Combining Auto-Tuning and Adaptation

Valentin, Claire

1989

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Combining Auto-Tuning and Adaptation

Claire Valentin

Department of Automatic Control
Lund Institute of Technology
September 1989
Combining Auto-Tuning and Adaptation

Abstract

An adaptive controller needs a good initialization to converge quickly and without a too bad transient. This project develops an auto-tuning method based on the relay experiment initializing a RST controller designed with pole placement rules. This method is implemented and tested on different processes to study the limits of the algorithms.

Key words
Auto-Tuning, Relay-experiment, Pole placement design, Adaptive controller, Initialization

Classification system and/or index terms (if any)

Supplementary bibliographical information

The report may be ordered from the Department of Automatic Control or borrowed through the University Library 2, Box 1010, S-221 03 Lund, Sweden, Telex: 33248 lubbia lund.
ENSIEG
DEA Project in Automatic Control

Combining Auto-tuning and Adaptation

Claire Valentin

Supervisor: Michael Lundh

Department of Automatic Control
Lund Institute of Technology, Sweden

September 1989
Résumé

Un correcteur adaptatif doit être bien initialisé si l'on veut qu'il converge vite et sans un transitoire trop perturbé. Ce projet consiste en l'étude d'une méthode d'autoréglage par bouclage du procédé sur un relais initialisant un correcteur RST conçu avec la méthode du placement de pôles, en son implémentation et en l'étude de ses limites à partir d'expériences sur différents procédés.

Mots clé: autoréglage - placement de pôles - relais - correcteur adaptatif - initialization

Abstract

An adaptive controller needs a good initialization to converge quickly and without a too bad transient. This project develops an auto-tuning method based on the relay experiment initializing a RST controller designed with pole placement rules. This method is implemented and tested on different processes to study the limits of the algorithms.

Key words: auto-tuning - relay experiment - pole placement design - adaptive controller - initialization.
Brief presentation of the
Department of Automatic Control
in Lund

Research at the Department concerns the following areas
- Adaptive control
- Computer aided control engineering
- Expert control
- Robotic and sensory control
- Power systems
- Control of biotechnology processes
- Modeling and control of medical systems

Also, different courses dealing with these areas of research are given each year at the Department. They are of various levels: Undergraduate courses (same level as in a French engineer school), Graduate courses (for PhD students), and even external courses for engineers in the industry.

About 30 persons work at the Department. Among them, two Professors, Associate Professors, Research engineers, Research assistant and Teaching assistant (Mostly PhD students) and secretaries. Karl Johan Åström was awarded the degree Doctor Honoris Causa from l'Institut National Polytechnique de Grenoble in 1987.

It is a tradition for the Department to welcome guests from all over the world to make seminars or to work some time on a subject of common interest with researchers from here.

The main computer facilities are a Sun Workstation network, a VAX-11/780 and some IBM-AT.
Contents

Preface

1. Introduction ... 1

2. Automatic tuning of simple regulators 2
 2-1. Introduction .. 2
 2-2. Principle of auto-tuning control: the relay experiment 2
 2-3. Conclusion ... 6

3. Adaptive control based on Pole placement design 7
 3-1. Introduction .. 7
 3-2. Pole placement design 7
 3-3. Recursive Least Square estimation (RLS) 10
 3-4. Global scheme of the indirect adaptive regulator 11
 3-5. Conclusion ... 12

4. Combining auto-tuning and pole placement design 13
 4-1. Introduction .. 13
 4-2. Analysis of the relay experiment and control design 13
 4-3. Practical aspects .. 16
 4-4. Conclusion ... 17

5. Implementation .. 18
 5-1. Introduction .. 18
 5-2. Description of the program 18
 5-3. Conclusion ... 25

6. Experiments .. 26
 6-1. Introduction .. 26
 6-2. Experiments ... 26
 6-3. Further developments ... 28
 6-4. Conclusion ... 29

