we obtain

∆ ẋ =













− 1
T1

0 A4
A1T3

0

0 − 1
T2

0 A4
A2T4

0 0 − 1
T3

0

0 0 0 − 1
T4













∆x +













γ 1 k1
A1

0

0 γ 2 k2
A2

0 (1−γ 2)k2

A3
(1−γ 1)k1

A4
0













∆u

∆ y =
[

kc 0 0 0

0 kc 0 0

]

∆x

(4.13)

85

Chapter 4. Tools for model predictive control

Table 4.1 Stationary values corresponding to γ 1 = 0.25 and γ 2 = 0.35.

Variables Values Unit

x0
1, x0

2 8.2444, 19.0163 [cm]
x0

3, x0
4 4.3146, 8.8065 [cm]

u0
1, u0

2 3, 3 [V]

where

Ti = Ai

ai

√

2x0
i

n .

The stationary operating conditions, x0 and u0, are given in Table 4.1.
The particular choice of valve positions γ 1 = 0.25 and γ 2 = 0.35 yields a
non­minimum phase system. The measured outputs of the system are
the levels of the lower tanks, represented by a voltage ranging from 0
to 10 V. The objective of the control system is to control, independently,
the level of the lower tanks, while preventing overflow in any of the
four tanks. The maximum level of the tanks is 20 cm, corresponding to
10 V. In the simulations, the tank level constraints were set to 19.8 cm
to ensure some safety margin. Also, the operation of the pumps is
limited to 0 to 10 V. We notice that the stationary level of the second
tank is close to the maximum level. The combination of a non­minimum
phase system and an operating point close to a constraint yields a
quite challenging control problem, where two of the main benefits of
the MPC controller, namely constraint handling and MIMO support,
will be useful. The plant was discretized using the sampling interval
h = 3 s, resulting in a discrete time model used for the MPC control
design.

Control of the linearized model In Table 4.2, the controller pa­
rameters used in the simulations are summarized. The choice of pre­
diction and control horizons have been made considering the time con­
stants of the system. Too short horizons may cause instability. How­
ever, the prediction and control horizons must not be chosen to large,
since it would result in an unnecessarily complex QP problem to solve
at each sample. In order to increase the horizons without increasing

86

4.5 Case studies

Table 4.2 MPC controller parameters for the Quadruple Tank simulations

Parameter Value

Hp 30

Hw 1

Hu 10

Ip Only every other sample was included in
the optimization problem.

Iu Every other control increment was as­
sumed to be constant.

Q diag(4, 1)
R diag(0.01, 0.01)
W diag(1, 1, 1, 1)/diag(1, 1, 1, 1, 1, 1)
V diag(0.01, 0.01)

the number of optimization variables, the blocking factor 2 has been
specified for both the control and prediction horizons.

Obviously, since all states are not measurable, an observer must be
used. In the first simulation, controller mode 2 was used: a Kalman
filter was designed, but no mechanism to ensure integral action was
assumed. The result of the simulation is shown in Figure 4.5, rep­
resented by the dashed curves. The dotted curves represent the set
points for the lower tanks. A step change in the set point of level 1
of size 6 cm is applied at t = 60 s, while the set point of level 2 is
held constant. As we can see, the controller achieves the correct set
points, and in particular, the level of tank 2 does not exceed 20 cm. At
t = 600 s, a unit step disturbance is applied to the input channel 2.
As expected, the MPC controller does not manage to achieve error­free
tracking in the presence of load disturbances.

In a second design, control mode 4 was assumed. In this case, the
disturbance observer described in Chapter 5 was used to estimate the
state vector and the disturbance states. The response of the system is
identical to the previous case during the step response. However, the
input disturbance is now rejected.

87

Chapter 4. Tools for model predictive control

0 200 400 600 800 1000 1200
2

4

6

8

10

12

h
3
 [
c
m

]

0 200 400 600 800 1000 1200
2

4

6

8

10

h
4
 [
c
m

]

0 200 400 600 800 1000 1200
6

8

10

12

14

16

h
1
 [
c
m

]

0 200 400 600 800 1000 1200
18

18.5

19

19.5

20

h
2
 [
c
m

]

0 200 400 600 800 1000 1200
0

1

2

3

4

u
1
 [
V

]

t [s]
0 200 400 600 800 1000 1200

2

4

6

8

u
2
 [
V

]

t [s]

Figure 4.5 Simulations of the MPC controller applied to the linearized plant.

Control of the nonlinear model As noted above, the true Quadru­
ple Tank system is nonlinear. A more realistic scenario would then be
to apply the MPC controller designed above to the nonlinear plant
model. The plant model was implemented in Simulink, and an S­
function block representing the MPC controller was connected to the
plant model block. The design parameters of the MPC controller were
identical to the previous case, see Table 4.2. Also the same simulation
scenario was assumed. The result of the simulation can be seen in Fig­
ure 4.6. The dashed curves represent the case when an observer with­
out disturbance states is employed. As we can see, the controller fails
to achieve error­free tracking even when no disturbances are present,
which is due to the fact that there is a model­mismatch between the
linear and the nonlinear plant. Obviously, the controller also fails to
compensate fully for the load disturbance. If the disturbance observer
is employed however, the controller gives zero steady­state error. This
is shown by the solid curves. In both cases, however, the controller
respects the constraints: no tank level exceed 20 cm.

88

4.5 Case studies

0 200 400 600 800 1000 1200
2

4

6

8

10

12

14

h
3
 [
c
m

]

0 200 400 600 800 1000 1200
2

4

6

8

10

h
4
 [
c
m

]

0 200 400 600 800 1000 1200
6

8

10

12

14

16

h
1
 [
c
m

]

0 200 400 600 800 1000 1200

18

18.5

19

19.5

20

h
2
 [
c
m

]

0 200 400 600 800 1000 1200
0

1

2

3

4

u
1
 [
V

]

t [s]
0 200 400 600 800 1000 1200

2

4

6

8

u
2
 [
V

]

t [s]

Figure 4.6 Simulations of the MPC controller applied to the nonlinear plant.

The Helicopter Process

As an example of a process with fast dynamics, we consider the heli­
copter process shown in Figure 4.7. The helicopter consists of an arm
mounted to a base, enabling the arm to rotate freely. The arm carries
the helicopter body on one end and a counterweight on the other end.
The helicopter body consists of a bar connected to the arm in such a
way that it may rotate around the arm axis. To the bar is connected
two propellers, which may be used to maneuver the plant. A schematic
image of the process is shown in Figure 4.7, where the elevation angle,
θ e, measures the angle of the arm with respect to the horizontal plane,
the travel angle, θ r, measures the rotational position of the arm and
the pitch angle, θ p, measures the angle of the bar. A simple dynamical

89

Chapter 4. Tools for model predictive control

Table 4.3 Parameter values of the helicopter process

Parameter Value Unit Description

Je 0.91 [kgm2] Moment of inertia about elevation axis

la 0.66 [m] Arm length from elevation axis to heli­
copter body

K f 0.5 Motor Force Constant

Fn 0.5 [N] Differential force due to gravity and
counter weight

Tn la Fn [Nm] Differential torque

Jp 0.0364 [kgm2] Moment of inertia about pitch axis

lh 0.177 [m] Distance from pitch axis to either motor

Jt 0.91 [kgm2] Moment of inertia about travel axis

model of the system is given by

θ̈ e = (K f la/Je)(Vf + Vb) − Tn/Je

θ̈ r = −(Fnla/Jt) sinθ p

θ̈ p = (K f lh/Jp)(Vf − Vb)
(4.14)

where the coefficients are given in Table 4.3. The input signals to the
system are Vf and Vb which represent the voltages fed to the propeller
motors. In addition, the elevation and pitch angles are constrained, so
that

−0.5 ≤ θ e ≤ 0.6 −1 ≤ θ p ≤ 1.

The process was linearized around the stationary point

(

θ 0
e , θ 0

r , θ 0
p, V 0

f , V 0
b ,
)

= (0, 0, 0, Tn/(2K f la), Tn/(2K f la))

and then discretized using the sampling interval h = 0.2 s. This gives
a discrete­time state space model of the process to be used to design
the MPC controller.

The task of the control system is to control, independently, the el­
evation angle and the rotation angle. The main constraint is that the

90

4.5 Case studies

Figure 4.7 The helicopter process.

pitch angle must not be too large, reflecting the fact that for large θ p,
the control authority in the θ e direction is small. This is not accounted
for in the linearized model, and the controller is likely to have degraded
performance when θ p is large.

The design parameters of the MPC controller are given in Table
4.4. Again, the choice of prediction and control horizons have been
made considering the dominating time constants of the system. We also
assume that the entire state vector is measurable, enabling the use of
the state feedback configuration of the MPC controller corresponding
to mode 0. In order to achieve fast sampling, (which requires a QP
problem of moderate complexity) while maintaining sufficiently long
prediction and control horizons, the blocking factor 2 was specified for
both horizons.

The result of the simulation when the MPC controller is applied
to the nonlinear plant (4.14) is shown in Figure 4.8. Reference trajec­
tories specifying step sequences for the elevation and rotation angles
respectively are applied to the system. As we can see, the controller
manages to track the set points, while keeping the pitch angle within
the specified limits.

91

Chapter 4. Tools for model predictive control

Table 4.4 MPC controller parameters for the Helicopter simulations

Parameter Value

Hp 30

Hw 1

Hu 10

Ip Only every other sample was included in
the optimization problem.

Iu Every other control increment was as­
sumed to be constant.

Q diag(1,1)
R diag(0.1,0.1)

0 10 20 30
−0.1

0

0.1

0.2

0.3

0.4

E
le

v
a

ti
o

n
 [

ra
d

]

0 10 20 30

−1

−0.5

0

0.5

1

t [s]

P
it
c
h

 [
ra

d
]

0 10 20 30
−1

0

1

2

3

4

R
o

ta
ti
o

n
 [

ra
d

]

0 10 20 30
−2

−1

0

1

2

3

4

V
f,

V
b
 [

V
]

t [s]

Figure 4.8 A simulation of the MPC controller applied to the nonlinear heli­
copter plant.

