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TIME SERIES ANALYSIS OF STANDING USING MAXIMUM LIKELIHOOD

TECHNIQUE

Ivar Gustavsson and Haldo Ostlund




Results from time series analysis of dats characterizing standing
are presented. Parameiric models are estimated by the maximum
likelihood method. Data from healthy people as well as from people
suffering from different diseases are used. Characteristics are
found for some of the diseases but as a whole the results are quite
heterogeneous even within the healthy group., It is questionable if
anything can be gained by parametric estimation compared with e.ge.
spectrel analysis as long as = model structure cannot be derived

from physiological reasons.
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1. INTRODUCTION

Methods for analysis of complex motor behaviour, e.g. the examina-
tion of standing, are subjective. The result is then dependent upon
the examiner's skill and practice. It would be valuable to charsc-

terize standing more objectively.

It is well=known that nobody is able to stand perfectly still [13].
People trying to stand still sway both in the sagittal and the
frontal plane. The movements are usually small in both directions,

but somewhat larger in the sagittal direction [17 ].

The human body may be considered as an unstable system which is
retained in upright position by some kind of control system, This
control system is very complex and its detailed function largely
unknown. Individual differences in strategy, probably determined
by physiological factors, are supposed to be small. There Seel,
however, to be different needs of stability for different persons,
Large deviations from normal strategy are probably interpretable

as disturbances, errors or malfuncticns in the control systems.

The theme of this paper is to attempt to characterize the system

by analyzing the control error as a time series. This signal has
been obtained by indirect measuring of theAlocation of the mass
centre of the body. Data from healthy people as well as from

people suffering from different diseases have been used. In earlier
studies such time series have been characterized by an estimate of
their total variance and by an estimate of the power spectrum, e.g.
[19 ]« In this paper it is attempted to characterize the time series
by linear dynamic systems with independent normal variables as

input.




The parameters of the linear discrete models have been determined
using the maximum likelihood method [é]0 The method was used be-=
cause programs for this method were already available and because
it has been efficient for many other applications, cf [12 ] The
same method has been used successfully also for identification of

models from input/output data, e.g. [11].

Parameters like time constants may perhaps be used to characterize
the balancing system. Time constants of first order models have
been compared. A description by a first order model is, however,
often not sufficient, which is clearly indicated for some of the
series, But low order models can be used. The model order may
actually be another characteristic of the system., Qualitatively
and to some extent quantitatively these characteristics can of
course also be observed in autocorrelation functions and in power
spectra for the data. In fact it seems that only small further in-
formation about the system can be gained from parametric models
for these data, at least as long as no more detailed information

about the structure of the system is available.

In Section 2 some physiological considerations are presented. An
attenpt to interpret the balancing system as a control system is
made in Section 3. The experiments and the material Ffor the in-
vestigation are described in Sectilon 4. The maximum likelihood
method is shortly described in Section 5 and in Section 6 some of

the results are given and discussed.




2. PHYSIOLOGICAL AND CLINICAL CONSIDERATIONS

Attitudes are repeatedly changing during spontaneous standing in
various situations such as waiting for a bus or queueing, revealing
an inherent need of motion. Also during sleep changes of position
are observed, and their elimination might cause damage, for example

during intoxicated sleep.

The statement of Denny-Brown that stability in progression and stand-
ing is secured by the righting reflexes [18] is supposed to be valid
not only for spontaneous standing but also in static standing, al-
though very restricted in postural movements in accordance with a

test instructione.

The postural reflexes can be primarily divided inte tonic (static)

or attitudinal fixating the body configuration and position and the
phasic (kinetic) or adjustmental controlling postural stability

during active and passive movements. PFurther, they can be classified
as local or general, depending upon the level of the central nervous
system (CNS) from which they originate [14] . Configuration of the
body is to a great extent dependent on an intact propricceptive input
concerning position and change of position of body parts, supplemented
by the sensory input from muscle spindles and tendon organs. The pro-
prioceptive system has access both to a short-circuit spinal and a

long-circult cerebral system.

