LUND UNIVERSITY

A Foreground/Background Real-Time Scheduler for the IBM AT

Bruck, Dag M.

1988

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Brick, D. M. (1988). A Foreground/Background Real-Time Scheduler for the IBM AT. (Technical Reports TFRT-
7393). Department of Automatic Control, Lund Institute of Technology (LTH).

Total number of authors:
1

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.

* You may not further distribute the material or use it for any profit-making activity or commercial gain

* You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

https://portal.research.lu.se/en/publications/b82be2df-f026-415c-9770-91e301b2aea3

CODEN: LUTFD2/(TFRT-7393)/1-029/(1988)

A Foreground/Background
Real-Time Scheduler
for the IBM AT

Dag M. Bruck

Department of Automatic Control
Lund Institute of Technology
July 1988

Document name

Department of Automatic Control Report
Lund Institute of Technology Date of issue
P.O. Box 118 1988-07-07
S5-221 00 Lund Sweden Document Number
CODEN:LUTFD2/(TFRT-7393)/1-029/(1988)
Author(s) Supervisor
Dag M. Briick

Sponsoring organisation

Title and subtitle
A Foreground/Background Real-Time Scheduler for the IBM AT

Abstract

The combination of general purpose software and commonly available hardware is too slow for many control
applications. The purpose of this report is to analyze some of the performance problems (given a fixed
hardware), and to demonstrate a solution.

The foreground/background scheduler described in this report achieves high real-time performance by reducing
complexity and functionality. Context switch time is 56 us. The PID controller used as a case study achieves
a sampling rate of 2 kHz with the scheduler.

The scheduler, written in assembler, is designed for a controller in C, but can be adopted to other languages.
The scheduler is also compared with a general purpose real-time kernel.

Key words
Real-time programming; Process control; Modula-2; C.

Classification system and /or index terms (if any)

Supplementary bibliographical information

ISSN and key title ISBN
Language Number of pages Recipient's notes
English 29

Security classification

The report may be ordered from the Department of Automatic Control or borrowed through the University Library 2, Box 1010,
5-221 03 Lund, Sweden, Telex: 33248 lubbis lund.

1. Introduction

Computer implementations of control systems often require performance that
is quite difficult to achieve with commonly available hardware, and general-
purpose software. Robotics is a typical example: the speed loop requires a
sampling rate of at least 1 kHz, the position loop a sampling rate of about
100 Hz. Luckily, the controller for most control applications is very simple:
it consists of a single regulator loop and some sort of man-machine interface.
The purpose of this report is to:
e Determine what operations in a controller are time consuming and there-
fore limit the sampling rate.
® Present one possible solution — a real-time scheduler for fast control ap-
plications. The scheduler is written in assembly language, and has been
designed for a controller written in C.
e Present some practical results. A PID controller has been implemented,
and an upper limit on the sampling rate has been determined.
The obvious way to get high performance is to buy faster hardware: a more
powerful micro processor, a special-purpose control system, or even multi-
processor architectures (HyperCubes, Transputers, etc.). This study is limited
to a fixed hardware which is quite common — the IBM AT — and concentrates
on the software issues.

In this report, the term regulator represents the computer realization of a
control algorithm. The term controller denotes a complete program which also
contains code for calculating regulator coefficients from the user’s regulator
parameters, some basic operator communication, and initializations.

2. Analysis of the controller

In order to analyze (and hopefully increase) the performance of the controller,
we must look at a number of problem areas:

e The regulator algorithm.

e A/D and D/A conversion.

e Operator communication and graphics.

e The real-time kernel.

e The programming language.
Each of these five areas will be studied separately below. The basic charac-
teristics will be outlined and improvements suggested.

The regulator algorithm

There is not much to do about the basic regulator algorithm, once it has been
chosen. Two obvious optimizations are possible:

e Calculating regulator coefficients from the user’s regulator parameters.

o Rearranging the order of calculations: in a PID regulator, the integral
part can be calculated after the new output. This reduces the delay from
input to output, but does not increase the sampling rate.

More drastic actions may also be called for. For example, it is possible to
refrain from floating-point calculations and to use a fixed-point regulator in-
stead; this approach works fine for PID regulators. Fixed-point arithmetic is
difficult to use unless built into the language, see Section 5.

It is very important to identify truly time-critical operations, and to sim-
plify the regulator as much as possible. For example, plotting should not be
done by the regulator, but by a process at lower priority. In some cases, for
example, when the scheduler described in this report is used, it may be very
difficult to plot at low priority.

A/D and D/A conversion

The overhead associated with A/D and D/A conversion is usually determined
by the hardware. The D/A conversion time is not critical, but with typical
sample-and-hold A/D converters, the program must wait for the A/D con-
verter to stabilize. This period could be used for other calculations, but so is
not done here. In many industrial controllers, A/D conversion is started by
the program, but actual data transfer is done by the converter using DMA.

It may also be necessary to convert between the user’s engineering units
and the range of the converters (—2048 to +2047 for a 12-bit converter), which
may represent a voltage between —10 and +10 V. Conversion between integer
and floating-point numbers is particularly time-consuming.

Operator communication

Operator communication can also be regarded as a real-time task, although
with lesser demands on response time. Drawing graphics usually requires a lot
of CPU resources, which are taken from the total available, even if executed
at a lower priority. Graphics should not be attempted in a high-performance
regulator. General purpose graphics systems (for example, GKS) are often too
slow, and other packages with less functionality must be chosen.

Due to lack of hardware support, some simple graphics operations may
require inordinate real-time support in software. For example, the mouse on
an IBM AT should be tracked by a separate process which polls the mouse
position at 50 Hz.

Overhead in the kernel

A proper kernel is flexible and have powerful real-time primitives. A typi-
cal kernel is the Modula-2 kernel developed by Leif Andersson [Andersson,
1988]. It provides a general process concept, priority levels and round robin
scheduling, semaphores, events, time-outs, and interrupt processes. There is
additional support for message passing using mailboxes, graphics and mouse.

