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Preface

This discussion of dimensional analysis was stimulated by my giving lectures at Lund

University. As is widely recognised, dimensional analysis can be regarded as a formal,

powerful tool, but there are aspects seen by some as a magic art. Monographs and text books

which discuss dimensional analysis tend to deal only with the formal aspects, but here these

receive less attention than some of those aspects which, while still having a formal aspect, are

too often seen at best as art, at worst as guesswork.

The examples taken for discussion and comment are all from the fire literature. There are no

new results but there are perhaps new ways of deriving of some topics that are discussed in

the literature but deserving further comments.
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 1 Introduction

The relevance and application of dimensional analysis to fire problems has been discussed in

general terms by Hottel [1] and by Williams [2]. They identified many dimensionless ratios

but the main problem is deciding which ones to omit: in any particular application they

usually make up a majority! Kanury [3] following Spalding [4] discussed a number of

particular problems, and recently Quintiere [5] has extended the discussion of the application

of dimensional analysis to fire problems.

The purpose of this paper is to take this exploration further, to discuss certain examples

critically and to comment on the question of the analysis of experimental data in the context

of dimensional analysis. However, we begin with a general discussion, emphasising some less

well publicised points.



2 Theory of dimensional analysis

Classical treatments of dimensional analysis include ”The Method of Dimensions” [6] a 1933

monograph by Professor A W Porter, who  described it as ”the first treatise (small though it

is) upon this subject to be published in Gt. Britain”, ”Dimensional Analysis and Theory of

Models” [7] by Professor H L Langhaar; and ”Dimensional Analysis and Scale Factors” [8]

by RC Pankhurst who gives over 30 references. We do not deal here with the many

formalities discussed by Langhaar, with Buckingham’s Theorem nor with any examples other

than those taken from studies of fire behaviour. This is a topic which draws heavily on heat

transfer and fluid dynamics, the historic developments of which owe much to dimensional

analysis.

2.1 Units, scaling and dimensional analysis

One must first distinguish between dimensionless numbers derived from physics and others

expressing some arithmetic relationship, e.g. a fraction or a percentage. Although

dimensionless, these are not to be confused with ratios such as the Reynolds number although

they  may appear together - as may an index in a power law formula expressing, e.g. the

relationship between heat transfer coefficient and velocity in turbulent flow. Consider

n
ReN .ANNu = (1)

Here

NNu is the Nusselt number a dimensionless heat transfer coefficient ”h”

NRe is the Reynolds number, which can be regarded as a dimensionless velocity

or as a dimensionless length or scale (see below)

A a dimensionless coefficient

and n an index also dimensionless.

NNu  and NRe have a physical basis, A and n an arithmetic one and they depend on the

particular problem being discussed, e.g. a flat plate or a pipe. NNu is defined by 
hD

K
. D is a

characteristic dimension (usually the same as in the definition of NRe which is UD/ν.



2.1.1 The combination of dimensionless variables

It is possible to combine dimensionless numbers to maximize the convenience to the user or

the analyst.

Here, we could use the quotient 
N

N
Nu

Re

 as the dependent variable. This removes D and

produces a new and useful dimensionless number

N

N

h

KU
Nu

Re

= ν

or more usually the quotient of this and the ratio of the terms controlling molecular processes,

thermal diffisivity i.e. ”k”  divided by the kinematic viscosity ”]” (Prandtl No) i.e.

Number)Stanton  (a 
Re p

Nu

cU

hk

N

N

ρυ
=

Consider the classic conduction problem of a semi-infinite solid at uniform temperature with

thermal conductivity K, density � and specific heat cp (all constant) heated on the surface in

such a way that the surface is instantaneously raised by a steady value θo. We seek the

temperature rise � at a depth x at time t; a familiar text book problem. The first question to

ask is whether reference is made to all the necessary physical quantities. This requires a

physical (or chemical) judgement. This is no less a judgement than is any analysis requiring

confirmation by experiment. We assume that we have concluded that

( ) ( )pcKtxtx ,,,,,Function  , o ρθθ =

We now turn to a dimensional analysis of a familiar problem which can be described by a

differential equation, initial and boundary conditions.

2.1.2 Differential equations, heat and energy

The conventional procedure consequent on writing equation (2) is to put indices on each term,

and to equate the powers of the basic independent dimension, e.g. mass M, length L, time T

and in this example temperature and heat. Leaving aside philosophical questions, we must in



an equation have the same units and dimensions on each side. Heat is energy, and some

authors advocate not using the term ”heat”, but to expose its true nature by referring to it as

energy - or perhaps thermal energy. This, in practice, is not consistent with the fact that often

in dimensional analysis in fire matters we must treat heat as a separate dimension ”H” not as

energy which in M, L, T terms is ML T2 2 .

Why?

Briefly, because if - but only if - there is no exchange between heat and mechanical energy

one treats heat as ML T2 2  so that K has dimensions

ML

T3θ
 (2)

one has from equation

θ θ ργ ε  a  x t K  co
a b

p
f∆ (3)

for the power of temperature

1= Ι-−-f (4)

the power of mass

0=−+∈ (5)

the power of length

0 3 2= + − +β ε∆ f (6)

and of time 0 3 2= − −γ ∆ f (7)

Hence

f

p

o

o xc

Kt

x

tK
−−
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4
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ρρ
θα

θ
θ

α

(8)

α and f are ”unknown” but another pair could be chosen and the two sets of terms exchanged

for any other pair formed by combination of the two in equation (8). The latter group of

quantities is the familiar Fourier number but 
4

3

x

tK o

ρ
θ

 or any term containing θ o  formed from

this and the Fourier number e.g. c t xp oθ 2 2  is included only if ML T2 2 is used for heat.