92

4.6 References

4.6 References

Åström, K. J. and B. Wittenmark (1990): Computer Controlled
Systems—Theory and Design. Prentice­Hall, Englewood Cliffs, New
Jersey.

Bazaraa, M. S., H. D. Sherall, and C. M. Shetty (1993): Nonlinear
Programming: Theory and Algorithms. John Wiley & Sons, Inc.

Bemporad, A., L. Chisci, and E. Mosca (1994): “On the stabilizing
property of SIORHC.” Automatica, 30:12, pp. 2013–2015.

Fletcher, R. (1987): Practical Methods of Optimization. John Wily &
Sons Ltd.

Maciejowski, J. M. (2002): Predictive Control with Constraints. Pear­
son Education.

Mayne, D. Q., J. B. Rawlings, C. V. Rao, and P. O. M. Scokaert (2000):
“Constrained model predictive control: Stability and optimality.”
Automatica, 36:6, pp. 789–814.

Qin, S. J. and T. A. Badgwell (2003): “A survey of industrial model
predictive control technology.” Control Engineering Practice, 11,
pp. 733–764.

Scokaert, P. O. M., D. Q. Mayne, and J. B. Rawlings (1999): “Subop­
timal model predictive control (feasibility implies stability).” IEEE
Transactions of Automatic Control, 44:3, pp. 648–654.

Wright, S. J. (1997): Primal­Dual Interior­Point Methods. SIAM.

93

5

Integral action -
a disturbance observer
approach

5.1 Introduction

Integral action is often needed to achieve robustness to modeling er­
rors and disturbance attenuation. In addition, error free tracking of
constant reference signals may be achieved by integral action. Inte­
gral action may be introduced in several ways. A common approach
is to extend the state vector to include integrator states, ẋi = r − y.
However, alternatives exist. In this chapter, we investigate the use
of disturbance observers. In particular, this method is commonly sug­
gested in MPC applications, [Maciejowski, 2002].

In this chapter we will show how assumptions on the disturbance
model may be used to guarantee integral action in output feedback
MIMO controllers. The case of m � m plants is a straight forward gen­
eralization of the SISO case. The main contribution of this chapter is
the generalization to non­square plants, where the number of outputs
exceeds the number of inputs.

Without lack of generality, we could assume that the measured
output vector is partitioned as y =

[

yT
z yT

a

]T
, where yz represents the

94

5.2 Square plants

controlled outputs and ya are the additional measured outputs (if any).
We will also assume that the number of inputs of the system equals
the number of controlled outputs. The case when the number of inputs
equals the number of outputs will be treated first. Thereafter, the con­
troller will be generalized to handle the case when there are additional
measured outputs.

5.2 Square plants

In this section, a controller with integral action for square plants will
be developed. The term square plant refers to the fact that the trans­
fer function matrix of a system with an equal number of inputs and
outputs is square. We will assume that the plant model is given by

ẋ = Ax + Bu

y = Cx
(5.1)

where x ∈ Rn, u ∈ Rm and y ∈ Rp. In this case, y = yz and ya is
not present. (A, B) is assumed to be controllable a pair and (A, C)
is assumed to be an observable pair. A standard way of introducing
integral action for such systems is described in [Åström, 2002]. In this
approach, a constant load disturbance, d, acting on the plant input is
assumed. Using an augmented system description, a composite model
may be written as

ẋe =
[

A B

0 0

]

xe +
[

B

0

]

u = Aexe + Beu

y =
[

C 0
]

xe = Cexe

(5.2)

where d ∈ Rm represents the input disturbance and xe =
[

xT dT
]T

.

The main idea is to use an observer based on this extended sys­
tem to estimate the input disturbance d, and to use the disturbance
estimation in the control law.

95

Chapter 5. Integral action ­ a disturbance observer approach

Observability

Before proceeding, it should be verified that the extended system model
is observable. The result is straight forward to derive using the PBH
test, and is summarized in the following lemma.

LEMMA 5.1—OBSERVABILITY

The system (5.2) is observable if and only if the system (5.1) is observ­
able and has no zeros at s = 0.
Proof:

Using the PBH test we obtain the rank condition

rank







A − sI B

0 −sI

C 0






= n + m

If s �= 0 it is readily verified that the matrix has full rank if and only
if

rank

[

A − sI

C

]

= n.

Since (A,C) is assumed to be an observable pair this is always the case.
For s = 0 we have that

rank

[

A B

C 0

]

= n + m

That is, the system may not have any transmission zeros at s=0, in
which case this matrix looses rank.

REMARK 5.1
The condition that the plant may not have zeros at s = 0 is equivalent
to that G(0) must be invertible, where G(s) is the transfer function of
the plant. This condition is identical to that given for SISO systems
in [Åström, 2002]. An interesting observation is that this condition ap­
pears as a condition for integral stabilizability (see [Campo and Morari,
1994]), where the objective is to stabilize a system using a controller
containing integral action. The same condition, but for a more general
case, is given in [Davison and Goldenberg, 1975].

96

5.2 Square plants

Controller structure

In order to analyze the properties of the controller it is necessary to
make some assumptions about the controller structure. We will assume
that the control law is given by linear feedback, from the state and
disturbance estimations. The observer is assumed to be given by

˙̂xe = Aex̂e + Beu + K (y − Ce x̂e). (5.3)

where Ae, Be and Ce are defined according to the augmented system
(5.2). Introducing the feedback law

u = −Lx x̂ − d̂ + Lrr (5.4)

we obtain the following equations for the controller:
[

˙̂x
˙̂

d

]

=
[

A − B Lx − KxC 0

−KdC 0

][

x̂

d̂

]

+

+
[

Kx

Kd

]

y +
[

B Lr

0

]

r

u = −Lx x̂ − d̂ + Lrr.

(5.5)

The feedback and observer gains are assumed to be chosen so that
A − B Lx and Ae − K Ce are stable matrices.

This choice of control law, u, has a strong intuitive appeal. It is clear
that if d̂ is an accurate estimation of d, the effect of the disturbance
is canceled. Also, the choice of controller structure is not restrictive
in the sense that any design method that yields stable A − B Lx and
Ae − K Ce matrices may be used.

Before we proceed, we notice that in stationarity, the following iden­
tities hold

(A − B Lx)x̂ + Kx(y − Cx̂) + B Lrr = 0, Kd(y − Cx̂) = 0

; y = −C(A − B Lx)−1 B Lrr.

If we choose the gain Lr such that

Lr = (C(−A + B Lx)−1 B)−1 (5.6)

97

Chapter 5. Integral action ­ a disturbance observer approach

the controller will have a unique equilibrium for y = r. This follows
from the fact that Kd is invertible (since Ae − K Ce is invertible), which
implies that y − Ĉx̂ = 0 in stationarity. Notice also that

rank

[

A − B Lx B

C 0

]

= n + m

for any stabilizing Lx. This follows from Lemma 1. But this is equiv­
alent to the matrix C(A − B Lx)−1 B having full rank. The inverse in
expression (5.6) thus exists.

It is also clear that the controller has m eigenvalues that are zero,
which implies that the controller will have integral action. We shall
now investigate in detail this property of the controller.

Integral action

In this section an input ­ output representation of the controller is
derived. The aim is to show that the controller contains integral action,
which was one of the initial objectives of the design.

Using (5.5), the control law may be written as

U(s) = (I − LxΦ(s)B)Lr R(s) − LxΦ(s)Kx Y(s)+

+ 1
s

Kd(I − CΦ(s)Kx)(CΨ(s)B Lr R(s) − Y(s))
(5.7)

where
Ψ(s) = (sI − A + B Lx)−1

Φ(s) = (sI − A + B Lx − KxC)−1
(5.8)

We assume that the matrix (−A + B Lx + KxC) = Φ(0)−1 has full
rank. The first term of the controller expression represents feedback
and feedforward terms with finite gain. From the assumptions above,
it follows that the transfer function Ψ(s) is stable.

The second term in the controller expression represents integral
action acting on r f − y, where r f is the filtered reference signal. The
stationary gain of the filter used to obtain r f is CΨ(0)B Lr, which by
design is equal to identity. The integral gain is

Ki = Kd(I + CΨ(0)Kx)−1 = Kd(I − CΦ(0)Kx) (5.9)

so Ki is bounded and has full rank.

98

5.2 Square plants

Robustness and sensitivity

The properties of the controller may also be illustrated by using the
concepts of robustness and sensitivity. In practice, there is always a
mismatch between the true plant and the plant model. It is of course
desirable that modeling error does not severely degrade the control per­
formance. In particular, stability and steady state tracking properties
should not be affected.

Let us assume that the true plant has the transfer function P0(s)
and that the available model is given by P(s). If we assume an output
uncertainty model, we have that

P0(s) = (I + ∆P(s))P(s).

In summary, the following relation holds:

∆Y(s) = S0(s)∆P(s) (5.10)

where S0(s) is the sensitivity function of the true system and Y0(s) =
(I + ∆Y(s))Y(s), [Glad and Ljung, 2000]. For small ∆P(s), S0(s) could
usually be approximated by S(s). The sensitivity function is readily
identified as the transfer function from an output disturbance v to the
measured output y = Cx + v. The main result is summarized in the
following theorem.

THEOREM 5.1
Let the system (5.1) be controlled by (5.5) and let the sensitivity func­
tion of the closed loop system be S(s). Then

S(0) = 0.

Proof:

Introduce the auxiliary variable v, representing the output distur­
bance:

y = Cx + v.

The result is proven by showing that y does not depend on v in station­
arity. Using the controller expression (5.2), we obtain the equations

˙̂x = Ax̂ + Bu + Kx(Cx + v − Cx̂)
˙̂

d = Kd(Cx + v − Cx̂)

99

Chapter 5. Integral action ­ a disturbance observer approach

In stationarity we have that ẋ = 0, ˙̂x = 0 and ˙̂
d = 0, yielding

Cx + v − Cx̂ = 0 (5.11)

since Kd is invertible. Using the expression (5.4) we obtain that

0 = Ax̂s − B Lx x̂s + B Lrrs = (A − B Lx)x̂s + B Lrrs

where subscript s indicates that the relation holds for constant values
of x̂ and r. Since A − B Lx is assumed to be a stable matrix, we have
that

x̂s = (−A + B Lx)−1 B Lrrs. (5.12)
In particular, due to the choice of Lr, and the expressions (5.11) and
(5.12) it is clear that

ys = Cxs + vs = Cx̂s = rs.

