LUND UNIVERSITY

Implementation of Basic Primitives for Concurrent Programming in Pascal

Elmqvist, Hilding; Mattsson, Sven Erik

1981

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Elmqvist, H., & Mattsson, S. E. (1981). Implementation of Basic Primitives for Concurrent Programming in
Pascal. (Technical Reports TFRT-7230). Department of Automatic Control, Lund Institute of Technology (LTH).

Total number of authors:
2

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.

* You may not further distribute the material or use it for any profit-making activity or commercial gain

* You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

https://portal.research.lu.se/en/publications/45484e95-7edc-441e-8879-6723e01aab67

CODEN: LUTFD2/(TFRT-7221)/1-023/(1981)

A REAL-TIME KERNEL FOR PASCAL

HILDING ELMQVIST
SVEN ERIK MATTSSON

‘DEPARTMENT OF AUTOMATIC CONTROL
LUND INSTITUTE OF TECHNOLOGY

AuGUsT 1981

DOKUMENTDATABLAD RT 3/81

LUND INSTITUTE OF TECHNOLOGY
DEPARTMENT OF AUTOMATIC CONTROL

Box 725

S 220 07 Lund 7 Sweden

Document name

REPORT

Date of issue

August 1981

Document number

CODEN:LUTFD2/(TFRT-7231)/1-023/(1981)

Author(s)
Hilding Elmgvist
Sven Erik Mattsson

Supervisor

Sponsoring organization
Swedish Board for Technical Development
STU-80-3962

Title and subtitle
A Real-time Kernel for Pascal

Abstract

A real-time kernel written in Pascal is described. It uses a small assembler
written nucleus to handle concurrent processes. The expressive power of Pascal
together with the kernel is comparable to Concurrent Pascal. Interrupts can also

be handled in Pascal.

Key words

Concurrent programming, Real-time programming, Concurrent processes, Pascal,

Concurrent Pascal

Classification system and/or index terms (if any)

Supplementary bibtiographical information

ISSN and key title

ISBN

Langudge Number of pages

English 23

Security classification

Recipient's notes

pDistribution: The report may be ordered from the Department of Automatic Control or borrowed through
the University Library 2, Box 1010, $-221 03 Lund, Sweden, Telex: 33248 Lubbis lund.

INTRODUCTION

The real-time kernel described here was developed mainly for
education. We have previously used Concurrent Pascal [1l»
£2]. Howeversy we also wanted to be able to show all the
details of how concurrency is achieved. The kernel is
written in Pascals but relies on an assembler written
nucleus [3]1 for process creations transfer between processes
and handling of interrupts.

The kernel supports concurrent programming in a version of
Pascal for L5I-11+ called OMSI-Pascal ([31. The kernel
implements semaphores for mutual exclusion and events for
other synchronization. A Pascal program using the kernel
could be structured in a similar way to a GConcurrent Pascal
program. A monitor in Concurrent Pascal corresponds to a
recard and some associated reentrant procedures. The concept
queue corresponds to event. The kernel also offers the
possibility to program 1/0 handlers. Howevers since the
concurrent program is compiled with the standard Pascal
compilers there is much less security than in Concurrent
Pascal.

THE PRIMITIVES OF THE KERNEL

A process is declared as a parameterless procedures which in
the following will be refered as process-procedure. A
process—-procedure may be declared at any level. 1If
parameters to the process are wanted: a procedure with
parameters corresponding to a process type with parameters
is declared. A small process—-procedure without parameters is
then declared for each process instance. It jJjust calls the
procedure with appropriate actual parameters.

A process instance may be created at any places where the
procedure could be called in the ordinarvy ways by calling
the procedure ’'createprocess’.

procedure createprocess(procedure proceds;

memreq?! unsighnedintegerv))

proced - the process-procedure describing the process
memreq — memory requirements (in bytes) for stack and
heap

An estimate of the memory requirements for stack and heap
must be given as ’'memreq’. Overflow is detected by the
run—time library.