The position and movements of the head are then iwportant for the
adequacy of general postural reflexes such as neck, labyrinthic and
optical reflexes organized at the brain-stem, mid-brain and corti-

cal levels [14].




Input/output relationships having their primary mechanisms in
various structures of the CNS seem to be integrated in the cere-
bellum [7]. The linked Alpha-Gamma action, one characteristic
feature of motor activity according to Granit [9],is to a great
extent due to intact cerebellar function. The coordinated Alpha-
Gamma. action enables the segmental myotatic reflex system to per-
form its stabilizing function as a continuous feedback also during

movements.

In ablation experiments postural reflexes are characteristically
altered in association with removal of various structures and dis-
connections of the CNS. Sections of the dorsal spinal nerve-roots
or of the dorsal columns of the spinal medulla, interfering with
the proprioceptive sensory input convert the rather slow, well
sustained postural reactions into fast erratic vestibular and Op=
tical reflexes that are badly sustained [7, 18]. The analogous
state of sensory ataxia of the clinic is characterized by bad po-
sitioning, loose, flailing movements and a substantial worsening
on blind-folding, the latter being the pragmatic basis of Romberg's
test [16 )]s The clinical phenomena of ataxia have been interpreted
as a consequence of abnormal irregular interruptions in the main-
tenance of a constant degree of muscular contraction during iso-
tonic, isometric and shifting conditions [18]. Besides sensory
ataxia we recognize cerebellar ataxia, in which the abnormal move-
ments, however, are of a more stiff oscillating nature [18]. In
cerebellectomized animals postural reflexes have a high threshold

but are hyperactive, erratic and sterectyped when finally in action.

The subcortical mechanisms provide not only the tonic background for

movement but also the associated movements themselves 18 ]Je In




lesions of basal ganglia due to diseases such as Parkinson's di-
sease static as well as kinetic postural reflexes are mere or less

deteriorated,

We recognize states of rigidity and hypokinesia meaning increased
resistance to passive movements, approximately constant over the
whole range, and poverty, slowness and delayed initiation of move-
ments [ 6, 15]. The basic mechanism of postural reflexes seems to
be the fundamental deficit while the problem concerning a possible
unbalance between the Alpha and Gamma system, causing for instance

the phenomenon of rigidity, still is disputed.




3. THE BALANCE SYSTEM AS A PEEDBACK CONTROL SYSTEM

It is clear from the discussion in Section 2 that the human balance
system is very complex if all details are taken into account. Many
of the mechanisms involved are not yet quite fully understood. How-
ever, from the point of view of control systems a few facts are ob=-
vious. The system without control is unstable. In control system

terminology the balancing system is thus an unstable system with a
stabilizing feedback, PFig. 1, which can be considered as an attempt

to use an aggregabed model of a very complex process.

Balancing y (t)
system

Stabilizer [¢———

Fige 1. The balancing system as a feedback control system,

y(t) denotes the output.

From Section 2 we conclude that the system actually is multivari-
able and has several feedback loops. The information of the system
for the stabilizer is received e.g. from receptors in the muscles,
in the joints and in the soles of the feet, from the vestibular
apparatus and as visual information [ 4, 15]. The control actions
are results of decisions on different levels of the neurological
system which somehow are coordinated. It is difficult to disting=
uish between the effects of the different Teedback loops. Specially

designed experiments could here be of some help as well as further




studies of patients with certain malfunctions in their balancing

system.

