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Abstract— This paper investigates the performance of reduced- knowledge, there have not been such attempts so far, except
state trellis-based intersymbol interference equalizers, which are jn the recent work by Hoeher et al. [7], where the comparison
based on the so-called Ungerboeck and Forney observation mod-of Ungerboeck and Forney models was conducted for reduced

els. Although the two models are equivalent when an optimum lexit Ii detect Th USi F171 h
equalizer is employed, their performances differ significanty COMPIEXIty mulli-user detectors. 1he conciusions o [7], how-

when using reduced-complexity methods. It is demonstrated that €Ver, do not translate to the reduced-trellis 1SI equalization we
practical equalizers operating on the Forney model outperform consider here. Among the previously mentioned reduced-trellis
those operating on the Ungerboeck model for high signal-to-noise methods, the M*-BCJR algorithm exhibits most advantages

ratios (SNRs), while the situation is reversed for low SNR levels. 54 it js therefore chosen as the preferred method in this work.
A novel reduced-complexity equalization strategy that improves

on previous Ungerboeck-based equalizers is proposed. Il. SYSTEM MODEL

|. INTRODUCTION Consider signals(t) generated by the linear modulation
Intersymbol interference (ISI), introduced by a frequency 0
selective communication channel, or by filtering and pulse s(t)= Y axq(t —kT) 1)
shaping at the transmitter, requires equalization at the receiveﬁ. - k=—oco | .
wherea =...,a_1,a9,a1,-.., IS @, possibly encoded, real-

Since finite ISI can be represented as a finite-state-machm(? . ) .
. . . . valued transmit symbol sequence arid) is a real continuous
process and thus admits trellis representation, optimum equaly

ization can efficiently be realized using the Viterbi algorithmomse' It is assumed thal{) is a unit energy pulse, that is,

) o J ¢*(t)dt = 1, which represents the combined effect of the
or, when soft symbol information is needed (for example, Hansmit filter and the channel impulse response, generatin
iterative schemes), the BCJR algorithm. P P ' 9 9

It is well known that the samples of a filter matched t(?;mte ISI. The signals(t) is corrupted by additive white

the receive signal pulse, applied as the receiver front-encglus’Slan noise (AWGN) and the received signal becomes

provide sufficient statistics for optimum detection [2]. Thi ).:.S(t) +n(.t)' Forney showed [2] that a §et Of. sufficient
is referred to as the Ungerboeck model [1]. Alternatively, th%atatIStICS to estimate from the linear modulgtlon signai()
sampled matched filter output can be further processed b)'/sathe sequence of the sampled matched filter outputs
whitening filter, which yields the so-called Forney observation Y -

model [2]. Trellis-based equalization can be formulated for = /,007(t)q(t KT)dt. @
both observation models. The choice of the model only aﬁeqﬁserting the expression for(t)
the metric computation, but the final output of the Viterbi or
the BCJR equalizer is identical for both cases. Computational

complexity is determined by the number of trellis states. For Tk = Z Gkt 1k ®)

into (2) yields
L

an ISI channel of memoryl. and a modulation alphabet =k

M, the trellis has M|~ states with| M| branches per state. Where 0

Thus, for large constellations and/or ISI of high memory, g = / q(t)q(t —1T)dt
BCJR equalization becomes prohibitively complex. In such T

scenarios, a suitable alternative are suboptimum algorithms e = / n(t)q(t — kT)dt.
that achieve complexity reduction by effectively reducing the —0

trellis state space. The algorithms that belong to this class af,(3) we assume that the autocorrelation coefficients are
e.g., the RS-BCJR [3], the T-BCJR [4], the M-BCJR [4] ang, = 0 for |I| > L. Eq. (3) is the so-called Ungerboeck

its improved version [5], and the recently proposed M*-BCJBbservation model, investigated in [1]. The correlation of the
[6]. All these methods operate on the Forney model, which fifpise samples, is Elmenr_i} = g1No /2.