The processes are scheduled according to their priorities. A
high priority corresponds to a small nhumber. A process
having a priority number less or equal to zero will have the

interrupts disabled when it is executing. A process starts
with its priority number equal to one. The priority of a
process can be changed dynamically by a call to
'‘'setpriority’.

procedure setpriority(priarity: integer)i
priority - the new priority of the process

The priority number must be less than ‘wmaxpriority’s which
is a predefined constant (See Appendix 1). A priority number
greater or equal to ‘maxpriority’ causes the termination of
the process ahd is the normal way to terminate a process. No
memory is released. A process-procedure must not pass its
owh end.

The scope rules are the same as for ordinary procedures. The
use of locally declared process-procedure demands great
care. In order to not destroy local variables and the
addressing wmechanism for intermediate level variables, a
process must not leave a procedures if the actual invocation
of the procedure has active process instances of locally
defined process—-procedures.

The main program must be converted to a process by a call to
'initkernel’ before other processes can be created.

procedure initkernel (memreq®! unsignedinteger)?

wmemreq — wmemory requirement (in bytes) for
stack and heap (global variables excluded)

The procedure 'initkernel’ also creates two other processes?
one for handling of the clock and one "idle process'.

Communication and_synchronization between processes

Communication of data between processes are done using
variables which are accessible to the process-procedures
accarding to scope ruless via formal variable parameters or
via pointers. Global variables in the outermost scope are
frequently used for communication.

The programmer must ensure mutual exclusion by the use of
semaphores or by temporarily disabling interrupts. A
semaphore has an associated non—-negative integer. It can
only be operated by the following three procedures:

procedure initsemaphore(var sem: semaphoresi

initval: integerl}
procedure wait(sem: semaphore)}

procedure signal (sem: semaphore)i

sem - the semaphore
initval - initial value for semaphore
A semaphore nust be initialized by a call to

'initsemaphore'. The effect of ’signal’ is to increase the
value of the semaphore with ones the increase being regarded
as an indivisible operation. The effect of ‘'wait’ is to
decrease the value of the semaphore by one as soon as the
result would be non-negative. A call of 'wait’ implies a
potential delay. The queue of waiting processes is ordered
according to the priorities of the processes.

Synchronization between processess such as waiting for a
condition on @ shared variahley is done by using the concept
introduced in [&]. There are three operations on events.

procedure initevent(var e: eventi sem: semaphore)i

procedure await(e: event)j)

procedure cause(e: event)})

e -~ the event variable
sem - the associated semaphore for mutual exclusion
An event must be initialized by a call to 'initevent’» which

assaciates it with the semaphore for wmutual exclusion. A
call of 'await’ delays the process and makes an iwmplicit
signal to the associated semaphore. A call to ’'cause’ by
another process moves all delayed processes to the queue of
the associated semaphore.

The procedure ‘'waittime’ makes the calling process wait a
specified time interval.

procedure waittime(time: integer)i
The time unit is ticks (20 ms). The prefix used when
compiling user programs contains declarations of the three
constants: tick = 1y sec = 50 and min = 3000. This makes it
possible to express the time interval as for example
waittime(2¥min + 10%sec). NMote that the maximum time
interval allowed is 10 min.

The procedure ‘'waitio’ makes the calling process wait for a
specified interrupt. Only one process at a time can wait for
a certain interrupt and this must be guaranteed by the user.

var statusreg?! unsignedinteger)i

The procedure sets the enable interrupt bit in the specified
status register before suspending the running process.
Someother process is then scheduled for execution.

When the interrupt occurs the enable bit in the status
register is reset. The process waiting for the interrupt is
indicated as ready for execution and the process having the
highest priority is resumed.

The LSI1I-11 has memory mapped 1/0. OMSI-Pascal allows
manipulation of the device buffers and status registers as
ordinary variables by allowing specification of addresses in
the variable declaration (e.g. var printerbuffer origin

177566B: char). In standard Pascal this can be done by using
a record with variants to convert an integer to a pointer.

