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Résumé

Un correcteur adaptatif doit étre bien initialisé si 'on veut qu'il converge vite
et sans un transitoire trop perturbé. Ce projet consiste en 1'étude d'une
méthode d'autoréglage par bouclage du procédé sur un relais initialisant un
correcteur RST congu avec la méthode du placement de poles, en son
implémentation et en I'étude de ses limites partir d'expériences sur differents
procédés.

Mots clé: autoréglage - placement de pbles - relais - correcteur adaptatif
- initialisation

Abstract

An adaptive controller needs a good intjalization to converge quickly and
without a too bad transient. This project develops an auto-tuning method
based on the relay experiment initializing a RST controller designed with pole
placement rules. This method is implemented and tested on different
processes to study the limits of the algorithms.

Key words:  auto-tuning - relay experiment - pole placement design -
adaptive controller - initialization.



Brief presentation of the
Department of Automatic Control
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Research at the Department concerns the following areas
Adaptive control
Computer aided control engineering
Expert control
Robotic and sensory control
Power systems
Control of biotechnology processes
Modeling and control of medical systems

Also, different courses dealing with these areas of research are given each
year at the Department. They are of various levels: Undergraduate courses
(same level as in a french engineer school), Graduate courses (for PhD
students), and even external courses for engineers in the industry.

About 30 persons work at the Department. Ainong them, two Professors,
Associate Professors, Research engineers, Research assistant and Teaching
assistant (Mostly PhD students) and secretaries. Karl Johan Astrom was
awarded the degree Doctor Honoris Causa from 1'Institut National
Polytechnique de Grenoble in 1987

It is a tradition for the Department to welcome guests from all over the
world to make seminars or to work some time on a subject of common
interest with researchers from here.

The main computer facilities are a Sun Workstation network, a VAX-
11/780 and some IBM-AT
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Preface

This project has been carried out in the Department of Automatic Control,
Lund Institute of Technology, in Sweden.The purpose is to create an auto-
tuned pole placement controller with good performances for a certain class of
processes, among which are the stable systems with monotone step response.
The initialization of the model, of the controller and of the specifications for
the closed loop system are particularly studied. The operator interface allows
a check of most parameters involved in the control,what makes experiments
quite easy to carry out. This report is primarily written for a reader with
knowledge of automatic control at the end of the engineering studies.
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1. Introduction

Different kinds of controllers are useful for different kinds of users and
control problems. But in any case, every operator wants to have a controller
that is easy to operate.

That is the reason why self tuning regulators have been created and
improved for years. The goal was to design a controller as easy as possible to
use. The problem is that, if you want to use a controller you have to know the
right initial parameters to enter in, in order to obtain efficient control. And
even for a simple regulator as the PID, you have to know how to tune three
parameters before it can be used: the integral time, the derivative time and the
proportional gain of the regulator. It means that a certain knowledge is
required to initialize the regulator. It would be easier for any operator to push
only one button so that the controller could start without any other action from
him.

With this purpose, an auto-tuning PID controller has been designed by T.
Higglund and K.J. Astrém from the department of Automatic control, Lund
Institute of technology. It is, now, manufactured by two companies, Satt
Control AB and Fisher Controls Inc., and has been used in a lot of control
loops. It is based on a relay-experiment (explained in chapter 2) which
allows a measurement of the ultimate period and of the ultimate gain of the
process in order to calculate the controller parameters.

The goal of this project is to initialize an adaptive controller from such a
relay-experiment in order to obtain a controller with higher performance than
a PID controller, but which is as easy to tune as the PID controller.

It is wise to go on with one of the simpler techniques; pole placement
adaptive control. The problem with adaptive control is that you have to know
the sampling period and the gain of the process as with a PID controller but
also you must have an idea of the achievable performance of the process and
above all, of its model to initialize the controller parameters. That is why we
will now try to get some more information from the relay-experiment. An idea
is to analyse the shape of the oscillations under relay feedback control and to
extract a valid model from it (see Astrom K.J. and Higglund T.,1988a).

The goal of this project is to develop and implement algorithms which
combine auto-tuning and pole-placement adaptive control.

This report is organised as follows: a certain knowledge is required about
the Automatic tuning of simples regulators and the Pole-placement design
which are described in chapters 2 and 3. Then it is discussed on the right
way to combine Automatic tuning and Pole-placement design in chapter 4.
Chapter 5 explains how to implement this control algorithms. Then chapter 6
deals with experiments on different processes. Finally, a conclusion on the
project is given in chapter 7.



A regulator with automatic tuning is composed of four subsystems, an
ordinary feedback regulator with adjustable parameters, an excitation
generator, a parameter estimator and a block which performs design
calculations (See fig. 2-1). The excitation generator provides a signal which
makes it possible to estimate the parameters of the process.

The controlled system works in the following way. The process is excited
from the excitation generator, then the process dynamics are estimated from
the response of the process to the excitation and the regulator parameters are
calculated from the dynamics. Finally, the estimator, the control design and
the generator are disconnected and the system operates like a closed-loop
process with regulator.

Control [ Estimator ~e—
design
T
Yref ; A 1T
— ulT
Regulator f—— Process e
T y
Excitation
generator

Figure 2-1:Block diagram of a regulator with automatic tuning.
T: connections on during the tune and off after.

Many schemes of this type have been proposed. The following scheme
has been developed by T.Higglund and K.J.Astrém from the Department of
Automatic control, Lund Institute of Technology (See K.J. Astrom and
T.Higglund, 1984 and before). The characteristic feature of this approach is
that it gives a very simple system which does not require prior information.

The idea is to estimate the ultimate point which is described by the

ultimate gain, k¢ and the ultimate frequency, o¢. This point represents the
stability boundary, that is the reason why it is so important to know it. On
that point the closed loop system oscillates.

The original Ziegler-Nichols method proposes to determine these values
by connecting a proportional regulator to the process in a closed loop and to
increase the gain gradually until an oscillation is obtained. Then, the frequen—
cy observed is wc. But it is very difficult to perform this experiment automa—
ticaly in such a way that the amplitude of the oscillation is kept under control.
So, another method for automatic determination of the ultimate point is
proposed.

The method is based on the observation that many systems may oscillate
at frequency @ under relay control. It means that many processes will have
limit cycle oscillations under relay feedback The scheme is the same as the

one of figure 2-1 if the regulator is replaced by a PID regulator and the
excitation generator by a relay.(See fig 2-2)
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Figure 2-4: Relay output u and process output y for a system under
relay feedback.

The period of the oscillation can easily be determined by measuring the
times between zero-crossings. The amplitude may be determined by measu-
ring the peak-to-peak values. This estimation method is very easy to
implement because it is based on counting and comparisons only. More
elaborate estimation schemes may also be used to determine the amplitude and
the period of the oscillation.

Then the parameters of the PID regulator are calculated. The Ziegler-
Nichols frequency response method, for example, gives simple formulas for
the parameters of the regulator in terms of ultimate gain and the ultimate
period (See Table 2-1).Other better types of design methods have been used
too.

Controller K Ti Td
P 0.5 ke
Pi 0.4 ke 0.8 tc
PID 0.6 ke 051 0.12 tc

Table 2-1: Recommended PID parameters according to Ziegler-Nichols
frequency response method,

When the PID parameters are determined the PID regulator is activated.
Several improvements were made in the relay experiment: The amplitude

of the oscillations obtained under relay control can be specified by adjusting
the relay amplitude. A hysteresis in the relay is also useful to make the system



3. Adaptive control based on Pole
placement design

3-1. Introduction

Pole placement is one of the simpler indirect design methods. It allows a
control of stable or unstable systems with time delay. The techniques presen—
ted in this chapter are known by everybody dealing with adaptive control.
Therefore, the purpose is not to present a deep work about pole placement
design, but to settle on the different notations used in the project.

Only the procedure used for this project will be described in section 3-2.
The real-time estimator is also a very important part in the adaptive controller.
In section 3-3, the recursive least square estimator will be presented.Finally,
the estimator and the design are combined to obtain the adaptive controller in
section 3-3,

3-2. Pole placement design

The goal is to obtain the appropriate response of the process to command
inputs by a simple and fast method.

Consider a process with one input u and one measured outputy. vis a
disturbance. The process to be controlled can be described by

Ay=Bu+v (1)

where A and B are polynomials. It is assumed that A and B do not have any
common factors i.e. that they are relatively prime. It is also assumed that A is
monic, i.e., that the coefficient of the highest power in A is unity. The desjred
response from the reference signal uc to the output is given by

AnYm=B,u, (2)

where Ay and By, do not have any common factors.
To get a realizable controller the model (2) must have the same or hi gher
pole excess than the process model (1). This gives the condition

deg A, — degB, 2 deg A— deg B (3)
The pole placement regulator can be described by

Ru = Tu,~§ y 4)
where



AR +BS = AgA_B'

It follows from this that B+ divides R. Moreover, to make sure that low-
frequency disturbances give small errors, the loop gain, ng (7), must be
large for low frequencies. This may be achieved by requiring that R has the
following form

BS

Hie=2x 7)

R@2) = z-1)'Ry(2) B'@)

With a suitable r. This is a classical principle of integral control.
Therefore, it gives

@-1)AR; + B'S = AyA, ®)

Equation (8) has a solution if A and B- are relatively prime. It follows from
equation(6) that B- must divide Bm. It gives

B,,=B B,

m

T= AO B m (9)
The pole placement design procedure can be summarized in algorithm 3-1.

Algorithm 3-1:

Data: polynomials A, B.
Specifications: Polynomials Ay, By, Ag.

Compatibility conditions:
B- divides By
deg A;, — deg B, 2 deg A— deg B

degA 2 2degA — deg Am—degB+ +r -1

Step 1: FactorBas B = B'B’
I‘ -
Step 2: Solve the equation. @-DAR; + B S = AyA,
with respect to R and S. Choose a solution such that
{ degR; = deg Ay+deg A ,-deg A-r
degS < deg A+r

Step 3: The control law is then given by Ru = Tu,- Sy
where



An interpretation of these equations is given in figure 3-2.

y(t) (t) 0 (t) 0(t-1)

K(t) ‘_@?__ q"

- ()

Figure 3-2: Recursive Least Square estimation diagram

Let define the prediction error

T
M) = y(t)- 6 (t-1) (1)

Then, the estimation method can be very intuitive: 0(t) is corrected with
respect to the gain K(t) when the prediction error Y(t) is different from zero.

3-4. Global scheme of the indirect adaptive regulator

The indirect adaptive regulator based on the pole placement design and on the
recursive least square estimator can be expressed as the following algorithm.

Algorithm 3-2.

B
Dara: Desired close loop transfer function: A_m
m

Desired observer polynomial: Agy

Stepl : Estimate the coefficients of the polynomials A and B
recursively using the least square method described above

Step 2: Replace A and B with the estimates obtained in step 1 and use
the pole placement algorithm to find the controller polynomials
R,S and T.

Step 3: Calculate the control signal u from

Ru=Tu,- Sy
Repeat stepl, 2 and 3 each sampling period. 0

This algorithm is illustrated in figure 3-3.