Putting heat as ML2/T2 in this context causes confusion unless the exchange between

mechanical and thermal energy is a significant contribution to the process of heat transfer. If

we start from the supposedly exact differential equation, we have



ρ δθ
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δ

c
t

K
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2

2 (9)

with the boundary conditions 
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These can be rearranged as
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(10)

θ θ
θ θ

o = =0 0
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 at t    x > 0

 =  at t > 0  x = 0o

It formally follows that













2
function  = 

xc

Kt

p
o ρ

θθ (11)

This can be confirmed by inserting equation (11) into equation (10), from which one obtains

an equation involving F (the function) and its first and second differentials in terms only of

Z Kt c xp= ρ 2 .

This function is not a power law but it can be expressed as a series of powers of 
Kt

c xpρ 2 .

In general, one can obtain dimensionless groups from the complete set of equations (not

necessarily differential) and, where appropriate, the initial and boundary correlations. One

part of a chapter on dimensional analysis in a text by a well known specialist does not refer to

the initial and boundary conditions and is not as helpful as the author intended!

x defines a position and



Kt

cpρ
 is a distance that is the ”scale” of the thermal penetration.

The temperature distribution is continuous and a very simple model of the thermal process

shows 
Kt

cpρ
is a measure of the penetration. Thus if δ is the effective penetration then

K oθ δ is a measure of the rate at which heat enters the solid. The heat content is thus of order

( )K toθ δ  and this must approximately be 
ρ θ δcp o

2
. Hence δ

ρ
= Kt

cp

, neglecting a

coefficient of order 1. We must expect

θ
θ ρo p

Kt

c
→ >>0 for x .

What happens if the solid is not semi-infinite but is a slab of thickness L? Provisionally we

take a simple condition at x=L, e.g. θ=0. Clearly one can define the position by 
x

L
to produce

another variable.

i.e. 
θ
θ ρo x

x

L
 =  function 

Kt

cp
2 ,













(12)

or 











L

x

Lo

,
c

Kt
function  = 

2
pρθ

θ
(13)

More formally one can multiply both sides of equation (10) by L2 and thereby define 
Kt

c Lpρ 2

and ( )x L 2  as dimensionless variables: this leads directly to equation (13).

2.2 Physical meaning and implications

We have already illustrated by a simple model the physical and geometric significance of the

ratios 
Kt

c xpρ 2  and 
Kt

c Lpρ 2  in a thermal conditions problems.



Clearly if 
x

L
<< 1 we cannot expect the thermal wave to have reached the rear surface. Hence,

L is not then relevant and must be removed.

i. e. 
Kt

c L

x

L xpρ ρ2

2

2 2÷  i.e.  
Kt

cp

 is the relevant variable.

After a long heating time the ”steady state” solution does not depend on ”t” if there is cooling

but the existence of a ”steady state” depends on the condition at the second surface as well as

on x/L. Order of magnitude discussions of terms in differential equations so as to simplify

them was commonplace before CFD permitted numerical solutions of complex equations with

or without sensitivity analyses!

In this connection one recognises that the physical significance of a Reynolds number is that

of a ratio of a characteristic inertial force ρU2 to a characteristic viscous force µU ∆  where

U/∆ is representative of the gradient. This ratio is 
U U∆ ∆
µ ρ ν

=



 and we ought to expect that if

the terms are representative of the forces the importance of this Reynolds number depends on

whether it is << 1  or >> 1.

The reason for critical Reynolds numbers which defines the transition from laminar to

turbulent flow being of order 103 →104 is that the length usually employed in Reynolds

numbers is a physical length, e. g. a distance from a leading edge or diameter D, whilst ∆ is

physically a boundary layer often being orders of magnitude smaller than D.

In its various forms, the Froude number NFr is the basis of much modelling in fire studies. It is

defined as the ratio of inertial to buoyancy forces and a common definition is

ρU

g HB

2

∆ρ

where ∆ρ is the difference in density producing the buoyancy force, ρU2 expresses the inertial

force and HB is, in principle a height over which there is a buoyancy effect. Often ∆ρ ρ

appears as θ To  which expresses the buoyancy caused by thermal expansion. Occasionally

one sees U g H TB oθ the square root of this expression for Froude number.



It is important not to treat this as simply the square root of the former because it is not only

the square root of the ratio of forces but, as a ratio of velocities, it can be related to a ratio of

volumetric quantities, which in turn is related to air/fuel ratios and entrainment. This

arithmetic translation is physically ambiguous.

Anticipating a discussion yet to come below, one notes that physically g is associated with a

vertical height; its appearance with a horizontal distance must require an answer to the

question it raises. In brief, the answer anticipated is akin to that involved in the Reynolds

number where the physically important dependent quantity is replaced by an independent

geometric parameter.

A third point: if a temperature rise, say, is being correlated with a Froude number, the

temperature rise in the buoyancy may be omitted when correlating data with a formula based

only on dimensionless variable: if

y = F1 (x/y)

then y = F2 (x)



3. Other examples

3.1 Self-heating and thermal explosion

The classical Semenov [9] self-heating theory equates the heat loss from the surface ‘S’ of a

uniformly heated object, i.e.

h S(T - To)

to the rate of generation of heat V ′′′�q  where ′′′�q  refers to the heat generation per unit volume

throughout the volume V by a zero order reaction obeying the Arrhenius Law

′′′q  = Q f ρ-E/RT (14)

where Q is the heat release for unit mass.

Hence hS(T - To) = Q f ρ V e-E/RT (15)

Obviously RT/E is a dimensionless temperature but this is not always the most useful one. We

discuss the behaviour of the quantity (T - To) e
+E/RT in the above equation.

