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A Comparison of Ungerboeck and Forney Models
for Reduced-Complexity ISI Equalization
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Dept. of Information Technology, Lund University

P. O. Box 118, 22100 Lund, Sweden
Email: {fredrikr, maja}@it.lth.se

Abstract— This paper investigates the performance of reduced-
state trellis-based intersymbol interference equalizers, which are
based on the so-called Ungerboeck and Forney observation mod-
els. Although the two models are equivalent when an optimum
equalizer is employed, their performances differ significantly
when using reduced-complexity methods. It is demonstrated that
practical equalizers operating on the Forney model outperform
those operating on the Ungerboeck model for high signal-to-noise
ratios (SNRs), while the situation is reversed for low SNR levels.
A novel reduced-complexity equalization strategy that improves
on previous Ungerboeck-based equalizers is proposed.

I. I NTRODUCTION

Intersymbol interference (ISI), introduced by a frequency
selective communication channel, or by filtering and pulse
shaping at the transmitter, requires equalization at the receiver.
Since finite ISI can be represented as a finite-state-machine
process and thus admits trellis representation, optimum equal-
ization can efficiently be realized using the Viterbi algorithm,
or, when soft symbol information is needed (for example, in
iterative schemes), the BCJR algorithm.

It is well known that the samples of a filter matched to
the receive signal pulse, applied as the receiver front-end,
provide sufficient statistics for optimum detection [2]. This
is referred to as the Ungerboeck model [1]. Alternatively, the
sampled matched filter output can be further processed by a
whitening filter, which yields the so-called Forney observation
model [2]. Trellis-based equalization can be formulated for
both observation models. The choice of the model only affects
the metric computation, but the final output of the Viterbi or
the BCJR equalizer is identical for both cases. Computational
complexity is determined by the number of trellis states. For
an ISI channel of memoryL and a modulation alphabet
M, the trellis has|M|L states with|M| branches per state.
Thus, for large constellations and/or ISI of high memory,
BCJR equalization becomes prohibitively complex. In such
scenarios, a suitable alternative are suboptimum algorithms
that achieve complexity reduction by effectively reducing the
trellis state space. The algorithms that belong to this class are,
e.g., the RS-BCJR [3], the T-BCJR [4], the M-BCJR [4] and
its improved version [5], and the recently proposed M*-BCJR
[6]. All these methods operate on the Forney model, which is
often preferred due to the whiteness of the noise.

This paper investigates the performance of reduced-trellis
equalizers that operate on the Ungerboeck model, and com-
pares it with the Forney model. To the best of the authors’

knowledge, there have not been such attempts so far, except
in the recent work by Hoeher et al. [7], where the comparison
of Ungerboeck and Forney models was conducted for reduced
complexity multi-user detectors. The conclusions of [7], how-
ever, do not translate to the reduced-trellis ISI equalization we
consider here. Among the previously mentioned reduced-trellis
methods, the M*-BCJR algorithm exhibits most advantages
and it is therefore chosen as the preferred method in this work.

II. SYSTEM MODEL

Consider signalss(t) generated by the linear modulation

s(t) =
∞∑

k=−∞
akq(t− kT ) (1)

where a = . . . , a−1, a0, a1, . . ., is a, possibly encoded, real-
valued transmit symbol sequence andq(t) is a real continuous
pulse. It is assumed thatq(t) is a unit energy pulse, that is,∫

q2(t)dt = 1, which represents the combined effect of the
transmit filter and the channel impulse response, generating
finite ISI. The signals(t) is corrupted by additive white
Gaussian noise (AWGN) and the received signal becomes
r(t) = s(t) + n(t). Forney showed [2] that a set of sufficient
statistics to estimatea from the linear modulation signalr(t)
is the sequence of the sampled matched filter outputs

xk =
∫ ∞

−∞
r(t)q(t− kT )dt. (2)

Inserting the expression forr(t) into (2) yields

xk =
L∑

l=−L

glak−l + ηk (3)

where

gl =
∫ ∞

−∞
q(t)q(t− lT )dt

ηk =
∫ ∞

−∞
n(t)q(t− kT )dt.