This powerful real-time environment does not come for free. In a small
example, a single process requested invocation at every tick of the system clock
(Listing 1). This meant going back and forth between the user process and
the null process (two context switches), requiring 800 us. The time spent in
the kernel was measured by looking at a signal with an oscilloscope. Every
time the kernel was entered, a 1 V signal was generated on one of the D/A
channels; the signal was removed just before leaving the kernel. The kernel
is implemented almost without exception in Modula-2, and context switch is
by means of TRANSFER. The machine code generated for the kernel routines
looks reasonably efficient, so one cannot help asking: what does a TRANSFER
in Modula-2 do that takes 400 us?

Two strategies are available to decrease kernel overhead: writing a more ef-
ficient kernel with similar functionality, or simplifying the kernel at the expense
of decreased functionality. The latter approach was taken in this study. Many

4

MODULE Sched;
(* Rescheduling of a process using the Modula-2 kernel *)

FROM Kernel IMPORT MaxPriority, Time, IncTime, WaitUntil,
GetTime, SetPriority, InitKernel, CreateProcess;
FROM Terminal IMPORT WriteString, WriteLn;

PROCEDURE Process;
VAR now : Time;
BEGIN
SetPriority(10);
GetTime (now) ;
LOOP
IncTime(now, 10);
WaitUntil (now);
END;
END Process;

BEGIN
WriteString(’Starting. Waiting time 10 ms’); Writeln;
InitKernel;
CreateProcess(Process, 2000);
SetPriority(MaxPriority);

END Sched.

Listing 1. Program for measuring context switch time in Modula-2 kernel.

useful control applications not even need general purpose processes. The sim-
plest possible scheme is called foreground/background scheduling. The design
and implementation of a scheduler is discussed in Section 3, its performance
is analyzed in Section 4, and an application using the scheduler is analyzed in
Section 5.

Language considerations

Of the languages used in this study, Modula-2 is a good language for control
applications. It is one of the few widely available languages where necessary
low-level operations (such as, processes, mutual exclusion, input /output) are
part of the language definition. Modula-2 has no facilities for process schedul-
ing or processes waiting for a specified period of time. Regrettably, the user has
little knowledge, and even less control, over some internal operations, notably
TRANSFER; this precludes the use of Modula-2 for maximum performance ap-
plications on the IBM AT. In all other respects, the Logitech implementation
of Modula-2 is very good.

On the other hand, C is not a real-time programming language, but C is
very efficient and its run-time behaviour is easily predictable (partly because
the user must provide all real-time primitives himself). Writing a kernel and
interfacing with assembler is quite easy in C.

Even within the bounds of a single programming language, many improve-
ments can be made. If optimization is addressed in an orderly manner, the
resulting program may remain comprehensible. A number of techniques are
available; low-level optimizations are important in control applications.

3. The foreground/background scheduler

This section describes the implementation of a foreground/background sched-
uler. Much of what is said here concerns a particular implementation on an
IBM AT, and may be of limited application elsewhere. The code for the
scheduler is listed in Appendix A.

What is a scheduler?

A scheduler can be regarded as a 1% process real-time kernel. The foreground
process is a procedure that is called at fixed time intervals by the scheduler.
The foreground process is always allowed to run to completion. When the
foreground process is not running, the background process is said to be running,
which is an ordinary sequential program. Typically, the foreground is the
implementation of a regulator loop, while the background handles operator
communication.

When the foreground process is started, processor status of the back-
ground process must be saved. A property of the foreground/background
scheduler is that it uses only one stack: processor status is saved, and the
foreground process is executed, using the stack of the background process.
Stack and processor status are restored to original form when the foreground
process terminates. A kernel, on the other hand, maintains a separate stack
for every process.

The foreground/background scheduler is an old concept and has been
used in a large number of applications. A scheduler for Digital Equipment
Corporation’s LSI-11 is described by Mattsson [1978].

Functionality not provided

The scheduler achieves its performance through decreased functionality and
complexity; a number of features available in a proper kernel, as for example
the Modula-2 kernel, are missing.

There are no “real” processes, so there is no need for process priorities
or round-robin scheduling. The foreground process interrupts the background
process, and therefore has higher priority by definition. Process communica-
tion can easily be accomplished using shared variables (see Section 5), and
because the foreground process always runs to completion, mutual exclusion
with semaphores and events is not needed.

Because the real-time application is limited to the regular invocation of
the foreground process, interrupt processing and time-outs are uninteresting.

Implementation

In order to implement a foreground /background scheduler, the following three
issues must be addressed:

o The scheduler needs a reliable time-reference with adequate resolution.
e The user must define the foreground process and the invocation interval.
o The scheduler must at regular intervals invoke the foreground process.

The time-reference is provided by a programmable hardware timer; the reso-
lution of the timer is 0.84 us. The timer is programmed to generate interrupts
at a certain multiple of the resolution (this is called a tick). A tick is typically
between 0.5 and 10 ms.

The application program initializes the scheduler by specifying what func-
tion should be invoked as the foreground process, and how often. The second
parameter, called the period, is the number of ticks between foreground process
invocations. This means that the hardware clock is scaled two times: Firstly,
the scheduler’s basic time unit (the tick) is generated by programming the
timer. Secondly, the application can control the period between invocations
of the foreground process, expressed in multiples of the tick.

When the scheduler is about to start the foreground process, the state
of the background process is saved. The foreground process is assumed to
use integer operations only, so floating point registers are not saved. If the
foreground process for some reason has not finished after one period (i-e., the
scheduler should have started it again), the lag is registered; the scheduler will
immediately restart the foreground process in order to “catch up.” Only one
restart is done every time the foreground process is lagging, so lag does not
accumulate.

The code of the scheduler has been divided into the following routines (see
Appendix A):

IntHandler Scheduler interrupt handler, invoked for every timer interrupt.
Updates the BIOS clock if necessary. Increments the tick counter,
and checks if the foreground process should be started. Registers
lag if necessary.

FGstart Saves processor status of the background process. Starts the fore-
ground process at least once, or until no lag has been registered.
Restores processor status and returns to the background process.

BREAK_int Interrupt handler for emergency stops. Invoked by the BIOS
when CTRL-BREAK is pressed. Calls reset below, and termi-
nates program.

schedule Called by the application program to initialize the scheduler.
Saves the address of the function to execute as the foreground
process. Initializes interrupt handlers and the hardware timer.

reset Called by the application program to disable the scheduler. Re-
stores timer and original interrupt handlers.

