LUND UNIVERSITY

Least Squares Fitting to a Rational Transfer Function with Time Delay

Lilja, Mats

1987

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Lilja, M. (1987). Least Squares Fitting to a Rational Transfer Function with Time Delay. (Technical Reports
TFRT-7363). Department of Automatic Control, Lund Institute of Technology (LTH).

Total number of authors:
1

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.

* You may not further distribute the material or use it for any profit-making activity or commercial gain

* You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00


https://portal.research.lu.se/en/publications/b0581d69-7a36-46e2-acbe-35c35540fa85

CODEN: LUTFD2/(TFRT-7363)/1-10/(1987)

Least Squares Fitting to a
Rational Transfer Function with Time Delay

Mats Lilja

Department of Automatic Control
Lund Institute of Technology
June 1987



Department of Automatic Control
Lund Institute of Technology

P.O. Box 118

S-221 00 Lund Sweden

Document name

Report

Date of issue

June 1987

Document Number

CODEN:LUTFD2/(TFRT-7363)/1-10/(1987)

Author(s)
Mats Lilja

Supervisor

Karl Johan Astrém

Sponsoring organisation

Title and subtitle

Least Squares Fitting to a Rational Transfer Function with Time Delay

Abstract

This report describes a method to fit frequency response data to a rational transfer function with a time
delay. The method used is the equation error version of weighted least-squares approximation at a finite point
set. This leads to a one-dimensional optimization problem which is solved by a modified Newton-Raphson
method. This is implemented in the matrix manipulation language CTRL-C.

Key words
Least-squares, Approximation, Time delay

Classification system and/or index terms (if any)

Supplementary bibliographical information

Security classification

ISSN and key title ISBN
Language Number of pages Recipient’s notes
English 10

The report may be ordered from the Department of Automatic Control or borrowed through the University Library 2, Box 1010,

S-221 03 Lund, Sweden, Telex: 33248 Jubbis lund.




1. Introduction

In many applications of control theory, it is rather common that the plants to
be controlled contains some time delay. This can of course be modeled by a
high order, finite dimensional linear system, but sometimes it is preferrable to
use a model of low order with a time delay included. This report presents a
way to, from given frequency response data, separate the time delay from the
low order dynamics. There is no assumptions on how the frequency response
data is collected and no measurement noise is assumed. The obtained model
could be used e.g. in the design of a Smith compensator but this is not pursued
here. The first section makes a review of ordinary (weighted) equation error
least squares fitting of points on a Nyquist curve. In the second section the
‘separation method’ is presented and in the third section a numerical algorithm
is proposed. The algorithm is implemented in CTRL-C [CTRL-C] and some
examples are given. A listing of the CTRL-C function LSZ used, is found in
the Appendix.

2. Low order process model without time delay

Assume that the frequency response for the process is given for some frequen-
cies

G(iwy), k=1,2,...,N

G can be thought of as the transfer function of a complex model of the process.
A simple process model is to be fitted to the given frequency response data.
We first consider the case where the transfer function G of the simple model,
is rational:

B(S) E}I gn—1 + 5237"”2 —]—
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where 2n < N. The “closeness” between G and G can be measured in different
ways. One choice of distance function is 31 1 1G(iwg) — G(3wy)[2. This gives
however a problem which is non-linear in the parameters, é1,. .., bl, bn.
To get linearity in the parameters, the least squares method in the equation
error formulation can be utilized, that is: Find the parameter vector § =
(a1, .. ,an,bl, . n) , that minimizes the loss function

N
J(0) = |A(iw)G(iwx) — Bliwy)|?
k=1

One drawback with this method is that compared to the “ordinary” least
squares problem, there will be a heavy weighting for high frequencies (mul-
tiplication by |A(iwg)|). This will deteriorate the approximation at low fre-
quencies. To compensate for this, it is natural to introduce weighting (see
next subsection).