Obviously, y is not dependent on v in stationary, and thus S(0) = 0.

This result implies that the controller is robust in the sense that the
steady state tracking properties are not affected by modeling errors.

Example

In Figure 5.1 the controller described in this section is applied to a
simple second order system, given by

ẋ =
[

a −1

1 0

]

x +
[

0

b

]

u

yz =
[

1 0
]

x

ya =
[

0 1
]

x.

For the true plant, the parameters are a = −0.2 and b = −1.2, whereas
for the model used for control design, the parameters are a = −0.5 and
b = −1. Notice that there is a mismatch between the the real plant
and the model used for control design. The plot shows the response

100

5.2 Square plants

0 5 10 15 20 25
0

0.5

1

1.5

y

0 5 10 15 20 25
0

1

2

3

4

u

t

Figure 5.1 The dashed line represents the case when only the controlled out­
put is measured, whereas the solid line represents the case when both states
are measured.

for a reference step input at t = 1 s and an input step disturbance
applied at t = 10 s. In the first simulation, represented by the dashed
curves, only one measurement is used by the controller, and the scheme
works as intended. However, if a controller using both available state
measurements is employed, there will be a stationary error. In the first
case S(0) = 0 as expected, but in the second case we have that

S(0) =
[

0.28 1.39

0.14 0.72

]

This apparent paradox will be discussed in detail in the next section.

101

Chapter 5. Integral action ­ a disturbance observer approach

5.3 Non-square plants

Now, suppose that apart from the controlled variables, which are as­
sumed to be measured, there are additional measured signals. We may
without lack of generality assume that y is partitioned as y =

[

yT
z yT

a

]T
,

where yz are the controlled variables and ya the additional measured
outputs. It is reasonable to assume that the number of controlled vari­
ables equals the number of inputs. This gives that yz ∈ Rm and
ya ∈ Rpa , pa ≥ 1. Notice that r specifies reference values for yz,
whereas there are no reference values for ya. Certainly the additional
measured variables can be used to estimate the state of the plant.
However, it is easily demonstrated that the method presented above
for introducing integral action into the controller may fail in such cases.
If we assume that both states are available for measurements in the
previous example, Figure 5.1 shows the result. Control performance is
significantly degraded ­ even if more information is available. The con­
troller has integral action, but this is obviously not enough to give the
desired steady state tracking properties because of the bias in the addi­
tional measurement signals. In the presence of model ­ plant mismatch,
as in the example above, the measured signals are not compatible with
the dynamics of the model.

One way to deal with this situation is to determine the confidence
associated with the two sets of measured signals yz and ya. Since the
outputs yz are controlled, a reasonable assumption is that we are con­
fident in those, i.e. there is no bias in yz. The fact that we in effect
integrate the deviations of yz from r supports this assumption.

To recover the properties of the controller described in the previous
section, the following augmented model is introduced







ẋ

v̇a

ḋ






=







A 0 B

0 0 0

0 0 0













x

va

d






+







B

0

0






u

yz =
[

Cz 0 0
] [

xT vT
a dT

]T

ya =
[

Ca I 0
] [

xT vT
a dT

]T

(5.13)

where x ∈ Rn, u ∈ Rm, d ∈ Rm, yz ∈ Rpz, ya ∈ Rpa and va ∈ Rpa . As

102

5.3 Non­square plants

previously, an input disturbance d is assumed. Also, the disturbance
model is augmented to include an output disturbance va acting on the
additional measured outputs ya. This assumption reflects the fact that
confidence is put in the controlled outputs.

The results derived in the previous section will now be generalized
to the modified assumptions stated above.

Observability

In order to use the model (5.13) for state and disturbance estimation,
it must be verified that the model is indeed observable. The result is
summarized in the following lemma.

LEMMA 5.2—OBSERVABILITY

The system (5.13) is observable if the system (5.1) is observable and
has no zeros at s = 0.
Proof:

Using the PBH test we obtain the rank condition

rank

















A − sI 0 0

0 −sI 0

0 0 −sI

Cz 0 0

Ca I 0

















= n + m + pa

If s �= 0 it is readily verified that the matrix has full rank if and only
if

rank







A − sI

Cz

Ca






= n.

Since (A, [CT
z CT

a]T) is assumed to be an observable pair this is always
the case. For s = 0 we have that

rank







A 0 B

Cz 0 0

Ca I 0






= n + m + pa

103

Chapter 5. Integral action ­ a disturbance observer approach

But this is equivalent to the matrix

rank

[

A B

Cz 0

]

= n + m.

having full rank.

REMARK 5.2
This condition is very similar to the one given in the previous section,
the plant may not have zeros at s = 0. Notice that the condition applies
to the sub plant with input u and output yz, and does not include the
additional outputs ya. No additional constraints are thus introduced
in the presence of extra measurement signals.

Controller structure

We will use the same controller structure as previously. By using the
estimator given by equation (5.3) and the control law (5.4), the modi­
fied controller may now be written as







˙̂x
˙̂va

˙̂
d






=







A − B Lx − KxC −Kxa 0

−KvC −Kva 0

−KdC −Kda 0













x̂

v̂a

d̂






+

+







Kxz Kxa

Kvz Kva

Kdz Kda







[

yz

ya

]

+







B Lr

0

0






r

u = −Lx x̂ − d̂ + Lrr.

(5.14)

As previously, we assume that A − B Lx and Ae − K Ce are stable ma­
trices. Lr is chosen as

Lr = (Cz(−A + B Lx)−1 B)−1

The controller then has the unique equilibrium r = yz. The same ar­
guments given previously apply also in this case.

104

5.3 Non­square plants

We notice that the order of the controller is now increased com­
pared to the design in the previous section. One extra state for each
additional measured signal is introduced. We also notice that the con­
troller has m eigenvalues equal to zero, which implies the presence of
integrators.

Integral action

As we have seen, the presence of integrators in the controller alone is
not sufficient to ensure zero steady state tracking error. In this section
we will establish that the controller gives integral action acting on
ef = r f − yzf , where the filters used to obtain r f and yzf have special
properties.

Introducing

Φ−1
e (s) =

[

sI − A + B Lx + KxC Kxa

KvC sI + Kva

]

Ct =
[

Cz 0

Ca I

]

The following expressions are obtained:

[

X̂ (s)
V̂a(s)

]

= Φ e(s)
([

Kx

Kv

]

Y(s) +
[

B Lr

0

]

R(s)
)

D̂(s) = 1
s

Kd

(

Y(s) − Ct

[

X̂ (s)
V̂a(s)

])

105

Chapter 5. Integral action ­ a disturbance observer approach

The controller may then be written as

U(s) = −Lx X̂ (s) − D̂(s) + Lr R(s)

=
(

I −
[

Lx 0
]

Φ e(s)
[

B

0

])

Lr R(s)

−
[

Lx 0
]

Φ e(s)
[

Kx

Kv

]

Y(s)

+ 1
s

Kd

(

I − CtΦ e(0)
[

Kx

Kv

])

(CΨ(s)B Lr R(s) − Y(s))

= M0(s)R(s) −
[

M1(s) M2(s)
]

[

Yz(s)
Ya(s)

]

+

+ 1
s

Kd

[

M3(s) M4(s)
]

[

CzΨ(s)B Lr R(s) − Yz(s)
CaΨ(s)B Lr R(s) − Ya(s)

]

The definitions of Ψ(s) and Φ(s) are given by (5.8). We also make
the assumption that the matrix Φ e(0) has full rank and that Ψ(0)
is stable. It then follows that the matrices M0(0), M1(0) and M2(0)
represent finite feedback and feedforward gains.

Now, the aim of the controller is somewhat more elaborate than
in the previous case; integral action is desired to act on r f − yzf . In
order for the proposed controller to achieve this, it must be verified
that M4(0) = 0 and that M3(0), the integral gain, has full rank. We
start by verifying that M4(0) = 0. By direct calculation we obtain:

M4(0) =
(

I − CtΦ e(0)
[

Kx

Kv

])[

0

I

]

=





[

0

I

]

− Ct

[

−A + B Lx + KxC Kxa

−KvC Kva

]−1 [

Kxa

Kva

]





=
([

0

I

]

− Ct

[

0

I

])

= 0

106

5.3 Non­square plants

where we have used the identity
[

X11 X12

X21 X22

]−1 [

X12

X22

]

=
[

0

I

]

.

As for Ki = KdM3(0) we have

Ki = Kd

(

I − CtΦ e(0)
[

Kx

Kv

])[

I

0

]

=
(

Kdz −
[

KdC Kda

]

Φ e(0)
[

Kxz

Kvz

])

.

(5.15)

But this expression is recognized as the Schur­complement of Φ−1
e (0)

with respect to the matrix






−A + B Lx + KxC Kxa Kxz

KvC Kva Kvz

KdC Kda Kdz






. (5.16)

It is clear that the matrix (5.15) having full rank is equivalent to (5.16)
having full rank. Now, let us rearrange the elements of this matrix by
permuting the rows and columns, an operation that preserves the rank
of the matrix







−A + B Lx + KxC Kxz Kxa

KdC Kdz Kda

KvC Kvz Kva






. (5.17)

If we take the Schur­complement of
[

Kdz Kda

Kvz Kva

]

with respect to (5.17) we obtain

Φ(0) −
[

Kxz Kxa

]

[

Kd

Kv

]−1 [

Kd

Kv

]

C = Ψ(0).

107

Chapter 5. Integral action ­ a disturbance observer approach

The invertability of [K T
d K T

v]T follows from the matrix Ae− K Ce having
full rank. Further, Ψ(0) is assumed to have full rank by design, and
we can conclude that the matrix (5.15) has indeed full rank.

We have now shown that the integral action property of the con­
troller is recovered. As in the previous case, we have integral action
acting on

CzΨ(s)B Lr R(s) − Yz(s).