ADin Returns measurement from specified A/D converter.
DAout Outputs signal to specified D/A converter.

It should be noted that certain operations cannot be performed in the fore-
ground process. Floating point calculations are not possible, as explained
above. BIOS routines can probably be called, but DOS routines cannot. Al-
though ordinary C code is re-entrant, some routines in the C run-time library

may not be re-entrant. Library routines with unknown time demands should
of course be avoided.

Machine specific details

One of the early design constraints was to write the scheduler in assembler (Mi-
crosoft MASM) and to limit the scheduler to applications written in Microsoft
C. As expected, C proved to be efficient and easy to use. Low-level optimiza-
tions (in particular in the PID regulator, Section 5) were easily checked in the
object-code listings. The small memory model was chosen to get maximum
performance. Interfacing C programs to assembler is well documented.

The IBM AT architecture is awkward, and the Intel 80286 gives an out-
dated impression compared to many other processors. Low-level program-

ming and interfacing with the hardware is error-prone; the machine must be
rebooted very often because of the lack of protection mechanisms, so develop-
ment is painfully slow. Low-level operations are not well documented.

A complication is that the scheduler must update the time-of-day clock in
the BIOS at 18.2 Hz; the timer is normally used for this purpose. In emergency
cases, it is possible to run the system without updating the clock.

An early version of the scheduler was supposed to use two different inter-
rupt vectors depending on whether the foreground process or the background
process was executing. This idea had to be dropped: the DOS routine for
setting the interrupt vector is much too slow, and the address for setting the
interrupt vector directly could not be found. The current version must test a
flag before starting the foreground process.

Changing interrupt vectors is a serious business, and the system will crash
unless everything is reset prior to program termination. A special handler for
the CTRL-BREAK key provides a crude emergency stop. Other errors that
terminate the program (for example, CTRL-C) are not handled.

An amusing observation is that if the interrupt vector is not reset, the
system will still work after the program has terminated; the system will not
crash until the next program is loaded into memory.

Future extensions

A number of extensions could be considered in future versions of the scheduler:

e For non-integer regulators, the floating point registers must be saved be-
fore starting the foreground process.

¢ The foreground process executes in the stack currently in use by the back-
ground process. If the background process is performing input/output, or

otherwise is using DOS, the foreground process will sometimes execute in
the DOS stack.

The size of the DOS stack is unknown but probably quite small, so there is
a real risk of stack overflow. For large foreground processes, the scheduler
would have to change stacks.

o Currently, only the small memory model is supported. Other memory
models are needed to easily handle more than 64 KB data and 64 KB
code.

o The tick is currently compiled into the scheduler; more flexibility would
be gained if the application program could set the length of the tick.

All these extensions are relatively simple to realize. Another suggested exten-
sion is to allow multiple foreground processes. Multiple foreground processes
are not necessarily an advantage: the scheduler is intended for simple control
applications, and a proper kernel should be used for complex applications.

An important question is “can we make the scheduler faster?” Restricted
by the 80286 processor and MS-DOS, there is not much room for improve-
ment; registers must be saved and set up, lag must be registered, etc. One
improvement is to disable the BIOS clock (see Section 4).

A significant change is to stop counting interrupts from the hardware
timer, and invoke the foreground process at every tick. This would make the
scheduler simpler, but the maximum period between invocations would be
limited by the range of the hardware timer to 55 ms. If multiple timers are
cascaded, the tick could be increased.

Operation wclock w/o clock

Timer interrupt handler 18 us 16 us
Start of foreground process 38 us 38 us
Updating BIOS clock 76 us —_

Table 1. Execution times with test signal.

Operation wclock w/o clock
Timer interrupt handler 9.5 us 7.5 us
Start of foreground process 33.5 us 33.5 us
Updating BIOS clock 76 us —_

Table 2. Execution times without test signal.

Voltage Time Instructions
0 4.0 ps 11
non-zero 4.5 ps 13

Table 3. Test signal generation times.
4. Scheduler performance

This section presents the results from measuring the actual performance of the
basic scheduler, plus execution times for the A/D and D/A converter routines
used by the PID controller in Section 5.

Conditions

These tests were conducted on a Tandon AT (IBM AT compatible) with an
8 MHz Intel 80286 processor. The scheduler is written in assembler and the
processes (foreground and background) in Microsoft C version 4.0, using the
small memory model. The foreground process is executing an empty function,
i.e., the test includes the overhead of invoking a C-function.

The measurements were performed by looking at a test signal with an
oscilloscope. A test signal of 1V is available when the interrupt handler is
executing. A test signal of 2V is available when the foreground process is
executing. Some extra overhead associated with entering and leaving the in-
terrupt handler (37 cycles, 4.6 ps at 8 MHz), which can not be seen on the
test signal, has been added to the figures. The inaccuracy of the results is
about £+2 pus.

Results

Table 1 gives the execution times of the scheduler, both with time-of-day clock
handling, and without. With the clock, the scheduler overhead is normally
56 ps to start the foreground process, and 132 us when the BIOS clock must
be updated.

Table 2 gives estimated execution times for a scheduler without test signal.
The minimum overhead that can be expected, without test signal and clock
update, is 41 us. The time required for generating the test signal has been
calculated by counting instructions of the DAOUT macro (Table 3).

#include "fb.h"

main ()
{
while (1) {
DAout (1, 1024);
ADin(1);
DAout(1, -1024);
}
}

Listing 2. Program for measuring A/D and D/A conversion times,

Performance of A/D and D/A conversions

Listing 2 gives the program which was used to measure the performance of
one A/D conversion and one D/A conversion. On this hardware, total time is
68 us. Clearly, the A/D conversion alone requires around 60 ps.

5. Case study: the PID controller

In order to test the scheduler under realistic conditions, a fast PID controller
was developed. Some interesting observations on regulator implementation
and floating point performance will be presented, and a practical upper limit
on the sampling rate has been determined.