The user of the kernel should at compile time prefix his
program with the file listed in Appendix 1.

Since the programmer has to ensure mutual exclusion by
himself it is important to organize the program in a way
that aids in using the semaphores in a correct way. A
natural solution is to collect the datas the semaphore for
mutual exclusion and the event variables in a record.

type data = record

nutex: semaphore})
cond: event}

ends’
var datal:data’

Operations on the data are then conveniently done wusing a
with-statement.

with datal do
begin
wait(mutex)}
while ... do await(cond)}
signal (mutex?y
end?’

Ordinary Pascal procedures are reentrant. It means that it
is possible to construct a set of procedures that operate on
the shared data and which are the only way the data are
operated on. This is the idea behind the wmonitor concept
£11. OMSI1-Pascal allows type- ’ variable- and

procedure—declarations to be mixed. This makes it possible
to collect the record-declaration and the procedures
together.

RELATION BETWEEN THE KERNEL AND CONCURRENT PASCAL

Mgnitors

A monitor which handles a ring buffer is choosen to
illustrate the relationship between the kernel and
Concurrent Pascal. The monitor written in Concurrent Pascal
is shown below.

cagngt size = 100%
type buffer = monitori

var charbuff: array [(1..sizel pf char}
ny inpy outp?: integersi
sendery receiver?: queue’

progedure entry send(ch? char)f

begin
if n = gize then delay(sender)}

charbufflfinpl &= chj

inp = (inp mgd size) + 1}
n = n+ 13§
continue(receiver)’

end?

progedure gntry receivel(yar chi: char)l

begin
if n = 0 then delay(receiver)})

ch = charbuffloutpl}

outp = (outp mod size) + 1}
n = n - 13%
continue(sendear) i

endf

begin

n = 0§
inp t= 13}
outp = 13§

and?

The corresponding Pascal program and the use of the kernel
primitives is shown below.

congt size = 41003§

type buffer =

record

guard: semaphorej
change: eventj
charbuff: array [1..sizel of chari

Ny inps outp:

ends

integer’

procgedure sendf(var buff: bufferi cht char)i

begin

with buff dg
begin
wait(guard) i

while n = size do await(change)}

charbufflinpl

i= chi

inp = {(inp mod size) + 13

n i= n + 14§

cause(change)}
signal (guard)}j

ends
end’

pracedure receivel(var buff: bufferi var ch? char)}

begin
with buff dg

begin
wait(guard)

while n = 0 do await(change) i
ch = charbuffloutpls’
outp *= C(outp mod size> + 11

n = n - 13

cause(change) §
signal (guard)§

ends
and?’

procedyre initbuffer(var buff: bufferd}

begin
with buff do
begin

initsemaphore(guards 13
initevent (changes guard)}

n &= 0F
inp = 13§
outp = 135
end?i

end?

When using the kernel it is necessary to explicitly declare
maphore as guard and to call wait and signal. This is

a se
done

implicitly in

Concurrent Pascal. One advantage with

Concurrent Pascal is that the compiler ensures mutual
exclusion.

An avent variable corresponds to a variable of the standard
type 'queue’ in Concurrent Pascalsy with the following major
differences! only one process at a ¢time can be delayed in a
queue variable and ’'continue’ implies an implicit return
from the entry procedure.

The buffer record is included as a formal parameter to the
procedures send and receive. Furthermores a with-statement
is used to get access to the fields of the record. In the
case of Concurrent Pascaly this is done implicitly. A
procedure of a certain monitor in Concurrent Pascal (e.g.
outbuffer) is called using dot-notation:

outbuffer.send(ch) i

When using Pascal: the monitor (record-variable) is given as
an ordinary argument to the procedure.

send (ogutbuffers ch)i

If anly one monitor of a certain type is required then it is
possible to implicitly make the procedures operate on it as
a nonlocal variable.