Due to the choice of Lr, this gives integral action acting on r − yz in
stationarity. The integral gain, Ki, is given by (5.15).

Robustness and sensitivity

Let us now investigate the robustness properties of the controller. The
critical feature of the controller is that r = yz also in the presence of
modeling errors. To establish this, we use the relation

∆Y(s) = S(s)∆P(s).

However, now we are concerned with the controlled outputs yz, and
not all of the measured outputs as previously. The additional mea­
sured outputs are not controlled, and are likely to be influenced by
disturbances as well as modeling errors. For this reason we use

∆Yz
(s) = Sz(s)∆P(s).

That is, only deviations of the controlled outputs from the nominal
case r = yz are considered. In this case Sz(s) consists of the first m

rows of the sensitivity function matrix S(s). It follows that Sz(s) is
the transfer function from v to yz. In particular we would like to show
that Sz(0) is zero, which would imply that the controller is robust to
modeling errors in steady state. We have the following result:

THEOREM 5.2
Let the system (5.1) be controlled by (5.14), and let the sensitivity

function of the closed loop system be S(s) =
[

Sz(s)T Sa(s)T
]T

. Then

Sz(0) = 0.

108

5.3 Non­square plants

Proof:

Introduce the auxiliary variables va and vz, representing the output
disturbances:

yz = Czx + vz, ya = Cax + va

The same technique as in theorem (5.1) is used; it will be shown that
yz does not depend on vz or va in stationarity. The equations for the
controller may be written as

˙̂x = Ax̂ + Bu + Kxz(Czx + vz − Czx̂)+
+ Kxa(Cax + va − Ca x̂ − v̂a)

˙̂va = Kvz(Czx + vz − Czx̂) + Kva(Cax + va − Ca x̂ − v̂a)
˙̂

d = Kdz(Czx + vz − Czx̂) + Kda(Cax + va − Ca x̂ − v̂a)

In stationarity we have that ẋ = 0, ˙̂x = 0 and ˙̂
d = 0 which yields

Czx + vz − Czx̂ = 0, Cax + va − Ca x̂ − v̂a = 0 (5.18)

since
[

K T
d K T

v

]T
is invertible. Using the expression (5.4) we obtain that

0 = Ax̂s − B Lx x̂s + B Lrrs = (A − B Lx)x̂s + B Lrrs

where subscript s indicates that this relation holds in stationarity, as
before. Since A − B Lx is assumed to be a stable matrix, we have that

x̂s = (−A + B Lx)−1 B Lrrs. (5.19)

In particular, due to the choice of Lr, and the expressions (5.18) and
(5.19) it is clear that

yzs = Czxs + vzs = Czx̂s = rs.

Obviously, yz is not dependent on v in stationary, which implies that
Sz(0) = 0.

This result proves that the robustness property described in the pre­
vious section is recovered.

109

Chapter 5. Integral action ­ a disturbance observer approach

0 5 10 15 20 25
0

0.5

1

1.5

y

0 5 10 15 20 25
0

1

2

3

4

u

t

Figure 5.2 Responses of the controllers derived in Section 2 (dashed) and
section 3 (solid).

Example

In Figure 5.2, the improved controller structure is simulated, using the
same system as in the previous section. The system has one input, and
two measured outputs, of which one is controlled. There is also a mod­
eling error present. As we can see, the improved controller performs
well, and achieves zero steady state tracking error. In addition,

S(0) =
[

0.00 0.00

0.20 1.00

]

and in particular Sz(0) = 0.

110

5.4 Conclusions

5.4 Conclusions

In this chapter the design of centralized controllers including integral
action has been discussed. The proposed solution explores disturbance
observers of a certain structure. The case of square plants, including
SISO plants, has been generalized to the case of plants with additional
measured signals.

During the course of this work, articles treating similar problems
have been published, see [Pannocchia and Rawlings, 2003], which we
became aware of after the submission of [Åkesson and Hagander, 2003].
Notably, [Pannocchia and Rawlings, 2003] reports strong results for
how disturbance observers achieve offset­free control for quite general
disturbance models in the context of Model Predictive Control. Some of
the results presented in this chapter follow as a specialization of those
given in [Pannocchia and Rawlings, 2003]. In the results presented
here, the emphasis on integral action is stronger.

5.5 References

Åkesson, J. and P. Hagander (2003): “Integral action ­ a disturbance
observer approach.” In Proceedings of European Control Confer­

ence.

Åström, K. J. (2002): “Model uncertainty and feedback.” In Albertos
and Sala, Eds., Iterative Identification and Control. Springer
Verlag.

Campo, P. J. and M. Morari (1994): “Achievable closed­loop properties
of systems under decentralized control: Conditions involving the
steady­state gain.” IEEE Transactions on Automatic Control, 39:5,
pp. 932–942.

Davison, E. J. and A. Goldenberg (1975): “Robust control of a general
servomechanism problem: The servo compensator.” Automatica, 11,
pp. 461–471.

Glad, T. and L. Ljung (2000): Control Theory: Multivariable and
Nonlinear Methods. Taylor & Francis.

111

Chapter 5. Integral action ­ a disturbance observer approach

Maciejowski, J. M. (2002): Predictive Control with Constraints. Pear­
son Education.

Pannocchia, G. and J. B. Rawlings (2003): “Disturbance models for
offset­free model predictive control.” AIChE Journal, 49:2, pp. 426–
437.

112

6

Compensation of
computational delay in
MPC

6.1 Introduction

Model predictive control (MPC), see, e.g., [Garcia et al., 1989; Richalet,
1993; Qin and Badgwell, 2003], has been widely accepted industrially
during recent years, mainly because of its ability to handle constraints
explicitly and the natural way in which it can be applied to multi­
variable processes. The computational requirements of MPC, where
typically a quadratic optimization problem is solved on­line in every
sample, have previously prohibited its application in areas where fast
sampling is required. Therefore MPC has traditionally only been ap­
plied to slow processes, mainly in the chemical industry. However, the
advent of faster computers and the development of more efficient op­
timization algorithms, see, e.g., [Cannon et al., 2001], has led to appli­
cations of MPC also to processes governed by faster dynamics. Some
recent examples include [Dunbar et al., 2002; Dunbar and Murray,
2002].

From a real­time implementation perspective, however, the execu­
tion time characteristics associated with MPC tasks still poses many

113

Chapter 6. Compensation of computational delay in MPC

interesting problems. Execution time measurements show that the
computation time of an MPC controller varies significantly from sam­
ple to sample. The variations are due to, e.g., reference changes or
external disturbances. To cope with this, an increased level of flexibil­
ity is required in the real­time implementation.

The highly varying execution times introduce delays which are hard
to compensate for. The longer time spent on optimization the larger the
latency, i.e., the delay between the sampling and the control signal gen­
eration. The latency has the same effect as an input time delay, and
if it is not properly compensated for it will affect the control perfor­
mance negatively. However, since the optimization algorithms used in
MPC are iterative in nature, and, typically, reduce the quadratic cost
for each iteration step, it is possible to abort the optimization before it
has reached the optimum, and still fulfill the stability conditions.

Stability of model predictive control algorithms has been the topic
of much research in the field. For linear systems, the stability issue
is well understood, and also for nonlinear systems there are results
ensuring stability under mild conditions. For an excellent review of
the topic see [Mayne et al., 2000]. In summary, there are two main
ingredients in most stabilizing MPC schemes; terminal penalty and
terminal constraint. These two tools has been used separately or in
combination to prove stability for many existing MPC algorithms. It is
also well known that feasibility, rather than optimality, is sufficient to
guarantee stability, see for example [Scokaert et al., 1999]

In this chapter, the trade­off between computational delay and op­
timization is quantified by the introduction of a delay­dependent cost
index, which constitutes the main contribution of this chapter. (A pre­
liminary simulation study was presented in [Henriksson et al., 2002a].)
The index is based on a parameterization of the cost function in the
MPC formulation. The key observation is that the computational delay
may significantly degrade control performance, and premature termi­
nation of the optimization algorithm may be advantageous over ac­
tually finding the optimum. In this chapter it is shown how a novel
termination criterion can be employed to improve control performance.

Another contribution of the chapter, is the application of the ter­
mination criterion and cost index in a real­time scheduling context.
Traditional real­time scheduling of control tasks is based on task mod­
els assuming constant, known, worst­case execution times for all tasks.

114

6.2 MPC formulation

However, the large variations in execution time for MPC tasks make
a real­time design based on worst­case bounds very conservative and
gives an unnecessary long sampling period. Hence, more flexible im­
plementation schemes than traditional fixed­priority or deadline­based
scheduling are needed.

In feedback scheduling, [Årzén et al., 2000; Cervin et al., 2002], the
CPU time is viewed as a resource that is distributed dynamically be­
tween the different tasks based on, e.g., feedback from CPU usage and
quality­of­service (QoS). For controller tasks the quality­of­service cor­
responds to the control performance. Another approach that can be tai­
lored towards MPC is scheduling of imprecise computations [Liu et al.,
1991; Liu et al., 1994]. Here, each task is divided in a mandatory part
(finding a feasible solution) and an optional part (QP optimization),
which are scheduled separately. The dynamic scheduling strategy pro­
posed in this chapter schedules the optional parts of the MPC tasks
using the cost indices as dynamic task priorities.

The rest of the chapter is organized as follows. The MPC formu­
lation is given in Section 2. Section 3 describes the delay­dependent
cost index which is used to dynamically trade­off computational delay
and optimization. Section 4 describes a dynamic scheduling scheme for
scheduling of multiple MPC controllers. Section 5 contains a case study,
where the proposed strategy is compared to conventional scheduling
techniques. Finally the conclusions are given in Section 6.