Equation (15) can be rewritten as

( ) /

( )

T T e e
QfV

hSo
E RTo

E T To
TTo− =

− −

 

i.e. θ

θ

θ
e

QfV

hS
e

E

RT

RTo
E E RTo

o

−
+ −= ⋅

1

2
/

where θ = −E

RT
T T

o
o2 ( )

This dimensionless temperature difference becomes important for the low values of RTo/E

typical in many problems. θ
θ θ

e
RTo
E

− 





/ 1 + 
has a critical value



θ = − = <<E

RT
T T for

RT

Eo
o

o
2 1 1( )

hSRTo

E
e Q fVe E RTo

2

θ ρθ− −= /

The ”error” is a term of order e RTo E−θ 2 / , a few per cent.

Because θ e-θ has a maximum value at θ = 1 the Semenov criterion for the existence of a

stable solution is

EQ fV

RT Sh
e

eo

E RoToρ
2

1− </

Frank-Kamenetskii [10] initially allowed for gradients within the material (assumed rigid) but

assumed an infinite value for h. This results in h being replaced by α 
K S

V
 where α is 0(1).

i.e. 
EQ fV

RT KS
e

o

E RToρ δ
2

2 2
− </ (16)

where δ is 0(1).

δ depends on the geometry and shape of the material, and there is an extensive mathematical

literature on this topic. It follows from dimensional analysis that for any 
hV

KS
 uniform

boundary conditions the equilibrium conditions are given by

EQ f

RT

V

S
e function

hV

KSo

E RToρ
2

2




 = 





− / (17)

and, from the preceding arguments, that for

x → 0, function (x) ∝ x

and for x → ∞, function (x) → constant,

which depends on the shape of the body.



Q ρ f V e-E/RTo is characteristic of the heat release whilst 
hS

K
 

RT

E
o
2

 is characteristic of the heat

loss. 
hV

KS
 is proportional to the ratio of the external to the internal conductance. If there is no

solution to the equation because

E

RT

Q f

K

V

S
e imum of function

hV

KSo

E RTo
2

2ρ 



 > 





− / max

there can be no equilibrium: the material heats up indefinitely unless some limiting process is

introduced, e.g. reactant consumption or diffusion. Consider again the approximation that led

to the introduction of the alternative dimensionless temperature -

e e eE RT E RTo

E T To
RTo− −

−

≈/ /

( )
2

This approximation can be used even when there are large temperature differences

PROVIDED To is chosen not as an ambient temperature but as some datum near to the

maximum temperature, e.g. as T1 when a slab is heated on one side from To to T1 and the

temperature inside the solid is able to rise only slightly above T1. The fractional error in the

role of chemical heating on the cool side of the slab is enormous but the actual and the

approximate expressions for the heat generation in the cool region are such that both may be

negligible in the heat balance.

The choice of dimensionless temperature or temperature rise is helped by a physical analysis.

3.2 Ignition (external heating)

Ignition studies after WW2 concentrated on ignition by radiation and it was recognised that

cellulosic materials ignited because they produced flammable decomposition products which

could be ignited in air by an auxiliary ignition source e.g. a spark or a small flame. Such fuel

could only be produced by thermal heating causing decomposition.

The incident heat flux in effect raises the surface temperature by conventional heat transfer

processes until the temperature is high enough for any chemical heating to cause thermal



instability; subsequent chemical decomposition produces flammable gaseous products rapidly

enough.

Dimensional analysis of the problem arose naturally because the main component of the

induction period, i.e. the delay time, was the thermal capacity of the material. Sauer [11], in

the USA, developed the procedure which was exploited by Martin [12] and by Simms [13].*

Martin and his colleagues omitted surface cooling as a secondary factor. This was a

simplification and was perhaps appropriate so long as one is concerned with ignition times

under severe exposure. If one is concerned with whether ignition occurs - a matter of

importance in civil defence, then (and now too, to judge by the attention paid to evaluating a

critical condition in opposed flow spread of flame) - cooling is important. Simms included

cooling but treated it as a Newtonian linear simplification (see Appendix 1).

In general the thermal conduction solution is

h x

q
function

x

L

Kt

c L

h

K c

K

c Lp p p

θ
ρ

τ
ρ

τ
ρ

( )
, , ,

′′
=













2

2

2 (18)

where L is the slab thickness

q”  a characteristic incident flux

and τ a time controlling the variation of the imposed heat flux with time (assuming the

initial values of heat flux and temperatures are zero)

For θ = θig - the effective ignition temperature rise at x = 0,

t
function

h

K c

q

h

k

L
ig

p igτ
τ

ρ θ
τ= ′′









2

2, ,

where k = K/ρCp

For a thick solid L >>  
Kt

cpρ
 and L is removable from equation 18.

i.e. 
h

q
function

t h

K c
ig

p

θ
τ

τ
ρ′′

=








,

2

                                                          
* There is much contemporary discussion of ignition and critical temperature which could benefit from a reading

of early literature.



If there is no τ as when q″ = q″s = constant

then 
t K c

h
function

q

h

hL

K
ig p s

ig

ρ
θ2 = ′′







, (19)

and if additionally cooling is negligible (i.e. h is omitted) and the solid is thick (L is omitted).

t K c

q
cons tig p igρ θ 2

2′′
= tan

viz. the conventional square law.

Sauer & Simms also introduced a chemical component using the dimensionless temperature

RT

E
 and a nominal chemical heat release Qfρ  kW/m3.

This leads to the inclusion of dimensionless terms, one of which is similar to the δ in self

heating theory (see above). This approach seems to depend too much on chemical terms of

uncertain value and form to be practical and of value.

Kanury [14] describes how Martin used equation [19] in his ignition studies

Fig. 1 ′ = ′′
y

q t

c Lpρ

x
q L
K

' = ′′



y′ and x′ are not dimensionless. They would be if divided by the supposedly constant ignition

temperature rise. This procedure was used to find θig from experimental data from which Fig.

1 was derived.