Processes

Processes in Concurrent Pascal are allowed to have formal
parameters of monitor types to indicate "access rights" for
the process. In the case aof Pascal with the kernel this
corvresponds to using formal variable parameters of the
recard types corresponding to the monitors. Howevers a
process—procedure is not allowed to have parameters. This
means that an interface procedure has to be declared for
each process instance with different actual arguments.

The use of process types is demonstrated by an example. A
consumer process is receiving characters from a buffer
monitor. The description of this situation is first shown
for Concurrent Pascal.

type consumer = procegs(buff: buffer)’
var cht: chari
begin

cycle
buff.receivel(ch)}

end
end
ends

var outbuffer: buffer’

10

cons: consumers$

init outbuffer.
cons(putbuffer)§

The corresponding description when using Pascal together
with the kernel is shown below.

var outbuffer: bufferi

procedure consumer(var buff: buffer)i
var ch: chars
begin
while true do

begin
receive(buffs ch)?}

end
ends’

pracedure conss

begin
consumer(outbuffer)’

ends’

initbuffer(outbuffer)i
createprocess(conss ...)%

Input - _Output

Input - output is handled by the standard procedure 'io’ in
Concurrent Pascal:

procedure io(var data: datatypei var param: ioparamj
device: iodevicelsj

The kernel allows programming of input - output my means of
the procedure ’'waitio’ and by using variables at fixed
addrasses to access the device buffers etc. A procedure
similar to 'io’ could therefore be programmed in Pascal.

EXAMPLE

A complete example that uses all of the primitives of the
kernel is now given. The program writes on two terminals. It
thus has two drivers (driveris driver2) of the same type
(driver). The drivers are connected to two ring buffers

11

(printerlsy printer2 of the type described previously
(buffer).

Because the ring buffers can hold the entire stringss they
appear almost at the same time on the terminals when the

program is executed.

{Include the prefix of Appendix 1.}
{ Program twoterminalsil}

{ Include monitor type buffer.

{ PROCESS TYPE }?}

procedyre driver(var outbuffert bufferi
var PRBUFF: char}
var PRBTATUS: integer)
INTPR: unsignedinteger)i
var cht: charsj
begin
while true dg

begin
raceive(outbuffersch) i

waitio(INTPR: PRSTATUS)S
PRBUFF :t= chi
ends

end?’

{ MONITORS Y

var printerls printer2: buffer’

{ PROCESSES

pracedure driverils
canst INTPR1 = &4B§

var PRBUFF1 gQrigin 177566B: char}
PRETATUS1 grigin 1775&44B: integer?’

begin
driver(printer1s PRBUFF1: PRSTATUS1: INTPR1)}

end’

progedure driver2j
ganst INTPR2 = 374B3

var PRBUFF2 grigin 173616B: char}
PRSTATUS2 grigin 1734614B: integerd

begin
driver(printer2s PRBUFF2s PRSTATUS2s: INTPR2)}

ends’

12

cangt CR = 15B8§% LF = 12B4%

var string: arrayl[1..301 aof chari
it integers

begin
initkernel (1000)

initbuffer(printeri)i
initbuffer(printer2)}

createprocess(driveris 1000)3
createprocess(driver2y 1000) 3

while true dg
begin
string 1= 'The quick brown fox Jjumped '3
for i = 1 to 26 dg send(printerls stringlil)}
send(printerlis chr(CR)) 3§
send(printerls chr(LF))J3

string = ‘over the lazy dog’’s back]
for it= 1 to 24 do send(printer2y stringfil)i
send(printer2s chr(CR)?}§
send(printer2s chr(LF3})>}

waitime(2%#gec) i
ends
end.

IMPLEMENTATION

Inh this section the implementation of the procedures defined
above will be discussed. The aim is to use standard Pascal
[4] as far as possible. As hardware facilities like
registers must be manipulateds it is not possible to make
the code completely portable. Howevers use of the nucleus
primitives discussed in [3] makes it possible to isolate the
computer dependent parts. The introduction of concurrent
processes means that codes processor and storage are shared
resourvrces. The problem to handle and protect these resources
will now be considered.