In (3) we assume that the autocorrelation coefficients are
gl = 0 for |l| > L. Eq. (3) is the so-called Ungerboeck
observation model, investigated in [1]. The correlation of the
noise samplesηk is E{ηkηk−l} = glN0/2.

By filtering x with a whitening filter, we obtain the sequence
y given by

yk =
L∑

l=0

flak−l + wk (4)



wheref is a causal ISI(L+1)-tap long sequence such thatg is
its autocorrelation sequence, andwk are independent Gaussian
noise samples with varianceσ2 = N0/2. This is the so-called
Forney observation model, also referred to as the whitened
matched filter (WMF) model. Due to the whiteness of the
noise at the output of the WMF, the Forney model is often
preferred to the Ungerboeck model. Since the whitening filter
is invertible,y also forms a set of sufficient statistics. Thus,
the two models have equivalent detection properties. There
are many possible whitening filters with the above mentioned
properties. The filter that results in a minimum-phase impulse
responsef is most suited for reduced complexity decoding
and will be used throughout. Note that for the Forney model
(4), at each timek, the observationyk is affected by the current
data symbolak and theL past symbols(ak−1, ..., ak−L).
In the Ungerboeck model (3), however, each observationxk

contains not only contributions from the pastL symbols, but
also from the futureL symbols. This fundamental difference
has a crucial effect on the behavior of reduced-complexity
trellis equalizers, as will be explained in Section VII.

III. O PTIMUM EQUALIZATION

The maximuma posteriori(MAP) sequenceequalizer outputs

â = arg max
a

p(a|x) = arg max
a

p(a|y)

wherep(a|x) ∝ p(x, a) = p(x|a)p(a). Assuming indepen-
dent data symbols, thea priori sequence probability factorizes
into p(a) =

∏
k p(ak). In the Forney observation model,

the received sequencey contains i.i.d. noise samples, which
allows factorization

p(y|a) =
∏

k

p(yk|a)

where
p(yk|a) ∝ exp

[
− 1

N0

(
yk −

L∑

l=0

flak−l

)2]
. (5)

Then, the Viterbi branch metric atkth trellis stage is propor-
tional to p(ak)p(yk|a).

In the Ungerboeck model, the observed matched-filter out-
put x is corrupted by colored noise, thus, the above factor-
ization does not hold. However,p(x|a) can be factorized [1],
which allows application of the Viterbi algorithm,

p(x|a) ∝
∏

k

ϕ(xk,a)

whereϕ(xk, a), however, is not a probability density function
(PDF) [8], and it is given by

ϕ(xk, a), exp

[
2

N0

(
xkak− g0

2
a2

k−
L∑

l=1

glakak−l

)]
. (6)

The MAP symbol equalizer outputs the most probable
symbol âk, for each time instantk,

âk = arg max
ak

p(ak|x) = arg max
ak

p(ak|y).

Additionally, it provides soft symbol reliabilities, expressed in
terms of logarithmica posterioriprobability (APP) ratios

L(ak) , log
p(ak = +1|x)
p(ak = −1|x)

= log

∑
a:ak=+1 p(a|x)∑
a:ak=−1 p(a|x)

(7)

where, for simplicity, we assume bipolar signalling. LetS+
k

andS−k denote sets of state pairs(sk, sk+1) in the underlying
trellis that correspond to thekth transmit symbol equal toak =
+1 and ak = −1, respectively. For time-invariant trellises,
time index can be omitted, that is,S−k = S− andS+

k = S+.
Then, the log-APP ratio (7) can be rewritten as

L(ak) = log

∑
(s,s′)∈S+ p(sk = s, sk+1 = s′, x)∑
(s,s′)∈S− p(sk = s, sk+1 = s′, x)

. (8)