often preferred due to the whiteness of the noise. By filtering  with a whitening filter, we obtain the sequence
This paper investigates the performance of reduced-trelljsgiven by L
equalizers that operate on the Ungerboeck model, and com- Y = Zflakfl + wy, (4)

pares it with the Forney model. To the best of the authors’ =0



wheref is a causal IS[L+1)-tap long sequence such thats  where, for simplicity, we assume bipolar signalling. l&,j
its autocorrelation sequence, ang are independent GaussiarandS,  denote sets of state paifsy, sx+1) in the underlying
noise samples with variane€ = N,/2. This is the so-called trellis that correspond to theth transmit symbol equal t@, =
Forney observation model, also referred to as the whitened and a;, = —1, respectively. For time-invariant trellises,
matched filter (WMF) model. Due to the whiteness of théme index can be omitted, that is, = S~ and S} = S+.
noise at the output of the WMF, the Forney model is oftefihen, the log-APP ratio (7) can be rewritten as
prgferreq to the Ungerboeck model. Slln_ce the w_hngmng filter Y owyess Plsk = 8,504 = 8, @)
is invertible,y also forms a set of sufficient statistics. Thus, L(ay) = log —-
the two models have equivalent detection properties. There 2 (s,syes- P(sk = 8, 8k41 = 8, @)
are many possible whitening filters with the above mentioned The BCJR algorithm efficiently computes the log-APP ratios
properties. The filter that results in a minimum-phase impulsging the factorization

responsef is most suited for reduced complexity decoding , , ,

and will be used throughout. Note that for the Forney model ~ P(sk = $:sk41 = 8, @) = ax(s)1(s, ') Brr1(s')  (9)

(4), at each timé:, the observation,. is affected by the current \yhere o, (s) is the forward metric of the stateat kth trellis
data symbola). and the L past symbols(ax—1,...,ar-L). depth,B;,(s') is the backward metric of the stateat depth
In the Ungerboeck model (3), however, each observatipn i 1, and~,(s, s') is the metric of the branch connecting the

contains not only contributions from the pastsymbols, but states(s, s'). The forward metric is computed recursively in a
also from the futurel, symbols. This fundamental differenceforward trellis sweep according to

has a crucial effect on the behavior of reduced-complexity

8

trellis equalizers, as will be explained in Section VIL. appa(s') = ar(s)(s, s) (10)
seS
I1l. OPTIMUM EQUALIZATION with the initializationay(0) = 1, andag(s) = 0, for s # 0.

The maximuma posteriori(MAP) sequencequalizer outputs Similarly, the backward recursion starts at the end of the trellis
and proceeds towards the root of the trellis computing at each

depth
wherep(a|z) < p(x,a) = p(z|a)p(a). Assuming indepen- P Bils) = Z Bt (s )k (s, ). (1)
dent data symbols, thee priori sequence probability factorizes s'e€s

into p(a) = [[,p(ax). In the Forney observation model, N the Forney observation model, the branch metric is
the received sequenag contains i.i.d. noise samples, which
allows factorization

a = argmax p(alx) = arg max p(aly)
a a

Y(s,8") = p(s,ykls") = plar)p(ykla)

p(yla) = Hp(yk|a) where p(yx|a) is given by (5). The state metrics are the
A X k . , pzobability| ;unc;ions ai(s) (: p(s,y[o,k)),) Bryi1(s) =
where _ _ PWY(k+1,K)15), WNEI€Y (4, 1y = (Ya Yat1 --- Yb—1)-
p(yela) CXP{ No (yk ZZ:flak_l) } ®) Eor the Ungerboeck model, the probabilistic interpretation

of the BCJR metrics is no longer valid. However, it was shown

Then, the Viterbi b h metric &th trellis st i - o i ) .
en, the VITeTbl branch metric reflis slage 15 propor in [8] that the factorization (9) is also possible, with

tional to p(ax)p(yr|a).
In the Ungerboeck model, the Qbserved matched-filter out- Yi(s,8") = plar)o(zy, a)
put x is corrupted by colored noise, thus, the above factor-

ization does not hold. Howeves(z|a) can be factorized [1], Where ¢(zx,a) is a function given by (6). This enables
which allows application of the Viterbi algorithm, the implementation of the BCJR algorithm with the same

recursions fora(s), Br+1(s’) as before, cf. (10) and (11).
p(x|a) < [ [ ¢(zx, a)