For convenience we introduce the following notation
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The loss function can now be written as

J(0) = (20 — ¢)"(20 — ¢)

where * denotes the conjugate transpose. As is well known, the explicit solu-
tion to this problem is R

0 =(2*®)"'9*¢
Computationally, however, it is more preferrable to use Cholesky factorization
or singular value decomposition.

Introducing weighting

A drawback with the equation error method is, as mentioned earlier, that it
puts heavy weighting on large frequencies. To get a more uniform weighting,
one should introduce a weighting matrix £ = diag({fi}) according to

N
J(0) = Z F2A(iwg) G (iwy) — B(iwg)|?
k=1
= (20 - ¢)"F*F(®6 - ¢)

If f =1, k=1,2,...,N, this corresponds to the transfer function error
method

N
T(0) = 3" W(wn)|Gliwn) — G(iw)

k=1
with weighting function W (w) = |A(iw)|? The weightings fi should then be
chosen as an apriori estimate of | A(iwg)|~1. This could of course be done iter-
atively, by making several approximations with weighting equal to |A(iwk)|‘1
of the preceding approximation.

Most often one wants to have a more accurate model in certain frequency

intervals (given by the control objectives), so these weightings should in turn
be multiplied by further weightings, which emphasize these frequencies.

Complex frequencies

The points of approximation need not necessarily be located on the imaginary
axis. An arbitrary point set Z in the complex plane could be chosen as the
approximation set. Since all transfer functions, G(s), considered here, are
assumed to have the property G(s) = G(3) (equivalent to G(s) having a real
inverse laplace transform), the set Z must be closed under conjugation. This
also implies that the coefficients in the approximating transfer function, will
be real.

3. Low order process model with time delay

Sometimes a ‘good’ fitting is attained for a wider frequency range, if one
introduces a time delay in the model,

B(s) _, bys™ 1 4 bys"2 ... b, .
=5te = —e
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especially of course when the ‘true’ model has a time delay, but also in other
cases (e.g. G(s) = (s+ 1)7", for large n). The ®-matrix will in this case be
dependent upon the time delay 7. Let D(r) denote the matrix

D(r) = diag({exp(—ixr) )

The modified $-matrix can then be written as
o(r)= (-2 D(n)a)
and the corresponding loss function
J(8,7) = 2()8 - ¢|*
ProPosITION.  Let P denote the matrix valued function
P(r) = I - 8(r)(2(r)*d(r)) " &()"
Every local minimum of J with respect to T and 0 is given by
6 = 0(+)

where T is a local minimum of the function f defined by

f(r) = J(0(r), ™) = $*P(r)¢

and

O(r) := moin J(8,7)
= (@ (r)@(r)) " 2 (r)"¢

Proof. A necessary and sufficient condition for J to have a local minimum
atT=7,0=401s

(9 92) —0
W H’F 0:5,7:?
and
T
6. 06> 960t
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i.e. the hessian of J with respect to (8,7) is positive definite at (6, 7). For each
fixed 7, there exists a unique solution to the quadratic minimization problem
in 0, given by ©(7). Computing the first derivative of f, with respect to § and
T gives

¥ .9 oJ] .
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_aJ
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where the last step follows from the fact that %g— = 0 on the curve (6,7) =
(O(7),7). This shows that any stationary point of J, with respect to 6 and
7, corresponds to a stationary point (i.e. an extremum) of f with respect to
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7. The next step is to show that the second derivative of f with respect to 7
is strictly greater than zero iff the hessian, H(f, ), is positive definite. The
second derivative of f is given by

£r_9| L, #1]  d
dr? - or? (9=@(‘r) 3709 9=0(r) dr
L0t o ol e
dr 96% |y_g(,dr = 08 o=0(r) 47

where the last term vanishes by definition. This can be rewritten as

d2
% =1 H(O(r),T)n

where we introduced the vector n as

do
n(r):=| dr
1
Define the nonsingular matrix S as
do
A ==
S(r):= dr (7)
0 1
Some calculations give that
0*J
S(r)*H(6(r),T)8(r) o
T T), T T)=
0 i
ar?