Studies of patients suffering from sensory ataxia seem to show that
when the brain is deprived of information from some of the proprio-
ceptors the ouﬁput of the system has larger variance and contains
more power in high frequencies compared to the normal case. This
may be taken as an indication that the stabilizing system can be di-
vided into itwo parts, one part with fast response because of a short
information and control path via the spinal cord, and one slower
part where the control path is passing the braing Fig. 2. This model
with a division of the stabilizer into two parts is of course not

in any way claimed %o be a complete and not even a sufficient de-
scripvion of the system., However, it explains some of the observed
properties. Both partis are aggregations of different countrol loops

and are of course actually not strictly separated either,

S »| Balancing y ()
system

Fast
stabilizer '
Slow .
stabilizer

PMig. 2., Division of the stabilizer into one part with fast re=

sponse and another part with slow response.




The conclusions from the observations of the sensory ataxia patients
is that the system cannot be controlled satisfactorily when it is
deprived of some of the normal information and control paths. In
this case the slow stabilizer does not get full information. An
additional effect could be caused by an adaption of the remaining

control system to the new situation.

From other studies [21] it is obvious that the individual differ—
ences between healthy people are large. They may perhaps be ex=
plained as adaption of the control system to different intentions

of stability. The possibility to compensate missing or defective
control loops is exemplified in the following way. When a man closes
his eyes the variance of the sway usually increases noticeably. 4
blind man, however, manages perfectly well on the remaining control
system [ 4] . When a sensory ataxia patient closes his eyes the stand=-
ing stability is impaired much more than for healthy people [211,
One possible explanation is that in this case the slow stabilizer

is almost not working at all because the braiﬁ is deprived most of
the information that it normally receives about the state of stand-
ing. Consldering Fig. 2 the effect of disconnecting the slow loop

would be an increased variance, just as observed.

Disturbances enter the system in many ways in the primary Sensors,
in the feedback paths and in the actuators. Other disturbances are
externul and there might also be internally generated intentional
moticng present in order to fulfil the physiological needs. Due to
all these disturbances the system will in normal operation show

fluctuaticns in the output. With no disturbances at all acting on
a stabllizing system it would settle. The characteristics of the

fluctuations will reflect both the disturbances acting on the system




and the features of the feedback system. It would therefore at least
in prineiple be possible to find some of the internal properties of
the system simply by analysing the output, y(t)s To draw such con=
clusions it is necessary to have detailed understanding of how the
properties of the different subsystems will influence the closed
loop system. From the foregoing discussion it follows that such
knowledge is not available. Some mechanisms are known qualitatively
but not gquantitatively. It is thus not possible to try to give a

mathematical model which describes the phenomenon in detail,

To get some insight into the problem we will attempt to describe

the system with a very simple model which contains the gross feg-
tures. Since only small motions are considered it is reasonable to

use a linear model. If the disturbances are appropriate and stationary
conditions are assumed the output would be a stationary stochastic
process. The spectral densi%y‘of the output would thus reflect the
properties of both the system and the disturbamces@'gpectral densi=
ties have been computed for a large material [20, 21] and they in-

dicate that the assumption of stationarity is not unreasonable.

The simplest possible model that can be used is a First order system
which can be charscterized simply by & time constant, T and a gain,
e A simple model of the disturbances would be to assume that they
can be modelled as a white noise source, In such a case the spectral

density @ ( w), of the output would be of the form

Kz

1+ (wff)z

g (u) -
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A check of the computed spectral densities shows, however, that a
system of higher order is often indicated. Fig. 3 shows two typical

power specitra.

A
2.0
1.0 .
_-Series 2
0.5
0.2
Seﬁes3’//
0.1
0.05 , , T —
005 01, 02 . 05 10 c/s

Fige 3. Power spectra for time series 2 and 3 (cf Table 2)

respectively.

One of them might reflect the properties of a first order system,
the other one certainly a higher order system. The difference in
appropriate model order for different time series is of course an-
other characteristic that can be used to distinguish between them.

This is discussed a little more in Section 6.
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4. EXPERIMENTAL CONDITIONS AND MATERIAIL

The test subjects were standing on two scales with cne foot on

each and with the feet 7 cm apart, Pig. 4. The difference between

y : 1 . 5

Q G :
r il

POWER CHANNEL

BELECTOR.