.k - . . IV. THE M*-BCJR ALGORITHM
wherep(zy, a), however, is not a probability density function , ,
(PDF) [8], and it is given by The M*-BCJR algorithm [6], computes the L-values (7) in

) I the same manner as the BCJR algorithm; however, similarly

A 90 2 as in the M-BCJR [4], at each trellis stage in the forward
o(zp,a)2 exp |— |zrar— a3 —Y gagar_||. (6 : »at \ )

No 2" ; recursion onlyM states with the highest forward metric are

The MAP symbol equalizer outputs the most probabléaamed' Unlike in the M—BJCR, the remaining states are r_10t

symbolay, for each time instan, deleted, but ra}ther' merged Wl'th the surviving states. Merging
X of two states implies that their forward metrics are summed

ap = arg H}I%XP(GHJJ) = argﬂggxp(aﬂy)- up and the branches of the inferior state are redirected into

- . . o .the surviving state. Such a modified trellis is subsequently
Additionally, it provides soft symbol reliabilities, expressed in : . )

. g . . used in the backward recursion. Although merging the states
terms of logarithmica posteriori probability (APP) ratios

slightly increases the complexity, it preserves the balance of
plag = +1|x) ~ Jog >aap—t1 P(al®) ) the branches that carry opposite symbols at each trellis depth,
plar = —1|zx) > aca——1Palz) and thus avoids problems when computing the L-values.

L(ay) = log



Since a state is al-tuple (ax—1 ... ax—r) of the most L = 4: the minimum-phase equivalent of the Proakis-C
recentL symbols, then two states that differ in< L ending channel, with tapg = (0.2448 0.4774 0.6868 0.4428 0.2106),
positions merge in the trellis aftersteps. Ift is small, the and the channef = (1/0.45+/0.251/0.15+/0.11/0.05) used
metric difference of the paths leading to the common stateiis[6] and [9]. All the results presented here are given for the
supposed not to be large [6]. &, andSy, denote the set of Proakis-C channel only, due to space limitations, with the note
the M best states and the set of the remaining states at a certhat all the observations hold for the other channel as well. The
depth, respectively, then a rule proposed in [6] is that a stdi# error rate performances of the M*-BCJR equalizers, based
s' € Syr is merged with such a statec Sy, that differs in the on the two observation models, wifti = 4 states, employing
least numbet of the ending positions. In the next subsectiorthe merging ruleR,, are shown in Figure 1. As a reference,
we discuss realization of this merging rule in more detail arttle performance of the BCJR equalizer (with = 16 states)
also propose alternative merging strategies. Hereinafter, i@ealso shown. It is observed that the Forney-based M*-BCJR
assume binary representation of the stafelog,(|M|) bits). follows the BCJIR performance with a small loss, while the

. . Ungerboeck-based equalizer completely fails for the medium
State Merging Strategies and high signal-to-noise ratio (SNR) levels, suffering from a

1) If & denotes the bitwise x-or operator, then the zemgigh error floor. This error floor is eliminated only when the
bits in s & s indicate the positions where the statesnd number of preserved statd$ approaches the full-complexity
s' coincide. The state merging can be efficiently realized ipalue A/ = 16. In the low SNR region, however, left from the
the following way: for each state’ € Sy compute the values crossover point aF, /N, ~ 2.5 dB, the behavior is reversed
s®s' for all s € Syy; find the states which yields the smallest and the Ungerboeck model yields lower BER than the Forney
value of s @ s’ (interpreted as a decimal number), and merg@iodel. Further insights regarding these observations will be
s" with s. We refer to this merging rule &8;. It ensures that provided in the next section.