Fig. 2 Theoretical correlation

y = y′/θig

x = x′/θig

Neglecting cooling one has for thin  materials in Fig. 2

′′ →q L

K
0  i e y → 1

so that for
′′ →q L

K
0  and B the Biot N

hL

Ki - umber in Fig.  2,  equal to = 0

one has 
′′

=
q t

c L
ig

p igρ θ
1

For a thick solid, theory shows as in Fig. 2

′′
= ′′







 =

−
q t

c L
A

q L

K
where Aig

p ig igρ θ θ
π

1

4/

From the data underlying Fig. 1

θ θig igie K2 61 2 10 1000= ⋅ = °.



The reason why θig appears to be over 1000 o(C or F?) is unclear. 600K above ambient was

what Martin actually reported. Simms gave a lower figure 500°C-550°C claiming he had

made various corrections which were essential to analysing experimental data. Leaving aside

the arithmetic we have demonstrated how the variables can be presented in various ways and

used to estimate a parameter not measured directly.

3.3 Vertical plumes

Axi-symmetric, and to a lesser extent two-dimensional plumes, have received considerable

attention in the fluid mechanics and fire literature.

Early studies were based on total similarity at all horizontal sections above the source. Early

works, e.g. that by Sir Geoffrey Taylor [15] who developed the work of Schmidt [16], Rouse,

Yih and Hyphreys [17] and Yokoi [18] whose study of plumes emerging from openings is a

classic, assumed an eddy diffusivity to determine the bell-shaped cross sectional distribution.

After the introduction of the alternative presumption - local similarity - with a constant

entrainment coefficient - most analyses were still based on assumed horizontal distributions of

velocity and temperature, Gaussian or ‘Top Hat’.

However, the only independent variables considered in any of these developments were -

(a) initial mass and momentum flux (or one of these and orifice size),

(b) thermal or buoyancy constancy.*

The dependent variables which were chosen were the plume width, velocity and temperature

rise. Turbulent eddy diffusivities were described in term of these variables. Entrainment

coefficients are usually taken as constant, but are otherwise (19) dependent on temperature

rise, itself a dependent variable.

                                                          
*  The following arguments if applied to plumes with radiation loss, become sufficiently complicated to warrant

resorting to CFD calculations.



Dimensional analysis does not have to make assumptions about Gaussian or Top Hat

distributions, nor about the constancy of the entrainment coefficient E.  These are internal

dependent variables.

For an axi-symmetric plume which remains a plume rising in a still and uniform atmosphere.

One presupposes one is considering a cross section, bounded by a region or regions with no

flow parallel to the plume axis and over which one can define a mass flow ”M”.  One obtains

for the mass flow M at a height Z

MT c

Q

c T

gb

gQ

c T

M

b k
o p

p o

o

o p o

o

o o

=












































 function
gZ

gQ
 
M T c

Q
 

5 3

o

o o p

ρ ρ

µ
µ

ρ2 3

5 3

2 3, , , , (20)

where Q is the constant convected heat flux and Mo is the initial mass flow. Molecular

diffusion is included as it is necessarily implied when allowance is made for differing velocity

and temperature rise profiles. The suffix o denotes initial and ambient conditions.

If detailed analysis is based on the balances of mass flow, momentum force and buoyancy

consideration etc. then for a constant entrainment coefficient and constant and identical

shapes of velocity and temperature distributions across the plume one obtains in the far field

where the initial conditions are no longer an influence

MT c

Q
gZ

gQ

c T
o p

o p o

α
ρ

5 3

2 3






















i.e. M α g Q Z1 3 1 3 5 3

i.e. the conventional proportionality with M proportional to Q1/3 and Z5/3. The same general

result is equation (20) will be true for a plume with a given inclined source, the angle being

dimensionless. However in the discussion of an inclined plume the velocity and temperature

vary about a trajectory defined by their peak values. The same arguments - and assumptions

as lead to equation (20) lead to an equation for the trajectory

Z

S

x M T c

Q

M

b k

b

S
o o p

o
o

o
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 function 

S
, , ,ψ

µ
µ
ρ



where  S
Q

c T go p o

=










ρ

2 5

 ψo is the inclination of the source and x the horizontal projection of the trajectory. This

discussion may seem trivial, adding nothing to the conventional and more detailed theories.

This is not so. Experimental data M(Z⋅Q) is better analysed as 
M

Q
 versus Z Q5 3 2 3  than as M

versus Z Q5 3 1 3 if only because the near field data are weighted quite differently. Similar

arguments apply to line plumes.

3.3.1 The Bent over Plume

Line sources with a constant entrainment velocity in still air have a constant vertical velocity

in the far field

ω α
ρff

g p o

gQ

c T
′









1 3

where Q  ́is the heat release per unit width of the plume.

It is presumed that the two dimensional line plume can be bent over by a side wind in excess

of the entrainment velocity (15).

Dimensional analysis for such a turbulent plume in a turbulent side wind U supports a

solution

g

T Z

gx U

o

c

c c

θ α ω
ω ω ω

2

2 function 
gZ
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, (21i)

where ( )ω ρc o p ogQ c T= ′

For the far field of a weak plume there is a  maximum θm(x) as Z varies from 0 to 00 so that

g

T x

gx Um

o

c

c c

θ α ω
ω ω

2

2function ,






 (21ii)



If we write this as a power law and identify the length of flame � f by the x at which θm(x) is a

particular θf defining the flame length, where θm is a constant, we obtain

( )gl
Uf

c
c

a

ω
α ω

2 (22)

where a is an unknown index. The power law cannot apply fo all (U/ωc): for a vertical flame a

is zero and the left hand side is a constant and the well known relationships obtains

( )gl gQ c Tf g p o  α ρ′
2 3

For flow fully dependent on forced convection ”g” must be absent ( )a = −1  so that

gl

U
f

c

c

ω
α ω

2    

i.e. l
Q

c Tf
g p o

α
ρ

′ ⋅  U (22i)

a linear relationship between lf and ′Q . In a mixed system we expect ”a” to lie between 0 and

-1.0 depending on the value of U/ωc.