11



4. Combining auto-tuning and pole
placement design

4-1. Introduction

In the two last chapters, an adaptive design method and an automatic tuning
method have been presented. They both work on different processes.

The idea is to make a deeper analysis of the information given during the
relay experiment described in chapter 2. Instead of only using the amplitude
and the period of the oscillation, the shape of the oscillation under relay
feedback can be analysed, (See Astrom K.J. and Higglund T., 1988a) and a
valid model of the process can be estimated from this analysis. This model
can thus be a good initial model for the pole placement control design and
allows the calculation of good initial parameters for the controller

It can be expected to outperform conventional PID designs because the
response speed is easily adjusted and it can also handle systems with time-
delay.

The method is explained in section 4-2 and practical aspects are described
in section 4-3.

4-2. Analysis of the relay experiment and control
design

Chapter 2. has described how to find the period and the amplitude of the
oscillations created under relay feedback. These measurements give the
sampling rates and an indication of the achievable bandwidth.

In this section, it will be shown that conventional sampled data models
can be determined using the wave-form of the oscillation. A measurement of
some values of the process output will be computed in order to obtain this
model. The following method will be used for the computation.

Parameter estimation

Remember that a relay feedback experiment in stationarity gives periodic input
output signals for the process as shown in figure 4-1.



n n-1
U(z) = Z+zZ +...+z _ ]i(z)
z"+ 1 z +1 4
n-1
Y() = Yanz + Yd(-il-Zz FotYamZ _ . Dn(Z)
z @z +1) z(z +1) &)
Then, the z-transform of equation (3) gives
- B@) Qz)
Y(@z) = Az) U(z) + AR)

where the polynomial Q(z) corresponds to initial conditions which gives the
steady state periodic output. Replacing Y(z) and U(z) by the expressions (4)
and (5), it follows

DE ___B@E® _ Qw
2@ +1) @+ DA A@

and

A@ D@ +z'B@) E@) = 2°"+ 1) Qw) (6)

where D(z) and E(z) are known. It is thus possible to determine the
polynomials A, B and Q from the (n + deg A) linear equations obtained from
(6). The number of unknown parameters in the polynomials A, B and Q is
(deg A + 2deg B + 1) i.e. (3deg A - 2d +1). It gives a condition for n; indeed
to determine all the parameters of A, B and Q, it is necessary to have

nz22(degA-d)+1 (7

It is thus straightforward to determine the coefficients of the process model
(3) from the wave-form Yo, ¥y, ..., Y1 of the periodic solution. A fixed
structure and a time-delay must be chosen for the process model in that
method

The procedure is illustrated by one exemple where A and B are first order
polynomials and the time-delay is r sampling periods.

Example 1
Consider the process model

y(t+l) = ay(t) + byu(t-th) + byu (t-th-1) (8)
Where h is the sampling period. Therefore

A = zr+1(z - a)

B=b1Z+b2 a'nd d=r+1

The model has three parameters. It gives n 2 3. It is simpler to choose n = 3,
because there is the same number of parameters and equations.
The problem is thus solved with this value. The expression (6) becomes

15



oscillating signal. Let timax be the distance from the extremum of the output to
the previous switch of the input. The value of r should then be chosen so that
tmax
r o
where h is the sampling period.

It must also be noticed that the output of the system is close to sinusoidal
for certain processes. It is thus not possible to determine more than two
parameters in the model when three amplitude values are used.

As it was said in chapter 2, it is useful to introduce hysteresis in the relay
to avoid a too important sensibility to noise. The hysteresis amplitude can be
determinated by measuring the noise level in steady state. The relay amplitude
can also be adjusted to avoid too large perturbations on the output signal
during the relay experiment.

4-4. Conclusion

This chapter has determinated a simple method for estimating a model from a
relay experiment. The information about the full wave-form is used, and not
only amplitude and frequency. Moreover the algorithm can cope with systems
having time-delays.

The theoretical bases are given in this chapter and the practical problems
will be treated in next chapter dealing with implementation.

17
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' i : ,
Scale Main Tsamp Parameter
Monitor Monitor Monitor Monitor

ExitAnd
Emergency

DAQutU

ADInExt

ADInY

Plot
Generator

Data Plot
Buffer Monitor

Figure 5-1:Real-time implementation structure,
6 processes and 9 monitors share the execution time.

DataBuffer : The plotter is a process with low priority which must get
the signals U, Uc and Y when it has time to plot them.

These signals are put in a RingBuffer while waiting to be
plotted.

ScaleMonitor  : The time scale of the plotting is stored in this monitor.
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Initialisation
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Figure 5-2: Process Regul (Priority 20)
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Initialization
Get Time Scale
Draw plotting screen
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Get New Scale
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Changed
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Figure 5-6: Process Plotter (Priority 50)

Presentation of the Man-Machine interface

Figure 5-7 describes the screen after start-up. On the upper half of the screen
are the measurement signal Y, the reference signal Uc and the control signal
U. Below, are a number of mouse sensitive buttons, whose functions are
described below.,

The program can handle three different modes; Man (manual), PID
(control with PID regulator) or Pole Placement Control (Automatic tuning of
the regulator parameters according to pole placement design). Changing of
mode is done by clicking one of the squares 1, 4, or 7.

23



Only the most important modules dealing with theory (Auto-tuning, control)
and display of variables are given (see appendix D).

The Auto-tuning part

The tune is divided in three different parts: The first one measures the noise
level on the output signal in order to choose the hysteresis of the relay. The
relay is then included in the closed loop in the second part, and the amplitude
of its output is fixed after an analyse of the amplitude of the process output.
Indeed, the tune must not disturb the process too much. In the third part, the
measurement of the amplitude, of the period of the oscillation and of certain
values of the process output are computed. These measurements lead to a first
estimation of the process by a first order model with time delay (choice
explained in 4-3), then the design specifications (second order desired
dynamics, reasonably fast and with a damping of 0.7) and the parameters of
the RST controller are initialized.

Directions for use

At the starting point, the mode Manual is running and the control signal ,u, is
equal to zero. Then the sampling period can be choosen by clicking in the box
2, according to the time constant of the process. Then, to start the controller
based on pole placement design, the reference signal amplitude must be close
to the process output amplitude (Bad stationarity can imply asymetric relay
oscillations). Afterwards,.you just need to click on the square 7. At the end of
the relay experiment, a fixed controller is started. To make jt adaptive, you
can click on the square 9, type 5(Adapt)-ENTER-1 then you type -e- to exit (It
is made adaptive only after exit). To get a fixed regulator again you use the
same command in replacing the 1 by 0. The model and the controller can be
read in the square 6 (but you can not change them by the keyboard of course).
The design specifications initialized by the relay experiment can be read by
clicking in the square 8 and changed by the keyboard (do not forget that they
are in discrete time). The estimation specifications can be read and changed as
well by clicking in square 9. Finally, the values measured in the relay
experiment can be checked by clicking in square 3.

5-3 Conclusion

This chapter showed how the algorithm developed in chapter 4 has been
implemented. It was tried to make a procedure for each simple task in order to
decompose the complicated parts of the algorithm in understandable routines.
The operator interface has not been improved as much as it could have been in
order to spend more time studying the auto-tuning and the control theories
involved in this controller. Tn appendix C, the most important routines used in
the programming are described and their code is given in appendix D.

25



1

G(S) = m (2)

Figure 6-1 shows that the relay experiment is quite symetric and that the
output is quite regular. Figure 6-2 shows that the step reponse of the process
is of expected type (fast enough with damping of 0.7). Big variations on the
control signal are required to obtain that performance. Then, when the
adaptive controller is started with these parameters for the model and the
controller, there is no bad transient neither on the output signal nor on the
control signal and the estimator converges, after a while, to a more accurate
model that the one initialized from the relay experiment (see table 1 in
appendix C). Therefore, the goal is reached.

0.75 * v v v —r

B
0.7 A T U

0.55}F

0.5
0

Figure 6-1: relay experiment with a first order process of type (2) without
noise

s

0 20 40 60 80 100 120 140 160

Figure 6-2: step response with a first order process of type (2) in close
loop with the fixed controller initialized after the relay
experiment.
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6-3 Further developments

A first order process is controlled better than with a PID. But a second order
process (of the kind choosen in experiment 4 and 5) is quite difficult to
initialize with a relay experiment especially if there is no noise on the output.
Also, with processes of higher order than one, the choice of the delay seems
to be of highest importance for the control. A fixed controller can generally
not be calculated from the relay experiment initializing a model of the kind
(1), but, in some cases, an adaptive controller can be started from this
initialization.

The method is also quite sensitive to the value of the sampling period
choosen at the beginning. It must be short enough to allow the measurement
of several points during one period of the relay experiment. A too big
sampling period will not make the system oscillate and a too small sampling
period will give a pole close to one for each process and lead to a very bad
control.

The initialization performed from the relay experiment can be improved
with a test determining the structure of the model to be choosen so that
processes with higher order than one can be modelized by a second order or
by the product of a second order by a first order.

The output could also be filtered during the relay experiment to avoid the
perturbations created by the noise on the measurements.

The initialization of the desired closed loop dynamics could be also
improved by extensive simulations. This choice is however based on heuristic
knowledge. The observer polynomial is also fixed to a dead beat polynomial ,
this could be improved in choosing a first order polynomial with known
dynamics.

6-4 Conclusion

A first version of an auto-tuned adaptive controller has been realized in
this project. It allows a good initialization of an adaptive controller based on
pole placement design for first order processes with time delay and the
controller has good performances. For processes with higher order which are
also stable with monotone step response the performances and even the
success of the initialization depend a lot on the noise level and on the relative
location of the poles of the process.

The program could be improved with intensive experiments which could
allow a better choice of the empirical values. On the other hand, this tool must
not be designed for a too small class of processes, and even if it does not
control each particular process belonging to a certain class, with optimal
performances, the purpose is that it gives average performances higher than
with a PID regulator for a class as large as possible.
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9. Appendix



A. About the relay experiment

Certain conditions must be fulfilled so that the process oscillates under relay
feedback. In this section, the conditions for an oscillation to occur and the
period of this oscillation will be studied. Therefore a linear system under relay
control has to be investigated.

There are two means to analyse the conditions for existence of a periodic
solution. First a linear system under relay control will be investigated and
then the describing function analysis will give a good approximation of the
answer by a simpler condition.

First method: investigation of the closed-loop nonlinear system

Consider a system described by

dx
E(‘?“B“ (1)
y=Cx

This system is controlled by a relay with hysteresis of the following form

d, if - du(t-)=d
u(t)={ 1 ife>¢€ or (e>-gandu(t-)=d,) @

-dyife<€ or (e<¢ and u(t-) = d,)
where e =—y., € is the hysteresis of the relay and u is the controller output.

Conditions for relay oscillations have been given by Hamel (1949) and
Tsypkin (1958). The key result is given by the following theorem.

Theorem A-1: Consider the system (1) with the feedback law (2).