6.2 MPC formulation

The MPC formulation used in this chapter is equivalent to the one
given in Chapter 4, but with minor changes in notation. We assume a
discrete linear process model on the form

x(k + 1) = Φx(k) + Γu(k)
y(k) = Cyx(k)
z(k) = Czx(k) + Dzu(k)

(6.1)

where y(k) is the measured output, z(k) the controlled output, x(k)
the state vector, and u(k) the input vector. The function to minimize
at time k is

115

Chapter 6. Compensation of computational delay in MPC

J(k, ∆U , x(k)) =
Hp
∑

i=1

iẑ(k + ihk) − r(k + i)i2
Q

+
Hu−1
∑

i=0

i∆û(k + ihk)i2
R

(6.2)

where ẑ is the predicted controlled output, r is the current set­
point, û is the predicted control signal, Hp is the prediction horizon,
Hu is the control horizon, Q ≥ 0 and R > 0 are weighting matrices,
and ∆u(k) = u(k) − u(k − 1). It is assumed that Hu < Hp and that
û(k + i) = û(k + Hu − 1) for i ≥ Hu.

Introducing ∆U =
(

∆û(k)T . . . ∆û(k + Hu − 1)T
)T

and U and Z
equivalently, the state and control signal constraints may be expressed
as

W∆U ≤ w FU ≤ f GZ ≤ n (6.3)

This formulation leads to a convex linear­inequality constrained
quadratic programming problem (LICQP) to be solved at each sam­
ple. The problem can be written on matrix form as

min
θ

V (k) = θ TH θ − θ TG +C s.t. Ωθ ≤ ω . (6.4)

where θ = ∆U and the matrices H , G , C , Ω, and ω depend on the
process model and the constraints, see Chapter 4. Only the first ele­
ment of ∆U is applied to the process. The optimization is then repeated
in the next sample in accordance with the receding horizon principle.

Feasibility and optimality

Recall the MPC stability Theorem 4.1. The important feature in the
proof of this theorem that will be explored in this chapter is embedded
in equation (4.11). In order for the stability proof to work, we must
ensure that V (k) is decreasing, which, however, does not require opti­
mality of the control sequence ∆U . See e.g. [Scokaert et al., 1999] for a
thorough discussion on this topic. Rather, having fulfilled the stability
condition V (k + 1) < V (k), the optimization may be aborted prema­
turely without losing stability. This fact will be explored in Section 6.3
where a novel termination criterion is presented. In the simulations,
the terminal constraint û(k + Hu)=0 has been relaxed, in order to

116

6.2 MPC formulation

increase the feasibility region of the controller. To remove this compli­
cation, the control signal, u, rather than the control increments, ∆u,
could be included in the cost function. Notice, however, that the impor­
tant feature of the stability proof that will be explored is the inequality
(4.11) and that other, more sophisticated, stabilizing techniques may
well be used instead.

QP solver

There are two major families of algorithms for solving LICQPs; ac­

tive set methods [Fletcher, 1991] and primal­dual interior point meth­

ods, e.g., Mehrotra’s predictor­corrector algorithm, [Wright, 1997]. Both
types of methods have advantages and disadvantages when applied
to MPC, as noted in [Bartlett et al., 2000] and [Maciejowski, 2002].
Rather, the key to efficient algorithms lies in exploration of the struc­
ture of the optimization problem generated by the MPC algorithm.

Recent research has also suggested interesting, and fundamentally
different MPC algorithms, see e.g. [Kouvaritakis et al., 2002] and [Be­
mporad et al., 2002], known as explicit MPC. Here, the optimization
problem is solved off­line for all x(k), resulting in an explicit piecewise
affine control law. At run­time, the problem is then transformed into
finding the appropriate (linear) control law, based on the current state
estimation. However, when the complexity of the problem increases, so
does the complexity of the problem of finding the appropriate control
law at each sample.

In this chapter we will use an MPC algorithm based on the on­line
solution of a QP problem. The value of the cost function at each itera­
tion in the optimization algorithm is of importance. Specifically, if the
decay of the cost function is slow, it may be a good choice to terminate
the optimization algorithm, and use the sub­optimal solution, rather
than allowing the algorithm to continue and thereby introduce addi­
tional delay in the control loop. In the scheduling case, long execution
times will also affect the performance of other control loops.

From this point of view, there is a fundamental difference between
an active set algorithm and a typical primal­dual interior point method.
The active set algorithm explicitly strives to decrease the cost func­
tion in each iteration, whereas a primal­dual interior point algorithm
rather tries to find, simultaneously, a point in the primal­dual space
that fulfills the Karush­Kuhn­Tucker conditions. In the latter case, the

117

Chapter 6. Compensation of computational delay in MPC

duality gap is explicitly minimized in each iteration, rather than the
cost function. With these arguments, and from our experience using
both types of algorithms, we conclude that an active set algorithm is
preferable for our application.

6.3 Termination criterion

We will now introduce a delay­dependent cost index, which will be used
on­line to determine when to abort the MPC optimization and output
the control signal. This cost index is based on a parameterization of
the cost function (6.2).

Assuming a constant time delay, τ < h, the process model (6.1) can
be extended (see, e.g., [Åström and Wittenmark, 1997]) to

x̃(k + 1) = Φ̃ x̃(k) + Γ̃u(k)
y(k) = C̃y x̃(k)
z(k) = C̃zx̃(k) + Dzu(k)

(6.5)

where

x̃(k) =


 x(k) u(k − 1)




T

Φ̃ =








Φ Γ1(τ)
0 0








, Γ̃ =









Γ0(τ)
1









C̃y =


 Cy 0


 , C̃z =


 Cz 0




The matrices H , G , C , Ω, and ω in (6.4) all depend on the system
matrices and thus on the delay. Ideally, these matrices should be up­
dated based on the current computational delay. However, on­line re­
computation of these matrices is too time­consuming.

However, using the representation (6.5) it is possible to evaluate
the cost function (6.2) assuming a constant computational delay, τ ,
over the prediction horizon. The assumption that the delay is constant
over the prediction horizon is in line with the assumptions commonly
made in the standard MPC formulation, e.g., that reference values will
be constant over the prediction horizon. Thus, for each iterate, ∆U i,
produced by the optimization algorithm, we compute

Jd(∆U i,τ) = ∆U T
i H (τ)∆U i − ∆U T

i G (τ) +C (τ) (6.6)

118

6.3 Termination criterion

0 5 10 15 20 25
0.7

0.75

0.8

0.85

0.9

0.95

J
d

Iterations

Figure 6.1 The solid curve shows the delay­dependent cost index Jd, and the
dashed curve shows the original cost function used in the QP­algorithm.

This cost index penalizes not only deviations from the desired reference
trajectory, but also performance degradation due to computational de­
lay. There are two major factors that affect the evolution of Jd. On one
hand, an increasing τ , corresponding to an increased computational
delay, may degrade control performance and cause Jd to increase. On
the other hand, Jd will decrease for successive ∆U i:s since the quality
of the control signal has improved. Figure 6.1 shows the evolution of Jd

during an optimization run. In the beginning of the optimization, Jd is
decreasing rapidly, but then increases due to computational delay. In
this particular example, the delayed control trajectory seems to achieve
a lower cost than the original. This situation may occur since the cost
functions are evaluated for non­optimal control sequences, except for
the last iteration. Notice, however, that for the optimal solution, Jd

is higher than the original cost. The proposed termination strategy is
then to compare the value of Jd(∆U i,τ i) with the cost index computed
after the previous iteration, i.e., Jd(∆U i−1,τ i−1). If the cost index has
decreased since the last iteration, we conclude that we gained more by
optimization than we lost by the additional delay. On the other hand,
if the cost index has increased, the optimization is aborted. Notice that
the matrices needed to evaluate Jd should be calculated off­line.

119

Chapter 6. Compensation of computational delay in MPC

In the MPC formulation used in this chapter we will assume a
process model without delay. Another possible approach would be to
include a fixed­sample delay in the process description. However, since
the computational delay will be highly varying, compensating for the
maximum delay may become very pessimistic and lead to decreased
obtainable performance. We will also assume that the control signal
is actuated as soon as the optimization algorithm terminates, not to
induce any unnecessary delay.

6.4 Dynamic real-time scheduling of MPCs

The cost index and termination criterion described above, will now be
applied in a dynamic real­time scheduling context. Controller tasks
are often implemented as tasks on a microprocessor using a real­time
kernel or a real­time operating system (RTOS). The real­time kernel
or OS uses multiprogramming to multiplex the execution of the tasks
on the CPU. To guarantee that the time requirements and time con­
straints of the individual tasks are all met, it is necessary to schedule
the usage of the CPU time.

During the last two decades, scheduling of CPU time has been a
very active research area and a number of different scheduling mod­
els and methods have been developed [Buttazzo, 1997; Liu, 2000]. The
most common, and simplest, model assumes that the tasks are peri­
odic, or can be transformed to periodic tasks, with a fixed period, Ti,
a known worst­case execution time, Ci, and a hard deadline, Di. The
latter implies that it is imperative that the tasks always meet their
deadlines, i.e., that the actual execution time in each sample is always
less or equal to the deadline.

MPC tasks, however, do not fit this traditional task model very well,
mainly because their highly varying execution times. On the other
hand, MPC offers two features that distinguish it from ordinary con­
trol algorithms from a real­time scheduling perspective. Firstly, as we
have seen in the previous sections, it is possible to abort the compu­
tation and thereby reduce the execution time. Secondly, the cost index
contains relevant information about the state of the controlled process.
Thus, the cost index can be viewed as a real­world quality­of­service
measure for the controller, and be used as a dynamic task priority by

120

6.4 Dynamic real­time scheduling of MPCs

the scheduler. This also enables a tight and natural connection between
the control and the real­time scheduling.