The regulator algorithm

The basic PID algorithm can generally be expressed as follows:

”w:ka+%/d@m+n%>

where u is the control variable, k is the gain, e = » — y is the control error, r
is the set point, and y is the measured value.
The actual computer realization has been rewritten as follows:

P =Fk(br—y)

D = a4D — by(y — yo1a)

v=P+I1+D

I=T+4bi(r—y)+ bp(u—v)
Yold =Y

Parameter b can be used to reduce overshoot at step changes [Astrom, 1987].
The regulator is also provided with anti-windup:

Umin, if ¥ < Umin
Uu=47, if Uppin < Y < Umax
Umax, if ¥ > Unax

The regulator coefficients are calculated from the user’s regulator parameters:

_kh T, h KTaN

b,‘_ b,.:— = —
T g 4T Tyt Nk

T Ty+Nh T.

10

where h is the sampling time, T; is the integration time, T, is the tracking
time, Ty is the derivative time, and N is the maximum derivative gain.

Controller operation

The controller consists of a foreground process which implements the regulator
described above, and a background process which handles operator commu-
nication. The background process runs in an endless loop, performing the
following operations in sequence:

o Ask the user for regulator parameters.

o Calculate internal regulator coefficients from the parameters.

Switch the regulator over to the new coefficients.
e Print the new parameters and coefficients.

It is interesting to note that there is no real mutual exclusion problem in
the controller; the regulator uses one set of coefficients while the background
process operates on another set. The background process swaps coefficients
by simply changing an index. Since the foreground process always runs to
completion, there is no risk that it will get new coefficients in the middle of
the regulator loop. The C code for the controller is listed in Appendix B.

Fixed-point arithmetic

Floating point arithmetic is normally slower than integer arithmetic, so a fixed
point regulator was chosen for the controller.

A fixed point number represents a (fixed) subrange of real numbers with
limited precision, and is implemented using integers. The number is scaled
(normally by a power of two) in order to get as much precision as possible
for a given range; there is a trade-off between range and precision, of course.
Fixed point arithmetic is discussed in some detail by Young [1982].

Ada is one of the few programming languages where fixed point numbers
are defined. In other languages the user must use an integer data type and
take care of the peculiarities himself; there are quite a few:

o The range of all numbers must be carefully estimated and an appropriate
scaling chosen. This is often a difficult task.

e The terms of an addition or a subtraction must be aligned to get the same
scale factor before the operation.

e The operands of a multiplication or a division rarely need to be scaled,
but the operation should be performed in double precision (multiplication
of two 16-bit integers gives a 32-bit result).

e The result of an operation must be scaled to fit the destination. In par-
ticular, multiplication and division accumulate the scale factors of the
operands.

e The range of all numbers should be checked, but this is often impossible
due to performance constraints.

¢ All arithmetic operations should be checked for overflow, but this is im-
possible in many languages.

A uniform scale factor is used for all variables in the PID regulator in order to
reduce complexity. The risk of overflow is avoided by using 32-bit integers. In
the regulator code, the result of a multiplication is scaled, but all other effects
of fixed point arithmetic have been eliminated. The regulator coefficients are
scaled on input, and the analog signals are scaled by the converters.

11

Optimizations

Many techniques can be applied to make a program faster. The first problem
is to find the “hot-spots” in the program; the second problem is to apply the
most cost-effective transformation of the code. A very good source of advice
is Writing Efficient Programs by Jon Louis Bentley [1982].

The controller is fortunately quite easy to optimize. Most important, the
area of interest is only about 20 lines of code. The regulator code is also quite
simple, with a minimum of logic. Therefore, most optimizations are quite
low-level, but there are two cases where logic has “replaced” arithmetic.

Data types and scaling. The most important data structure (from the per-
formance point of view) is the regulator coefficient table. Firstly, the scale
factor was chosen as a power of two, so scaling could be made with arithmetic
shifts. Unfortunately, shifting a long integer is translated into a subroutine
call by the Microsoft C compiler. By using the scale factor 216, the compiler
can emit a single mov instruction, rather than a shift.

Secondly, some calculations must be performed with 32-bit (long) integers
to avoid overflow, so 32-bit integers are used through-out to minimize the
number of conversions.

Using logic instead of arithmetic. One of the most time-consuming operations
in the regulator is to multiply two numbers, so minimizing the number of
multiplications is important. The regulator always begins by selecting the
“current” set of coefficients. This was initially done with the code in Listing 3
(generated machine code on the right).

par = ®._par[current_par]; imul ax,current_par,24
mov si, ax

add si,reg_par
Listing 3. Original pointer initialization.

Because current_par is always 0 or 1, the code could be rewritten using
a simple test (Listing 4).

par = ®._par[0]; mov si,reg_par
if (current_par != 0) cmp current_par,0
par = ®_par[i] je label

mov si,reg_par+24
Listing 4. Improved pointer initialization.

Similarly, one can assume that the control variable rarely saturates, i.e.,
that u — v = 0. In this case, the calculation of the integral part can be sim-
plified. These two optimizations reduced the execution time of the regulator
by about 40 us.

Additional optimizations. Three typical C optimizations have been applied:
Firstly, regulator coefficients are accessed via a pointer to the “current” ele-
ment of the coefficient table (see above). Secondly, the pointer and the control
variable are declared as register variables; only two register variables are
supported by the compiler. Thirdly, states are incremented using an assign-
ment operator (I += x; rather thanI = I + x;).

12

Processor 80386 80286 Relative

Clock frequency 20 MHz 8 MHz performance
Floating point regulator 90 us 570 us 6.3
Integer regulator 48 us 187 us 3.9
Simple integer regulator 40 us 159 us 4.0
Floating point penalty % 205%

Table 4. Performance of PID regulator, no A/D or D/A conversion.

Processor 80386 68020 Relative
Clock frequency 20 MHz 16 MHz performance
Floating point regulator 90 ps 155 us 1.7
Integer regulator 48 us 43 us 0.9
Floating point penalty 88% 260%

Table 5. Comparison of Intel and Motorola processors.