s’ € Sy will be merged with the state € S, that coincides
with s’ in the largest number of leading positions. In case & Turbo Equalization for Coded ISI

a tie, a state with the smaller value oft s is preferred. Consider coded transmission over an ISI channel, as de-
2) A modified approach, which we dendfe,, resolves the picted in Figure 2. After coding and interleaving, the data
above mentioned cases of a tie, in a different way. ARina sequence is mapped to the symbol constellation and trans-
states’ € Sy is merged with the statec Sy, with the largest mjtted over an ISI channel. This scheme can be viewed as
number of coinciding leading positions; however, if there iserjally concatenated coding, where the mapper and the ISl
more than one such state #,, then we choose the onechannel act as an inner encoder. Thus, the iterative principle
with the smallest value of the forward metriGood results for equalization and decoding can be applied at the receiver,

obtained with this merging strategy, indicate that the metrig Figure 3, as first proposed in [9].

values should be taken into account when merging the statesye have used the M*BCJR equalizer as inner decoder
3) Motivated by the previous observation, we proposg the turbo scheme, with the channel parameters from the

strategyR 3, which is simply to mergall the states fronsy  previous subsection. A memory convolutional code with

with the states €5, that has the smallest forward metric. Notgp,o generator matrix1 + D,1) = (6,4)s was used as the

that this strategy is the simplest to implement, since it doggter code, and the block length wag00 information bits.

not require any additional computations or sorting procedurge BER performance of the scheme is shown in Figure

during the merging process, unlike the previous two. 4, for two choices ofM, with the benchmark given by the
We have also tested replacing the "smallest-metric” choice

in Ro andR3 by the "largest metric”; however, this variant of 10 : ; :
the algorithm fails completely. This suggests that, among the
chosen)M states at each stage, the "good” states with large
metric should be left intact, while the "weak” states should be |
used to "collect” the discarded states fra¥y,.

We have tested approach®&s, R,, and Rz with various
ISI patterns. The rule®, and R3 outperformR, allowing N
largest complexity reduction, that is, the small@st to reach w07k
the specified bit error rate (BER). For a given valuelof R,
yields the lowest BER, and it will therefore be used hereinafter.

V. RECEIVERTESTS 107
A. M*-BCJR Equalizer for Uncoded ISI —+—M*-BCJR, M=4, Forney model
. . .. —6— M*-BCJR, M=4, Ungerboeck model
Consider first uncoded BPSK transmission over an ISl || === BCIR (M=16)
channel of memoryL. The complexity of the BCJR equalizer ~ *°-6 -4 -2 o NS R R O
s 0

is of the order2Z. In our tests, we have used two standard ISI

channel models, both causing severe ISI, and both of mem@fgz 1. Bit error rate performance of the Forney- and Ungerboeck-based
M*-BCJR equalizers with\M = 4, for Proakis-C 5-tap ISI channel.



e assuming independence @f, we consider the marginal PDF
encoder [ T [T mamwer = 1Sl (e of the equalizer output,
| _imerencoder | aweN Fla) 2 f(L(ay) = l|ax = @), (12)

Fig. 2. Communication system with coding and intersymbol interferenc@nd use it to computé(a; L(a)). For ISI channels with bipo-
lar equiprobable inputs, the PDF satisfi$|1) = f(—I|—1).
— ! inner : outer The mutual information can be computed by solving the

decoder 4 I decoder integral
T I I In=1 7/ F11) logy (1 + e~)dl. (13)