The MPC algorithm can be divided into two parts. The first part
consists of finding a starting point fulfilling the constraints in the MPC
formulation (constraints on the controlled and control variables and
the terminal equality constraint) and to iterate the QP optimization
algorithm until the stability condition of Theorem 1 is fulfilled. The
second part consists of the additional QP iterations that further reduce
the value of the cost function. Based on this insight, the MPC algorithm
can be cast into the framework of scheduling of imprecise computations
[Liu et al., 1991; Liu et al., 1994]. Using their terminology, the first part
of the control algorithm will be called the mandatory sub­task, and
the second part will be called the optional sub­task. The mandatory
sub­tasks will be given the highest priority, whereas the optional sub­
tasks will be scheduled based on the values of the MPC cost indices.
Combining this strategy with the trade­off between optimization and
computational delay, we get the following dynamic scheduling scheme
of the optional sub­tasks

now = currentTime;

for (each optional MPC sub-task) {

if (J_d(now) > prev J_d) {

abort optimization;

actuate plant;

}

}

determine MPC task i with highest J_d;

schedule MPC task i for one iteration;

if (optimum__reached_i) {

actuate plant;

}

It should be noted that comparing cost indices directly may not
be appropriate when the controllers have different sampling intervals,
prediction horizons, weighting matrices, etc. In those cases, it would
be necessary to scale the cost indices to obtain a fair comparison. The
scheduling could also use feedback from the derivatives of the cost
functions, as well as the relative deadlines of the different controllers.

121

Chapter 6. Compensation of computational delay in MPC

0 2 4 6 8 10 12 14 16 18 20

0

0.2

0.4

P
o

s
it
io

n

0 2 4 6 8 10 12 14 16 18 20
−0.2

0

0.2

V
e

lo
c
it
y

0 2 4 6 8 10 12 14 16 18 20
−0.4

−0.2

0

0.2

C
o

n
tr

o
l

Time (s)

Figure 6.2 Control performance when the optimization algorithm is allowed to
finish in every sample. The bad performance is a result of considerable delay and
jitter induced by the large variations in execution time. During the transients
the long execution times causes the control task to miss its next invocation,
inducing sampling jitter. The dashed lines in the velocity and control signal
plots show the constraints used in the MPC formulation.

6.5 Case study

The proposed termination criterion and dynamic real­time scheduling
strategy have been evaluated in simulation using a second order sys­
tem, a double­integrator:

ẋ =








0 1

0 0







 x +








0

1







u

y =


 1 0


 x

(6.7)

The plant was discretized using the sampling interval h = 0.1 s. In
the simulations, z = x1 was set to be the controlled state and the
constraints huh ≤ 0.3 and hx2h ≤ 0.1 were enforced.

The MPC controller used in the simulations was implemented as
described in Section 6.2, with prediction horizons Hp = 50 and Hu = 20

122

6.5 Case study

and weighting matrices Q = 1 and R = 0.1.

Simulation environment and implementation

Real­time MPC control of the double­integrator process was simulated
using the TRUETIME toolbox [Henriksson et al., 2002b]. Using TRUE­
TIME it is possible to perform detailed co­simulation of the MPC control
task executing in a real­time kernel and the continuous dynamics of
the controlled process. Using the toolbox it is easy to simulate different
implementation and scheduling strategies and evaluate them from a
control performance perspective.

In the standard implementation, the MPC task is released period­
ically and new instances may not start to execute until the previous
instance has completed. This implementation will allow for task over­
runs without aborting the ongoing computations. The control signal is
actuated as soon as the task has completed.

In the dynamic scheduling scheme, the MPC task is divided into
a mandatory and an optional part as described in Section 6.4. The
mandatory part is scheduled with a distinct high priority, whereas the
priority of the optional part is changed depending on the current value
of the cost index compared to other running MPC tasks.

Simulation of one MPC controller

The first simulations consider the case of a single MPC task imple­
mented according to the standard task model described in the previous
section. Figure 6.2 shows the result of a simulation where the optimiza­
tion is allowed to finish in each sample. Delay and jitter induced by
the large variations in execution time compromise the optimal control
performance. The constraints are shown by the dashed lines in the ve­
locity and control signal plots. As seen in the plots the constraints are
violated at some points. This is due to the computational delay, which
is not accounted for in the MPC formulation.

Figure 6.3 shows a simulation, utilizing the termination criterion
proposed in Section 6.3. The cost index (6.6) is evaluated after each
iteration, and if it has increased since the last iteration, the optimiza­
tion is aborted and the current control signal is actuated. As can be
seen from the simulations, the control performance has increased sig­
nificantly.

123

Chapter 6. Compensation of computational delay in MPC

0 2 4 6 8 10 12 14 16 18 20

0

0.2

0.4

P
o

s
it
io

n

0 2 4 6 8 10 12 14 16 18 20
−0.2

0

0.2

V
e

lo
c
it
y

0 2 4 6 8 10 12 14 16 18 20
−0.4

−0.2

0

0.2

C
o

n
tr

o
l

Time (s)

Figure 6.3 Control performance obtained using the proposed sub­optimal ap­
proach where the QP optimization may be aborted according to the termination
criterion described in Section 6.3. The performance is increased substantially
compared to Figure 6.2.

Optimization Full Sub­optimal

Total time [s] 0.1055 0.0692

Mandatory time [s] 0.0302 0.0297

Number of iterations 8.87 5.66

Number of necessary iterations 1.70 1.89

Table 6.1 Average values per sample for a simulation.

Figure 6.4 shows a comparison of the number of iterations needed
for full optimization (top) and the number of iterations after which
the optimization was aborted due to an increasing value of Jd (bot­
tom). The execution time of each iteration was 10 ms. Average values
for computation times and the number of iterations in the QP opti­
mization algorithm in each sample is summarized in Table 6.1. The
number of necessary iterations denotes the number of QP iterations

124

6.5 Case study

0 2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

25

It
e

ra
ti
o

n
s

0 2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

25

Time (s)

It
e

ra
ti
o

n
s

Figure 6.4 Number of iterations for the QP solver. The top plot shows the
number of iterations to find the optimum. The bottom plot shows the number
of iterations after which the optimization is terminated and the sub­optimal
control is actuated.

needed to fulfill the stability condition. It can be seen that the total
execution time of the MPC task is reduced by 35 percent by using the
proposed termination criterion. The execution time for the mandatory
part of the algorithm is roughly constant for both approaches. In the
full optimization case, the execution time will exceed the 100 ms sam­
pling period during the transients, causing the control task to miss
deadlines and experience sampling jitter.

To quantify the simulation results, the performance loss

J =
∫ Tsim

0

(

iz(t) − r(t)i2
Q + i∆u(t)i2

R

)

dt (6.8)

was recorded in both cases. The weighting matrices, Q and R, were
the same as those used in the MPC formulation. The performance loss
was scaled with the loss for an ideal simulation. The ideal case was
obtained by simulating full optimization and zero execution time in
each sample. The results are given in Table 6.2.

125

Chapter 6. Compensation of computational delay in MPC

Strategy Loss

Ideal case 1.0

Full optimization 1.35

Sub­optimal 1.09

Table 6.2 Performance loss for the different implementations in the single
MPC case.

0 2 4 6 8 10 12

0

0.2

0.4

P
o

s
it
io

n

0 2 4 6 8 10 12
−0.2

−0.1

0

0.1

0.2

V
e

lo
c
it
y

0 2 4 6 8 10 12
−0.4

−0.2

0

0.2

0.4

Time (s)

C
o

n
tr

o
l

Figure 6.5 Control performance using fixed­priority scheduling where MPC1
(solid) is given the highest priority. MPC2 (dashed) is constantly preempted by
the higher priority task, consequently degrading its performance.

Dynamic scheduling of two MPC tasks

In the following simulations the dynamic scheduling strategy proposed
in Section 6.4 will be compared to ordinary fixed­priority scheduling.
Two MPC controllers are implemented and executed by two different

126

6.5 Case study

0 2 4 6 8 10 12

0

0.2

0.4

P
o

s
it
io

n

0 2 4 6 8 10 12
−0.2

−0.1

0

0.1

0.2

V
e

lo
c
it
y

0 2 4 6 8 10 12
−0.4

−0.2

0

0.2

0.4

C
o

n
tr

o
l

Time (s)

Figure 6.6 Control performance using fixed­priority scheduling where MPC2
(dashed) is given the highest priority. Comparing with Figure 6.5 it can be seen
that the performance is worse using this priority assignment.

tasks running concurrently on the same CPU controlling two differ­
ent double­integrator processes. Both MPC controllers are designed
with the same prediction and control horizons, sampling periods, and
weighting matrices in the MPC formulation.

Both controllers were given square­wave reference trajectories, but
with different amplitudes and periods. The reference trajectory for
MPC1 had an amplitude of 0.3 and a period of 10 s. The corresponding
values for MPC2 were 0.4 and 12 s. The different reference trajecto­
ries will cause the relative computational demands of the MPC tasks
to vary over time. Therefore, it is not obvious which controller task to
give the highest priority. Rather, this should be decided on­line based
on the current state of the controlled process.

The simulation results are shown in Figures 6.5­6.7. The first two

127

Chapter 6. Compensation of computational delay in MPC

0 2 4 6 8 10 12

0

0.2

0.4

P
o

s
it
io

n

0 2 4 6 8 10 12
−0.2

−0.1

0

0.1

0.2

V
e

lo
c
it
y

0 2 4 6 8 10 12
−0.4

−0.2

0

0.2

0.4

C
o

n
tr

o
l

Time (s)

Figure 6.7 Control performance using the dynamic scheduling approach.
Scheduling based on cost functions makes sure that the most urgent task gets
access to the processor, thus increasing the overall performance.

simulations show the fixed­priority cases. MPC1 is given the highest
priority in the first simulation, and MPC2 is given the highest priority
in the second simulation. It is seen that we get different control perfor­
mance, depending on how we choose the priorities. By giving MPC2 the
highest priority, the performance in this particular simulation scenario
is considerably better than if the priorities are reversed.

The performance using dynamic scheduling based on the cost index
(6.6) is shown in Figure 6.7, and the performance is improved signifi­
cantly. Figure 6.8 shows a close­up of the computer schedule during one
sample. After both tasks have completed the mandatory parts of their
algorithms, the execution trace (the dynamic priority assignments) is
determined based on the values of the cost functions of the individual
tasks. These values after each iteration are shown in the figure. The

128

6.5 Case study

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

M

M

4.5 1.49

8.0 2.89 2.83 2.77 2.74 2.71

Input

M
Mandatory subtask finished

x
QP iteration (x = current cost)

Output

MPC2

MPC1

Figure 6.8 Computer schedule for the first sample using the dynamic schedul­
ing approach (high = running, medium = preempted, low = idle). The figure
shows the completion of the mandatory part, as well as the value of the cost
index after each iteration of the QP solver.