Results

The performance of three different PID regulators is presented in Table 4. The
first uses floating point arithmetic, the second long integers, and the third is
a simplified regulator without parameter b. All tests were performed without
the A/D and D/A conversions required in a real controller. The programs
were run on a Compaq 386/20 and a Tandon AT (also see Section 4). Exactly
the same executable code was run on both processors.

The second and third columns of Table 4 present the absolute execution
times for the Intel 80386 and 80286 processors, with attached floating point
processors (80387 and 80287). On the 80286, the convenience of floating point
arithmetic will give a 205% increase in execution time; on the 80386 the in-
crease is 88%. It is interesting to note that for a given clock frequency, the
80386 is only 60% faster on integer arithmetic, but 2.5 times faster on float-
ing point arithmetic. Table 5 compares the performance of the Intel 80386
and the Motorola 68020 processors, with respective floating point processors
(80387 and 68881).

The controller has been tested practically on a high-performance hydraulic
servo. The PID controller performs two A/D conversions and one D/A con-
version for each sample; this requires about 120 us (see Section 4), which is
significant compared to the execution time for the PID algorithm. The max-
imum sampling frequency on an 8 MHz Tandon AT is therefore chosen as
2 kHz, which also allows a minimum of time for the background process.

6. Conclusions
The real-time performance needed in some control applications is difficult to

achieve with a fully featured kernel. The simplest, and therefore the most effi-
cient, solution for control applications is a foreground/background scheduler.

13

Context switch time with the scheduler implemented on an 8 MHz Intel 80286
is 56 ps; context switch time using Modula-2’s TRANSFER is 400 ps. With the
hardware used, significantly higher performance cannot be achieved.

The scheduler could be developed further to provide more features, but
this effort should not be pursued. For complex control applications, a real-time
kernel will provide more appropriate primitives, and more expensive hardware
can meet most performance requirements.

In real applications, a controller based on an integer PID regulator and
the foreground/background scheduler will achieve a 2 kHz sampling rate on
an 80286, while allowing for some operator communication. The 80286 is very
slow on floating point calculations, so an integer regulator really pays off. The
80386 is not so much faster on integer calculations but has better floating point
performance; the performance penalty for using a floating point regulator is
only about 90%, so there is really no need to use an integer regulator.

Acknowledgements

I would like to thank Bjarne Toftegdrd at DtH for valuable comments on the
manuscript and for testing the PID regulator on Intel 80386 machines. Kjell
Gustavsson and Bo Bernhardsson kindly tested the controller on an hydraulic
servo. Sven Erik Mattsson wrote the original LSI-11 scheduler on which this
work is based. Leif Andersson is a real programmer, whose experiences with
the Modula-2 kernel made the new scheduler possible. Professor Karl Jo-
han Astrém provided me with a high-performance regulator and checked its
implementation. Careful and valuable comments were given by Per Hagander.

This study was conducted for the course “Computer Implementation
of Control Systems” given at the Department of Automatic Control, Lund,
during the spring semester 1988.

References

ANDERSSON, LEIF (1988): “Modula-2 kernel documentation,” Department of
Automatic Control, Lund Institute of Technology, Lund, Sweden, To be
published.

BENTLEY, JON L. (1982): Writing Efficient Programs, Prentice Hall, USA.

MatTssoN, SVEN Erik (1978): “A Simple Real-Time Scheduler,” CODEN:
LUTFD2/TFRT-7156, Department of Automatic Control, Lund Institute of
Technology, Lund, Sweden.

YouNe, STEPHEN J. (1982): Real Time Languages, Ellis Horwood Limited,
Chichester, England.

AsTrOM, KaRL JoHAN (1987): “Implementation of PID Regulators,”
CODEN: LUTFD2/TFRT-7344, Department of Automatic Control, Lund
Institute of Technology, Lund, Sweden.

14

Appendix A
Listing of foreground /background scheduler

NAME FB
TITLE Foreground/Background scheduler for C on IBM AT
PAGE 50,130

; Overview.

i This is a foreground/background scheduler for simple control applications.
; A major design objective is to reduce overhead and to determine the maximum
; practical sampling rate.

; The program is mormally executing the background task, which in a typical
i case is responsible for operator communication. At regular time intervals
; defined by the user, the scheduler starts the foreground task. Typically,
; the foreground task is the realization of a PID controller.

; The scheduler runs on Tandon AT and compatible machines (e.g., IBM AT).
; It has been designed for a user program written in Microsoft C,

; using the small memory model. It can easily be re-written for other

i programming languages. The scheduler is written in Microsoft Macro

; Assembler (MASM).

; Using the scheduler.
; The following declarations must be included in the user’s program:

] extern void schedule();
$ extern void reset();

; The code executed by the foreground task must be defined as a void

; function (called a procedure in Pascal). This function, and all

; functions called by the foreground task, MUST be compiled with stack
; checking turned off. The best way to do this is to use a pragma:

; #pragma check_stack -
3 void foreground()

3 {

»

H /* foreground implementation */
; }

H #pragme check_stack +

; The scheduler is invoked at fixed intervals (ticks), determined by the

; constant TIMER_PER defined below. A typical tick is 10 milliseconds.

; Timing is based on a hardware clock of 1.19318 MHz; the clock is scaled

; by a hardware timer which generates interrupts every TIMER_PER clock cycles.

i The user’s program must install the foreground procedure by calling

; schedule(). The second parameter determines how often the foreground
i task is executed (in multiples of the tick). Example:

: schedule (foreground, 5);

; The following should be noted:

H 1. The foreground task will always run to completion. If it needs

3 more than one tick (i.e., it should have been started again), the
; lag is registered, and the foregound task is immediately started

15

again when it has completed. Lag does not eccumulate, so only
one restart is remembered.

The foreground task can be re-scheduled at any time by calling
schedule() again. In this way a new controller algorithm can
be installed instead of the old one.

A period of 0 ticks has a special meaning: the foreground task
will not be executed, but the scheduler is still running.
This is more efficient than calling reset(), see below.

Before terminating, reset() MUST be called. Otherwise the computer
will crash. DNote that it is possible to restart the scheduler, even
after a reset. If the program crashes without calling reset(), all
hope is lost. For emergency stop, CTRL-BREAK is treated specially
and will terminate the program more gracefully. Do not terminate
the program by pressing CTRL-C.