A set of experiments on small flames (19) from cribs were correlated by

l Q af    Uα ′ = −−0 74 0 21 0 21. . ( . )

Whether a weak plume relationship can be used with a flame temperature hypothesis - as it

can for vertical flames - may be questioned but the above discussion suggests that the linear

approximation between lf and Q´ may be less of an approximation for forced than for natural

connections.



3.4 Flames

Before any work was done on the size of flames from fires, there was a considerable literature

on forced jet flames (see Fig. 3) because of their industrial relevance.

Fig. 3 Turbulent jet (momentum driven)

The essence of the physical theory for a given fuel, is as follows. The velocity of the flow of

oxygenated air into the flame is given by -

∈ ∈Y

d

Y

l
ox ox

f

α

where ∈ is the turbulent diffusivity

Yox the oxygen concentration

and d is a mean radial distance proportional to

lf the flame height

Only because lf/D is generally large (see Fig. 3) does � f determine the mean gradient for the

diffusion. ∈ is dependent on a length and a velocity and there are no others in turbulent flow

than respectively lf and W.



Buoyancy forces are considered negligible or secondary. The fuel flow Qf is proportional to

WD2 so that assuming (i) a particular degree of combustion independent of Qf and lf and (ii)

that the flame surface over which there was diffusion is proportional to l f
2  then withd fα l

l Wl
Y

lf f
ox

f

2 2





















α W D

i.e. Y lox f
2 2α W D

i.e. for a given Yox and a given fuel lfαD.

Note that

∈
l

a W
f

in essence describes the entrainment velocity as proportional to the flow velocity.

The result 
l

D
f   constant= is the classic result for turbulent jets (20), detailed combustion and

flow analysis determining the constant. It is interesting to compare this to laminar jets where

∈ is replaced by a viscosity µ. Then

µ αY

l
lox

f
f fuel⋅ 2  Q

I.e. lf α Q the classic result for laminar jets.

Introducing buoyancy instead of momentum simply replaces (21) W by gl (the ratio

∆ρ ρ the fractional density deficiency being assumed nearly constant in the flame zone).

Hence

           L 

 l   Q

∈

∈

α

α

gl

Y

d

f

ox
f f
2

and           d α lf

so that           lf α Q2 5



More generally (because the above is based on a conical combustion zone and a surface of

arbitrary shape) the surface area is written as ( )l f
2 function l Df  where D is the base

dimension, so that

l
D

gl

l
Qf

f

f
f

2 ⋅ 





× function 
l f α

i.e.
l

D

Q

D gl
f f

f

2

2

2

2⋅ 





 function 
l

D
f α

NB, g cannot physically be combined with anything except a vertical dimension but algebraic

manipulation of the above gives

( )l

D
gDf  =  function Q Df

2

Note we have treated Qf as volume per sec and the ratio Q D gDf
2 ⋅  is dimensionless. To

interpret Q as heat is appropriate beyond the end of the process of combustion  but not within

the combustion zone.

Plume and flame theories can be integrated because

( )ρ α αfuel f heatQ Q  mass of air

and the independent variable is then

Q

c T D gD
heat

p oρ 2

Above we have quoted the plume theory result for axi-symmetric plumes.

M Zfα  Q1 3 5 3

I.e. θ α αmean  
Q

M
   Q  Zf

f
2 3 -5 3

Yokoi used this and similar plume formulae to define flame length lf by the locus of a

particular value of θmean i.e.

θ θflame mean
2 3

f
5 3 a   Q  l−

l  a Qf g
2 5



Thomas and Karlsson [22] have recently used the same argument to augment a few direct

measurements of flame length by plume data for flow under the ceiling of a well ventilated

compartment.

3.5 Flame spread

3.5.1 Opposed flow flame spread

There are few points at which dimensional analysis is helpful in analysing problems in flame

spread, but at least one is fundamental. If a plane heat source at constant temperature θo

moves at velocity υa through an infinite medium of constant thermal properties at a lower

uniform temperature, then the temperature rise in the medium a distance α ahead of the source

is

θ θ
θ

= ≥
= <

−
o

vax kg

o

e     x 0

                   x 0

There is conduction ahead of the source, its value at the source being -

− 



 =

=
K

d

dx
c vg

x
g p a o

θ ρ θ
0

  

which is the heat energy required to raise the medium to the temperature of the source.

Conduction occurs even though the right hand side does not contain Kg. If there was no

conduction there could not be a gradient, only a step change in temperature. There is at best

some ambiguity in the literature on this topic. It is to be noted that there is no fixed dimension

in this idealisation of the problem other than kg/νa the characteristic scale length in a moving

medium. This is also necessarily the value for a semi-infinite plane source moving through a

semi-infinite medium on one side of a cold surface (see Fig. 5). The only distance in the

statement of this problem is k vg a . When Parker [23] dealt with flame spread on a thin

material (see Fig. 4) he wrote the heat flux from the flame Qfl to the pyrolysing surface at θp

as



( )
q

K
f

g fl p" =
−θ θ

δ

whilst the heating of the thin material of thickness D requires

q c VDf s p p
" ∆ = ρ θ

(24)

i. e.
( )K

c
DV

g fl p

s p

θ θ
ρ σ

−
=

∆

(25)

∆ and δ were measured by Parker. k vg a is the scale distance in all directions  including that

at right angles to the motion in those situations e.g. as in Fig. 5 where there is no temperature

gradient on the cold boundary. This of course presumes that the cold boundary is on a body of

effectively infinite conductivity or capacity. If the movement of the thin material is assumed

to have no influence on the gas phase nearby then the dimensionless ratio of ∆ to δ must be

considered as independent of υa. Each might depend on the combustion kinetics (not

considered by simple thermal models but a factor defining both ∆ and δ and perhaps their

ratio).