Shared_ Routines

A routine (procedure or function) compiled with a Pascal
compiler is reentrants because Pascal allows recursive
routines. This means that such a routine can be used by
several processes at the same time. Howevers it is not sure
that standard routines <(e.g. Sins cos and write) in Pascal
are reentrant. Many Pascal implementations allow assembly
code in-line or separatly compiled routines and it is not
sure that these are reentrant. In the following it will be

13

assumed that a routines that cannot be used by several
processes at the same times is regarded as a common resource
that has to be protected with a semaphore in the ordinary
way.

Processgr_Management

The procedures defined above contain switches of the
processor between the processes. The nucleus has primitives
that can suspend and resume processesy but the kernel must
decide which of the processes that should be running. With
regspect to the scheduling of the processory the existing
processes can be divided into the three groups runnings

ready and blocked. In the ready state the process competes
for the processor.

A process can wait on a synchronizing signal (semaphores
events point of time or interrupt) by calling ‘wait’'s
‘await’'s ‘'waittime’ or ‘waitio’. If the synchronizing signal
has not arrived the process is transfered to the blocked
state and the process becomes ready when the signal arrives.
A synchronizing signal is sent when a process calls ’'signal’
or 'await’' (makes an implicit signal on the associated
semaphore)sy the real-time clock ticks or an interrupt
occurs. When a process calls 'cause’s the processes: which
have awaited that events are all transfered to wait on the
synchronizing signal of the associated semaphore.

A runhing process is preempted and transfered to the ready
state if a process having a higher priority becomes ready.

To be able to perform the transitionss the kernel must know
the priority and the process variable (stackpointers program
counter etcs see [31) of each process. It is convenient to
store this information in a process record.

When a synchronizing signal is produced the kernel must find
the waiting processes in an efficient way. A process can
only wait on one sychronizing signal at a time. All the
processes waiting on a particular signal are therefore
conviniently organized as a doubly linked 1list of their
recards. The process record must then contain one forward
and one backward pointers which in Pascal can be written as

type processref = Aprocessrec’
processrec = record
succy pred: processrefs’
proct processi
priority: integer}
time: integeri
ends

Every list has a head of the same type as the rest of the
elements in the 1list in order to avoid special handling of

14

empty lists.

Theve is one list of process records associated with each
semaphore (‘waiting’'? and each event (’'delayed’). All
processes waiting a specified time are kept in a single list
(‘'timequeue’). They are ordered according to increasing
waiting times. The process record contains one field
(‘time’) which contains the waiting time relative to the
preceeding process in the time queue. The waiting time for
the first process is relative to the current time. This is
an efficient way of organizing the time queue because the
clock process needs only to decrement the time—field aof the
first process at each clock tick. The relative waiting times
are calculated by the procedure 'waittime’.

Only one process is allowed to wait on a specific interrupt.
There is therefore no need for a list of process records. A
reference to the process record of the waiting process is
kept in a variable (’driver’)s, which is local to the
procedure 'waitio’. The nucleus takes care of resuming the
rigth process when the interrupt occurs.

The processes in the ready state are also kept in a list
(' readyqueue’) and a variable ¢’ running’) of type
' pracessref’ keeps track of the running process.

The scheduling rules make it natural to order the elements
in the ready queue and in the queues associated with
semaphores according to their priorities. The order is
unimportant in a queue associated with an event so its
elements can be inserted at the end. If the running process
remains in the ready queue the switches between the ready
and running states will take shorter time.

Memgry Management

The memory management that has to be performed by the kernel
is very simple. The kernel needs only to keep track of the
free memory. The initial start and end addresses of the free
memory are returned by the nucleus after the call of
initnucleus andsy since no wemory is releasedy the kernel
needs only to update the free memory when a new process is
created.

The_Structure of the Kernel

The data structure of the kernel is a shared resource and
mutual exclusion must be ensured. It is accomplished at this
level by disabling interrupts.