H<—®

Fig. 3. lIterative receiver structure

This integral is solved numerically, using the empirical esti-
mate of the marginal density(l|1): an observation sequence
y (or x) is formed from3 x 107 information bits, the equalizer
turbo BCJR equalizer and the underlying outer code. For bd#Rder investigation is then applied to this sequence (without
M = 4 and M = 6 we observe a crossover of the BERaNYa priori information) and a histogram of all(a;,) where
curves corresponding to the Forney- and Ungerboeck-baged= 1 is used to estimatg (/|1).
equalizers. The weaker outer code was chosen deliberateljrigure 5 illustrates the informatiofi, for the setups con-
in order to obtain crossover points in Figure 4 at moderafédered in Figures 1 and 4. Itis clearly seen that for high SNR,
BER. Note that the SNR range in Figure 4 Corresponds to tﬂle mutual information obtained with the UngerboeCk model
left-hand half of the equalizer's operating range consideré® below that obtained with the Forney model. Fuf = 4,
in Figure 1, where the difference between the two models e Forney-based equalizer shows rather good performance in
not as drastic as in the right-hand half. We conclude frofi€ high SNR region, close to the BCJR, but the Ungerboeck-
Figure 4 that the Ungerboeck-based M*-BCJR equalization kgsed method performs poorly. For very low SNR, the Unger-
preferred for very low SNRs, while the Forney model yieldgoeck model yields highef, than the Forney model. The
lower BER for higher SNR. In other words, for a given SNFErossover point between the Forney and Ungerboeck models in
in the high SNR region, a certain BER can be achieved wiffigure 5 corresponds rather well to the BER crossover points
the Forney model with lower complexity (smalldrf) than in Figures 1 and 4. The BER in Figure 1 equaéiER =
with the Ungerboeck model. ff)oo f(11)dl, while the mutual information is given by (13),
thus there cannot be an exact agreement between the crossover
points. ForM =4, the crossover in the iterative receiver test
occurs atF; /Ny =3.1 dB, while the mutual information chart

To analyze the BER behavior of the uncoded and codedggests that it should occur &t /Ny =3.5 dB.
systems tested above, we use the mutual informafipn= In the analysis of the iterative equalization process, it is not
I(a; L(a)) between the sequence of the L-valugs:) at the sufficient to consider only 4. The mutual informatior/ 4 is
output of the equalizer and the transmitted sequendealyt- only involved in the first iteration; in subsequent iterations,
ical computation off 4 is far too difficult in practice. Instead, influence ofa priori information must be considered — this is

VI. PERFORMANCEEVALUATION VIA MUTUAL
INFORMATION

—¥— M=4, Forney model
E 09 *- M=4, Ungerboeck model

S=scg-c-. —6—M=6, Forney model
=3 - © -M=6, Ungerboeck model
0.8 _5—M=16 (BCJIR)

0.7,

0.6

—< 0.5

0.4

0.3

0.2
—6— M*-BCJR, Ungerboeck mod
—8—BCJR (M=16)

— (6,4)8 code, no ISI

0.1

—*— M*~BCJR, Forney model k
I

4 6 10 12 14
E/N, [dB]

-3 -2 -1 0 1
E/N, [dB]

Fig. 4. Performance of the Forney- and Ungerboeck-based M*-BCIRg. 5. Mutual information between the output of the M*-BCJR algorithm
equalizers in a turbo scheme, after 8 iterations, for Proakis-C 5-tap 1&hd the transmitted symbol sequence. Dashed curves correspond to the
channel, and a memorl, rate1/2 outer convolutional code. Ungerboeck model and the solid ones to the Forney model.



the well known EXIT chart technique. Howevdry predicts B[y Fomey model
the BER performance of the turbo equalizer quite well, which o gl| - * -M=4, Ungerboeck mode
will be explained in the following. Iffis;(x) denotes the EXIT T M e o modb
curve for the ISI channel, then there is the following analogy —5—M=16 (BOIR)
betweenl 4, andTis;(z) : if a certain equalizer and 1SI model 0.7

is better than another one, th&;(x) > Tig(z), 0 <z <1, 06
instead ofl 4 > I, for the uncoded case. The starting point of
Tis1(z) is Tis1(0) = 14, while the ending point is, as shownin = %%
[10], Tis1(1) = Tmrc(0), where 'MLC’ denotes ‘'memoryless 04
channel’ (in factTyrc(0) = Turc(z),0 < < 1). Thus, the