7. Conclusion .. 30

8. References .. 31

9. Appendix
 A. About the relay experiment 1
 B. Details of implementation 10
 C. Further experiments ... 14
 D. Code in Modula 2 .. 18
Preface

This project has been carried out in the Department of Automatic Control, Lund Institute of Technology, in Sweden. The purpose is to create an auto-tuned pole placement controller with good performances for a certain class of processes, among which are the stable systems with monotone step response. The initialization of the model, of the controller and of the specifications for the closed loop system are particularly studied. The operator interface allows a check of most parameters involved in the control, what makes experiments quite easy to carry out. This report is primarily written for a reader with knowledge of automatic control at the end of the engineering studies.

Acknowledgement

I would like to thank all the researchers of the Department of Automatic Control in Lund, for the time they have spent in discussions with me and for their valuable criticism on the report.

The ideas and the theories used in the work about auto-tuning have been developed by Tore Hägglund and Karl Johan Åström. The implementation of the estimator and of the pole placement design has been done by Michael Lundh (see Lundh, 1988). I thank them particularly for their patience in explaining to me all the details of these theories and guiding me through the project.

The graphics part and a first simple version of the auto-tuning part of the program have been done by Ulf Andersson, Ola Persson and Mårten Åkesson during a project in an implementation course (see Persson, Andersson and Åkesson, 1989).
1. Introduction

Different kinds of controllers are useful for different kinds of users and control problems. But in any case, every operator wants to have a controller that is easy to operate.

That is the reason why self tuning regulators have been created and improved for years. The goal was to design a controller as easy as possible to use. The problem is that, if you want to use a controller you have to know the right initial parameters to enter in, in order to obtain efficient control. And even for a simple regulator as the PID, you have to know how to tune three parameters before it can be used: the integral time, the derivative time and the proportional gain of the regulator. It means that a certain knowledge is required to initialize the regulator. It would be easier for any operator to push only one button so that the controller could start without any other action from him.

With this purpose, an auto-tuning PID controller has been designed by T. Hägglund and K.J. Åström from the department of Automatic control, Lund Institute of technology. It is, now, manufactured by two companies, Satt Control AB and Fisher Controls Inc., and has been used in a lot of control loops. It is based on a relay-experiment (explained in chapter 2) which allows a measurement of the ultimate period and of the ultimate gain of the process in order to calculate the controller parameters.

The goal of this project is to initialize an adaptive controller from such a relay-experiment in order to obtain a controller with higher performance than a PID controller, but which is as easy to tune as the PID controller.

It is wise to go on with one of the simpler techniques; pole placement adaptive control. The problem with adaptive control is that you have to know the sampling period and the gain of the process as with a PID controller but also you must have an idea of the achievable performance of the process and above all, of its model to initialize the controller parameters. That is why we will now try to get some more information from the relay-experiment. An idea is to analyse the shape of the oscillations under relay feedback control and to extract a valid model from it (see Åström K.J. and Hägglund T.,1988a).

The goal of this project is to develop and implement algorithms which combine auto-tuning and pole-placement adaptive control.

This report is organised as follows: a certain knowledge is required about the Automatic tuning of simples regulators and the Pole-placement design which are described in chapters 2 and 3. Then it is discussed on the right way to combine Automatic tuning and Pole-placement design in chapter 4. Chapter 5 explains how to implement this control algorithms. Then chapter 6 deals with experiments on different processes. Finally, a conclusion on the project is given in chapter 7.
A regulator with automatic tuning is composed of four subsystems, an ordinary feedback regulator with adjustable parameters, an excitation generator, a parameter estimator and a block which performs design calculations (See fig. 2-1). The excitation generator provides a signal which makes it possible to estimate the parameters of the process.

The controlled system works in the following way. The process is excited from the excitation generator, then the process dynamics are estimated from the response of the process to the excitation and the regulator parameters are calculated from the dynamics. Finally, the estimator, the control design and the generator are disconnected and the system operates like a closed-loop process with regulator.