Fig. 4 Downward spread of flame on a thin sheet moving front (heat source)



Fig. 5 A uniform heat source moving over a cold surface

The lack of dependence of V on va is qualified. va cannot be zero: heat transfer into a

stationary semi-infinite gas is like that into a solid: there is no steady state!

Fig. 4 and equations (22) and (25) imply ∆ is at right angles to δ and one can be puzzled by

the references in the literature to δ being associated with forward conduction but this

confusion arises because k vg a is the characteristic dimension in all directions: there is no

other on the thermally thin material. In the discussion of spread at velocity V on thick solids,

D is replaced by  
π
2

k

V
s∆  and equation (24) gives

( )q K c Vfl s p p p o
" ∆ = −π ρ θ θ

2

i.e.
( )

V
q

K c

fl

s s p p o

=
−

4
2

2π ρ θ θ

" ∆

qfl
" ∆  varies from one material to another but is taken as independent1 of V. That qfl

" ∆ is a

constant for a material is a hypothesis to the justified and tested by experiment!

                                                          
1 Tests of materials measure V for various initial conditions as assessed by a θo a determined by external radiation varying

along the length of a heated specimen. This tests the hypothesis that qfl
" ∆ is a constant.



Whilst the dimension ∆ is forward in the sense of being parallel to the spread the relevant

conduction into the solid is at right angles to this. Removing qfl
"  gives

( )
( )

V
K

K c

g fl p

s s s p o

=
−

−

4
2 2

2 2π
θ θ

δ ρ θ θ
 

∆

and de Ris´s [24] result implies 
∆
δ

α υ
2

a

gk

giving the result sometimes seen
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ρ
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2

Were we to include the effects of finite kinetics we could, of course, readily construct a

dimensionless ratio by incorporating 
kg

aυ
 into the dimensionless chemical heat release terms

(see above) including

E
RT

Q f

K
e

k

fl

g

g

E RT k

a

fl

2

2′′′ 





−ρ

υ

where the reaction rate temperature datum is taken at a nominal flame temperature. One

would then be able to discuss extinction.

3.5.2 Concurrent flame spread

3.5.2.1 Flame spread and the Delichatsios-Saito length scale

The essence of  a quasi-steady thermal theory of concurrent flame spread is (25)

dX

dt

X Xp fl p

ig

=
−

τ
(26)

where Xp is the distance advanced by the pyrolysis zone (Fig. 6),

Xfl is the distance advanced by the flame lip



t is time

and tig is the time for ignition under the exposure to flame

Fig. 6 Flame spread up a thick solid

One can define tig by

θ θ
πp o

fl ig

s

q kt

K
− = 2

"

Likewise the advance of the locus of the burnt out front (25) is given by

dX

dt

X X

t
R p R

B

=
−

(27)

where XR is the locus of burn out (25) and tB is the time between ignition and burn out. We

have the flame length relationship (26)

( ) ( )X X K Q q t t
dX

dt
dt q t Xfl R n B fl p

p

p
p fl poo

t
n

− = + − +











∫' " " (28)

where Kn is a constant (known from experiments)

Xpo is Xp at time zero.

and QB
'  is the burner strength KW/m

and n an index, usually 2/3 or unity.

Complete algebraic solutions (27) are available only when n = 1



For the flames in which Xfl - Xp >> Xp -  XR we expect ”n” to be 2/3 for natural convection

and vertical spread. When Xfl - Xp << Xp - XR there are reasons for supposing the same

relationship holds but there are few data for this condition. Section 3.5.2.1 gives some

justification for the linear approximation n = 1.

Kn is a constant depending on the value of n. For n = 1 the value is roughly 0.01 m2/Kw.

It is acknowledged that the approximation n = 1 is in one respect fundamentally different

from n ≠ 1 even if it is close to unity. Care is necessary in the interpretation of theory. If n = 1

indefinite spread is one possibility if n ≠ 1 even if is close to 1 but <1, spread is always

limited.

The heat release rate per unit area produced by pyrolysis from the fuel is characterised by an

initial value Qo
"  which is proportional to the mass rate per unit area of pyrolysis Mo

"  i e

Q qMo o
" "=  is a characteristic pyrolysis rate eg q”net/∆Hv. q”net is an effectively  mean net

heat transfer rate from the flame and ∆Hv is a characteristic heat of pyrolysis. For non-

charring materials one has

Q q Hc Hvnet
" "= ∆ ∆

Dimensional analysis permits us to write

�

� �

fl

g p o

poQ

c T gl

X
 =  function 

"
,

ρ








  (29)

where � is a dimension characteristic of the fire.

Delichatsios and Saito [28] showed that

� =








q Hc Hv

c T g
net

g p o

" ∆ ∆
ρ

2

(30)

Hence ( )� � �fl po

n
M x= (31)



where M is here a dimensionless constant.

The development of theory using the 2/3 power instead of the linear law defines a

dimensionless parameter (see Appendix 2)

( ) ( )E Q t t K qmB ig B o= +' "1
3

2 3
2 3

(32)

which with t/tig defines the behaviour of flame on a thick solid with the 2/3 power flame

length law.

It can be shown that

( ) ( )E Q t tB ig B B= +' 1
3 3 2
� �

where ( )�B B po g p oQ x c T g= ' ρ
2

is analogous to � but is characteristic of the burner and the initial pyrolysis length.

In summary, whichever power law applies to flame length we have, following Delichatsios

and Saito,

X X t

t

t

t
p po ig

B ig
B

� �
� �  function =









, , ,

If the width of the spreading zone was finite and of width D then D is a dimension

characteristic of the source and � D  is an additional ratio on the right hand side.

If there is preheating ahead of the flame it is represented by an additional distance which can

be expressed to a first approximation as having two components - one a constant and another

proportional to the appropriate scale length. This can be either Xpo or � . Since their ratio is

already included in the set of independent ratios in the functional equation we can write the

heating as taking place over the distance m+n (Xfl - Xp) instead of over Xfl - Xp, so introducing

two additional terms 
m

�
 and n.