The entry routines of the kernel must be visible from the
user’'s program. The OMSI-Pascal compiler allows separately
compiled modules with procedures and functions. A global

13

routine in a separately compiled module is visible from
other compile modulesy if the compiler switch E (External)
is turned on {$E+} and hidden if it is turned off {($E~}. The
usery who wants to use a separately compiled routine must
define a procedure heading followed by the keyword external.
The compiler cannot verify that this is correctly done. If
the user is provided with a file containing these
declarations, he can include it in his program to eliminate
this source of erraors.

With this solution it is only the entry procedures of the
kernel that are visibles while the rest are hidden.
Variables like running must be permanent and visible from
the procedures of the kernel. The permanent variables of the
kernel must consequently be global. Global variables in
separate modules are mapped over the global variables in the
main program. The mechanism is similar to the unnamed common
section available in Fortran programs. This implies that the
permanant variables must be declared in the prefix. In order
to hide the structures they are declared as an anonymous
array (See Appendix 1).

SUMMARY AND DISCUSSION

This paper and [3] shows how it is possible to introduce
concurrency in ordinary Pascal without changing the compiler
or the support library. This approach is therefore suitable
for education.

The resulting kernel is comparable to Concurrent Pascal or
to Texas MPP (Microprocessor Pascal). A similar kernel with
message passing mechanisms written in Modula-2 is given in
£73.

Some extensions have been made to the kernel in order to
make it easier to work with. A D/A caonverter is used for
outputting an analog signal to be displayed on an
oscilloscope and showing what process is currently running.
It is also possible to take a snap-shot and generate a
status report for the processes. A multi terminal handler
has been written in Pascal. It has been connected to the
read- and write-statements of Pascal by handling the
software interrupts generated by the support library.

A set of message passing primitives has also been
constructed as an alternative to the monitor approach.

ACKNOWLEDGEMENTS

The idea to use OMSI-Pascal together with a kernel for
concurrent programming came from the authors and Professor
Karl Johan Astridm. It was tested in a course on modern
languages for praocess control. This project was performed by

16

Tommy Essebos Rolf Johanssony Matz Lenells and Lars Nielsen
under supervision of the authors. It resulted in a kernel
with in-line assembly code for context switches etc. [81].

The authors also want to thank Leif Andersson for many good
ideas and stimulating discussionss and Per Hagander for all
the valuable comments on the manuscript.

REFERENCES

P. Brinch Hansens 'The Architecture of Concurrent
Programs’s Prentice Hall Inc.» Englewood Cliffs: New
Jerseyr 1978.

S. E. Mattssony ’'Implementation of Concurrent Pascal on
LSI-11's Software - Practice and Experiences Vol. 10,
205-217 (19800 .

H. Elmgqvist and S. E. Mattssony ’'Implementation of Basic
Primitives for Concurrent Programming in Pascal’»
Department of Automatic Controls Lund Institute of
Technology: Lunds Swedens 1981.

K. Jensen and N. Wirths ’'Pascal - User and Manual
Report’s Springer Verlags Berlins 1975.

OMS1 PASCAL-1 Documentation Version 1.1y Oregon
Minicomputer Software Inc.s 2340 SW Canyon Road:»
Portlandy Oregon 97201.

P. Brinch Hansens 'Operating System Principles’s
Prentice Hall Inc.» Englewood Cliffsy New Jerseys 1973.

J. Hoppes 'A Simple Nucleus Written in Modula-2’,
Institut filr Informatiks ETHs Zirichs March 1980.

T. Essebos R. Johanssons M. Lenells and L. Nielsen, 'A
Facility for Executing Concurrent Processes in Pascal’\
Department of Automatic Controls Lund Institute of
Technology» Lunds Sweden: 1980.
CODEN:LUTFD2/(TFRT-7194>/1-0&61/(1980) .