0.8

endpoints of all EXIT curves are the same, and their starting *

points are determined by,. Therefore, whenl4 > I/, it 0297

is plausible thatlisi(z) > T{g;(z), 0 < o < 1 as well. This 01

explains the good match betweénand the BER performance Y N S U U U U U

of the turbo equalization. 4 2 0 0 12 14

4 6
E/N_ [dB
Although 74 is much larger at higher SNR for the M*- Sl

BCJR equalizer based on the Forney model than for tEJié’t'h
one based on the Ungerboeck model, it is not possible to

conclude that in general the Forney-based equalization jsnetric. The L-values are obtained from the union of the
superior to the Ungerboeck-based one. The differencéain g trellises (explained formally below). Such equalizers have
may be a consequence of the M*—BCJR algorithm !tselfneen investigated earlier in [5]. A genie-aided equaliger

which approximates L-values(a) with reduced complexity. \yhich is a benchmark for this class, is considered. The genie

There are tvyo approximations involved: (i) the L-values alSrovides all exacty,(s) and By (s) values (computed with full
computed with only) nonzero valuesv(s) at every depth complexity). For each trellis stage definedy(s) according

k, and (ii) theseM nonzeroay(s) are not computed with full 1, (14) andg,(s) similarly. The branches that are involved in

complexity, but they are themselves only approximations. he computation ofL(ay,) are those that have at least one

VIl. GENIE-AIDED EQUALIZERS endpoint with nonzero r_netriefyfc(s) or 5’3(5)' If a certain
branch has both endpoints with nonzeig(s) and Gi(s),

_In order 0 e””.“”a.te approximations (i) fro”.‘ the qbov?ts contribution to L(a;) becomesdy (s)vi(s,s')Bri1(s).
discussion, a genie-aided equalizer, denotedhyis consid- If, however, a branch has only one nonzero endpoint, the

ered next. A genie provides the exact valuesogfs) and . ; i eain
genie provides the necessary ("missing).(s) or Bi(s)
Bi(s) f(;r all Idepthsk. IThe L-valuelsL_ﬁ_c:w;?) are hc%mputed value, and the contribution becomeg(s)v (s, s')Bk+1(s) or
US'”th ej\h4 arlgfffs'[ va Uel?ﬂk(s)hon y. This met Od Ser(\j’eseﬁ)k(g)%(s,s’)ﬁkﬂ(s). For practical equalizers of this type,
as ‘1 efnc m?jr or equaléers(tj at COQStrllJCt are uceh reiRere genie knowledge is not available, the contribution of
n the oryvalrf reculrS|_on ased on ft ”e a.rgasgé(_s)é&T € such branches is not clearly defined. In [5] it was proposed
mathematical formu gtlon ofj, is as follows: Defined, as how to handle these cases in practice and compensate for the
the Mth largest metriav;(s) at depthk, and "missing” endpoint metrics
dn(s) 2 ai(s), ar(s) > o (14) The tests show that the outcome of the equalizeis, in

R 0, ag(s) < . terms of the mutual informatiof4, virtually identical to that
of Gy, cf. Figure 6. Thus, this approach does not seem to
benefit from the Ungerboeck model either.
p(sk = s,8k41 = 8, @) = ap(s)Vk(s, 8 ) Ber1(s).  (15) In order to understand and solve the weakness of equaliza-
tion strategies based on the Ungerboeck model, we take a step

Figure 6 shows the mutual information obtained with th ack and consider the functigrizs, a), given by (6), which

geﬂlg—aldeglequallzﬁl,tfor the S%Tetﬁarametegs askln F'gulr(aefines the BCJR branch metric. Assuming bipolar signaling
- 1S readily seen hat, even wibi, the Lngeroeock model o, o it energy ISI response, (6) can be written as

still performs poorly in the high SNR region. Moreover, for a
given M, the Forney curve lies strictly above the Ungerbeock 2 L 1
curve, which implies the conclusion that equalizers which®(Tk, @) = exp {N lak (l‘k - Zgzak—z> - 2]} . (16)
construct reduced trellis in the forward recursion (based on 0 =1
the largesiy(s)), should operate on the Forney model.  For an arbitrary state at depth the  values associated with
Since the equalizeg; does not perform well with the the outgoing branches far, =1 anda, =—1 are e(2#—1)/No
Ungerboeck model, we next consider a more general clagsd e(—2+—1)/No  respectively, wherew =z, — Zlegzakfz-
of equalizers. These equalizers build two independent reduclsk received signal at time instahtcan be written as

trellises: one in the forward recursion, based on the largest
metric, and one in the backward recursion, based on the largest Tp = ap + Xp + Xf + 1k, a7

6. Outcome of the genie-aided equaliggr Dashed curves correspond
e Ungerboeck model and the solid ones to the Forney model.