Pige. 4. Photo showing test egquipment and conditions,

the signals from the scales was used as the output signal, This

is approximatively proportional to the angle between the location

F

of the mass centre and the vertical if the signal is compensated
for the length end weight of the test subject. The commercially
avallable scales are built on strain-gsuge principles. The reso-
nance frequency and coefficient of damping for the scales were

estimated to 80 Hz and 0.2 respectively [21]. The resonance fre-
guency was the same for the apparstus unloaded and loaded with a
test subject of ordinary weight. A more detailed description of

the measuring devices is given in [ 21 ]. Outputs from two experiments

are given in PFlg. 5.
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Fige 5. Series 3 and 5 (cf Table 2). The sampling interval

wWa g 002 Se

The lengths of the experiments were about two minutes each, The
continuous signal was recorded on a magnetic tape. The frequencies
of interest were considered to be lower than 5 Hz [21] and the
signal was filtered by a low pass filter with a cutting-off fre=
quency of about 10 Hz. The sigral was then sampled with a fre-
quency of 25 Hz. The results of this study are, however, based on
a sampling frequency of 5 Hz, i.e. every fifth wvalue out of the
original sampled series was used. The reason was to reduce the
computing time, To test if this reduction of data was crucial for
the analysis some computations using the original series were also
verformed. However, the results did not differ significantly from
those obtained with the reduced sampling frequency. The lower

sampling frequency can alsoc be justified by the fact that the
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spectra of the series had only small contributions from frequencies

above 2,5 Hz.

In order to keep the conditions as equal as possible for the diffe-
rent test subjects all were standing with their feet about parallel
and told to keep them still, to stend erect, looking straight for-

ward and to stand as still as possible through the whole experiment.

The stu&y is based on measurements on 19 individuals, 4 healthy
persons, 4 patients suffering frgm sensory ataxiay, 3 from cere-
bellar ataxia, and 8 from Parkinson's disease. Out of those suffer-
ing from Parkinson's disease 4 patients had no treatment and 4
selected at random had been given L-Dopa., Two patients in the

group of cerebellar ataxia were suffering from cortical cerebellar
degeneration and one from a cholesteatoma in the posterior fossa

of the skull. Two of the patients suffering from sensory ataxia had
week spastié symptoms at the same time. The ages were from 50 to 60

years but for one in the Parkinson group who was 38 and one in the

group of sensory ataxia who was 80 years old.
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5. AN QUTLINE OF THE TIME SERIES ANALYSIS, PARTICULARLY THE

MAXIMUM LIKELIHOOD TECHNIQUE

The analysed data are assumed to be stationary time series or such
series superposed on a linear trend. At least for short measurements
such an assumption can be justified. The reason for introducing

the trend is that it is guite clear from almost all the experiments
that the time series contain rather slow modes together with the
faster ones. The slow modeé are of the order half a minute or more
and may perhaps be interpreted as motions caused of the tiring
procedure to stand in upright position. The test subject thus to
some extent sway over from one foot to the other. Rather short
parts of the series were used in the analysis in order to reduce
the effect of these slow modes. The linear trend was estimated by
the method of least squares and removed from data before further

analysis,.

Time series can be represented in different Wéys, Stationary time
series can be represented e.g. by covariance functions or by
spectral density functions. If we furthermore restrict ourselves

to stationary time series with rational speectra, all such processes
can be generated by sending discrete white noise through asympto-
tically stable dynamical systems [1]. & further restriction would
be to allow only autoregressive processes. Even if a stationary
time series does not have a rational spectrum it may be well app-
roximated by such a spectrum and even as an autoregressive process.
However, the order of an autoregressive model may become high if a
good approximation is desired. Por this problem therefore the s0-
called mixed autoregressive moving average process, i.e. the dyna-