Assume that the matrix ®-1 is regular. A necessary condition for a limit cycle
with period T is then

-1
{ CH-®] [®,L d;-T ,d,] =-¢

1 3)
where
T is defined in figure 2-4, and
D= eAT (DI = CA1 (I)z = eA(T_T)
Lo ] * T
= f eAsdsB r,= / eAsdsB )



discrete time system. (The stroboscopic transformation) The inputs are u(t 2)
and u(t 2x+1) and the outputs are y(t 2k+1) and y(t 2k+2).

_ [ x(tax-p) _| utz0 Co
= [ X(t2) ] M= [“(tzku)] Y =[O C] Zk

The discrete time state equations of system (1) are

{ X(toxy ) = @ x(tpy) + I jultyy)
Y(toxs D) = Cxlty,y)
&)
{ X(tox42) = D X(tgy ) + Ty ultyy, )
Y(tas0) = C x(typy))

where the matrix ®1, ®2, I'1 and I'2 are given by (4).
Equation (5) can then be written as

®o0l | T on
z = z u
k+1 0 @ k (DZFI rz k

C o
Yk = 0 C Zy
This is a time invariant discrete time system. Let the pulse transfer function of
the system be

-1 -1
Cl-®] T,  C[d-®] &,

H(z) = (©)

1 -1
ClzI-®] ®,I,  C[d-®] T,

Putting z = 1 in (6), it follows that the condition (3) can be written as

Mo

Symetric oscillations

The case d] =dg =d is of particuliar interest. It follows from (4) that

A
r=T,=T and O, =D,=d

In this case. Equation (3) then reduces to

-1 y
cl1- o] [I-cp’]rd = e

or



But the conditions for existence of oscillations can be investigated by a
simpler method which is an approximation of the exact formula given before.

Second method: The describing function analysis

This method is used to analyse systems with a nonlinear function in a
control loop. To determine conditions for oscillation, the nonlinear block is
described by a gain, N(a), which depends on signal amplitude,a, at the input
of the nonlinearity. This gain is called the describing function. If the process
has the transfer function G(iw), the condition for oscillation is simply given
by

N(a) G(iw) =-1

This equation is obtained by requiring that a sine wave with frequency o
should propagate around the feedback loop with the same amplitude and
phase. Since N and G may be complex numbers, this gives two equations for
determining a and ®. The equations can be solved graphically by plotting
-1/N(a) in the Nyquist diagram. If the negative inverse of the describing
function is drawn in the complex plane (See fig A-1) together with the
Nyquist curve of the linear system, an oscillation may occur if there is an
intersection between the two curves.

Notice that the input U to G(s) is a square wave. In the describing
function technique it is assumed that the input to the relay with hysteresis is a
sine wave (Approximation of the input by its first harmonic). Therefore, it
must be assumed that G(s) has a low-pass filter action, so that the amplitudes
of the high frequencies in Y are small compared to the amplitude of the
fundamental frequency. But, this is not a restrictive assumption, since almost
all practical processes are of low-pass type.

The amplitude and the frequency of the oscillation are the same as the
parameters of the two curves at the intersection point. Therefore, measuring
the amplitude and the period of the oscillation, the position of one point of the
Nyquist curve can be determinated.

The describing function, N(a), for the relay is given by

N(a) =ﬂ

Tta

Since this function is real, the oscillation may occur where the Nyquist curve
intersects the negative real axis. Thus, the conclusion is that the ultimate point
is conveniently determined by a relay feedback experiment,

To make the system less sensitive to naise a relay with hysteresis can be
used. The negative reciprocal of such a relay is



'The continuous time transfer function of the process, G(s), has to be
sampled. In that case, a zero-order-hold is perfect to connect the continuous
system to the discrete input (square waves sampled at h = T/2) (See fig. A-3).

sampler hold process
u u* ] ) y
Vs S 1 - exp(-sh) G(s)
s
1 |
H(s)

Figure A-3: Schematic diagram of the idealized model of a sample and hold
circuit connected to a linear system.

The following theorem (in Astrém, K.J., and Wittenmark, B.,1984) will
be used to determine the sampled process description with zero-order-hold.

Theorem A-3: Let the function f have the Laplace transform F and the
z-transform F',and let F* be the Laplace transform of the sampled represen-

tation f* of f. Assume that for some ¢ > 0, IF(s)l < Isl-1-€ for large Isl then

: 1 v ,
F*(s) = F'(e™™ = £ 2 Fis + ik )
k=-co
Where s = 2m/h is the sampling frequency. 0
Proof:

The definition of F* gives

F*(s) = f ”e'sy*(t) dt

F*(S)=./'-e—s§‘(t)/ i 5(t-kh.)\ dt

TR

F*(s) = f e'J}‘(t)m(t) dt
o
Interchange the order of integration and the summation gives

F*(s) = z l i e"“f(t)éi(t-kh) dt



Hh-D= Y —~% o1+
e g’in(uzn) ¢ 2

0

Hh =Y — 4 G(%t(l + 2n))

0 lTE(l + 211)

Remember that h = T/2, so, if H(h,-1) is approximated by the first term of the
series expansion the condition (8) becomes

4 21 £
L MGG =-5

which corresponds to the describing function analysis

i2r
T

)=- T €

Im G¢( id

This second condition is much more simple than the one obtained with
theorem 2-1.

Alm
Poles of F Poles of M

e e
\ Re
.

r =

Figure A-4: Singularities of F and M and the integration contour.

Remark A-3: The Nyquist curve of a first order process, situated
entirely in the right part of the Nyquist diagram will never intersects the
negative inverse of the describing function, whereas a first order system
oscillates under relay feedback control (That can be checked by the first
method explained in this appendix).

In K.J.Astrém and T.Higglund (1984a) the conditions to get stable
oscillations are discussed.



Recall about the variables used in the routines: d is the amplitude of the relay,

Amp is the amplitude of the output oscillations and Ustat is the steady state
value of U during the relay experiment

| ustat - Ustat+d |
| -

Relay swilched
No

Yes 1
d=-d IiSlal = USlat+d |
i L
| Ustat = Ustated |

| NrOfHalfPeriods = 0 |

| NrofChanges - 0

Amp =0

Figure B-2: routine from AutoTune: RelayStarted.

BEGIN

P
-

,ﬂningEnded:FALSE—’

¥

Amp = Max
(Amp,ABS(YStat-Y))

Y
i Yes IlStat = UStat+d ]

DrOfChanges-NrOfChangesFl —

UStat = UStat+d

No
; rOIChanges=

S
Yos [=t—
1

(END)

Figure B-3: routine from AutoTune: Initialization of the relay amplitude.
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l Get RefSignal Uc

Get OutpulSignal Y l

Y

Calculation of the ControlSignal U

Y

DAOuUL ControiSignal

RLS Estimation

Y

Calculation of RST Controller

e |

Update Regulator State
(Precalculation for next sample)

/

END

Figure B-7: routine PolePlacement Control.
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Description of the table C-1.

Experiments 1 and 2 are performed on the following first order process:
0.113
z-0.887 (1)
Experiments 4 and 5 are performed on the following second order process:
0.09z + 0.065
2’- 121z +0.368 @)

The first order model is described by the following transfer fonction
b 1Z+ b2

zdela}’ * Z(Z‘a) (3)

* h is the sampling interval

*yl,y2,y3, y4, y5 and y6 are the measurements points from the output
signal

* Eps is the hysteresis of the relay

* emax and emin are respectively the maximum and the minimun values of v.

* TPP and TPN are respectively the length of the positive half period and of
the negative half period.

* Tmax and Tmin are respectively the times where the maximum and the
minimum.occur on the output signal (counted from the same point).

* Amp is the amplitude of the oscillation on the output signal.

* Period is the period estimated during the relay experiment.

0.9

085}

0.8

0.75}

0.1 Pty b

0'650 20 40 P 80 100 120 140

Figure C-1: First order with noise (variance 0.2). Relay experiment.
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D. Code in Modula 2

This appendix contains the following definition modules and implemen-
tation modules:

_ Autoreg

_ AutoTuner
_AdISTR

_ DSpeBox
—RegulModule
_RLS

Each module is composed of a definition part which contains the declarations
of the exported identifiers and an implementation module which contains the
procedure body. The code of the calculations is very similar to Pascal.

* Autoreg is the main procedure.

* AutoTuner contains the implementation of the auto-tuning part and the
design part.

* AdISTR contains the implementation of the pole placement design.

* DSpeBox performs the display of the design specifications on the user
interaction space

* RegulModule supervises the three different modes of the program: Man,
PID, Tune.

* RLS contains the implementation of the recursive least square estimator.

19



MODULE AutoReq;

FROM AutoTuner IMPORT GlobalData;

FROM ErrorBox IMPORT PrintError;

FROM EzitAndEmergency IMPORT WaltForExzit,InitWaltForExit;
EROM IO IMPORT InitIO;

FROM MainBuffer IMPORT InitMainBuffar;

FROM PlotBuffer IMPORT InitPlotBuffer;

FROM Regqulmon IMPORT InitPegulmonitor;

FROM RLS IMPORT InitRLS;

IMPORT Graphlcs,Plot,RegulModule,OpCom;
IMPORT RTMouse, ExitAndEmergency, GetValues;

VAR

i : CAPDINAL;

BEGIN

(*

RTMouse.Init;
InitWailtForEzit;
InitIo;
InitPlotBuffer;
InitMainBuffer;
InitRegulmonitor;
InitRLS;
OpCom.Start;
EzitAndEmergency.Stact;
GetValues.Start;
Plot.Start;
RegulModule.Start;
WaltForEzit;
----- creation of a file from the array "FilaData®,
with the purpose to draw curves from the experiments in MATLAB-=—-- *)
1 :=0;
WITH GlobalData.PlotFile DO
IF LogOn THEN
FOR i:=1 TO NrOfData DO
Plot.Log{FileData([i]),;
PrintError(*Fin Log®);*)
END;
END;
Plot.Close;
END;

END AutoReg.