Many schemes of this type have been proposed. The following scheme has been developed by T. Hägglund and K.J. Åström from the Department of Automatic control, Lund Institute of Technology (See K.J. Åström and T. Hägglund, 1984 and before). The characteristic feature of this approach is that it gives a very simple system which does not require prior information.

The idea is to estimate the ultimate point which is described by the ultimate gain, k_C and the ultimate frequency, ω_C. This point represents the stability boundary, that is the reason why it is so important to know it. On that point the closed loop system oscillates.

The original Ziegler-Nichols method proposes to determine these values by connecting a proportional regulator to the process in a closed loop and to increase the gain gradually until an oscillation is obtained. Then, the frequency observed is ω_C. But it is very difficult to perform this experiment automatically in such a way that the amplitude of the oscillation is kept under control. So, another method for automatic determination of the ultimate point is proposed.

The method is based on the observation that many systems may oscillate at frequency ω_C under relay control. It means that many processes will have limit cycle oscillations under relay feedback. The scheme is the same as the one of figure 2-1 if the regulator is replaced by a PID regulator and the excitation generator by a relay. (See fig 2-2)
Figure 2.4: Relay output u and process output y for a system under relay feedback.

The period of the oscillation can easily be determined by measuring the times between zero-crossings. The amplitude may be determined by measuring the peak-to-peak values. This estimation method is very easy to implement because it is based on counting and comparisons only. More elaborate estimation schemes may also be used to determine the amplitude and the period of the oscillation.

Then the parameters of the PID regulator are calculated. The Ziegler-Nichols frequency response method, for example, gives simple formulas for the parameters of the regulator in terms of ultimate gain and the ultimate period (See Table 2-1). Other better types of design methods have been used too.

<table>
<thead>
<tr>
<th>Controller</th>
<th>K</th>
<th>T_i</th>
<th>T_d</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>$0.5\ k_c$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PI</td>
<td>$0.4\ k_c$</td>
<td>$0.8\ t_c$</td>
<td></td>
</tr>
<tr>
<td>PID</td>
<td>$0.6\ k_c$</td>
<td>$0.5\ t_c$</td>
<td>$0.12\ t_c$</td>
</tr>
</tbody>
</table>

Table 2-1: Recommended PID parameters according to Ziegler-Nichols frequency response method.

When the PID parameters are determined the PID regulator is activated.

Several improvements were made in the relay experiment: The amplitude of the oscillations obtained under relay control can be specified by adjusting the relay amplitude. A hysteresis in the relay is also useful to make the system
3. Adaptive control based on Pole placement design

3-1. Introduction

Pole placement is one of the simpler indirect design methods. It allows a control of stable or unstable systems with time delay. The techniques presented in this chapter are known by everybody dealing with adaptive control. Therefore, the purpose is not to present a deep work about pole placement design, but to settle on the different notations used in the project.

Only the procedure used for this project will be described in section 3-2. The real-time estimator is also a very important part in the adaptive controller. In section 3-3, the recursive least square estimator will be presented. Finally, the estimator and the design are combined to obtain the adaptive controller in section 3-3.

3-2. Pole placement design

The goal is to obtain the appropriate response of the process to command inputs by a simple and fast method.

Consider a process with one input u and one measured output y, v is a disturbance. The process to be controlled can be described by

$$Ay = Bu + v$$

where A and B are polynomials. It is assumed that A and B do not have any common factors i.e. that they are relatively prime. It is also assumed that A is monic, i.e., that the coefficient of the highest power in A is unity. The desired response from the reference signal u_c to the output is given by

$$A_m y_m = B_m u_c$$

where A_m and B_m do not have any common factors.