mical system mentioned above, was chosen,
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The estimation of the parameters of the model is performed by the
maximum likelihood method introduced in [2]. This estimation pro-
cedure also provides an estimate of the accuracy of the parameters
and the possibility to test what order is appropriste for the model.
The obtained estimates are consistent, asymptotbtically normal and
efficient under mild conditions [3]. It must be emphasized that it
is erucial Tor the statistical interpretations that the assumption
of the structure of the model is correct. However, in any case the
procedure gives the estimate that minimizes the sum of sguares of
the one step ahead prediction error. The model can be directly used
for predietion; It is also easy to calculate spectrum and covariance
function from the model. Other ways of estimating the parameters are
given in e.g. [Dy; 8] For the computations a Fertran program was

available [10]. The computer used was a UNIVAC 1108,

The estimation problem can be formulated in the following ways
Given the observations {y(%), t = 1325000, of a stationary time

series, find an estimate of the paremeters of the model
PO *’”"1 3 "”"1 '
2%(q™) y(v) =ac*(a77) e(t) (1)

where {e(t)} is a sequence of independent gaussian variables with

zZero mean and variance one, PFurthermore ¢ denotes the shift operator
q x(t) = x(t + h)

where h is the sampling interval,

and A*(q“1) and O*(qwi) are polynomials

e

H

A =1 =
AXqg ) - T+a,q L coe t 20

C*(qmw) 1+ ¢ qm] toeee G q "

it

Assume that the functions A(q) = g e A*(qmj) and ¢(q) = g~ e C¢* (qm1)
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have all thelr zeroes inside the unit circle and that there are no

common factors to the polynomials A*(qm1) and ¢* (qm1).

This problem of parametric estimation of rational spectra is a
special case of identification of linear discrete time systems with
gauésian disturbances with rational spectra, which was described

in [2], A short summary of the method is given here. The proofs

of the statistical properties of the estimates and convergence

ete. can be found in [3 1],

The problem stated above is a statistical estimation problem and
will be solved by the method of maximum likelihood. It follows

from (1) that the residuals € (t) defined by
=1 =1 ¢
Cfq ") e(t) = ax(a™") y(%) (2)

are independent and normal (O, )\), The logarithm of +he likelihood
function L, for the problem beconmes
N

~2 log L = =2 5 gg(k) + 2N logx + W log 21

k=1
Maximizing L with respect to i, Byreeey By Cugevey C is equivalent
to minimizing the loss function
v(6) = — T ) | ()
k=1
which ie readily shown. 6 is defined by

T
e = (a1,@.,, Gt Sqseces Cn)

When @, such that v(0) is minimal, has been found, the maximum likeli-

hood estimate of ) 1s obtained from




Notice +that Az can be interpreted as the variance of the one step

ahead prediction error.

The problem of minimizing V(©) can be solved in many different
p g N

ways by using different optimization procedures. The difference

17

between the procedures is essentially the amount of information of

the function V(8) that is required to find the minimum. In the used

program & modifiled Newton-Raphson algorithm is used for the lteram

tion towards the minimum, i.e€.

k

k+1 o

8

(4)

KKy =T k
= aligg (e T v(e).

where k denotes the iteration number,

Vg = the gradient vector of V(8),

*

v@@

= the matrix of second partial derivatives of V(©)
or an approximation of this matrix.

a is used to modify the step length in each iteration.

The reason for using a Newbton-Raphson algorithm is that the cone-
vergence rate will be fast near the minimum and that the calcula-
tion of the second derivative matrix can be performed relatively
economically. Furthermore this matrix provides the accuracy esti-

mates.

Differentiating (3) gives

W ’
av Segkz :
=z = I e(k)
90 ke °8; (5)
2 il i % (x)
az g@ = = agék) agék) ok €<k>§9€z§@ (6)
1% k=1 i i k= 1%
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If only the first term of (6) is used in the iterative minimizing
algorithm, 1t is secured that the matrix is at least positive se=
midefinite snd in most cases positive definite. This means that
the iteration will yield a smaller function value. Far from the
minimum only the first term is used. The second term of (6) is in-
cluded in Vgg (6) when it is probable that the algorithm is

Vgufficiently" near s local minimum.