Caveats.

There are a number of problems, potential problems and future
extensions to consider:

The registers of the floating-point coprocessor (Intel 80287)
are not saved when the foreground task is started. This
requires a modification in FGstart.

The foreground task executes in the currently active stack,
so the internal DOS stack is sometimes used. We do not know
the size of the DOS stack, so there is a risk of stack overflow.

The scheduler is tailored to the small memory model, which
normally only handles €4 KB code and 64 KB data. To overcome
this limitation, use FAR and HUGE keywords; see "Microsoft C
Compiler User’s Guide", section 8.3.

There is only one foreground task.

It would be nice to be able to set the tick value from the
program. This requires changes in schedule() and IntHandler.

Many operations may not be possible to perform in the foreground
task, e. g., calling DOS routines.

The scheduler has been tested on a hydraulic servo, without errors.

References.

BURR-BROWN (1986): "The Handbook of Personal Computer Instrumentation",

Burr-Brown Corporation, Tuscon, Arizona, USA.

IBM (March 1984): "Technical Reference (AT)", IBM Corporation, USA.

IBM (May 1984): "Disk Operating System Version 3.00 Technical Reference",

INTEL (1985): "iAPX 286 Programmer’s Reference Manual", Intel Corporation,

IBM Corporation, USA.

Santa Clara, California, USA.

16

; MATTSSON, SVEN ERIK (1978): "A Simple Real-Time Scheduler", TFRT-7156,
s Department of Automatic Control, Lund.

; MICROSOFT (1986): "Microsoft C Compiler User’s Guide'", Microsoft
H Corporation, USA.

; History:

; 1988-01-28
; 1988-02-03
; 1988-02-04
; 1988-02-05
; 1988-03-06
; 1988-05-10
; 1988-05-13

DB
DB
DB
DB
DB
DB
DB

.TEXT SEGMENT

_TEXT ENDS

_DATA SEGMENT

_DATA ENDS

CONST SEGMENT

CONST ENDS

_BSS SEGMENT

BSS ENDS

DGROUP GROUP

Created.

First working versiom, no BIOS clock.

BIOS clock updated, handles CTRL-BREAK gracefully.
Improved documentation.

Added A/D and D/A conversion routines for C.

Sends 0 to chanmel 1, in _reset().

Time with interrupts off reduced in ADin.

.286p

BYTE PUBLIC ’CODE’
WORD PUBLIC ’DATA’
WORD PUBLIC °’CONST’
WORD PUBLIC ’BSS’

CONST, _BSS, _DATA

ASSUME CS: _TEXT, DS: DGROUP, SS: DGROUP, ES: DGROUP

; Constant definitioms.

; TSIGNAL

; CLOCK

; TIMER_PER

; TIMER_INT

The scheduler will normally send a test signal to

D/A converter channel 0: 1V when the interrupt handler
is executing, and 2V when the FG task is executing.
Setting TSIGNAL zero will disable this feature.

We should normally update the DOS clock at 18.2 Hz.
A small speed-up is acheived by setting CLOCK zero.

Determines the period between clock interrupts.
TIMER_PER = ROUND(T * 1193.18), where T is the

desired period in milliseconds.

This is the timer interrupt number, see BIOS manual.

; BIOS_CLOCK_INT The BIOS clock handler should be called at a

; ADBASE

; DAC

rate of about 18.2 Hz. Normally the clock interrupt
does this, so we have to install the original clock

interrupt handler in a new place. BIOS_CLOCK_INT

is a free interrupt number we use for this purpose.

Base address of A/D converter registers. The other
ADxxxx symbols are offsets from ADBASE.

Base address of D/A converter registers.

17

TSIGNAL EQU 1

; CLOCK EQU i

CLOCK EQU 0

; TIMER_PER EQU 11932 ; approximately 10 ms
; TIMER_PER EQU 1193 ; approximately 1 ms
TIMER_PER EQU 697 ; approximately 0.5 ms
TIMER_INT EQU 8

BIOS_CLOCK_INT EQU OEBH

ADBASE EQU 0300H
ADSTATUS EQU ADBASE
ADCHAN EQU ADBASE+1
ADCONV EQU ADBASE+2
ADLOW EQU ADBASE+3
ADHIGH EQU ADBASE+4
DAC EQU 0310H

; Scheduler data

_DATA SEGMENT

FG_ADDR DW 0 ; pointer to FG procedure

PERIOD DW 0 ; # clock ticks between FG starts, 0 = no FG

ICNT DW 0 ; 0 = no FG task, 1 = start FG

FG_ACTIVE DW 0 ; <>0 = FG active

LAG DW 0 i >0 = FG task is lagging

INIT_FLAG DW 0 ; 1 = scheduler initialized

BIOS_TIMER DW 0 ; Bios clock int must be called at 18 Hz

BIDS_VEC DW 0 ; original interrupt vector for int 8
DW 0

_DATA ENDS

SENDEOI - Send End-Of-Interrupt to interrupt controller

. ws we we

; Note: AX is destroyed.

’
SENDEOI MACRO
MOV AL,20H

ouT 20H, AL

ENDM
jmsmi i
i DAQUT - output integer voltage on D/A-converter channel 0
; Note: AX is destroyed.

: VOLTAGE must be a constant expression.

18

DAOUT MACRO VOLTAGE

IF TSIGNAL
PUSH DX
CLI
MoV DX,DAC
SUB AX,AX ;3 channel 0
ouT DX, AL
INC DX

IF VOLTAGE NE 0O
MOV AX,205*VOLTAGE

0UT DX,AL
MOV AL,AH
ELSE
ouT DX, AL
ENDIF
INC DX
ouT DX,AL
STI
POP DX
ENDIF
ENDM
; Tk
:
; TIMER - Program timer
; Note: AX is destroyed.
E]
TCC EQU 043H ; Timer/counter control word
TCO EQU 040H ; Timer 0O

TIMER MACRO PERIOD

_TEXT SEGMENT

CLI

MoV AL,036H
ouT TCC,AL
MoV AX,PERIOD
ouT TCO, AL
MoV AL,AH

NOP

ouT TCO,AL
STI

ENDM

IntHandler - interrupt handler when scheduler is used.