\0
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DEFINITION MODULE AutoTuner;

FROM Pcalc IMPORT cpoly;
FROM RegulModule IMPORT ArrayType,VectorType:;

EXPORT QUALIFIED
frees, busy,
TunePar, ParType, Ymean,
PlotTypaTypa, SignalTypeTvps, AdaptRegType,
SetuplataTypa, ModelTvps, DesignType, BagulatorType, RefSignalType,
AdaptDataType, EstimDataTvpe,
GlobalData, TempData,
InitAutoTune, AutoTune;

CONST
freea = 1;
busy = 0;
TYPE
ParType = RECORD
K,Ti,TAd:REAL;
END;
ModelType = RECORD
B,A,C : cpaly;
AddltionalP>lesInOrigin : CARDINAL;
delay : CARDINAL; (* Redundant information *)
BedeWlow,BodaWhigh : REAL;
END;
AdaptRegType = (fized, indstr, indstr2,dirstr);
PlotTypeType = (Radraw, PlotBetween,

PlotEvery. PlsotEvaryTwo, PlotEveryFour);
SignalTypeType = (external, squars, triangle, sina, step, ramp);

SetupDataType = RECOKD

chanRef,
chan¥l,
chan¥Y2,
chany3,
chanU : CAPDINAL; (* IO channels #*)
NumberOfInputs : CAPDINAL;
PlotWhen : PlotTypeType;
Horlzontz1lTime : REAL;
Tsamp : CAPDINAL;
RealTsamp : REAL;
Dtl, Dtl, Dt3 : CARDINAL; (* For intersample plotting *)
Ulow, Uhigh : REAL:

END;

DasignType = RECOPD

Bplus,Bminus,
Bmprim, Am, Ac, Amw : cpolyy
IntagralAction @ BOOLEAL;

END;

RegulatorTyps = PECORD
RegType
R,£1,8,832,7T, 3

END;

APPAY(0..12] OF CHAR;
cpeoly;

- autotune.def

RefSignalType

EstimDataType

AdaptDataType

PlotFlleType

TunePar

Ymean

GlobalData

TempData

= RECORD
SignalTypa ¢ SignalTypeType;
Mean,
Amplitude,
Period : REAL;
TimeInPeriod : REAL;
END;
= RECORD
Bf, Af : cpoly:
Do : REAL;
Lambda : REAL;
HistoryTime : REAL;
HistoryCard : CARDINAL;
EstPurpose : ARRAY[0..8] OF CHAR;
(* MODELPOLY or REGULPOLY *)
END;
= RECORD

AdaptReg : AdaptRegType;
{* RagulatorNr : CARDINAL; *)

ulimit ¢ REAL;
END;
= RECORD
LogOn : BOOLEAN;
NrOofData : CARDINAL;
FileData : ARRAY[1..500],[1..4] OF REAL;
END;
: RECORD

Period,Time,TO,T3,TimePeriodPos,TimePeriodNeg
Amp, YStat,Eps, emazmean, eminmean
TimeToMaxmean, TimeToMinmean, w, ratew

NrofPeriods
END;
: RECORD
Ym : ARRAY [l..20] OF REAL;
END;
: RECORD
SetupData ¢ SetupDataTlype;
Model ¢ ModelType;
Design : DesignType;
(* Regulator : RegulatorType; ¥)
RefSignal : RefSignalType;
PlotWhichCurve : BITSET;
EstimData : EstimDataTypa;
AdaptData : AdaptDataType;
Adapt : BOOLEAN;
PlotFlile : PlotFileType;
END;
RECORD
SetupData : SetupDataType;
Model : ModelType;
Design : DesignType;
Regulator ¢ RegulatorType;
RefSignal ¢ RefSignalType;
(* PlotWhichCurve : BITSET; *)

REAL
REAL
REAL
INTEGER;

e Se Ny



AdaptData : AdaptDataType;
EstimData : EstimDataType;
END;

PROCEDURE InitautoTune (U,Uc,Y,h:REAL);
PROCEDURE AutoTune (VAR U:REAL: Y:REAL; Uc:REAL;
VAR TuningEnded, TuningOk:BOOLEAN) ;

END AutoTuner.
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IMPLEMENTATION MODULE AutoTunar;

FROM Debug IMPORT DebugMouse;

FROM AdISTR IMPORT StartIndirectSTR, IndirectSTR;
FROM ErrorBox IMPORT PrintError;

FROM MainBuffer IMPORT Seth,Geth;

FROM MathLib IMPORT exp, sgrt,sin,cos,arctan,entier;
FROM Pcalc IMPORT mdegrae,power;

FROM PlotWindow IMPORT GetLimitsU, GetLimitsY:

FROM RegulModule IMPORT ArrayType;

FROM Regulmon IMPORT UpdatzPegulatorState,RegulMonitor;
FROM Storage IMPORT ALLOCARTE, DEALLOCATE;

CONST MaxzNrOfHalfPeriods = 8;

VAR
Checkh : RECORD
ch : ARRAY[1..6],[1..3] OF REAL;
END;

NrofCalls,NrOfSamples : CARDINAL;
NrOfHalfPeriods, NrofChanges : INTEGEPR;
NrOfMeasurements : CARDINAL;
Ystors : ArrayType;
UStat, UcStat, YMin, YMax : REAL;
Maxd,d,Delta,EpsMin, h : REAL;
emax,amin, Uold, hprim : RERL;
TimeToMax, TimeToMin : REAL;
TimePos, TimeNag : REAL;
StartPos,StartNeg : BOCLEAN;

(* Remark: The variables are only defined once in the module:
the first time they are used *)

*)

(*
PROCEDURE Min (A, B:REAL) :REAL;
(* Finds the minimum between two reals & and B.
The result 1s In Min(A.B) *)
VAR C : REAL;
BEGIN
IF A<B THEN
C = A;
ELSE
C := B;
END;
RETURN (C) ;
END Min;

*)

(*
PROCEDURE Max(A,B:REAL) :REAL;
(* Finds the mazimum between tw> r=als 3 and B.
The rssult 1s in Maz (3,B) *)

VAR C : REAL;
BEGIN

IF A>B THEN

C = Ay
ELSE

RETURN (C) ;
END Mazx;

~ autotune.mod

*)

('k
PROCEDURE RelaySwitched(d, Y:REAL) : BOOLEAN;

(* ——==- Analyses 1f tha relay must switch or not from the amplitude
of the process output y.
d 1s the amplitude of the relay output

The result 1s RelayvSwitched which 1is true 1if the relay must switch~e===< *)

VAR Switched : BOOLEAN;
BEGIN
WITH TunePar DO
Switched := ((d<0.0) AND (Y<YStat-Eps)) OR ((d>0.0) AND (Y>YStat+Eps)) ;
END;
RETURN (Switched) ;
END RelaySwitched;

*)

(*
PROCEDURE ChangeRelayAmp (VAR d:REAL; VAR Changed:BOOLEAN) ;

(* ~——— Analyses 1f the amplitude of the relay output must be changed.
It must be decreased if the amplitude of the process output is too big.
The result 1s a boolean, ™Changed” which 1is true if the

ralay output must be changed ~=---- *)
VAR Newd : REAL;
BEGIN
WITH TunePar DO
Newd := d*4_.0*Eps/Amp;
END;
IF Newd<0.0 THEN
Newd := Max (-Maxd, Newd) ;

ELSE
Newd := Min(Maxd,Newd) ;
END;
IF ABS (Newd-d) > 0.01*d THEN
d := Newd;
Changed := TRUE;
ELSE
Changed := FALSE;
END;

END ChangeRelayAmp;

(*
PROCEDURE AutoTuna (VAR U:REAL; Y:REAL; Uc:REAL;
VAR TuningEnded, TuningOk: BOOLEAN) ;

(* -——-= Reallzes the relay experiment 1f the process output
has reached stationarity. It i1s the Auto-tuning part

g 1s the control signal

Y is the process output

TuningEnded is a boolaan which 1is true 1f the tune
can not be computed
TuningOk is a boolzan which is true when the relay
experiment is finished
The outputs of the procedure are TuningEnded, TuningOk and TunePar

CONST

MaxNrOfChanges =- 3;

AmpDivEps = 2.0;
VAR

Changed, OK : BOOLEAN;

Stop0 : ARRAY[1..10] OF CHAR;
BEGIN

IF NrOfCalls<=NrOfMeasurements THEN

*)




IF ABS (Y - UcStat) < Delta THEN
YMin := Min (Y, YMin);
YMax := Max(Y, YMax):;
NrofCalls := NrofCalls + 1;
NrxOfThanges := 0;
TuningEnded := FALSE;
ELSE
TuningEnded := TRUE;
TuningOk := FALSE;
END;
ELSIF NrOfCalls=NrOfMeasuraments+l THEN
WITH TunePar DO
Eps := Max(EpsMin, YMax - YMin):
YStat := (YMaz+YMin)/2.0;
END;
d := Maxd;
U := UsStat + d;
NrofHalfPeriods := <1; .
NrofCalls := NrOfCalls + 1;
TuningEnded := FALSE;

ELSE
CASE NrOfHalfPeriods OF
=it H
IF RelaySwitched(d,Y) THEN
d = -q;
WITH TunePar DO
Amp := 0,0;
END;
NrOofSamples := 1;
NrOfChanges := 0;
NrOfHalfPeriods := 0;
END;
U := UStat + 4;
TuningEnded := FALSE; |
0 -

IF RelaySwitched({d,Y) THEN
ChangeRelayAmp id, Changed) ;
IF Changed THEN
NrofChanges := NrOfcChanges + 1;
PrintError ("RelayChanged®) ;
END;
IF NOT Changed OR (NrofChanges=MaxzNrofChanges) THEN
NrOfHalfPeriods := 1;
END;
NrofSamples := 1;
WITH TunePar DC
Amp := 0.0;
d := -d;
Time := 0.0;
END;
Init¥measurzment;
Ymeasursment (U, Y) ;
ELSE
Nroffamples := NrOfSamplas + 1;
WITH TunePar DO
Amp := Max (Amo,ABS (YStat-Y));
END;
END;
Oold := UT;
U := UsStat + d4;

_autotune.mod

TuningEnded ;= FALSE;|
1..MaxNrOfHalfPeriods :
IF RelaySwitched(d,Y) THEN

NrofHalfPeriods := NrOfHalfPeriods + 1;

NrOofSamples := 1;

IF (NrOfHalfPariods <> MazNrOfHalfPeriods+l) THEN

WITH TunePar DO

Amp := 0.0;
END;
END;
d := -d;
ELSE

NrofSamples := NrOfSamples + 1;

END;

IF (NrOfHalfPeriods <> MaxzNrOfHalfPeriods+l) THEN

U := UStat + d;
Ymeasurement (T, Y) ;
Uold := O;
ELSE
U := UStat;
END;
TuningEnded := FALSE;
WITH RegulMonitor DO

y1l[4] == yl1l(3]; rof (4] := ref(3];
y1i[3] := y1[2]; raf[3] := ref[2];
¥y1{2] := y1(1]; ref (2] := ref[l];
¥1[1l] == y1[0]; ref[l] := ref[0];
¥y1{0] == Y; ref[0] := Uc;
uf4] := u(3]; v{4] = v[3];
ul[3] = ul2]; v[3] := v[2];
uf2] == ufi]; v(2] = v[1];
ufl] z= u[0}; v{l] = v{0];
uf0] := U; v{0] := T;
END;

ELSE
U := Ustat;
WITH TunePar DO
h := Period/6.0;
END;
Seth (h);
InitModel;
InitPPDesign;
StartIndirectSTR(GlobalData.Adapt,

OK) ;

IF OK AND (NOT GlobalData.Adapt) THEN

IndirectSTR(FALSE, U, Y);

UpdateRegulatorState;
ELSE

IF NOT OK THEN

PrintError("IndirectSTR non started®);

END;
END;
TuningEndaed := TRUE;
TuningOk := TRUE;
END;
END;
END AutoTune;

(*
PROCEDURE InitAutoTune (U,Uc,Y, Tsamp:REAL);
(* === Initilalizes the variables used in the

procedurs AutoTunae.