Differentiating (2) twice with respect to 6 gives the difference

equations which are used to calculate the first and second deri-

vatives of the residuals with respect to 0. Thesge derivatives are
needed for the calculation of VQ and ng s (5) and (6) respectively.
The difference equations can be solved faster by introducing app=-

ropriate state variable representations, [3, 10]. Another problem

is the choice of initial values for the difference equations. They
are here chosen to zero because of the assumption that {e (t)} has

zerc mean and thus {y(t)} also has zero mean.

The algorithm for the minimization thus becomes principally
. k 0 .
i) Put @ = ¢  (starting value of &)

ii) Evaluate VG(@k) and VQS (@k) using (5) and (6)

k41

iii) Calculate © from (4) and repeat from i unless

some specified convergence criteria are fulfilled.

. N . R O oL
The recursive formula (4) requires an initial value, & . Letting
. . , , P o . .
¢, = Oy L = 1, 25 coey n the least squares estimate a  of a is

obtained in one step. Then the initial wvalue for the iteration

0 T

is taken as 87 = (a10’0509 a "y Oyeeey 0)".




iAn egtimate of the covariance motrix for the parameter estimates

. . 2 A e X . :

is given by X {V@@(@)} . As the minimization algorithm uses this
matrix the accuracy is directly available. For simulated data these
accuracy estimates most often are very good estimates of the Cramér-

Rao lower bound for the estimation problem,

The computing time for a time series of 1000 values and for models
of order 1-4 is roughly 25 seconds on a UNIVAC 1108. The computing
time is almost linear in both n and W, i.e., proporticnmal to the

product ni.

Most often the correct order of the system is not known in advance.
Thus some criteria for deciding appropriate model order have to be
developed. Many tests can be proposed, e.g. from a statistical point
of view. The assumptions made for the method have tc be checked, so

that they are not violated., Among the different tests we can mention

a) statistical test of the significance of the decrease of the

loss functiion,
b) test of the independence of the residuals,

¢)  examination of the factors of the polynomials E?qﬂl)

and Cx{qw‘g )s

a) test of the significance of the parameters a, and c e

If the order of the system is unknown the identification has to be
performed for increasing order of the model. The tests given above
are applied to the models of different orders. These tests work

very well Tor artificially generated data. For real datas, however,

the tests are often not so clear-cut and subjective decisions have
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to be made, A reason Lfor this may be that the structure of the model
is not quite correct. We are only trying +o find a linear model of
a certain order approximating the real process. It is very important
to check the relevance of the model, obtained from one set of data,
by simulating the model on another set of data from the same pro-
cess. The reason is that even if e.g. a high order model is a very
good approximation of one specific realiszation of the process, it
may not be a good model of the process itself. The model may ine
clude specific properties of this realization which are not typical
for the process. In such a case the model may give bad predictions
for another realization. This is one reason for choosing a model of
lowest possible crder., This discussion thus indicates the need of

several realizations for the analysis.

The model (1) can be considered as a pulse transfer function or a

filter with discrete time white noise as input, Fig. 6,

elt) >C*(q"‘) y(t)
A*(q-1)

Fig. 6. MNodel for stationary time series with rational spectrum.