17
ARPPENDIX 1 - User interface of the kernel

program concurrentsi

const sizekerneldata = 5%
maxpriority = 1000}
tick = 15 sec = S0% min = 30003

type unsignedinteger = 0..635335}§
semaphore = unsignedintegery
event = unsignedinteger}

procedure initkernel (memreq: unsignedinteger)i gxternals

procedure createprocess(procedure procedi
memreq! unsignedinteger)i externals’
procedure setpriority(priority: integer)i external’
procedyre initsem(var semt: semaphores’
initval: integer)$i externals’
progedure wait(sem: semaphore)i externall
procedure signal (sem: semaphore)’ external}l

procedure initevent(var e: avent}
sem:! semaphore)’ external?’
procedure await(e: event)i externall
procedure causel(e! event)i gxternals
procedure waitio(vecaddr: unsignedintegers’
var statusreg: integer)}i external’

procedure waittime(t: integer)’i externall

var kerneldata: array [1..sizekerneldatal gf unsignedinteger)

APPENDIX 2 - Listing of the kernel

{Real-Time Kernel for Pascal.l}
{Use the nucleus prefix.>}
const maxpriority = 10003

type processref = aAprocessreci
semaphore = asemaphorerec)
event = seventreci

processrec = record
succs pred?! processrefi
proc?® process’
priority: integers
time: integer?

ends

semaphorerec = record
counter! integers
waiting: processrefi

end?i

eventrec = record
reentry: semaphores’
delayed: processrefs’

end§

var runnings readyqueues timequeue! processref)
freetop» freebase: unsignedinteger}

18

{ -
procedure put(ps q: processref)]
{Inserts process record p before process record q in q's
ligt.)
begin
pA.®UCCS=q
pa.predi=qa.pred}
gA.preda.succi=pi
Qr.predi=p
end$

{ _ = == -
procedure removel(p: processref)}
{Removes processrecord p from ite list.)}
begin
with ps do

begin
preda.succ = succh

succAa.pred := pred
end
ends

{ -

19
APPENDIX 2 - Listing of the kernel

procedure putpriority(ps q& processref)}
{Inserts processrecord p in queue q according to priority.?
var pl: processrefi pri: integer}
beggin
pri = pa.priority}’
pl &= ga.succh
while (p1 <> g and (pri >= pila.priority) do pli=pila.succ)
putips p1>
ends

i | . >
procedyre setpriority(priority? integer)i forwardj
{ -—
{

- >

process} procedure idleprocs

begin

setpriority(maxpriority - 1)3§

while true do begin end’

ends
{ = - E—— = b
{process) procedure clocks’

cgnst clockint = 100B3j

var p? processref’

begin

setpriority(—maxpriority)}

remove(runningl? d{clock scheduled specially.}

while true do

begin
running i= readyqueuea.succs

ioresume(runninga.procsy clockint)j

{Decrement wait time for first waiting process.’}
p = timequeueas.succ)
if p € timequeue then pa.time = pa.time—1}§

{Move all due processes to readyqueue.}
while (pa.time = 0) and (p <» timequeue) do
begin
remove(p)}
putpriority(psreadyqueue)
p i= timequeueas.succ)
endi
endi
ends
{ - —————— - >
procedure schedulesj
begin
if readyqueuea.succ <» running then
begin
running = readyqueueaA.succ})
resume(runninga.proc)§
ends
ends
{- - >

20
APPENDIX 2 - Listing of the kernel

{$E+} {externall
memreq? unsignedinteger)s’
var child: processref’
begin
disableinterruptss
freetop = freetop - memreqj

new(child)sj

childa.priority := 15 <{Default priority.}
putpriority(childs readygqueue)}

newprocess(praoceds freetops freetop+memreq: childa.procls’

schedulesd
if vrunninga.priority > 0 then enableinterruptssi
ends
{mmr— e —— ¥

canst clockarea = 1007 idlearea = 1003

begin
disableinterruptsi

{Create readyqueue with running.?
new(running) s’

new ({ readyqueue’ §

readyqueuea.suce = runningj
readyqueuea.pred := runningi
runninga.suce != readyqueuej
runninga.pred = readyqueuei