*)



Uz is the reference sigral
Tsamp is the samplingy interval =--- )
CONST ProcDelta = 0,03;
ProcMazd = 0.1;
ProcEpsMin = 0.02;
VAR Hi,Lo : REAL;
I,J : INTEGER;
BEGIN
h := Tsamp;
UStat := U;
UcStat := Uc;
GetLimitsY(Lo,Hi);
Delta := ProcDelta*(Hi-Lo) :
EpsMin := ProcEpsMin*(Hi-Lo);
GetLimltsU(Lo,HL);
Maxd := Min(ProcMaxzd* (Hi-Lo) (Min (UStat-Lo, Hi-UStat)) ;
YMaz := Y;
™in := Y;
NrofMeasurements := entier(5.0/h);
NrofCalls := 1;
WITH Ymean DO
FOR I := 1 TO 20 DO
Ym({I] := 0.0;
END;
END;
WITH TunePar DO
NrOfPeriods := 0;
TO := 0.0;
T3 := 0.0;
Time := 0.0;
emazmean := 0.0;
eminmean := 0.0
w = 0,0;
ratew := 0.5;

’

TimePeriodPos := 0.0;
TimePeriodNeg := 0.0;
TimeToMaxmean := 0,0;
TimeToMinmean := 0.0;
END;
END InitAutoTune;
(t
PRCCEDURE Ymeasurement (U, Y :REAL) H
(* === Computes the measurament of values of the procass output. --~ *)
CONST
Pl = 3.141593;
VAR
Timel, Time2, Time3 : RERL;
BEGIN

WITH TunePar DO
Time := Time + h;
END;

{* Measurement of 6 valuas of ¥ during thsz
relay-experiment, the halfpzricds and the maz and min
amplitudes reached by 7. 2n= icd is shared into 6
@qual parts and the 6 fsllowing conditions are obtained
to measure y at the right plaza *)

*)
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(* Measurement of the first point *)
IF ((Uold-UStat)<0.0)AN'D((U-UStat))0.0) THEN
WITH TunePar DO
IF NrOofPeriods=0 THEN
StartPos := TRUE;
END;
IF NOT StartNeg THEN
NrOfPeriods := NrOfPerlods + 1;
END;
IF NrOofPeriods>1 THEN
hprim := TimePos/3.0;
END;
TimePos := 0.0;
TO0 := Time;
IF NrOfPeriods>1 THEN
Timel := TimeNeg - TimePeriodNeg;

TimePeriodNeg := TimePeriodNeg + Timel/FLOAT (NrOofPeriods~1);

IF NrOfPeriods>2 THEN
Time2 := TimeToMaz - TimeToMaxmean;

TimeToMaxmean := TimeToMaxmean + Time2/FLOAT (NrOfPeriods-2) ;

Time3 := TimeToMin - TimeToMinmean;

TimeTocMinmean := TimeToMinmean + Time3/FLOAT (NrOfPariods-2) ;
emaxmean := emaxmean + (emax - emaxmean)/FLOAT(NrOfPeriods-2);

END;
WITH Ymean DO

Ym{1l] := Ym[1l]+((Y-YStat)/ABS(d)-Ym[1]) /FLOAT (NrOfPeriods-1) ;

END;
WITH Checkh DO
ch(1,NrofPeriods~1] := hprim;
END;
Ystore[l,NrOfPeriods-1] := (Y - YStat)/ABS(d);
END;
END;
ELSE
IF (U-UStat)>0.0 THEN
TimePos := TimePos + h;
END;
END;

(* Measurement of the second polnt *)
WITH TunePar DO

IF ((ABS(Time-TO-hprim)<(h/2.0)) AND (NrOfPeriods>1)) THEN

Ystore[2,NrOfPeriods~1] := (Y - YStat) /ABS(4) ;
WITH Checkh DO
ch(2,NrofPeriods-1] := hprim;
END;
WITH Ymean DO

Ym([2] := ¥m[2] + ((Y - YStat)/ABS(d) - Ym{2]) /FLOAT (NxOfPeriods-1);

END;
END;

(* Measurement of the third point *)

IF ((RBE(Time-T0-2.0*hprim)<(h/2.0)) AND (NrOfPeriods>1)) THEN

Ystora[3,NrOfPeriods-1] := (Y - Y¥YStat)/ABS(d):;
WITH Checkh DO
ch(3,Nr0fPeriods-1] := hprim;
END;
WITH Ymean DO

Ym({3] := Ym([3] + ((Y - YStat)/ABS(d) - Ym(3]) /FLOAT (NxrOfPeriods-~1);




(* Measursment of the fourth point *)
IF ((Uold-UStat)>0.0)AND((U-UStat)<0.0) THEN
WITH TunePar DO
IF NrOfPeriods=0 THEN
StartNeg := TRUE;
END;
IF NOT StartPos THEN
NrOfPeriods := NrOofPeriods + 1;
END;
IF NrOfPeriods>1 THEN
hprim := TimePos/3.0;
END;
TimeNeg := 0.0;
T3 := Time;
IF NrOfPeriods>1 THEN
Timel := TimePos - TimaPericdPos;
TimePeriodPos := TimePariocdPos + Timel/FLOAT (NrOfPeriods-1) ;
IF NrOfPeriods>2 THEN
aminmean := eminmean + (emin - eminmean) /FLOAT (NrOfPeriods-2) ;
END;
WITH Ymean DO
¥m[4] := Ym[4] + ((Y-YStat)/ABS(d) - Ym{4]) /FLOAT (NrOfPeriods-1) ;
END;
Ystore[4,NrOfPeriods~1] := (Y - YStat) /ABS (d);
WITH Checkh DO

ch[4,NrOfPeriods-1] := hprim;
END;
END;
END;
ELSE

IF (U-JStat)<0.0 THEN
TimeNeg := TimeNeg + h;
END;
END;

(* Measurement of the fifth roint *)
WITH TunePar DO
IF ((ABS (Time-T3-hprim)<(h/Z.0)) AND (NrOfP=eriods>1)) THEN
Ystore(5,NrOfPeriods-1] := (Y-7Stat)/ABS(d);
WITH Checkh DO
ch(5,NrOfPeriods-1] := hprim;
END;
WITH Ymean DO
Y¥m([S5] := Ym{5] + ((Y-YStat) /ABS(d) - Ym{E]) /FLOAT (NrOfPeriods-1) ;
END;
END;

(* Measursment of the last pcint )
IF ((ABS(Time-T3-2.0*hprim)<(h/2.0)) AND (NrofFsriods>1)) THEN
Ystore[6, NrOfPeriods~-1] := (Y - YStat) /ABS(d);
WITH Checkh DO

ch{6,NrOfParieds-1] := hprim;
END;
WITH Ymean DO
Ym{6] := Ym[6] + ((Y - ¥Stat) ABS(d) -~ Im[6])/FLOAT (NrOfPerlods-1);

END;
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END;
END;

(* Calculation for the time where Ymaxz happens *)
WITH TunePar DO
IF (((Y-YStat)/ABS(d))>emaz) AND (NrOfPeriods>1) THEN
TimeToMaz := Time - TO;
emax = (Y - YStat)/ABS(d);
END;

(* Calculation for the time where the Ymin happens *)
IF (((Y-YStat)/ABS(d))<emin) AND (NrOfPeriods>1) THEN
TimeToMin := Time - TO;
emin := (Y - YStat)/ABS(d):;
END;

IF NrOfPeriods>3 THEN
Amp := (emazmean - eminmean)/2.0;
Period := TimePeriodPos + TimePeriodNeg;
END;
END;

END Ymeasurement;

(* *)
PROCEDURE InitYmeasurement;
(* === Initializes the procedure Ymeasurement --- +)
VAR
1,9 : INTEGER;
BEGIN
FOR 1:= 1 TO 6 DO
FOR j:= 1 TO 3 DO
Ystore(l,3] := 0.0;

WITH Checkh DO
ch(i, 3] := 0.0;

END;

END;
END;
emax = 0.0;
emin = 0.0;
TimeToMaxz := 0.0;
TimeToMin := 0.0;
TimeNeg := 0.0;
TimePos := 0.0;
StartPos := FALSE;
StartNeg := FALSE;

hprim :=0.0;
END InitY¥Ymeasurement;

(t

PROCEDURE InitModel;

(* ===Initialize a first order model with time delay --- *)
VAR
£1,£2,£3,d2 : REAL;
detarminant,bll, bl2,b21,b22 : REAL;
indicel2prim, indice3prim, indicedprim : REAL;
indice2, indice3, indiced : INTEGER;
1,4,4d1 : INTEGER;
BEGIN

(* Determination of tha delay *)

*)
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WITH TuneFar DO WITH GlobalData.Model.A DO (* === (z-a) ——- *)
dl := entisar(TimeToMinmean/h); coeffs[0] := 1.0;
END; WITH Ymean DO
WITH Ymean DO coeffs([1] := =(¥m[d+4] - ¥Ym[d+3]) / determinant;
IF ABS (Ym[d1l+1])>ABE(Ym[d1+2]) THEN END;
d := di1; FOR 1:=2 TO mdegree DO coeffs[1] := 0.0; END;
ELSE degree := 1;
d = dl+1; END;
END; WITH GlobalData.Model DO
END; (* AdditionalPolesInOrigin := d;*)
(* Initlalisation of the model *) IF ABS(B.coeffs([0])>0.001 THEN
indica2 := (4+2) MOD 3; delay := d+1;
IF indice2 = 0 THEN IF ABS(B.coeffs[1])>0.001 THEN
indice2 := 3; AdditionalPolesInOrigin := d+1;
END; ELSE
indiceZprim := power(-1.0, {d+2-indice2) DIV 3); AdditionalPolesInOrigin := d;
indiceld := (d+3) MOD 3; END;
IF indice3 = 0 THEN ELSE
indice3 := 3; delay := d+2;
END; IF ABS(B.coeffs[1])>0.001 THEN
indice3prim := power(-1.0, {(c¢+3-indice3) DIV 3); AdditionalPolasInOrigin := d+l1;
indiced4 := (d+4) MOD 3; ELSE
IF indice4 = O THEN PrintError(”bl=b2=0, Impossible");
indiced := 3; END;
END; END;
indice4prim := power(~1.0, (¢+4-indiced) DIV 3); END;
WITH Ymean DO ELSE
IF Ym[1]<0.0 THEN PrintError("Determinant = 0");
£l := Ym(1]; END;
£2 := ¥Ym([2]; TempData.Model := GlobalData.Model;
£3 := ¥Ym(3]; END InitModel;
Ym[1l] := ¥Ym(4];
Ym(2] := Ym(5]; (* *)
Ym[3] := ¥Ym[6]; PROCEDURE InitPPDesign;
Ym[4] := £I1; (* === Initilalization of a controller based on pole placement design --- *)
Ym(5] := £2; CONST
Ym[{6] := £3; pl=3.1416;
END; VAR
Ym({d+2] := indiceZprim * Ym[indice2]; 1 : INTEGER;
Ym[d+3] := indice3prim * Ym(indize3]; interl,alpha,bata : REAL;
Ym([d+4] := indicedprim * ¥Ym(indiced]; BEGIN
determinant := ¥Ym[d+3] - Ym{d+Z]; WITH GlobalData DO
END; (* =—-1f the model is a first order like k/(z-a) the desired closed loop
IF ABS (determinant)>0.0001 THEN denominator s also a first order--—- *)
WITH Ymean DO IF ABS (Model.B.coeffs[1])<0.001 THEN
b2l := -power(Ym[d+2],2)-oower(¥m(d+3], ) +powear (Ym[{d+4],2); WITE TunePar DO
b22 = Ym([d+2]*¥Ym[d+3]+Y¥m[A+] *Ym[d+4]~Ym[d+3] *¥m[d+4]; W = ratew/Period;
bll := power(¥Ym[d+Z],2)-power (Ym{d+3],2l)~powar(¥m[d+4],2); alpha := exp(-w*h);
blZ := -Ym[d+2]*¥Ym([d+3]+¥n{3+2) *Ym(d+4]+¥m[3+3] *Ym[d+4]; END;
END; Design.Am.degree := Model.delay+l;
WITH Glcballata.Model.B DD (* === £iz+bl === *) Design.Am.coeffs[0] := 1.0; (* Am=zdelay(z-alpha) *)
coeffs(d] := (bll+bll) / (I.0*datarminant}; Design.Am.coeffs[1] := -alpha;
coeffs[l] := (b21+b22) / (I.0*datzrminant); FOR 1:=2 TO mdegree DO Design.Am.coeffs[i] :=0.0; END;
FOR 1:=2 TO mdegrse DC =parfs(i] := 2.0; END; interl := Model.B.coeffs[0]+Model.B.coaffs(1];
IF ABS(zceffs([1])>0.001 THEN IF ABS(int=rl)>0.001 THEN
dagres := 1; Design.Bmprim.degree := 0; (* Bm’ = const ¥)
ELSE Design.Bmprim.coeffs[0] := (1.0-alpha)/interl;
dagree = 0; FGR i:=]1 TO mdegree DO Dasign.Bmprim.coeffs[i] :=0.0; END;
END; ELSE
END; PrintError("bl+b2 = 0%);