As such 1t can be represented by concepts like gain and time con-
stants. In the following we therefore often prefer to talk about

time constant rather than about the parameter a1 ete.
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6.  RESULTS AND DISCUSSION

In this section some of the results from the maximum likelihood
identification of the time series are presented. 4 short discussion
of possible conclusions and relevance of the resulits are also given.
In Table 1 the total variance, 02, and the time counstanty, T, of the
first order models for the series are listed. The results are based
on parts of the original measuremenis. The parts are chosen so that
slow modes (ef Section 5) and irregularities are eliminated. The
series are then compensated for linear drift, estimated by ordinary

-5

least squares method,

Clinic state o? T

0.13 0.45
Healthy 0. 62 0.82
0.43 L78
119 .93
1.08 0.55
Parkinsons disease 0.38 1.26
untreated 0.86 160
1,93 2.51
0.33 0.79
Parkinson’s disease 0. 50 0.9
treated with L-Dopa 0.55 121
0.45 2.26
15,0 1L10
Cerebellar ataxia 1.5 1.23
4.57 1,65
4.72 0.19
. 5.18 0.20

Sensory ataxia
53.3 0.40
15.9 0.74

. 2 . o os
Table 1. Total variance, o , and time constant, T, of first

ordey models for the time series used.
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The results seem rather heterogencus, also within the healthy group.
&£ few observations can, however, be made. The ataxis groups have
obvicusgly & very high total variance compared to the other groups.
The sensory ataxia group shows in general s rather short itime con-
stant. For the Parkinson's disease groups it seems that the total
variance is smaller for the treated patients. However, they are not
matched pairs in the sense that the same patient is compared before
and after treatment. Therefore the difference can perhaps be ex-
plained by the individual differences., The results for the Parkin-
son's groups can also be influenced by tremor. Because of the limit-
ed material in statistical sense it is dangerous to draw definite
conclusions, It must also be emphasized that the first order model
is used here, even if higher order models were indicated by the
meximum likelihood identification (see below). Thus the comparison
of T for different series ilg not quite fair, because several of the

series need more parameters to be appropriately characterized.

In the following some of the series are itreated in more detail., The
gseries chosen for the discussion are plotted in Fig. 7 znd charac-

teristics of them are given in Table 2.

Series Clinic state ol T
1 Healthy 0.62 0.82
Parkinson’s disease
2 0.86 1.60
untreated

Parkinson’s disease
3 . 0.50 0.96
treated with L-Dopa

4 Cerebellar ataxia 1L.5 1.23

5 Sensory ataxia 4,72 0.19

. . 2 : . :
Table 2. Total variance, o and time constant, T, for the first

order models of five chosen series.
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Just to compare with other techniques the autocorrelation funciions

are shown in Pig. 8 for the five time series. The Ffast mode in the
Land

£

time series 5 from the patient suffering from sensory ataxis can

easily be observed. For some of the series there also seem to be
an oscillating component present which is in accordance with the in-

dication of higher order models discussed in Section 3¢ The




oscillation seems to have a freguency of about 0.3 = 0.5 Hz, and

might be caused by the breathing.
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In order to give a more complete picture of how the maximum likeli-
hood method works, we also show resulis from identifiecation with
higher order models for three of the series, Table 3, indicating
that for different series different orders of the model should be

chiosen according to statistical tests.

Series 2 3 5

Order v X Fn, n-1 n,n-1
172.33 | 0.928 - 409.72 | 1.930 - 49.37 | 0.686 -
42,31 | 0.460 | 633 353.29 | 1792 17.6 ] 10.84 | 0.321 | 370
41,28 0.454 4.9 1347.03 | L1776 19| 874 | 0.288 24.8

0
1
2
3 4121 | 0.454 0.1 |337.46 | L752 3.0 | 867 | 0.287 0.8
4
5
6

33,33 | 0.408 | 46.7 {33232 | L738 L6 | 845 | 0.285 2.6
32.90 | 0.406 2.5
32,79 | 0.405 0.6

Table 3. Toss function values, V, prediction errors, A\, and the

velues of the F-test gquantities for the series 2, % and 5.

The statistical test of the significance of the decrease of the
loss function is based on the fact that the quantity

n n-1 N - 21

F 4
Ny =71

has an P (2, N-2n) distribution under the hypotheses that

a, = ¢, = O. Vn denotes the loss function for the model of order n.
The loss function is decreased significantly on the 5 % level if
this test quantity is greater than 3.,0. A straight-forward use of

this test for real data is not possible,; probably because of

viclated assunptbtions, e.g. structure errors.