{Create empty time queue.l)
new(timequeue) s
timequeuea.succ

:= timequeue}
timequeuea.pred @

timequeues’

runninga.priority = 135
initnucleus(memreq: freebase: freetopr runningA.proc)i

createprocess(clocks clockarea)s
createprocess(idleprocy idlearea)li

ends

{....- = -—
procedure setpriority {(priarity? integer);
begin
disableinterruptss’
if priority » runninga.priority then
begin
runningAa.priority := priority}
remove(running)i {Reorder readyqueue.}l}
putpriority(running readyqueue);
schedules

runninga.priority = prioritys
runninga.priority > 0 then enableinterruptss’

i

APPENDIX 2 - Listing of the kernel

progedure initsem(var sem: semaphorej initval: integer)s’

begin
new(sem) §
with sems do

begin
counteri=initval’

new(waiting)j <{Empty waiting queue.}
waitinga.succi=waitingi waitinga.predi=waitingi
end?

end?

21

{
procedure wait(sem: semaphore)s’
begin
disableinterrupts’
with sems do

begin
if counter20 then

counter = counter—1

else

begin
remove(running’ i

putpriority(running, waiting)i
schedule
end
end?’
if runninga.priority > 0 then enableinterruptsi

end?

{ -
procedure signal (sem: semaphore)?}
var piprocessref]
beain
disableintervrupts;
with sems dg

begin
if waiting{>waitinga.succ then

begin <Put first waiting process in ready queue.l}
p = waitinga.succh
remove(p)§
putpriority(ps readyqueue)}
schedule
end
glse
counteri=counter+il
gnd
if runninga.priority > 0 then enableinterrupts’
end s

{

APPENDIX 2 - Listing of the kernel

procedure initevent(var e: eventi sem? semaphore) |

begin
new(e)j
with es do

begin
reentryi=semsi

new(delayed)i <{Empty delayed queue.}
delayeds.succi=delayed} delayeda.predi=delayed’

ends
end?

22

{ : ——
procedure await(e: event)i
var pi! processref’
begin
disableinterruptss’
remove(runningl i
put(running, es.delayed)}
{Signal associated semaphore.?’}
with ea.reentrya do
begin
if waiting €> waitinga.succ then
begin
p I= waitinga.succi
remove(p) }
putpriority(ps readyqueue)
end
else
counter = counter+l
end?
schedules’
if runninga.priority > O then enableinterruptss

end’

procedure cause(e: event):d
var pt: processref}
begin
disableinterrupts}
with es do

begin
{Make all delayed processes wait for the associated

semaphore.)
while delayed <> delayeda.succ dg

begin
p = delayeda.succ)
remove(p)}
putpriority(ps reentrya.waitingls
end?’
end?’
if runninga.priority > O then enableinterrupts;
end’

APPENDIX 2 - Listing of the kernel

procedure waitio(vecaddr: integeri
var statusreg: unsighedinteger)}
const enable = 100B7 disable = 03j
var driver: processref’
begin
disableinterrupts’
driver = prunnings

{Save pointer to process record for calling process.?’
remove (runningl

running = readyqueues.succi {Schaedulel

statusreg := enablej

ioresume(runninga.procs vecaddr)§

statusreg = disable}’

running 2= driversi

putpriority(drivers readyqueue)?i

schedules’

if runninga.priority > 0 then enableinterruptss’

ends

23

{

procedure waittime(t: integerl}’
var p! processrefi
begin
disableinterruptss’
remove(runningl

{Find position in time gueue and compute wait time
relative to preceeding process.}
p *= timequeueai.succi
while (t > pa.time) and (p <> timequeue) dg
begin
t 2= ¢t - pa.time’
P I= pAa.succi
end?
runhinga.time 8= tj
put (runnings plj

{Madify relative wait time for next process.)
if p € timequeue then pr.time 2= pa.time — t3§
schaedulej

if runninga.priority > 0O then enableinterruptss’

endi