The form of this functional relation is, in principle, independent of geometry, e.g. a corner,

unless this is characterised by a relevant dimension ”D”.

3.6. The upper gas layer temperature

The McCaffrey, Quintiere, Harkleroad (MQH) regression [29]

θ α
ρ ρT

Q

c T A gH

hA

c A gHo g p o v

m

T

g p v

n




















 (33)

determines a mean temperature of the upper gas layer in terms of the rate of heat release and

various room parameters where the symbols are as defined by McCaffrey, Quintiere and

Harkleroad and m is given as 2/3 and n as -1/3.

This was used to correlate mean temperatures in upper gas layers in rooms with length � ,

breadth ”b” and height ”s” with a vertical opening of area Av, and height H. In this situation

one assumes that θ depends on To, Q, ρg, cp, AT, Av, g, H, h, and one presumes on � , s and b as

well. We include To in the set of variables because physical arguments recognise the role of

buoyancy for which we include ∆ρ ρ  i e θ/To.

The ratios 
�

s

b

s

H

s

H

A

A

Av

T

v

, , , ,    
2

 are purely geometric and we only need one of the terms to

discuss the formation of dimensionless groups so long as we remember to add the others in a

functional description for θ. We pick Aν. (It does not matter which at this stage).

Hence we write

( )θ ρβ γ ε µ= ⋅ 



Q T c A h g

b

s

H

s
a

o g p v
∆  function 

s
 etc

�
, , ,

N.B. we are assuming a power laws. If not, we express the function as an infinite series of

powers. We recognise that only ρ and cp contain the dimension of mass so we use their

product to remove mass.

Comparing indices of



”heat” gives α ε γ+ + = 0

”length” gives µ γ ε− + − =3 2 2 0∆

”time” gives − − − =α ε µ2 0

and ”temperature” gives β γ ε− − = 1

These give four of the six indices and we arbitrarily pick α and ε as given so that

[ ]
( )

β α
γ α ε
µ α ε γ

α ε

= −
= − +

= − − =

= − −
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  etc (34)

The indices d, f etc. express only that 
θ
To

 may depend on any of the ratios of lengths.

These groups in equation (34) can be multiplied and divided without restriction provided the

remaining groups are independent and no variable is lost.

Arguing physically we expect h to be associated with AT, that ”g” is associated with a vertical

dimension and θ To is the dependent variable on the left-hand side of the equation. We pick

gH instead of gAv
1 2. Hence instead of equation (34) we write without loss of generality

θ
ρ ρT

Q

c T A gH

hA

c A gH
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A
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v

T v

 =  function , , ,
2









We have reduced the 9 variables (plus extra geometric ones) to 2 (plus the extra ones).

There is no formal justification for omitting any of these variables. So how did MQH do so?



For convenience in this discussion we omit from the data any variations in l, s and b (other

than in Av, AT and H i e our hypothesis is
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2

We accommodate the experimental variation in Q, Av, H, AT and write θ α α β γ  Q A H Av T
A .

With 4 variables we are able to identify values of m, n, p, q with α, β, γ and ∆. The hypothesis

in MQH’s regression is that -

p = q = 0

We have for

 Q,  m = a

Av, -m-n+p=β

H,
m n

p
2 2

− + = γ

AT, n = ∆

Therefore

p = α β+ + ∆

and q = + +α γ∆
4 2

From the statistical analysis of the data McCaffery, Quintiere and Harkleroad presumably

found that any values of  p and q were not significant. More data would be required to make

more sensitive tests. A more physically based approach is possible.

A crude energy balance is

Q ahA b c AT g p v≈ +θ ρ ωθ

where ”a” and ”b” are unknown but constant coefficients, ”ω” is a mean velocity which might

be characterised by either



gH T
gQ

c To
g p o

θ
ρ

 or 
′









1 3

In principle, ω depends on the depth of the hot layer for it extends below the top of a

doorway, the gas temperature etc. These are accommodated in the functional relationship.

This can be represented generally as
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ρgH
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2  etc
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Rearranging, we have
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, ,2 2

The third variable can be replaced by the first and A Hv
2  and so is redundant.

The above discussion shows a little of the relationship between dimensional analysis and

physical argument. Important for this and other examples is the recognition of the limitation

of power laws: a power law as in equation (33) is nonsense for hk → 0 , but one can often

produce approximations over a limited range between linear and power laws especially for

this problem [30].

Thus, if the second term on the right hand side of equation (33) is written a X−1 3  it can be

replaced by 
1

2

2 3+





−X
matched to be exact at X=1 and 4% less at X=2 and X=1/2 an error of

±2% over a range of 4 to 1 in X. Without a detailed analysis of the actual data one cannot ”a

priori” say that a correlation based on

1+ hA

c gH
T

pλρ



with λ a disposable constant would be superior to the power law. Additional ”error” may be

acceptable in view of the removal of the singularity when hkAT → 0.



4 The analysis of data

Analysing data statistically is fast becoming routine, but the principles underlying such

analyses are, it seems, slowly being forgotten by many practitioners. Once such lack of

understanding will be described below. Consider the two equations

Z a W x y= ⋅ ⋅ ⋅ ⋅α β γ (35i)

where Z, W, x and y are measurements.

and 
Z
W

b
x
W

y
x

= 











∆ ε

(35ii)

where 
Z

W

x

W
,  and 

y

x
 are dimensionless is a hypothesis

The advantage of dimensionless analysis is the grouping of quantities which necessarily

reduces the three indices α, β and γ to two, in other examples ∆ and ε to one.

This does not alter the fact that error is attached to the measurements so that statistical

analysis should be undertaken on equation (35i) not equation (35ii). It is a hypothesis that

equation (35i) can be rewritten as equation (35ii), a hypothesis which, if possible, has to be

justified or not contradicted by the data.