The interrupt handler must perform the following functions:
1. Save registers and set up the DS register.
2. Update the BIOS clock at 18.2 Hz, or send an EOI signal.
3. Determine if the FG task should be run, otherwise

restore registers and return.

See also: The Handbook of Personal Computer Instrumentation,
Burr-Brown Corporation, USA (1986). Page 9-30.

19

Il

L

Note on timing:

; clock cycles,

IntHandler:

PUSH
PUSH
MoV
MOV

DAOUT

AX

DS
AX,DGROUP
DS, AX

1

The first and last instructions of the interrupt
; handler (before and after the cells to DAOUT) xrequire 10 + 27
i.e., 4.6 us at 8 MHz.

; Increment the BIOS clock timer and check if we must
; call the original interrupt handler.

IF
ADD
JNC
INT
JMP
ENDIF

NoBios:

SENDEOI

; Count

CheckFG:

CMP
JE
DEC
JA

CLOCK

BIOS_TIMER, TIMER_PER
NoBios
BIOS_CLOCK_INT
CheckFG

all interrupts. ICNT

ICNT,O
IntReturn
ICNT
IntReturn

; BIOS does a SENDEOI

= 0 means that FG task should not run.

; if (ient == 0) return;

; if (--icnt > 0) return;

; ICNT = 0, so we should start the FG task. If FG task is already
; running, special handling is required.

MoV
MoV
CMP
JE

AX,PERIOD
ICNT, AX
FG_ACTIVE,O
FGstart

; There has been ’PERIOD’ interrupts while FG task was active,
; so the FG task is lagging.

; as soon as it has finished.
; even if many interrupts were missed.

Mov

LAG,1

Flag this, and restart FG task

NOTE: FG is only restarted once,

; Return from interrupt, FG task has not been started.

IntReturn:

Ll

DAOUT
POP
POP
IRET

0
DS
AX

; FGstart ~ suspend BG task and start FG task

20

; Note that there are two potential problems:

5 1. The FP registers of the 80287 are not saved.

L

H 2. The currently active stack is used, so the FG task
3 is sometimes run in the DOS stack which size

H we do not know.

H

FGstart:

MoV FG_ACTIVE,1

; Save status. Flags, CS, IP, AX and DS are already on the
; stack in the interrupt frame or saved entering IntHandler.

PUSH ES
PUSHA

; Call the FG task procedure once, or as long as the FG task
i is lagging. A short call is possible because CS was
i loaded when invoking the interrupt handler.

LagLoop:
DAOUT 2
Mov LAG,0 ; initially no lag
MOV BX,FG_ADDR
CALL BX
CMP LAG,0 ; call until no more lag
JNZ LagLoop

MOV FG_ACTIVE,O

; Restore registers of BG task and return.

POPA

POP ES
DAOUT O
POP DS
POP AX
IRET

; BREAK_int - CTRL-BREAK interrupt handler.

; This routine is invoked by BIOS through interrupt 1BH when
; CTRL-BREAK is pressed. We must under all circumstances

; restore the original interrupt handler for the timer.

; In addition, the program is terminated.

; See also: IBM AT Technical Reference manual, page 5-7.
i DOS Version 3.00 Technical Reference, page 5-129.

BREAK_int:
PUSHA
PUSH DS
MOV AX,DGROUP
MoV DS, AX

21

SENDEOI
SENDEOI
CALL _reset

MOV AH,4CH

MOV AL,1

INT 21K ; should not return...
POP Ds

POPA

IRET

; —schedule - register FG procedure and period

; C syntax: extern void schedule(procedure FG, unsigned short period);
; Note: The C function MUST be compiled with stack checking turned off.
; The best way is put "#pragma check_stack-" immediately before the

; function, and "#pragma check_stack+" immediately after. This also

; applies for functions called by the FG task.

i See also: DOS Version 3.00 Technical Reference Manual, p. 5-67 and p. 5-82.

PUBLIC _schedule

_schedule PROC NEAR

OFF1 EQU 4 ; offset of FG

OFF2 EQU 6 ; offset of period
ENTER 0,0

; Setup scheduler: take address of procedure (void function)
; and the period from the main program in C.

Mov AX, [BP+0FF1]

MOV FG_ADDR, AX

Mov AX, [BP+0FF2]

MOV PERIOD, AX

MOV ICNT,AX ; icnt = period

MOV FG_ACTIVE,O
; Check if scheduler has been initialized.

CMP INIT_FLAG,1
JE NoInit

; Goet the original interrupt handler from DOS and save it.

MOV INIT_FLAG,1
Mov AH,3BH

MoV AL, TIMER_INT
INT 21H

MoV BIOS_VEC,ES
MoV BIOS_VEC+2,BX

; Install it as handler for an unused interrupt, in order
; to update the BIOS clock.

22

PUSH DS

Mov AX,ES

MoV DS, AX

MoV DX,BX

MOV AH,26H

MoV AL,BIOS_CLOCK_INT
INT 21H

i Catch CTRL-BREAK to make sure we reset the interrupt

MOV AX,CS
Mov DS,AX

MoV DX,0FFSET BREAK_int
Mov AH,2BH

MoV AL,1BH

INT 21H

; Install private interrupt handler for scheduler

Mov AX,Cs

MoV DS, AX

MOV DX,0FFSET IntHandler
MOV AH,256H

MOV AL, TIMER_INT

INT 21H

POP DS

¢+ Program timer

TIMER TIMER_PER
NoInit:

LEAVE

RET
_schedule ENDP

; -reset - reset interrupt handler and timer
; C syntax: extern void reset();

PUBLIC _reset
_reset PROC NEAR
ENTER 0,0

; Reset some output signals...