R

(* —==if we are not in the pravious case the closed loop desired denominator

1s a second order --- *)

WITH TunePar DO

W = ratew*2.0*pi/Period;

alpha := exp(-0.7*w*h);

beta := cos(w*h*sqrt(1.0-0.7+%0.7));
END;
Design.Am.degrae := Model.delay+2;
Design.Am,coeffs (0] := 1.0;
Design.Am.coeffs[1] := -2.0*alpha*bata;
Design.Am.coeffs[2] := power(alpha,2);

FOR 1:=3 TO mdegree DO Cesign.Am.cooffs[1] :=0.

interl := Model.B.coeffs{0]+Model.B.coeffs([1];
IF ABS (interl)>0.001 THEN
Design.Bmprim.degree := 0;

(* Am=zdelay(z2+plz+p2) *)

0; END;

{* Bm/ = const *)

Design.Bmprim.coeffs[0] := (1.0-Z.0*alpha*beta+power (alpha,2))/interl;
FOR 1:=1 TO mdegree DO Design.Bmprim.coeffs[l] :=0.0; END;

ELSE
PrintError ("bl+b2 = 0O");
END;
END;
Design.Bplus.degree := 0;
Design.Bplus.coeffs[0] := 1.0;

(* B+ = 1 *)

FOR 1:=1 TO mdegree DO Dasign.Bplus.coeffs[i] :=0.0; END;

Design.Bminus := Model.B;
Design.Ao.degree := Model.delay;
Design.Ao.coeffs{0] := 1.0:

(* B~ = B *)
(* Ao *)

FOR 1:=1 TO mdegree DO Design.ho.coeffs{i] :=0.0; END;

END;
END InitPPDesign;

END AutoTuner.
\032
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DEFINITION MODULE AdISTR:
EXPORT QUALIFIED
StartIndirectSTR, IndirectSTR;
PROCEDURE StartIndlrectSTR (Adapt :BOOLEAN; VAR ok : BOOLEAN) ;

PROCEDURE IndirectSTR (Adapt : BOOLEAN;u, y;REAL) ;

END AdISTR.
\032
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IMPLEMENTATION MODULE A4ISTR;

t’ *)
(* Routines for poles placement design *)
(* *)
(* Mlchael Lundh March 1988 ol

(* *)
FROM AutsTuner IMPORT ModelType, DesignType, RegulatorType,
GlobalData, AdaptDataType, TempData;
FROM ErrorBox IMPORT PrintError;
FRCOM Regulmon IMPORT NewAdaptiveRequlator,
GetPolyInRagulator, NewPolyInRegulator;

FROM Pcalc IMPORT mdsgres, cpoly, Polnorm, Polmul, Diophantina, FilzDegree;
FROM RLS IMPORT RestartEstimation;
CONST

relative =1.0E-8;

VAR
AoAm, Integr, Ttmp,
Aext, AextIntegr : cpoly;
amgeql : REAL;

(& *)
PROCEDURE StartIndirectSTR(Adapt :BOOLEAN; VAP ok:BOOLEAN) ;
(* Rdapt=TRUE when adaptive ragulater running, FALSE when initialisation *)
VAR 1:CARDINAL;
BEGIN
WITH GlobalData.Design DO
Polmul (Ao, Am, relative, AoAm);
IF Polnorm(AoAm)<0.0001 THIN
PrintError(’ Am * Ro = 0 ‘) ;
ok := FALSE;
RETURN;
END;

IF Polnorm (Bmprim)<0.0001 THEN
PrintError ("™ Bm’ = Q0 ");
ok := FALSE;
RETURN;

END;

IF IntegralAction THEN
WITH Integr DO

degree:=1; coeffs[0]:=1.0; coaffs{l]:=-1.0;
FOR i:=2 TO mdegrae DO «coeffs([1):=0.0; END;
END;
ELSE
WITH Integr DO
degrea:=0; coeffs[0]:=1.7);
FOR 1:=1 TO mdegree DO co=ffs{l]:=0.0; END;
END;
END;

WITH Rext DO (* handlas addtional poles in ths origin *)
degjree:=GlobalData.Mode]l . AdditionalP:lasInCrigin;
coeffs[0]:=1.0;

FOR 1:=1 TO mdegres DO coeffs([i]:=0.0; END;

END;

Polmul (Integr,Aext,relativs, A=xtIntagr);

(* degree test deg(Ao)+deg(Am) >= 2deg (A) -deg (B+) +1-1 *)
WITH GlobalData.Mcdel DO
IF AcAm.degree < 2*(A.degree+Aexzt.degree) -0 +Integr.degrea -1 THEN
ok :=FALSE;
PrintError(’ Degree faultl 7);
RETURN;
END;
END;

amgeql := 0.0;
FOR 1:=0 TO Am.degree DO (* Am(l) *)
amgaql := amgeql + Am.coeffs[i];
END;
IF ABS (amgeql) < 0.001 THEN
ok :=FALSE;
PrintError(’ Am(l) = 0 7);
RETURN;
END;

Polmul (Ao, Bmprim, relative, Ttmp) ;

(* tilldela regulator polynom gradtal *)
GetPolyInRegulator (TempData.Regulator) ;
TempData.Regulator.RegType := ‘ISTR’;
TempData.Regulator.T := Ttmp;
TempData.Regulator.R.degree := AoAm.degree - Aext.degree

= GlobalData.Mcdel.A.dagree;
TempData.Regulator.Sl.degree:= TempData.Regulator.R.degrae;
TempData.Regulator.T.degree := TempData.Ragulator.R.degree;
TempData.Regulator.Ao.degree:= TempData.Ragulator.R.degree;

TempData.Regulator.S2.degrea:= 0;
TempData.Regulator.S3.degree:= 0;
FOR 1:=0 TO mdegree DO
TempData.Regulator.S2.coeffs[1] :
TampData.Regulator.S3,.coeffs[i] :
END;

NewPolyInRegulator (TampData.Regulator) ;

ok :=TRUE;
END;
RestartEstimation (FALSE, ok) ;
END StartIndirectSTR;

*)

(*
PROCEDURE IndirectSTR(Adapt:BOOLEAN;u,y:REAL);
(* Adapt=TRUE when adaptive regulator running, FALSE when inltialisation *)
VAR 1:CARDINAL;
bmgeql, t0, r0: REAL;
al, bm, rl: cpoly;
BEGIN
WITH GlobalData DO
Folmul (Model.A, AextIntegr, relative,al);

(* B~ =B B+ = 1 *)
Polmul (Modal.B,Design.Bmprim,relativa,bm);

bmgeql := 0.0;




FOR 1:=0 TO bm.degree DO (* bm(l) *)

bmgaql := bmgeql + bm.coeffs{1];

END;

t0 := amgeql/bmgeql;

WITH TempData.Regulator DO
Diophantine(al,Model.B,AcAm, rl,S1);

Polmul (rl, Integr,relative,R) ;
FixzDegrea (S1,R.degree);

r0:=R.coeffs[0]; (* = 1.0 always 222 *)
FOR 1:=0 TO R.degree DO
R.coeffs[l] := R.coeffs[i] / ro;

Sl.coeffs{l] := Sl.coeffs[l] / r0;
T.coeffs[l] := Ttmp.coeffs(i] / r0 * to0;

NewAdaptiveRegulator (TempData.Regulator) ;
END IndirectSTR;

END AdJISTR.
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DEFINITION MODULE DSpeBoz;

FROM Graphics IMPORT rectangle;
EXPORT QUALIFIED Init,Draw,DSpe;
PROCEDURE Init (r:rectangle);

PROCEDURE Draw;

PROCEDURE DSpe;

END DSpeBox.
\032




IMPLEMENTATION MODULE DSpeBox;

FROM AAISTR IMPORT StartIndirectSTR, IndirectSTR;

FROM AutoTuner IMPORT GlcbalData, TempData,RegulatorType;

FROM ConvReal IMPORT RealToString,StringToReal;

FROM ErrorBex IMPORT PrintError;

FROM GraphHelp IMPORT GatTextColor,GetBozColor, SetPoint, SetRectangle,

GetLeftIn,ClearLeft;

FROM Graphics IMPORT handle,rectangle,color,point,VirtualScreen,SetWindow,
SetViewPort,WriteString,SetEillColor,SetTextColor,

FillRectangle,ReadString,CharacterSize,EzaseChar,
HideCurscr, ShowCursor;

FROM IO IMPORT ADInY;
FROM MainBuffer IMPORT ActualData;
FROM MathLib IMPORT round;

FROM NumberConversion IMPORT CardToString,StringToCard,

IntTeString, StringTolnt;
FROM Regulmon IMPORT UpdateRegulatorState;
FROM Strings IMPORT Copy, Insert;

VAR DSHandle:handle;
Box:ractangle;
Text :ARRAY (0..2],[0..10] OF CHAR;
TextPolint:ARRAY([1..2] OF point;

*)