Strategy Loss

Ideal case 2.0

Fixed priority / MPC1 highest priority 2.47

Fixed priority / MPC2 highest priority 2.79

Dynamic cost­based scheduling 2.43

Table 6.3 Performance loss for the different scheduling strategies.

termination criterion aborts both tasks at time 0.08.
The scaled performance loss (6.8) was recorded for the individual

control loops and added up to obtain a total loss for each of the different
scheduling strategies. The results are summarized in Table 6.3. It can
be seen that the improvement using the dynamic scheduling is less
significant in the case where MPC1 is given the highest priority. This
is, however, due to the particular reference trajectories applied in this
simulation.

Using the proposed dynamic scheduling strategy we arbitrate the
computing resources according to the current situation for the con­

129

Chapter 6. Compensation of computational delay in MPC

trolled processes, and the varying computational demands caused by
reference changes and other external signals are taken into account
at run­time. It should be noted that the control performance obtained
using the dynamic cost­based scheduling would have been the same
if the reference trajectories for the two controllers had been switched.
As we have shown this would not have been the case using ordinary
fixed­priority scheduling.

6.6 Conclusions

In this chapter we have shown how a novel termination criterion can be
employed to improve the performance of sub­optimal, stabilizing MPC.
A new delay­dependent cost index has been presented that quantifies
the trade­off between improving control signal quality resulting from
successive iterations in the optimization algorithm and potential con­
trol performance degradation due to computational delay. The criterion
provides guidance for when to terminate the optimization algorithm,
while preserving the stability properties of the MPC algorithm.

It has also been shown how a delay­dependent cost index can be
used in the context of dynamic real­time scheduling. The cost index
has been used to provide the scheduling algorithm with information to
be used for deciding which of two MPC controllers should be allocated
execution time. Using the index for scheduling, it has been shown
how the overall control performance may be significantly improved
compared to traditional fixed­priority scheduling.

6.7 References

Årzén, K.­E., A. Cervin, J. Eker, and L. Sha (2000): “An introduction to
control and scheduling co­design.” In Proceedings of the 39th IEEE
Conference on Decision and Control. Sydney, Australia.

Åström, K. J. and B. Wittenmark (1997): Computer­Controlled Sys­

tems. Prentice Hall.

130

6.7 References

Bartlett, R. A., A. Wächter, and L. T. Biegler (2000): “Active set vs. in­
terior point strategies for model predictive control.” In Proceedings
of the American Control Conference. Chicago, Illinois.

Bemporad, A., L. Chisci, and E. Mosca (1994): “On the stabilizing
property of SIORHC.” Automatica, 30:12, pp. 2013–2015.

Bemporad, A., M. Morari, V. Dua, and E. N. Pistikopoulos (2002):
“The explicit linear quadratic regulator for constrained systems.”
Automatica, 38:1, pp. 3–20.

Buttazzo, G. C. (1997): Hard Real­Time Computing Systems: Pre­

dictable Scheduling Algorithms and Applications. Kluwer Academic
Publishers.

Cannon, M., B. Kouvaritakis, and J. A. Rossiter (2001): “Efficient
active set optimization in triple mode MPC.” IEEE Transactions
on Automatic Control, 46:8, pp. 1307–1312.

Cervin, A., J. Eker, B. Bernhardsson, and K.­E. Årzén (2002):
“Feedback­feedforward scheduling of control tasks.” Real­Time Sys­

tems, 23, pp. 25–53.

Dunbar, W. B. and R. M. Murray (2002): “Model predictive control of
coordinated multi­vehicle formations.” In Proceedings of the 41st
IEEE Conference on Decision and Control. Las Vegas, NV.

Dunbar, W. B., M. B. William, R. Franz, and R. M. Murray (2002):
“Model predictive control of a thrust­vectored flight control exper­
iment.” In Proceedings of the 15th IFAC World Congress on Auto­

matic Control. Barcelona, Spain.

Fletcher, R. (1991): Practical methods of optimization 2nd ed. John
Wiley & Sons Ltd.

Garcia, C. E., D. M. Prett, and M. Morari (1989): “Model predictive
control: Theory and practice – a survey.” Automatica, 25:3, pp. 335–
348.

Henriksson, D., A. Cervin, J. Åkesson, and K.­E. Årzén (2002a): “On
dynamic real­time scheduling of model predictive controllers.” In
Proceedings of the 41st IEEE Conference on Decision and Control.
Las Vegas, NV.

131

Chapter 6. Compensation of computational delay in MPC

Henriksson, D., A. Cervin, and K.­E. Årzén (2002b): “TrueTime:
Simulation of control loops under shared computer resources.”
In Proceedings of the 15th IFAC World Congress on Automatic
Control. Barcelona, Spain.

Kouvaritakis, B., M. Cannon, and J. Rossiter (2002): “Who needs QP
for linear MPC anyway?” Automatica, 38:5, pp. 879–884.

Liu, J., K.­J. Lin, W.­K. Shih, A. Yu, J.­Y. Chung, and W. Zhao (1991):
“Algorithms for scheduling imprecise computations.” IEEE Trans
on Computers.

Liu, J., W.­K. Shih, K.­J. Lin, R. Bettati, and J.­Y. Chung (1994):
“Imprecise computations.” Proceedings of the IEEE, 82:1, pp. 83–
94.

Liu, J. W. S. (2000): Real­Time Systems. Prentice­Hall.

Maciejowski, J. M. (2002): Predictive Control with Constraints.
Prentice­Hall.

Mayne, D. Q., J. B. Rawlings, C. V. Rao, and P. O. M. Scokaert (2000):
“Constrained model predictive control: Stability and optimality.”
Automatica, 36:6, pp. 789–814.

Qin, S. J. and T. A. Badgwell (2003): “A survey of industrial model
predictive control technology.” Control Engineering Practice, 11,
pp. 733–764.

Richalet, J. (1993): “Industrial application of model based predictive
control.” Automatica, 29, pp. 1251–1274.

Scokaert, P. O. M., D. Q. Mayne, and J. B. Rawlings (1999): “Subop­
timal model predictive control (feasibility implies stability).” IEEE
Transactions of Automatic Control, 44:3, pp. 648–654.

Wright, S. J. (1997): Primal­Dual Interior­Point Methods. SIAM.

132

A

Parameter values for the
Furuta pendulum

In order to obtain the parameter values of the Furuta pendulum, the
process was disassembled, weighted and measured. The following mea­
surements were made:

mpa 0.020 kn Mass of pendulum

M 0.015 kn Mass of pendulum weight

lp 0.421 m Pendulum Length

r 0.245 m Arm length

rcm 0.044 m Distance from center of rotation to center
of mass of arm

ma 0.165 kn Mass of the arm

Jm 0.0000381 knm2 Moment of inertia of motor and tachome­
ter, from data sheet

ω p 5.23 rad/s Natural frequency of pendulum with re­
spect to its pivot point

ω a 7.12 rad/s Natural frequency of arm with respect to
its center of rotation

133

Appendix A. Parameter values for the Furuta pendulum

A.1 Moment of Inertia of the Pendulum

The moment of inertia of the pendulum is straight forward to calculate
from

Jp =
(

1
3

mpa + M

)

l2
p = 0.00384 knm2.

It is possible however, to obtain a verification of the value of the mo­
ment of inertia of the pendulum from the expression

Jp = mnl

ω 2
p

= 0.00377 knm2.

where l (distance between center of rotation and center of mass of the
pendulum with weight) is calculated from

l = mpa/2 + M

mpa + M
lp = 0.301 m.

As we can see, there is a close correspondence between the theoreti­
cally calculated and experimentally determined value of the moment
of inertia for the pendulum.

A.2 Moment of Inertia of the Arm Assembly

The moment of inertia of the pendulum arm was harder to determine,
since it was not possible to detach the potentiometers at the back of
the arm or the attachment device with the slip rings. Therefore, this
calculation had to rely on experiments. We again use the relation

Jarm = manrcm

ω 2
a

= 0.00141 knm2.

The moment of inertia of the entire arm assembly including motor is
then

J ′
a = Jarm + Jm = 0.00144 knm2

134

B

Matlab tools for MPC

In this appendix the syntax of the MPC tools described in Chapter 4
is given. The tools are intended for use with Matlab R13, but should
work also with Matlab R12. The tools require Control System Tool­
box and, if the Simulink extension is to be used, also Simulink. The
quadratic programming solver quadprog may be used to solve the MPC
optimization problem, but this feature requires Optimization Toolbox.
It is not necessary in order to use the tools however.

135

Appendix B. Matlab tools for MPC

MPCinit

Purpose

Initializes the MPC data structure.

Syntax

md = MPCInit(Ad, Bd, Cyd, Czd, Dzd, Ccd, Dcd, Hp,

Hw, zblk, Hu, ublk, du_max, du_min,

u_max, u_min, z_max, z_min, Q, R, W, V,

h, cmode, solver)

Input arguments

Ad, Bd, Cyd System matrices for the plant; Ad, Bd and Cd.

Czd, Dzd Matrices defining the controlled outputs; Cz and
Dz.

Ccd, Dcd Matrices defining the constrained outputs; Cc

and Dc.

Hw, Hp, Hu Integers defining the prediction and control
horizons; Hw, Hp and Hu.

zblk, ublk Blocking factors defining the sets Ip and Iu.

u_min, u_max Control variable limits; umin and umax.

du_min, du_max Control increment limits; ∆umin and ∆umax.

z_min, z_max Controlled variable limits; zmin and zmax.

Q, R Weighting matrices for the cost function.

W, V Weighting matrices for the Kalman filter design,
if applicable.

h Sampling interval.

cmode Controller mode.

solver Solver to be used for the quadratic
programming problem.

136

Output arguments

md Contains the pre­computed matrices needed by the MPC
controller.