The BCJR algorithm efficiently computes the log-APP ratios
using the factorization

p(sk = s, sk+1 = s′, x) = αk(s)γk(s, s′)βk+1(s′) (9)

whereαk(s) is the forward metric of the states at kth trellis
depth,βk+1(s′) is the backward metric of the states′ at depth
k +1, andγk(s, s′) is the metric of the branch connecting the
states(s, s′). The forward metric is computed recursively in a
forward trellis sweep according to

αk+1(s′) =
∑

s∈S
αk(s)γk(s, s′) (10)

with the initializationα0(0) = 1, andα0(s) = 0, for s 6= 0.
Similarly, the backward recursion starts at the end of the trellis
and proceeds towards the root of the trellis computing at each
depth

βk(s) =
∑

s′∈S
βk+1(s′)γk(s, s′). (11)

In the Forney observation model, the branch metric is

γk(s, s′) = p(s, yk|s′) = p(ak)p(yk|a)

where p(yk|a) is given by (5). The state metrics are the
probability functions αk(s) = p(s, y[0,k)), βk+1(s) =
p(y[k+1,K)|s), wherey[a,b) = (ya ya+1 ... yb−1).

For the Ungerboeck model, the probabilistic interpretation
of the BCJR metrics is no longer valid. However, it was shown
in [8] that the factorization (9) is also possible, with

γk(s, s′) = p(ak)ϕ(xk, a)

where ϕ(xk,a) is a function given by (6). This enables
the implementation of the BCJR algorithm with the same
recursions forαk(s), βk+1(s′) as before, cf. (10) and (11).

IV. T HE M*-BCJR ALGORITHM

The M*-BCJR algorithm [6], computes the L-values (7) in
the same manner as the BCJR algorithm; however, similarly
as in the M-BCJR [4], at each trellis stage in the forward
recursion onlyM states with the highest forward metric are
retained. Unlike in the M-BJCR, the remaining states are not
deleted, but rather merged with the surviving states. Merging
of two states implies that their forward metrics are summed
up and the branches of the inferior state are redirected into
the surviving state. Such a modified trellis is subsequently
used in the backward recursion. Although merging the states
slightly increases the complexity, it preserves the balance of
the branches that carry opposite symbols at each trellis depth,
and thus avoids problems when computing the L-values.



Since a state is anL-tuple (ak−1 ... ak−L) of the most
recentL symbols, then two states that differ int ≤ L ending
positions merge in the trellis aftert steps. If t is small, the
metric difference of the paths leading to the common state is
supposed not to be large [6]. IfSM andS6M denote the set of
theM best states and the set of the remaining states at a certain
depth, respectively, then a rule proposed in [6] is that a state
s′ ∈ S 6M is merged with such a states ∈ SM that differs in the
least numbert of the ending positions. In the next subsection,
we discuss realization of this merging rule in more detail and
also propose alternative merging strategies. Hereinafter, we
assume binary representation of the states (L log2(|M|) bits).

State Merging Strategies

1) If ⊕ denotes the bitwise x-or operator, then the zero
bits in s ⊕ s′ indicate the positions where the statess and
s′ coincide. The state merging can be efficiently realized in
the following way: for each states′ ∈ S 6M compute the values
s⊕s′ for all s ∈ SM ; find the states which yields the smallest
value ofs⊕ s′ (interpreted as a decimal number), and merge
s′ with s. We refer to this merging rule asR1. It ensures that
s′ ∈ S6M will be merged with the states ∈ SM that coincides
with s′ in the largest number of leading positions. In case of
a tie, a state with the smaller value ofs⊕ s′ is preferred.

2) A modified approach, which we denoteR2, resolves the
above mentioned cases of a tie, in a different way. As inR1, a
states′ ∈ S 6M is merged with the states ∈ SM with the largest
number of coinciding leading positions; however, if there is
more than one such state inSM , then we choose the one
with the smallest value of the forward metric. Good results
obtained with this merging strategy, indicate that the metric
values should be taken into account when merging the states.