6=0(1)

where we have used the fact that % is identically zero on the curve (8,7) =
(©(7),7). This clearly implies

d2f

2
dr T=F

>0 = H(O(),#) >0

which was to be shown. u

Remark Notice that it is intuitively clear that there always exists several
local minima for J. The given points can always be fitted to a Nyquist curve,
which encircles the origin an arbitrarily number of times between two fitted
points, by choosing a sufficiently large time delay . o

Remark As in the case of a process model without a time delay, some weight-
ing should be introduced so that high frequencies are less emphasized. o



4. An algorithm

The minimization of f with respect to 7, was implemented in the matrix
manipulation package CTRL-C, using a modified Newton-Raphson algorithm:

d_f(Tn)

Tn4l = Tn 3

_T(Tn)

2
+(1- a)*r(Tn)

where 0.5 < a < 1. The modification is done in order to make local maxima
repulsive and local minima attractive. Values of & less than one are chosen to
get a stronger “repulsion” from a maximum. However, if the initial value of 7
is chosen exactly at a maximum, the algorithm will of course get stuck. Since
¢ is independent of 7, the first and second derivatives of f are given by

Y&
d2f‘ *dzP
i

Recalling the definitions of P,® and D,

D(r) = diag({exp(—iwr)}L;)

o(r)= (-re D(n)e )

P(r) =1 -9(r)(®(7)*®(r)) ™ &(7)"
the first derivative of P is computed according to

dD . : .
o= diag({—dwy exp(—iwpT)}Hoy)

d® dD
dr [0 dTQ]

dP_ * . d® * =1 &%
T=Q+Q Q=-PZ(ere) s

and the second derivative of P is given by

d*D
57 = diag({—wf exp(—iwp 7))
2o d"’DQ
dr? dr
P = dﬁ(@*@)*@*

2
Py = dq’(@ @)

d?*P d dQ* d
de_dg+d? Q_P(2P1 P)+Q*Q + QQ*

Example Consider a system with transfer function

1

=T



This is a typical example of a system, which behaves quite similar to a low
order system with a time delay. The nyquist curve was fitted to a delayed
second order model . .

A bis + by N

G(s) = 5——F—F¢€""°

(s) 82 4 Gys+ fi.ge
at the points
Z ={1i0.01,40.2,70.4}

The start value of the time delay was zero and the value reached after 6
iterations was chosen (the magnitude of the last increment was less than 0.02).
This was compared with a fitting to a third order model without any time delay

G(S) _ 5132 - II;;S -+ 63
s + G182 + (28 + @z

The magnitude of the error E(iw) := |G(iw) — G(iw)| is shown in Figure 1.
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Figure 1. Magnitude of approximation errors, case 1.
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Figure 2. Magnitude of approximation errors, case 2.

The solid line corresponds to the delayed second order model and the
broken line to the third order model. To illustrate the influence of the choice
of frequencies, the computation was carried out for

Z = {i0.01,40.1,70.2}

as well (Fig.2).



Notice the decrease of the error magnitude for low frequencies compared to
the first choice of frequencies. Typical for pointwise approximation (especially
interpolation) is the appearance of “notches” in the error magnitude curve.

5. Conclusion

A method for ‘extracting’ the time delay from given frequency response data
has been presented. This gives a possibility to model high order dynamics by
using fewer parameters (since arbitrarily large phase shifts can be modelled).
The method used is an equation error version of weighted least squares fitting
of a transfer function at a finite number of complex frequencies.
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7.