Comparing the indices

β ε
γ ε
α

= −
=
= −

∆

∆1

one requires

α β γ+ + − =1 0

This constraint is implied by the reduction of one in the number of degrees of freedom.



There are, as we shall see, more complex situations where more than one constraint can be

derived. Since the original statistical analysis defines α, β and γ and their covariances and

variances, one can establish the variance of α + β + γ  to see if α + β + γ  differs significantly

from one.

Alternatively one could analyse

Z
W

b
x
W

y
x

W= 











∆ ε
θ

or some extra non-dimensionless variable to see if θ exists.

These treatments of the data cannot do more than demonstrate consistency. They cannot prove

anything except that either because of a shortage of data or too great a variability in a data one

cannot justify a re-arrangement in dimensionless form from the data, whatever theory

suggests.

One common error arises from recognising that w, x and y can be made dimensionless by

incorporating say, u,  etc., e.g.

Z

x

x

u

y

v

W
n m p  α

µ

α β γ


















where α, β. n, m, p are coefficients. However, if there are no variations in u, ν or µ,, the

reformulation cannot add any confidence that the original data can be part of dimensionless

correlation as physically there should be.

A recently published paper correlated one dimensionless variable y against three energy

flows: E1, E2 and E3. What is suggested above requires a regression of y against E1, E2 and E3

say,

y α Ea
1 , , E  E2 3

β γ .

Instead the authors correlated

y 
E E

E

n

α  1 2

3
2











and so lost the possibility of checking whether (α-β) exists and whether a+γ-2β exists.

Perhaps they did justify their correlation, but if so they left it out of their paper.

Clearly if the checks were not satisfied it would demonstrate either that the data were not

consistent with the simpler reformation or that there were insufficient data. If they were

satisfied, constancy over the range of the data is demonstrated; but consistency is just that, not

proof.



5 Conclusions

Various fire safety engineering questions have been discussed from the point of view of a

dimensional analysis and in the course of this examples have been given of

(i) the use of dimensional analysis (as apposed to non-dimensional numbers,

fractions etc.)

(ii) the combination of dimensionless groups as a result of physical arguments

(iii) their use in the formulation of a solution of a differential equation with its

boundary or initial conditions

(iv) choosing one of two alternative formulations of a dimensionless variable

( )RT

E
T To or 

E

RT2 −

(v) the consequences of the difference between dependent and independent variables

(vi) their use in evaluating a quantity (θig)

(vii) determining the structure of a formula as a result of physical considerations (bent

over plumes and flame lengths)

(viii) the choice and significance of a characteristic length for inclusion in a

dimensionless variable k v x kg a g in va  and � in the Delichatsios-Saito length)

(ix) the analysis of measurements of quantities claimed to be a part of a dimensionless 

variable.

These matters have been mentioned as they have arisen in the examples discussed in the hope

that the reader feels the art is not such a mystery as perhaps once thought.
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Appendix I

The constancy of the heat transfer coefficient

If in a dimensional analysis h is to be treated as depending on the surface temperature then we

first make use of the ratio of the last two terms in equation (18) which define hl K so that

equation (18) can be rewritten with h present in only one term,  v.i.z.
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If now we write as

( )h h fo o= θ θ

by introducing ho a constant characteristic value of h and a characteristic temperature rise

θ o equation (18) becomes
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If radiation is included in ( )f oθ θ  then the absolute surface temperature has to be

incorporated, i.e. a new dimensionless variable, e.g. 
KT
q L

o

"
 must be included.



Appendix 2

We consider equations (26) and (27)

M Mo" "=              t < t

     =  0               t > t
B

B

and a modification of equation (28) viz

( )[ ]X X k Q qM X Xfl R o p R− = + += 1

2 3
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i.e. we use the simplest form of the pyrolysis or heat release rate but employ the 2/3 power

law.
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Notation

a a constant

A area, Av - ventilation area, Aτ envelope surface area, a constant

 b breadth or radius

cp specific heat

d a distance, an index

D a distance = burner diameter (=2bo)

e an index

E energy, activation energy, a dimensionless parameter

f an index, frequency factor

g acceleration due to gravity

h heat transfer coefficient

∆H chemical heat quantity, eg. ∆Hc - calorific value, ∆Hv - heat vaporisation

H height of opening, HB - buoyancy height

k thermal diffusivity, K/ρcp

K thermal conductivity, Kn - flame length constant

� a length, lf - flame length

L a distance, thickness

m an index

M mass flux, a dimensionless constant

n an index

NRe Reynolds number

NNu Nusselt number

NPr Prandtl number

NFr Froude number

φ an index

q heat quantity, ′′′q  is rate of heat release per unit volume, q
•
"  or ′′q rate of heat

transfer per unit area

Q convection heat flux, rate of heat release from chemical energy

R universal gas constant



s compartment height

S surface area or ( )Q c T go p oρ
2 5

t time

T temperature

u a variable

U velocity

υ a variable

υa velocity of air

V volume, rate of flame spread

ω velocity

W a variable

x distance, a variable

X distance to a moving front, a variable

y distance, a variable

Yox concentration of oxygen - a variable

z height

Z
Kt

c xpρ 2 , a variable

α an index

β an index

γ an index

δ a depth, distance, dimensionless thermal explosion or self heating parameter

∆ an index, a distance

ε an index, eddy diffusivity

θ temperature difference - an index

λ a constant

µ viscosity, an index, a variable

ν kinematic viscosity µ/ρ

ρ density

∆ρ density difference

τ a characteristic time



Suffices and affices

o initial, ambient

B burner

ig ignition

fl flame

ff far field

g gas

c characteristic value

p pyrolysis

s surface, solid

m maximum

∇ per unit volume

∠ per unit area

∉ per unit length/width