Table 3 shows that a fourth order model is appropriate for series 2,

a second order model for series 5, and a first order model for
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series 3. The roots of the polynomials A(q) for series 2, n=4,

are given in Table 4.

Roots of Alg) Roots of Clg)
0. 766+ 0, 052i 0. 601
-0. 867 £ 0, 498i -0. 8461 0. 490i

Table 4. Roots of the polynomials A(q) and C(q) for series

29 ﬂ34~,

There is one factor almost common to the two polynomials. If the
accuracy of the parameter estimates is considered, it is question-
able if the roots -0.867 & 0,498 i and ~0.846 £ 0,490 i can be
distinguished or should be considered as a common factor. The loss
function reduction is, however, clearly significant. The same factor
appears also in several of the other experiments when higher order
models are analysed. Thus it seems actually to be a characteristic
of the data, probably due to some weak resonance phenomenon in the
measuring or recording devices. Considering this the remsining model
is of-second order., Prom the values of the parameter A(Table 3) we
can see that even for series 2, most of the explainable variation of
the output is gained already for the first order model., FPor series 5
on the other hand the second order model is clearly indicated and
this is in accordance with the power spectra given in Fig. 3 in
Section 3. For most of the series model orders of one or iwo were

satisfactory,

A study of residuals and of autocorrelation functions seems to show
that there is very often a resonance frequency of about 0.3 = 0.5 Hz.
The power of this peak is rather small and the mode is sometvimes

almost hidden in the heavy noise. For many series it has been found
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in higher order models, particularly if the data have been pre-—
filtered with the filter (1 mqwk)@ Notilce that rather short parts

of the series were used in order to eliminate slow modes; resonance
frequencies of about 0.01 Hz and lower and trends. Becsuse of this
fact perhaps a third order model with predetermined structure, one
time constant plus an oscillation, should be used for further studies.

The prefiltering problem must also be considered more carefully.

Another remsrkable observation was made. The model

(1 - a™") y(t) = e(t) (7)

is almest as good as the model
(12, @) y(8) = (14 e q7") e(s)  (8)

for many series, cf Table 5,

Series Model (7) Model (8)
1 10. 58 10.47
2 44.28 42.31
3 1L.50 10.84
4 543.76 508.22
5 362,97 353,29
Table 5. Loss function values for series 1 - 5 Ffor the different

models (7) and (8).

This observation is discussed at some length in [5], where the

same phenomenon was observed for a number of series of economic data.
For predictive purposes the models are almost equal. However, if it
is possible to pose any physiological meaning to the parameter a,

as has been tried in Section 3, the differences between the models
are important. Different values for the parameter a. then indicate

1

different behaviour of the control systenm,
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(o CONCLUSIONS

Some typical properties of time series from experiments with the
human balancing system have been found by maximum likelihood identi-
fication of the series. For some diseases the total variance of the
gignal and the time counstant of the first order model can to some
extent be used as characteristics of the balancing system. Results
congistent with common neuro-physiological findings are e.g. the
small time constants in the models of the patients suffering from
sensory ataxia. It might be emphasized that large individual diffe-
rences, however, eéxist. The properties of such time series have been
studied by other methods and the resulits are also consistent with

results published earlier.

The study indicates that the gross characteristics of the system can
gualitatively and to some exteni guantitatively be recognized e.g.
from an estimate of the power spectrum., Parametric models seem to
give only small furither information. They might be applicable when
a better understanding of the system is aschieved, s0 that a model
with a structure, predetermined of physiological reasons, can be
used. The slow modes of half a minute or more must also be taken
care of by filtering the data by more elaborate meithods than used
here. It dis difficult to make so long experiments that the slow

modes can be modelled sccurately.
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