PUSH 0
PUSH 1
CALL _DAout

; Restore the original interrupt handler

PUSH Ds

MoV AX,BIOS_VEC
MoV DX,BIOS_VEC+2
MoV DS,AX

MoV AH,2B6H

MoV AL, TIMER_INT
INT 21H
POP Ds

; Reset timer and final cleanup

TIMER O
Mov ICNT,O
Mov PERIOD, 0

MOV FG_ADDR, 0
MOV INIT_FLAG,0

LEAVE
RET
_reset ENDP

; _ADin - Analog in for RTI-800.
; C syntax: int ADin(channel)

2 int channel;

PUBLIC _ADin
-ADin PROC NEAR

ENTER 0,0

CLY ; interrupts off
MOV DX, ADCHAN

MOV AX, [BP+0FF1] ; channel

ouT DX,AL

MoV DX,ADCONV ; start conversion
SUB AX, AX

ouT DX, AL

STI

; Loop until conversion done

MOV DX, ADSTATUS

LOOP:
IN AL,DX
AND AX,0040H ; bit 6 busy bit
JZ LOOP

; Read result and return in AX

MoV DX, ADHIGH
IN AL,DX
Mov AH,AL
MoV DX, ADLOW
IN AL,DX
LEAVE

RET

-ADin ENDP

i —DAout - Analog out for RTI-800.

; C syntax: void DAout(channel, value)
H int channel;
: int value;
PUBLIC _DAout
_DAout PROC NEAR
ENTER 0,0
CLI
MOV DX,DAC
MOV AX, [BP+0OFF1] ; channel
ouT DX, AL
INC DX
MoV AX, [BP+0OFF2] ; value
ouT DX, AL
INC DX
MOV AL,AH
ouT DX, AL
STI
LEAVE
RET
_DAout ENDP
_TEXT ENDS
END

25

Appendix B

Listing of PID controller

/*
* PID7.C
*

* Fast integer PID regulator using foreground/background scheduler.

*

*/

#include <stdio.h>
#include "£b.h"

/* A/D and D/A converter channels */

#define CH_R 0
#define CH_Y 1
#tdefine CH_U 1

/% Other compile-time constants */

#define UHIGH 2047 /* converter limits %/
#define ULOW (-UHIGH)

#define BITS 16 /* parameter scale factor */
#define SCALE 6bb36 /* 2 **% BITS #/

#define ISCALE (1.0 / SCALE)

#define TIMER_PER 0.5 /* Scheduler period, ms */

/* Regulator parameter data structure */

typedef struct { /% NOTE: all parameters are scaled, */
long K; /* i.e., SCALE * the real value. */
long b;
long bi;
long br;
long ad;
long bd;

} regulator_par;

regulator_par reg par[2];
int current_par = 0; /%

float Tr, Ti, Td, N; /*
float h; /*

/% Regulator states */

used to swap parameter set (0 or 1) #*/

real regulator parameters */
sampling period, in ms */

int yold; /* unscaled state */
long I, D; /* scaled states */

26

/*

* print_param()

*
* Print current parameters and regulator coefficients.
*
*/
void print_param()
{
register regulator_par *par;

par = &kreg_par[current_par];

printf(" e \n")
printf("Gain (K): %g\n", par->K * ISCALE);
printf("Magic factor (b): %g\n", par->b * ISCALE);

printf ("Tracking time (Tr): Y%g\n", Tr);

printf("Integral time (Ti): %g\n", Ti);

printf("Derivative time (Td): ¥%g\n", Td);

printf("Max deriv. gain (N): Yg\n", N);

printf£(*\n");

printf("bi: J%g\n", par->bi % ISCALE);

printf("br: %g\n", par->bi * ISCALE);

printf("ad: Jg\n", par->ad * ISCALE);

printf("bd: Yg\n", par->bd * ISCALE);

Printf (Memm e \n")

/*
* input()
*

* Read a value with prompt and range checking.
*

*/

float input(prompt, min, max)
char *prompt;
float min, max;
{
float x;

again:
printf£("Ys: ", prompt);
scanf("£f", &x);
if (x < min {} x > max) {
printf("Value out of range (%f..%f)\n", min, max);
goto again;

}

return x;

/*

* read_param()

*

* Read new parameters and calculate regulator coefficients.
*

*/

’

27

void read_param()

{
float K, b;
register regulator_par *par;

/* Copy old parameters to other data area */

if (current_par == 0)
par = ®_par[1];
else
par = ®_par([0];

*par = reg_par[current_par];
/% Read regulator parameters */

K = input("Gain (K)", 0.0, 1000.0);

par->K = SCALE * K;

b = input("Magic factor (b)", 0.0, 1.0);

par->b = SCALE * b;

Ti = input("Integral time (Ti)", 0.1, 1000.0);
Tr = input("Tracking time (Tx)", 0.1, Ti);

Td = input(“Derivative time (Td)", 0.0, 1000.0);
N input("Max derivative gain (N)", 0.0, 30.0);

/* Calculate regulator coefficients */

par->bi = SCALE % K * h / Ti;

par->br = SCALE * h / Tr;

par->ad = SCALE * Td / (Td + N * h);

par->bd = SCALE # (K * Td * N) / (Td + N * h);

if (par->bi == 0)
printf ("Warning - bi = 0.\n");

/% Switch parameter data areas */

if (current_par == 0)
current_par = 1;
else
current_par = 0;

/%
* foreground()
*

* Regulator foreground process.
*

*/
#pragma check_stack-
void foreground()

{

register regulator_par *par;

int r, y, v; /* unscaled variables */
register int u;
long P;

par = ®_par[0];
if (current_par != 0)

}

#

/

par = greg_par([i];
/* Regulatoxr loop */

ADin(CH_R);
ADin(CH_Y);

r
y

P = par->K * (((par->b * r) >> BITS) - y);
D = ((par->ad * D) >> BITS) - par->bd * (y - yold);
u=v=(P+ I+ D) > BITS;

if (v < ULOW)

u = ULOW;
else if (v > UHIGH)
u = UHIGH;

DAout (CH_U, u);

I += par->bi * (r - y);
if (u !'=v)

I += par->br * (u - v);
yold = y;

pragma check_stack+

*

* main()

£

* Main program.
*

*/

main()

{

/* Initialize states */

I=D=0;
yold = ADin(CH_Y);

printf("Sempling period (milliseconds): ");
scanf("%f", &h);

read_paran();

schedule (foreground, (int) (h / TIMER_PER));

while (reg_par[current_par].K !'= 0) {
print_param();
read_param() ;

};

reset();

29