3) Motivated by the previous observation, we propose
strategyR3, which is simply to mergeall the states fromS6M
with the states∈SM that has the smallest forward metric. Note
that this strategy is the simplest to implement, since it does
not require any additional computations or sorting procedures
during the merging process, unlike the previous two.

We have also tested replacing the ”smallest-metric” choice
in R2 andR3 by the ”largest metric”; however, this variant of
the algorithm fails completely. This suggests that, among the
chosenM states at each stage, the ”good” states with large
metric should be left intact, while the ”weak” states should be
used to ”collect” the discarded states fromS6M .

We have tested approachesR1, R2, andR3 with various
ISI patterns. The rulesR2 andR3 outperformR1, allowing
largest complexity reduction, that is, the smallestM , to reach
the specified bit error rate (BER). For a given value ofM , R2

yields the lowest BER, and it will therefore be used hereinafter.

V. RECEIVER TESTS

A. M*-BCJR Equalizer for Uncoded ISI

Consider first uncoded BPSK transmission over an ISI
channel of memoryL. The complexity of the BCJR equalizer
is of the order2L. In our tests, we have used two standard ISI
channel models, both causing severe ISI, and both of memory

L = 4: the minimum-phase equivalent of the Proakis-C
channel, with tapsf = (0.2448 0.4774 0.6868 0.4428 0.2106),
and the channelf = (

√
0.45

√
0.25

√
0.15

√
0.1

√
0.05) used

in [6] and [9]. All the results presented here are given for the
Proakis-C channel only, due to space limitations, with the note
that all the observations hold for the other channel as well. The
bit error rate performances of the M*-BCJR equalizers, based
on the two observation models, withM = 4 states, employing
the merging ruleR2, are shown in Figure 1. As a reference,
the performance of the BCJR equalizer (withM = 16 states)
is also shown. It is observed that the Forney-based M*-BCJR
follows the BCJR performance with a small loss, while the
Ungerboeck-based equalizer completely fails for the medium
and high signal-to-noise ratio (SNR) levels, suffering from a
high error floor. This error floor is eliminated only when the
number of preserved statesM approaches the full-complexity
valueM = 16. In the low SNR region, however, left from the
crossover point atEs/N0 ≈ 2.5 dB, the behavior is reversed
and the Ungerboeck model yields lower BER than the Forney
model. Further insights regarding these observations will be
provided in the next section.

B. Turbo Equalization for Coded ISI

Consider coded transmission over an ISI channel, as de-
picted in Figure 2. After coding and interleaving, the data
sequence is mapped to the symbol constellation and trans-
mitted over an ISI channel. This scheme can be viewed as
serially concatenated coding, where the mapper and the ISI
channel act as an inner encoder. Thus, the iterative principle
for equalization and decoding can be applied at the receiver,
cf. Figure 3, as first proposed in [9].

We have used the M*-BCJR equalizer as inner decoder
in the turbo scheme, with the channel parameters from the
previous subsection. A memory1 convolutional code with
the generator matrix(1 + D, 1) = (6, 4)8 was used as the
outer code, and the block length was1000 information bits.
The BER performance of the scheme is shown in Figure
4, for two choices ofM , with the benchmark given by the
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Fig. 1. Bit error rate performance of the Forney- and Ungerboeck-based
M*-BCJR equalizers withM = 4, for Proakis-C 5-tap ISI channel.
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turbo BCJR equalizer and the underlying outer code. For both
M = 4 and M = 6 we observe a crossover of the BER
curves corresponding to the Forney- and Ungerboeck-based
equalizers. The weaker outer code was chosen deliberately
in order to obtain crossover points in Figure 4 at moderate
BER. Note that the SNR range in Figure 4 corresponds to the
left-hand half of the equalizer’s operating range considered
in Figure 1, where the difference between the two models is
not as drastic as in the right-hand half. We conclude from
Figure 4 that the Ungerboeck-based M*-BCJR equalization is
preferred for very low SNRs, while the Forney model yields
lower BER for higher SNR. In other words, for a given SNR
in the high SNR region, a certain BER can be achieved with
the Forney model with lower complexity (smallerM ) than
with the Ungerboeck model.