(*
PROCEDURE Inlt (VlewPort:rectangle);
BEGIN
VirtualScreen (DSHandle) ;
SetViewPort (DSHandle, ViewPort) ;
SetRectangla(Box,0.0,0.0,1.0,1.0);
SetWindow (DSHandle, Box) ;

SetF1llColor (DSHandle,GatBoxColor ()
SetTextColor(DSHandle,GetTaxtColor(

Copy{(™D2sign®,0,6,Text([1]);

SetPoint (TextPoint{1],0.1,9.6);

Copy ("Specifs®,0,7,Text[2]);

SetPoint (TextPolnt[2],0.1,2.1);
END Init;

)

(t
PRCCEDURE Draw;
BEGIN

HideCursor;

FlllPectangle (DSHandle,Box';

*)

WriteString (DSHandle, TextPoint (1], Tazt[1]);
WritsString (DSHandle, TextPoint [2], Texzt[2]);

ShowCursor;
END Draw;

(*
PROCEDUFE DSpa;

*)

(* —=-performs the display of ths dzsign spacifizations in the

user Interaction space --- 7)
CONST NrOfStrings=7;
un=1;
za2ro=Q;
VAR DSpeHandle
ViawPort,Box
width, height,Value, Y, U

handla;
ractangla;
EEAL;

 dspebox.mod

Test,Modi1fAcAm,OK
Len,Line,Pos,Valuac

Taxt

Ans

NumString

TextPoint
PromptPoint,ReadPointl,ReadPoint2
ReadPoint3,ReadPoint4,ClearPolint

BEGIN

ModifAcAm := FALSE;

VirtualScreen (DSpeHandla) ;

GetLeftIn (ViewPort) ;

SetViewPort (DSpeHandle, ViewPort);
SetPRectangle(Box,0.0,0.0,1.0,1.0);
SetWindow (DSpeHandle, Boz) ;
SetF1lllColor (DSpeHandla, GetBoxColor ()

BOOLEAN;

CARDINAL;

ARRAY[1. .Nrofstrings], [0..30] OF CHAR;
ARRAY[1..2] OF CHAR;

ARRAY[0Q..12] OF CHAR;

ARRAY (1. .NrOfstrings] OF point;

point;

point;

):

SetTextColor (DSpeHandle,GetTextColor()) ;
charactersize(DSpeHandle,width,height);

FOR Line:= 1 TO NrOfStrings DO

SetPolnt (TextPoint [Line],0.05,1.0-

END;

SetPoint (PromptPoint, 0.05,0.05);
SetPoint (ReadPointl, 0.05+width, 0.05);
SetPoint (ClearPolint,0.05+2,0*width, 0.
SetPoint (ReadPoint2,0.05+3.0*width, 0.

SetPoint (ClearPoint,0.05+4.0*width, 0,

SetPolint (ReadPoint3,0.05+5.0*wldth, 0.
SetPoint (ClearPoint,0.05+8,0*width, 0.
SetPoint (ReadPointd4,0.05+9,0*width, 0.

REPEAT
Copy ("l Ao.degree",0,11,Text(1l]);
Copy ("2 RAo",0,4,Text[2]);
Copy ("3 Am.degree®,0,11, Text[3]);
Copy ("4 Am", 0,4, Text[4]);
Copy ("5 Bm‘",0,5,Text[5]);
Copy ("6 IntAction™,0,11,Text[6]);
Copy ("E Exit®,0,6,Taxt[7]);
Len:=7;
WITH GlobalData.Design DO

FLOAT (Line) *1.2*height);

05);
05) ;
05) ;
05);
05);
05) ;

CardToString (Ac.degree, NumString,Len);

Insart (NumString, Text(1],11);

RealToString (Ao.coeffs[0], NumString, Len) ;

Insert (NumString, Text(2],4);
IF Ao.degrea>=1l THEN

RealToString (Ao.coeffs[1l],NumString,Len) ;

Insert (NumString, Text(2],13);
IF Ao.degree>=2 THEN

RealToString (Ao.co2ffs[2], NumString, Len) ;

Insert (NumsString, Taxt{2],22);

END;
END;

CardToString (Am.dagree, NumString,Len) ;

Insert (NumString, Text[3],11);

RealToString (Am.coeffs[0], NumString, Len) ;

Insert (NumString, Text[4],4);

RealToString (Am.coeffs{1], NumString, Len) ;

Insert {NumString, Text(4],13);

RealToString (Am.coeffs[2], NumString, Len) ;



Insert(NumString,Text[4],22);
RealToString(Bmprim.coeffs[0],NumString,Len);
Insert (NumString, Text [5],5);
IF IntegralAction THEN
IntTostring(un,NumString,Len);
ELSE
IntToString(zero,NumString,Len);
END;
Insert (NumString, Text[6],11);
END;
HideCursor;
FillRectangle(DSpeHand e, Box) ;
FOR Line:= 1 TO NrOfStrings DO
WriteString(DSpeHandle,Tethoint[Line],Text[Line]);
END;
WriteString(DSpeHandle,PromptPoint,">");
ShowCursor;
ReadString (DSpeHandle, FeadPointl,Ans);
HideCursor;
EraseChar(DSpeHandle,ClearPoint,l);
ShowCursor;
(* =--Ro and 2Am can be changed from the user interaction space
the coefficlents and the degree should be changaed --- *)
IF (Ans{1l]="1") THEN
IF NOT GlobalData.Adapz THEN
ModifAcAm ;= TRUE;
ReadString(DSpeHandle,ReadPointZ,NumString);
Pos:1=0;
StringToCard (NumString, Values, Test) ;
IF Test THEN
GlobalData.Design.Ao.degree:=Valuec;
ELSE
PrintError("Conversion Error®);
END;
ELSE
PrintError("Adaptive Regulator”);
PrintError("Modification impossible®) ;
END;
END;
IF (Ans[1l]=%2") THEN
IF NOT GlobalData.Adapt THEN
ModifAoAm := TRUE;
ReadString(DSpeHandle,ReadPointZ,NumString);
Pos:=0;
StringToReal (NumString, Pos, Value) ;
IF Pos<>0 THEN
GlobalData.Design.Ao.z0effs (0] :=Valua;
ELSE
PrintError ("Conversisn Error”®);
END;
Readstring(DSpeHandle,ReachintS,NumString);
Pos:=0;
StringToReal (NumStrinyg, Pos, Value) ;
IF Pos<>0 THEN
GlobalData.Daslgn.As.co2ffs(1] :=Valua;
ELSE
PrintError ("Convarsion Error”™);
END;
Readstring(DSpeHandle,ReadPoint4,NumString);
Fos:=0;

dspebox.mod

StringToReal (NumString, Pos,Value) ;
IF Pos<>0 THEN
GlobalData.Design.Ao.coeffs[2]:-Value;
ELSE
PrintError (*Conversion Error®);
END;
ELSE
PrintError ("Adaptive Regulator®);
PrintError ("Modification impossibla®) ;
END;
END;
IF (Ans{1]="3") THEN
IF NOT GlobalData.Adapt THEN
ModifRAoAm := TRUE;
Readstring(DSpeHandle,ReadPointZ,Numstring);
Pos:=0;
StringToCard(NumString,Vzluec,Test);
IF Test THEN
GlobalData.Design.Am.degree:-Valuec;
ELSE
PrintError ("Conversion Error®);
END;
ELSE
PrintError(”Adaptive Regulator®);
PrintError (™odification impossible”) ;
END;
END;
IF (Ans[1]="4") THEN
IF NOT GlobalData.Adapt THEN
Readstring(DSpeHandle,ReadPointZ,Numstring);
Pos:=0;
StringToReal (NumString, Pos, Value) ;
IF Pos<>0 THEN
GlobalData.Design.Am.coeffs (0] :=Value;
ELSE
PrintError ("Conversion Error®):
END;
Readstring(DSpeHandle,ReadPoint3,Numstring);
Pos:=0;
StringToReal (NumString, Pos,Value) ;
IF Pos<>0 THEN
GlobalData.Design.Am.coeffs[1]:=Vélue;
ELSE
PrintError ("Conversion Error”®);
END;
Readstring(DSpeHandle,ReadPoint4,Numstring);
Pos:=0;
StringToReal (NumString, Pos, Value) ;
IF Pos<>0 THEN
GlobalData.Design.Am.coeffs(2] :=Value;
ELSE
PrintError ("Conversion Error®);
END;
ELSE
PrintError(”Adaptive Regulator®);
PrintError("Mcdification impossible®);
END;
END;
UNTIL (CAP(Ans[1l])=®E");
IF ModifRoAm THEN
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StartIndirectSTR(GlobalData .Adapt,OK) ;
IF OK THEN
PrintError(®IndirectSTR started"):
Y := ADInY():
U := ActualData.ut0;
IndirectsSTR (FALSE,U,Y);
UpdateRegulatorState;
ELSE
PrintError(®Indirect STR not started®);
END;
END;
ClearLeft;
END DEpa;

END DSpeBozx.
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DEFINITION MODULE RegulModulse;

EXPORT QUALIFIED Start, ArrayType, VectorType;
TYPE VectorType = ARRAY[1..11] OF REAL;

TYPE ArrayType = ARRAY [1..6],[l..3] OF REAL;
PROCEDURE Start;

END RegulModule.
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IMPLEMENTATION MODULE RegulMcdule;

IMPORT DebugPMD;

FROM A4ISTR IMPORT IndlrectSTR;

FRCM AutoTuner IMPORT TunePar, ParType, InitAutoTuna, AutoTune,
GlobalData, TempData, Ymean;

FRCM ErrorBoz IMPORT PrintError;

FROM IO IMPORT ADInY, ADInExt, DAOutU;

FROM Eernel IMPORT Time, SetPriority, GetTime, IncTime, WaitUntil,
Create®rocess;

FROM MainBuffer IMPORT ModeTyoe, GatMode, SetMode, GetPar, SetPar, GetSignal,
SetsSignal, Gath, SetTuningOk, SetGSSignals,
GetGEsignal, SignalType, ActualData;

FROM PlotBuffer IMPFORT PutData;

FROM PlotWindow IMPORT GetLimitsU;

FRCM Regulator IMPORT ControlSignal, InitRegulator, ResetRequlator;

FROM Regulmon IMPORT NewControlSignal, NewAdaptiveRegulator,
UpdateRegulatorState;

FROM RLS IMPORT Estimation;

FROM Storage IMPORT ALLOCATE, DEALLOCATE;

VAR
K,Mean ¢ REAL;
(* *)
PROCEDURE InitMean;
BEGIN
K := 100.0;

Mean := 0.0;
END InitMean;

(* *)
PROCEDURE UpdateMean (X:REAL) ;
(* Computes the mean of a real signal, X *)
CONST Lambda = 0.95;
BEGIN
K := K/ (RK+Lambda);
Mean := Mean + K*(X-Mean);
END UpdateMean;

*)

(*
PROCEDURE GetMean () :REAL;
BEGIN

RETURN (Mean) ;
END GatMean;

*)

(t

PRCCEDURE Regqul;

(* Process which supervises thz choice of ths modes Man, PID, Tune,Adapt *)