Description

MPCInit creates the data structure used by the MPC controller. A dis­
crete time model, with sampling interval h, of the controlled system is
assumed,

x(k + 1) = Ax(k) + Bu(k)
y(k) = Cyx(k)
z(k) = Czx(k) + Dzu(k)

zc(k) = Ccx(k) + Dcu(k)

(B.1)

where z(k) are the controlled outputs, y(k) the measured outputs and
zc(k) the constrained outputs. The constraints of the system are given
by

∆umin ≤ ∆u(k) ≤ ∆umax, k ∈ Iu

umin ≤ u(k) ≤ umax, k ∈ Iu

zmin ≤ zc(k) ≤ zmax, k ∈ Ip

(B.2)

where ∆u(k) = u(k)−u(k−1) are the control increments. Ip and Iu are
the sets of samples for which the controlled and control variables are
included in the cost function and for which the constraints are enforced.
The first sample to be included in the optimization procedure is Hw,
and the total number of samples in the prediction horizon is Hp. The
entries in the array z_blk indicates the time distance between two
consecutive predicted samples. Also, the last entry in z_blk is used as
distance between the remaining samples (if length(z_blk) < Hp).

EXAMPLE B.1
Assume that Hw = 1, Hp = 6 and z_blk = [1 2 2 5]. Then the samples
[1 2 4 6 11 16] will be included in the cost function evaluation.

Equivalently, Hu indicates the number of predicted control moves to be
calculated at each sample. The array u_blk contains the blocking fac­
tors indicating over which sampling intervals the control signal should
be constant. For example, a blocking factor of 2 indicates that 2 con­
secutive control signals are equal.

137

Appendix B. Matlab tools for MPC

EXAMPLE B.2
Assume that Hu = 3, u_blk = [1 2]. Then it is assumed that at each
sample, for the predicted control signal, û, we have that û(k + 1) =
û(k + 2) and û(k + 3) = û(k + 4). Only û(k), û(k + 1) and û(k + 3) will
be calculated.

Q and R are weighting matrixes for the cost function, where Q penal­
izes the controlled outputs and R penalizes control increments. W and
V are weighting matrices for the design of the Kalman filter used to
estimate the state and load disturbances. W is the covariance matrix
of the state and V is the covariance matrix of the measurement noise.

The controller supports several control modes. cmode specifies which
mode should be used. The following modes are supported:

• Mode 0: State feedback
The arguments W and V are not used, and may be set to []. Cy

is assumed to be identity.

• Mode 1: State feedback and explicit integrators
The integrators act the controlled outputs, specified by Cz. The Q­
matrix should be extended to include weights for the integrator
states as well as the controlled outputs. The arguments W and
V are not used, and may be set to [].

• Mode 2: Observer based output feedback
The design of the Kalman filter is based on the covariance ma­
trices W and V .

• Mode 3: Observer based output feedback with explicit integrators
The integrators act on the controlled outputs, specified by Cz. The
Q­matrix should be extended to include weights for the integrator
states as well as the controlled outputs. The controlled variables
should be the same as the first pz (pz = dim(z)) measured vari­
ables.

• Mode 4: Disturbance observer based output feedback
The disturbance model ensures that the controller achieves error
free tracking. Constant load disturbances are assumed on the
control input, and the system is augmented to include also the
disturbance states. If the number of measured outputs exceed the
number of inputs, constant load disturbances on the additional

138

measured outputs are assumed. The controlled variables should
be the same as the first pz measured variables. Also, the number
of controlled outputs should be equal to the number of inputs.

The argument solver should be a string containing one of the al­
ternatives qp_as, qp_ip or quadprog, indicating which solver should
be used to solve the quadratic programming problem. Notice that
quadprog requires Optimization Toolbox.

See Also

MPCOptimizeSol, MPCSim and MPCfrsp.

139

Appendix B. Matlab tools for MPC

MPCOptimizeSol

Purpose

This function solves the MPC optimization problem.

Syntax

[duPred, zPred, J] = MPCOptimizeSol(x_est,u_last,du_old,

r,md)

Input arguments

x_est The current estimate of the state vector

u_last The control signal applied to the plant at the last sample.

du_old The optimal decision vector from the last sample that is
used to hot start the quadratic programming algorithm.

r The reference vector for the controlled variables.

md The data structure containing pre­computed matrices.

Output arguments

duPred Optimal control increment trajectory.

zPred Optimal trajectory of the controlled variables.

J Optimal value of the cost function.

Description

MPCOptimizeSol solves the MPC optimization problem. duPred and
zPred are the predicted control increments and controlled outputs for
the specified prediction horizons.

An estimate of the current state vector is given by x_est, and
u_last is the last applied control input. As an initial starting point
for the optimization algorithm, the last predicted control input vector,
du_old, is supplied. r is the desired set point for the controlled outputs
and md is the data structure containing matrices needed to solve the
optimization problem.

140

See Also

MPCInit, MPCSim and MPCfrsp

141

Appendix B. Matlab tools for MPC

MPCSim

Purpose

Simulates a linear system model controlled by the MPC controller.

Syntax

[x, u, y, z, zPredTraj, uPredTraj] = MPCSim(md,r,d)

Input arguments

md Data object containing the pre­computed matrices.

r Reference trajectory for the controlled variables.

d Input disturbance trajectory.

Output arguments

x State trajectory of the plant.

u Control variable trajectory.

y Measured variable trajectory.

z Controlled variable trajectory.

zPredTraj Optimal predicted trajectories for the controlled
variables at each sample.

uPredTraj Optimal predicted trajectories for the control
variables at each sample.

Description

MPCSim simulates the MPC controller specified by the data object md.
The reference trajectory for the controlled outputs is given by r and a
load disturbance acting on the input is given by d.

See Also

MPCInit, MPCOptimizeSol and MPCfrsp

142

MPCController

Purpose

S­function for simulation of the MPC controller in the Simulink envi­
ronment.

Syntax

[sys, x0, str, ts] = MPCController(t, x, u, flag, md)

Input arguments

t Supplied by the Simulink environment.

x Supplied by the Simulink environment.

u Supplied by the Simulink environment.

flag Supplied by the Simulink environment.

md Data object containing the pre­computed matrices needed
by the MPC controller. Supplied as a parameter in the
S­function block.

Output arguments

sys Needed by the Simulink environment.

x0 Needed by the Simulink environment.

str Needed by the Simulink environment.

ts Needed by the Simulink environment.

Description

MPCController is an S­function implementing the MPC controller in­
tended for use with Simulink. The argument md, which is the only
user supplied argument, contains the data structures needed by the
controller. The input to the S­function block is a vector signal consist­
ing of the measured outputs and the reference values for the controlled
outputs. The output of the S­function block is a vector signal consist­
ing of the control variables and the estimated state vector, potentially
including estimated disturbance states.

143

Appendix B. Matlab tools for MPC

See Also

MPCOptimizeSol and MPCInit

144

MPCfrsp

Purpose

Calculates the linear controller corresponding to the MPC controller if
no constraints are active.

[Sys_CL, Sys_S, Sys_CS, Sys_SU, F, H, K, h] = MPCfrsp(md)

Input arguments

md MPC data object.

Output arguments

Sys_CL Closed loop system from r to z.

Sys_S Sensitivity function from v to y.

Sys_CS Complimentary sensitivity function: from n to y.

Sys_SU Control signal sensitivity function: from n to u.

F See block diagram.

H See block diagram.

K See block diagram.

h A handle to the figure where the transfer functions are
plotted.

See Figure B.1 for explanation of the notation.

−

u

F(z) K (z)

H(z)

P(z)
r y

v

n

Figure B.1 Block diagram used for calculation of the linear controller.

145

Appendix B. Matlab tools for MPC

Description

MPCfrsp calculates the frequency responses of the MPC controller.
When no constraints are active, the MPC controller is a linear con­
troller and may be analyzed using linear methods. Some important
transfer functions are also plotted.

See Also

MPCInit

146

qp_as

Purpose

Solves a quadratic program using an active set method.

Syntax

[xopt, lambda, J, x_hist] = qp_as(H,f,A,b,x0)

Input arguments

H H­matrix (Hessian) of the QP problem.

f f ­vector of the QP problem.

A A­matrix defining linear constraints.

b b­vector defining linear constraints.

x0 Initial solution guess.

Output arguments

xopt The optimal solution.

lambda Lagrange multipliers.

J The optimal value of the cost function.

x_hist History of x during the optimization run. Each column in
x_hist represents the solution at the corresponding
iteration.

Description

qp_as solves the quadratic programming problem

min
1
2

xT Hx + f T x

s.t.

Ax ≤ b

The algorithm is based on [Fletcher, 1987, p. 240].

147

Appendix B. Matlab tools for MPC

See Also

get feasible

148

qp_ip

Purpose

Solves a quadratic program using a primal­dual interior point method.

Syntax

[xopt, lambda, J, x_hist] = qp_ip(H,f,A,b,x0)

Input arguments

H H­matrix (Hessian) of the QP problem.

f f ­vector of the QP problem.

A A­matrix defining linear constraints.

b b­vector defining linear constraints.

x0 Initial solution guess.

Output arguments

xopt The optimal solution.

lambda Lagrange multipliers.

J The optimal value of the cost function.

x_hist History of x during the optimization run. Each column in
x_hist represents the solution at the corresponding
iteration.

Description

qp_ip solves the quadratic programming problem

min
1
2

xT Hx + f T x

s.t.

Ax ≤ b

The algorithm is based on [Wright, 1997]. An initial solution is sup­
plied in x0, but is not used efficiently by the algorithm in the current
implementation.

149

Appendix B. Matlab tools for MPC

getfeasible

Purpose

Finds a feasible solution subject to linear inequality constraints.

Syntax

[x, as, iter] = getfeasible(A,b)

Input arguments

A A­matrix defining linear constraints.

b b­vector defining linear constraints.

Output arguments

x A feasible solution.

as The indices of active constraints, if any.

iter The number of iterations.

Description

getfeasible finds a feasible vector that fulfills the linear inequality
constraints

Ax ≤ b.

The algorithm is based on [Fletcher, 1987, p. 166]

See Also

qp_as

150

B.1 References

B.1 References

Fletcher, R. (1987): Practical Methods of Optimization. John Wily &
Sons Ltd.

Wright, S. J. (1997): Primal­Dual Interior­Point Methods. SIAM.

151