VI. PERFORMANCEEVALUATION VIA MUTUAL

INFORMATION

To analyze the BER behavior of the uncoded and coded
systems tested above, we use the mutual informationIA =
I(a; L(a)) between the sequence of the L-valuesL(a) at the
output of the equalizer and the transmitted sequencea. Analyt-
ical computation ofIA is far too difficult in practice. Instead,
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Fig. 4. Performance of the Forney- and Ungerboeck-based M*-BCJR
equalizers in a turbo scheme, after 8 iterations, for Proakis-C 5-tap ISI
channel, and a memory1, rate1/2 outer convolutional code.

assuming independence ofak, we consider the marginal PDF
of the equalizer output,

f(l|α) , f(L(ak) = l|ak = α), (12)

and use it to computeI(a; L(a)). For ISI channels with bipo-
lar equiprobable inputs, the PDF satisfiesf(l|1) = f(−l|−1).
The mutual information can be computed by solving the
integral

IA = 1−
∫ ∞

−∞
f(l|1) log2(1 + e−l)dl. (13)

This integral is solved numerically, using the empirical esti-
mate of the marginal densityf(l|1): an observation sequence
y (or x) is formed from3×107 information bits, the equalizer
under investigation is then applied to this sequence (without
any a priori information) and a histogram of allL(ak) where
ak = 1 is used to estimatef(l|1).

Figure 5 illustrates the informationIA for the setups con-
sidered in Figures 1 and 4. It is clearly seen that for high SNR,
the mutual information obtained with the Ungerboeck model
is below that obtained with the Forney model. ForM = 4,
the Forney-based equalizer shows rather good performance in
the high SNR region, close to the BCJR, but the Ungerboeck-
based method performs poorly. For very low SNR, the Unger-
boeck model yields higherIA than the Forney model. The
crossover point between the Forney and Ungerboeck models in
Figure 5 corresponds rather well to the BER crossover points
in Figures 1 and 4. The BER in Figure 1 equalsBER =∫ 0

−∞ f(l|1)dl, while the mutual information is given by (13),
thus there cannot be an exact agreement between the crossover
points. ForM =4, the crossover in the iterative receiver test
occurs atEs/N0 =3.1 dB, while the mutual information chart
suggests that it should occur atEs/N0 =3.5 dB.

In the analysis of the iterative equalization process, it is not
sufficient to consider onlyIA. The mutual informationIA is
only involved in the first iteration; in subsequent iterations,
influence ofa priori information must be considered – this is
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Fig. 5. Mutual information between the output of the M*-BCJR algorithm
and the transmitted symbol sequence. Dashed curves correspond to the
Ungerboeck model and the solid ones to the Forney model.



the well known EXIT chart technique. However,IA predicts
the BER performance of the turbo equalizer quite well, which
will be explained in the following. IfTISI(x) denotes the EXIT
curve for the ISI channel, then there is the following analogy
betweenIA andTISI(x) : if a certain equalizer and ISI model
is better than another one, thenTISI(x) > T ′ISI(x), 0 ≤ x ≤ 1,
instead ofIA > I ′A for the uncoded case. The starting point of
TISI(x) is TISI(0) = IA, while the ending point is, as shown in
[10], TISI(1) = TMLC(0), where ’MLC’ denotes ’memoryless
channel’ (in fact,TMLC(0) = TMLC(x), 0 < x ≤ 1). Thus, the
endpoints of all EXIT curves are the same, and their starting
points are determined byIA. Therefore, whenIA > I ′A, it
is plausible thatTISI(x) > T ′ISI(x), 0 ≤ x ≤ 1 as well. This
explains the good match betweenIA and the BER performance
of the turbo equalization.