The valuesL(ay) are obtained as in (8) but with



where a is the actual transmitted symbol sequenkg; and

Y are the contributions ta, from past and future symbols.
The correct path in the trellis (corresponding to the transmitted
sequencear) passes through the state= (ax_1 ... ax_r) at
time pointk. This implies that the sum_,” ; giar—; in (16)

is equal to the ternk,, in (17). Thus,p(zk, a) equals

—¥— M=2, Ungerboeck mode
—6— M=4, Ungerboeck mode
—&—M=16 (BCJR)

0.9

0.7,
0.6

—< 0.5

~ 1
N [ak (ak + X+ 77k) - 2} } . (18)
In the high SNR region, where the Ungerboeck model shows
poor performance, the approximatigp ~ 0 holds. If the term
>t was not present, the two outgoing branches, corresponding
to ar = a; anda; = —a; would have the metrig o< e!/No

o(zg,a) = exp{

0.4
0.3

0.2

0.1 : : 4
andpoce1/No, respectively, and thus the correct path gets a I
much larger metric value. But, Wheﬁjlegl > 1, which 4 2 0 e [dB]G 0 12 14
m nds to the cl iagtarit i ible that ° e
correspo ds to the closed €ye dag am 1S pOSSbe a g. 7. Outcome of the genie-aided equaligkr based on the Ungerboeck

|X¢| > 1, which implies thati;, +X; can have the sign oppositemlo'deL
from a. This leads to the incorrect path (with, = —ay) ] ) ) o
having a larger metric at time stdpt 1, than the correct path practical equalizers. But, as the SNR increases, equalization
(with a; = a). Note that this happens without any noise angased on the Forney model performs remarkably better. To

that there is a constant probability for this to occur. The correfvestigate the ultimate performance of standard equalizers,
state at timek+1, corresponding ta; = @, would then have & genie-aided reduced-trellis equalizer was considered; it also
a small metricay, (s) and would likely be eliminated from shows the weakness of Ungerboeck-based reduced-complexity

the list. Thus, the correct path in the trellis would be lost, arffiu@lization for high SNR. A new genie-aided equalizer

cannot be recovered. Therefore, we propose to always incljgieconstructed for the Ungerboeck model, that succeeds in
both states (corresponding to, = +1) into the set of M reaching the performance of the Forney-based equalizer.

surviving states at timé + 1.

The method described above is formally expressed next
Partition the state spaceasS = {Px, ..., Por-1}, where each
set’P; holds a pair of stateés, s’) such that if(s,s) € ST
for some states € S, then (3,s') € S. Defineal,,, , =
max{ay(s), ax(s)}, (s,8') € P, and defined, as the
(M/2)th largest metria\!,,,. . at each depth; M is assumed
to be an even integer. Then the survivor states are all states
that have nonzeré(s), where 2l

{

The outcome of this approach, denoted &y based on the
Ungerboeck model is shown in Figure 7. The performance df!
Gs is much better than that @, andG,. The method works
very well even with only two survivor states per depth.
The reduced trellis construction ¢k can be incorporated
into the M*-BCJR to obtain a new practical equalizer. How-[6]
ever, its performance is not as good as one would expect from
Figure 7. In fact, its mutual informatios is below that of
the original M*-BCJR algorithm shown in Figure 5. How to
exploit the gain promised b¥s is a topic for future research.

>0k, SEP
otherwise.

l
amax,k

ag(s),

au(s) 0 (19)

(3]

(3]

7

(8]

In this paper we have compared the performance of reduced
complexity equalizers based on the Forney and the Ungel?
boeck observation models. It was demonstrated that in the
very low SNR region, the Ungerboeck model is preferred f@t0]

VIII. SUMMARY AND CONCLUSIONS

1The standard notation for closed ey@iilL:1 g1>1.
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