VAR Moda, LastMode,McdeBeforaTuning : ModaT:
h,uc,y,u,ext,v,U0Min, UMax, Dammyy :
Par H

TuningEnded, TuningOk : BOOLEAN;
T : Time;
BEGIN

SetPriority(20);
LastMode := GetMode();
GetLimitsCO (UMin, OMax) ;
u = 0.0;

Loop

regulmodmod _'-:* '

h := Geth();
IncTime (T, TRUNC(1000.0%*h) ) ;
:= GetMode();

CASE Mode OF

uc := GetSlgnal (Oc);
Yy = ADInY();
SetSignal (Y,y):
GetPar (Par) ;

Dummy := ControlSignal(uc,y,u,h,Par);
v = GetSignal(U);
IF v < UMin THEN

ELSIF v > UMax THEN

uc := GetSignal (Uc);

SetSignal(Y,y);

GetPar (Par) ;

v := ControlSignal(uc,y,u,h,Par);
IF v < UMin THEN

ELSIF v > UMax THEN

IF LastMode <> Tune THEN
v := GetMean();
InitAutoTuna(v,GetSignal (Uc),y,h);
SetGsSignals(v,y,ADInExt ()) ;
ModeBaforeTuning := LastMocde;

AutoTune (v, y,uc, TuningEnded, TuningOk} ;
IF v < UMin THEN

ELSIF v > UMax THEN

IF TunlingEnded THEN
IF TuningOk THEN
SetTuningOk;
NewAdaptiveRegulator (TempData.Regulator);
PrintError ("Tuning was successful.”);
SatMode (Control) ;

PrintError("Tuning wasn’t successful.");
SetMode (ModeBeforeTuning) ;

uc := GetSignal(Uc);




Y = ADInY();
Setsignal (Y, v):
WITH ActualData DO
reft0 := uc;
y1t0 := ADInY();
y2t0 = 0.0;
y3t0 == 0.0;
utQ := NewControlSignal (reft0,ylt0,y2t0,y3t0);
END;
v := ActualData.utO;
IF v < UMin THEN
a := UMin;
ELSIF v > UMax THEN
u := UMaxz;
ELSE
u = v;
END;
DAOuUtU (u};
Estimation (u,y);
IF GlobalbData.Adapt THEN
IndirectSTR(TRUE,u,y);
END;
UpdateRegulatorState;
END; (* case *)
UpdateMean (u) ;
SetSignal(U,u);
PutData(u,uc);
LastMode := Mode;
WaitOntil(T);
END;
END Regul;

(* *)
PROCEDURE Start;
BEGIN
InitRegqulator;
InitMean;
CreateProcess (Requl,20000) ;
END Start;

END RegulModule.
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DEFINITION MODULE RLS;

EXPORT QUALIFIED
MaxStore, mazindex, col, matr, EstimateParameters,
RastartEstimation, InitRLS, Estimation, DORLS;

CONST
MazStore = 710;
maxindez = 10; (* max number of estimated parameters *)

TYPE
col = ARRAY({0..maxindex] OF REAL;
matr = ARRAY[O..maxlndex] OF col;

Fllter2state = RECORD
x1l,x2 : REARL;

END;
VAR
EstimateParameters: RECORD

Theta : col; (* estimated parameters *)

Phi : col; (* regression vector ¥)

L : matr; (* lower triangular part of LD decompo-
sltion of P. Notice that the elements
are stored columnwise *)

D : coly (* dlaj. part of LD decomposition of P *)

N : CARDINAL; (* number of estimated param *)

END;

PROCEDURE RestartEstimation(zerotheta:BOOLEAN; VAR ok:BOOLEAN) ;
PROCEDURE InitRLS;

PROCEDURE Filter2(x:REAL; VAR states:Fllter2State; VAR xf:REAL);
PROCEDURE Estimation (u,y:REAL);

PROCEDURE DORLS (VAR theta,d:ccl; VAR l:matr; phi:col; n:CARDINAL);

END RLS.

 rls.def




IMPLEMENTATION MODULE RLS;

(* i
(*x Routines for recursive least square estimation
(*

(* Michael Lundh March 19288
t!

FROM Pcalc IMPORT mdegree. cceffvector, cpoly;

FROM AutoTuner IMPORT ModelType, GlobalData, EstimDataType;
FROM ErrorBox IMPORT PrintEr-or;

CONST
ralative =1.0E-8;

VAR
ufl, uf2, uf3 : REAL;
ufiltarstate,
yfilterstate : Fillter2State;

*)

(*

PROCEDURE Filter2 (x:REAL; VAR states:Fllter2State; VAR xf:REAL);
* Second order filter for regressors *)
VAR nxl,nx2: REAL;
BEGIN
WITH GlobalData.EstimData DC
WITH states DO
nxl := ~Af.coeffs[1]*xl - Af.coeffs[l]*x2 + x;
nx? := x1;
xf = (Bf.coeffs[l]—Bf.coeffs[0]*Af.cceffs[l])*xl

+ (Bf.coeffs[z]-af.coeffs[0]*Af.coeffs[2])*zZ + Bf.coeffs[0]+x;

x1:=nxl;
x2:=nz2;
END;
END;
END Fillter2;

*)

(t -

(* Routines for RLS estimation based on dvadic raduction. *)
(* Ref. Paterka IFAC-85. *)
(* *)
(* Karl-Johan Astrom and Michael Lundh 87.05.05 *)
(& *)
PROCEDURE

DyadicReduction (VAR a,b:col; VaR alpha,beta:PEAL; 10,11,12 :CARDINAL);
CONST
mzer> = 1.0E-10;

VAR
1 : CAPDINAL;
wl,w2,bl,gam : REAL;
BEGIN

IF beta<mzero THEN beta:=0.0; END;
bl := b[i0];
Wwl := alpha;
w2 := beta*bl;
alpha := alpha + w2*bl;
IF alpha > mzaro THEN
beta := wl*beta/alpha;

rlS.I]Ji)Ci o o R S S 'ﬁ..
gam := w2/alpha;
FOR 1i:=i1 TO 12 DO
b[1] := b[i] - bl*a[i];
afl] := afil] + gam*b(1i];
END;
END;
END DyadicReduction;

(*
PROCEDURE
LDFilter (VAR theta,d:col; VAR l:matr; phi:col; lambda:REAL; n:CARDINAL) ;
VAR
i,J : CARDINAL;
e,w : REAL;
BEGIN
d[0] := lambda;
e := phi{o0];
FOR 1:=1 TO n DO
er=a-theta[l]*phi{l];
w:=phi[i];
FOR J:=1+1 TO n DO w:=w+phi[J]*1[i,9]; END;
1[0,1]:=0.0;
1[1, 0] :=w;
END;
FOR 1:=n TO 1 BY -1 DO (* n.b. backward loop *)
DyadicReduction(l[O],l[i],d[O],d[i],O,i,n);
END;

FOR 1:=1 TO n DO
theta{1] :=theta[1]+1[0,1]%e;
d[i]:=d{1]/lambda;
END;
END LDFilter;

(*
PROCEDURE RestartEstimation(zerotheta:BOOLEAN; VAR ok :BOOLEAN) ;
VAR 1, j:CARDINAL;
BEGIN
WITH GlobalData.Model DO (* set model polynomials *)
IF A.degree+B.degree+l>maxindex THEN
PrintError(’Deg A + Deg B>9');
ok := FALSE;
RETURN;
END;

FOR 1:=A.degree+l TO mdegrsa DO A.coeffs[1l] :=0.0; END;
FOR 1:=B.degree+l TO mdegree DO B.coeffs{i] :=0.0; END;

A.coeffs[0] := 1.0;

IF zerctheta THEN (* default settings of A and B *)
FOR 1:=1 TO mdegree DO A.coeffs[i] :=0.0; END;
CASE A.degree OF

1: A.coeffs[l] := -0.5]

2: A.coeffs[l] := -1.5; A.coeffs[2] := 0.7;
ELSE A.coeffs[l] := -2.0; A.coeffs (2] := 1.4; A.coeffs|3] := 0.4;
END;
FOR 1:=0 TO B.degree DO B.coeffs[l] := 2.0; END;
END;

*)

*)



WITH EstimateParameters DY (* transfar parameters from model *)

Theta[0] :=0.0;

FOR i:=1 TO A.degree DO
Theta[l] := A.coeffs[l];

END;

FOR i:=0 TO B.degree DO
Theta[l+A.degree+l] := B.coeffs(i];

END;

N:=A.degree+B.degree+l;

FOR i:=N+2 T0 maxindexz DO
Theta[l] := 0.0;

END;

FOR 1:=0 TO maxindex DO
FOR j:=0 TO maxindex DO
L{i,31 :=0.0;
END;
L{i,1] :=1.0;
D[1] := GlobalData.EstimData.DO;
Phi(i] := 0.0;

END;
END;
END;
WITH ufilterstate DO x1:=0.C; z2:=0.0; END;
WITE yfilterstate DO x1:=0.0; z2:=0_0; END;

ufl := 0.0; uf2 := 0.0; uf3 := 0.0;

GlobalData.EstimData.EstPurpose:=MODELPOLY! ;
END RestartEstimation;

(* =

PROCEDURE InitRLS;

VAR 1,3J : CARDINAL;
ok : BOOLEAN;
BEGIN

RestartEstimation (TRUE, ok) ;

WITH ufilterstate DO x1:=0.0; x2
WITH yfllterstate DO x1:=0.0; z2

ufl = 0.0; uf2 := 0.0; ufld := 0.0;
END InitRLS;

(*

PROCEDURE DORLS (VAR theta,d:col; VAR l:matr; phi:zol; n:CARDINAL);

BEGIN
LDFiltar (theta,d,l,phi,GlobalData.EstimData.Lambda,n);
END DORLS;

T S

PROCEDURE Estimation (u,y:REAL) :

VAR 1 : CARDINAL;
uf0,y£0: REAL;
BEGIN

Fllter2( u, ufllterstate, ufn)
Filltar2( y, yfilterstate, yfu)

’
;

WITH EstimateParameters DO

*)

*)

*)

~rs.mod

\032

Phi[0] :=yf0;

IF GlobalData.Adapt THEN
DORLS (Thsta,D,L,Phi, N) ;

END; .

WITH GlobalData.Model DO

(* Update regressors (phi-vector) and transfer parameters to modal *)

FOR 1:=N TO 2 BY -1 DO
Phi[i]:=Phi[i-1];
END;
Phi[1] = -yf0;
CASE delay OF
1: Phi[A.degree+l] := ufo]
2: Phi{A.degrae+l] := ufl|
3: Phi(A.degres+l] := uf2]
4: Phi[A.degree+l] := uf3;
END;
IF GlobalData.Adapt THEN
FOR i:=1 TO A.degree DO
A.coeffs(l] := Theta([i]:
END;
FOR 1:=0 TO B.degree DO
B.coeffs[1] := Theta(l+A.degree+l];
END;
END;
END;

END;

uf3 := uf2;

uf2 := ufl;

ufl := ufo;
END Estimation;

END RLS.