Although IA is much larger at higher SNR for the M*-
BCJR equalizer based on the Forney model than for the
one based on the Ungerboeck model, it is not possible to
conclude that in general the Forney-based equalization is
superior to the Ungerboeck-based one. The difference inIA

may be a consequence of the M*-BCJR algorithm itself,
which approximates L-valuesL(a) with reduced complexity.
There are two approximations involved: (i) the L-values are
computed with onlyM nonzero valuesαk(s) at every depth
k, and (ii) theseM nonzeroαk(s) are not computed with full
complexity, but they are themselves only approximations.

VII. G ENIE-A IDED EQUALIZERS

In order to eliminate approximations (ii) from the above
discussion, a genie-aided equalizer, denoted byG1, is consid-
ered next. A genie provides the exact values ofαk(s) and
βk(s) for all depthsk. The L-valuesL(ak) are computed
using theM largest valuesαk(s) only. This method serves
as a benchmark for equalizers that construct a reduced trellis
in the forward recursion based on the largestαk(s). The
mathematical formulation ofG1 is as follows: Defineδk as
the M th largest metricαk(s) at depthk, and

α̂k(s) ,
{

αk(s), αk(s) ≥ δk

0, αk(s) < δk.
(14)

The valuesL(ak) are obtained as in (8) but with

p(sk = s, sk+1 = s′, x) = α̂k(s)γk(s, s′)βk+1(s). (15)

Figure 6 shows the mutual information obtained with the
genie-aided equalizerG1, for the same parameters as in Figure
5. It is readily seen that, even withG1, the Ungerbeock model
still performs poorly in the high SNR region. Moreover, for a
givenM , the Forney curve lies strictly above the Ungerbeock
curve, which implies the conclusion that equalizers which
construct reduced trellis in the forward recursion (based on
the largestαk(s)), should operate on the Forney model.

Since the equalizerG1 does not perform well with the
Ungerboeck model, we next consider a more general class
of equalizers. These equalizers build two independent reduced
trellises: one in the forward recursion, based on the largestα-
metric, and one in the backward recursion, based on the largest
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Fig. 6. Outcome of the genie-aided equalizerG1. Dashed curves correspond
to the Ungerboeck model and the solid ones to the Forney model.

β-metric. The L-values are obtained from the union of the
two trellises (explained formally below). Such equalizers have
been investigated earlier in [5]. A genie-aided equalizerG2,
which is a benchmark for this class, is considered. The genie
provides all exactαk(s) andβk(s) values (computed with full
complexity). For each trellis stagek, defineα̂k(s) according
to (14) andβ̂k(s) similarly. The branches that are involved in
the computation ofL(ak) are those that have at least one
endpoint with nonzero metriĉαk(s) or β̂k(s). If a certain
branch has both endpoints with nonzeroα̂k(s) and β̂k(s),
its contribution to L(ak) becomesα̂k(s)γk(s, s′)β̂k+1(s).
If, however, a branch has only one nonzero endpoint, the
genie provides the necessary (”missing”)αk(s) or βk(s)
value, and the contribution becomesα̂k(s)γk(s, s′)βk+1(s) or
αk(s)γk(s, s′)β̂k+1(s). For practical equalizers of this type,
where genie knowledge is not available, the contribution of
such branches is not clearly defined. In [5] it was proposed
how to handle these cases in practice and compensate for the
”missing” endpoint metrics.

The tests show that the outcome of the equalizerG2 is, in
terms of the mutual informationIA, virtually identical to that
of G1, cf. Figure 6. Thus, this approach does not seem to
benefit from the Ungerboeck model either.