Appendix: Listing of the CTRL-C function LSZ

//[a,b,tau,ep,di,loggl=1sz(zvec,gvec,pvec,na,nb,dtmax,taun0);
//

// Finds a weighted least-squares equation error approximation

//

// - - tau 8 b(s)
// G(s) = e ———
// a(s)
//

// at the complex numbers contained in the vector zvec. The
// function values are contained in the vector gvec and the
// veightings in the vector pvec. The degrees of the
// polynomials a and b are na and nb respectively. A modified
// Newton-Raphson algorithm is used to first find a locally
// minimizing tau. The iteration stops when the increment in
// tau gets less than dtmax. The start value for the iteration
// is specified by tau0. The coefficients in a and b are then
// calculated directly after inserting the obtained value of
// tau. The vector ep contains the square roots of the weighted
// error at each point in zvec while di is a vector containing
// the ’absolute’ error G(z)-exp(-tau z)b(z)/a(z) at these
// points. Finally the output variable logg is a logging of
// the iterations the values of tau and the values of the loss
// function and its first and second derivatives.
//

nz = size(zvec)*[0;1];

np = size(pw)*{0;1];

nn = 2*nz,;

en = eye(nn);

if 2*nz < na+nb+1 then disp(’Too few frequencies’); return;

8 = conj([zvec conj(zvec)])’;

pv = pvec/max(pvec);

filt = diag([pw pwl);

g = diag([gvec conj(gvec)]);

zj = ones(nn,1);

psib = zj;

for j=1:mb;..

zj = 8*.zj;..
psib = [zj psib]l;..

end;
zj = ones(nn,1);
psia = zj;

for j=1:(na-1);..
zj = 8*.z2j;..
psia = [zj psial;..
end;
zZn = 8%.2j;
gam = filt*g*zn;
tau = taul; //Starting value



dtau = 10000;
count = 0;
logg = 0;
my = 1;
while abs(dtau)>dtmax,..
count = count + 1;..
ew = diag(exp(-s*tau));..
i = filt*[-g*psia ew*psib];..
(u,sig,v] = svd(£i);..
ul = u(:,1:min(size(s8ig)));..
sig = sig(1:min(size(sig)),:);..
fiff = (v/sig)*ul’;..
theta = fiff#*gam;..
tha = theta(i:na);..
res = fistheta - gam;..
diff = abs(res/.(psia*tha+zn));..
epsi = sqrt(diff’+*diff/nn),..
emax = max(diff);..
dew = -diag(s)#*ew;..
dfi = filt*[ O*psia dew*psib];..
d2ew = -diag(s)*dew;..
d2fi = filt*[ Ox*psia d2ew#psib];..
p = en - fixfiff;..
pl = dfisfiff;..
p2 = d2fisfiff;..
q = -p*pl;..
dp =q +q’;..
dq = p*( 2#pl#pl - p2 ) + q’#q + q*q’°;..
d2p dq + dq’;..
gpg = gam’#*p*gam;..
gdpg = gam’*dp*gam;..
gd2pg = gam’#*d2p#*gam;..
logg(count,1:4) = [tau gpg gdpg gd2pgl;..
dtau = -gdpg/(0.6#abs(gd2pg)+0.4*gd2pg),..
tau = tau + dtau,..
dtan;..
tau;..
end;
R e e e S //
// Notice the modification in the updating of dtau: //
// This is a fix, in order to assure convergence to a //
// local minimum, rather than to a local maximum. //
[/ TR R A S A A RN R T R SR AR AT AR IN a0 //
ew = diag(exp(-s*tau));
fi = £ilt#[-g*paia ew*psib];
[u,s,v] = svd(fi);
sig = s(1:min(size(s)),:);
ul = u(:,1:min(size(s)));
fift = (v/sig)#*ul’;
theta = real(fiff#*gam);
tha = theta(1:na);



res = fistheta - gam;

ep = sqrt(res*.conj(res));

ep = ep(1:nz)°;

di = abs(res/.(psia*tha+zn));
di = di(1:n2)’;

logg = real(logg);

emax = max(diff);

a = [1 theta(1:na)’];

b = theta(na+i:na+nb+1)’;
tau = real(tau);