In order to understand and solve the weakness of equaliza-
tion strategies based on the Ungerboeck model, we take a step
back and consider the functionϕ(xk, a), given by (6), which
defines the BCJR branch metric. Assuming bipolar signaling
and a unit energy ISI response, (6) can be written as

ϕ(xk, a) = exp

{
2

N0

[
ak

(
xk −

L∑

l=1

glak−l

)
− 1

2

]}
. (16)

For an arbitrary state at depthk, theϕ values associated with
the outgoing branches forak =1 andak =−1 aree(2µ−1)/N0

and e(−2µ−1)/N0 , respectively, whereµ=xk −
∑L

l=1 glak−l.
The received signal at time instantk can be written as

xk = ãk + Σp + Σf + ηk, (17)



where ã is the actual transmitted symbol sequence;Σp and
Σf are the contributions toxk from past and future symbols.
The correct path in the trellis (corresponding to the transmitted
sequencẽa) passes through the states = (ãk−1 ... ãk−L) at
time point k. This implies that the sum

∑L
l=1 glak−l in (16)

is equal to the termΣp in (17). Thus,ϕ(xk, a) equals

ϕ(xk,a) = exp
{

2
N0

[
ak

(
ãk + Σf + ηk

)− 1
2

]}
. (18)

In the high SNR region, where the Ungerboeck model shows
poor performance, the approximationηk ≈ 0 holds. If the term
Σf was not present, the two outgoing branches, corresponding
to ak = ãk and ak = −ãk would have the metricϕ∝ e1/N0

andϕ∝e−1/N0 , respectively, and thus the correct path gets a
much larger metric value. But, when

∑L
l=1 gl > 1, which

corresponds to the closed eye diagram1, it is possible that
|Σf | > 1, which implies that̃ak+Σf can have the sign opposite
from ãk. This leads to the incorrect path (withak = −ãk)
having a larger metric at time stepk+1, than the correct path
(with ak = ãk). Note that this happens without any noise and
that there is a constant probability for this to occur. The correct
state at timek+1, corresponding toak = ãk, would then have
a small metricαk+1(s) and would likely be eliminated from
the list. Thus, the correct path in the trellis would be lost, and
cannot be recovered. Therefore, we propose to always include
both states (corresponding toak = ±1) into the set ofM
surviving states at timek + 1.

The method described above is formally expressed next.
Partition the state spaceS asS = {P1, ...,P2L−1}, where each
setPl holds a pair of states(s, s′) such that if(s̃, s) ∈ S+

for some statẽs ∈ S, then (s̃, s′) ∈ S−. Define αl
max,k ,

max{αk(s), αk(s′)}, (s, s′) ∈ Pl, and defineδk as the
(M/2)th largest metricαl

max,k at each depthk; M is assumed
to be an even integer. Then the survivor states are all states
that have nonzerôαk(s), where

α̂k(s) ,
{

αk(s), αl
max,k ≥ δk, s ∈ Pl

0, otherwise.
(19)

The outcome of this approach, denoted byG3, based on the
Ungerboeck model is shown in Figure 7. The performance of
G3 is much better than that ofG1 andG2. The method works
very well even with only two survivor states per depth.

The reduced trellis construction ofG3 can be incorporated
into the M*-BCJR to obtain a new practical equalizer. How-
ever, its performance is not as good as one would expect from
Figure 7. In fact, its mutual informationIA is below that of
the original M*-BCJR algorithm shown in Figure 5. How to
exploit the gain promised byG3 is a topic for future research.

VIII. S UMMARY AND CONCLUSIONS

In this paper we have compared the performance of reduced
complexity equalizers based on the Forney and the Unger-
boeck observation models. It was demonstrated that in the
very low SNR region, the Ungerboeck model is preferred for

1The standard notation for closed eye is2
∑L

l=1 gl >1.
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Fig. 7. Outcome of the genie-aided equalizerG3 based on the Ungerboeck
model.

practical equalizers. But, as the SNR increases, equalization
based on the Forney model performs remarkably better. To
investigate the ultimate performance of standard equalizers,
a genie-aided reduced-trellis equalizer was considered; it also
shows the weakness of Ungerboeck-based reduced-complexity
equalization for high SNR. A new genie-aided equalizer
is constructed for the Ungerboeck model, that succeeds in
reaching the performance of the Forney-based equalizer.
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