To get a realizable controller the model (2) must have the same or higher pole excess than the process model (1). This gives the condition

$$\deg A_m - \deg B_m \geq \deg A - \deg B$$

The pole placement regulator can be described by

$$Ru = Tu_c - Sy$$

where
AR + BS = A_0 A_m B^+

It follows from this that B^+ divides R. Moreover, to make sure that low-frequency disturbances give small errors, the loop gain, H_{lg} (7), must be large for low frequencies. This may be achieved by requiring that R has the following form

\[H_{lg} = \frac{B S}{A R} \]

(7)

\[R(z) = (z - 1)^r R_1(z) B^+(z) \]

With a suitable r. This is a classical principle of integral control. Therefore, it gives

\[(z - 1)^r A R_1 + B^- S = A_0 A_m \]

(8)

Equation (8) has a solution if A and B^- are relatively prime. It follows from equation (6) that B^- must divide B_m. It gives

\[B_m = B^- B_m \]

\[T = A_0 B_m \]

(9)

The pole placement design procedure can be summarized in algorithm 3-1.

Algorithm 3-1:

- **Data:** polynomials A, B.
- **Specifications:** Polynomials A_m, B_m, A_0.
- **Compatibility conditions:**
 - B^- divides B_m.
 - \(\text{deg} A_m - \text{deg} B_m \geq \text{deg} A - \text{deg} B \)
 - \(\text{deg} A_0 \geq 2\text{deg} A - \text{deg} A_m - \text{deg} B^+ + r - 1 \)

- **Step 1:** Factor B as \(B = B^+ B^- \)

- **Step 2:** Solve the equation \((z - 1)^r A R_1 + B^- S = A_0 A_m \) with respect to R_1 and S. Choose a solution such that

\[\begin{cases}
\text{deg} R_1 = \text{deg} A_0 + \text{deg} A_m - \text{deg} A - r \\
\text{deg} S \leq \text{deg} A + r
\end{cases} \]

- **Step 3:** The control law is then given by \(R u = T u_e - S y \)

where
An interpretation of these equations is given in figure 3-2.

\[
y(t) \rightarrow \sum \rightarrow \gamma(t) \rightarrow K(t) \rightarrow \sum \rightarrow \theta(t) \rightarrow \theta(t-1) \rightarrow q^{-1} \rightarrow -\varphi(t)
\]

Figure 3-2: Recursive Least Square estimation diagram

Let define the prediction error

\[
\gamma(t) = y(t) - \theta^T (t-1) \varphi(t)
\]

Then, the estimation method can be very intuitive: \(\theta(t)\) is corrected with respect to the gain \(K(t)\) when the prediction error \(\gamma(t)\) is different from zero.

3-4. Global scheme of the indirect adaptive regulator

The indirect adaptive regulator based on the pole placement design and on the recursive least square estimator can be expressed as the following algorithm.

Algorithm 3-2.

Data:
- Desired close loop transfer function: \(\frac{B_m}{A_m}\)
- Desired observer polynomial: \(A_0\)

Step 1: Estimate the coefficients of the polynomials \(A\) and \(B\) recursively using the least square method described above.

Step 2: Replace \(A\) and \(B\) with the estimates obtained in step 1 and use the pole placement algorithm to find the controller polynomials \(R, S\) and \(T\).

Step 3: Calculate the control signal \(u\) from

\[
Ru = Tu_c - Sy
\]

Repeat step 1, 2 and 3 each sampling period.

This algorithm is illustrated in figure 3-3.
4. Combining auto-tuning and pole placement design

4-1. Introduction

In the two last chapters, an adaptive design method and an automatic tuning method have been presented. They both work on different processes.

The idea is to make a deeper analysis of the information given during the relay experiment described in chapter 2. Instead of only using the amplitude and the period of the oscillation, the shape of the oscillation under relay feedback can be analysed, (See Åström K.J. and Hägglund T., 1988a) and a valid model of the process can be estimated from this analysis. This model can thus be a good initial model for the pole placement control design and allows the calculation of good initial parameters for the controller.

It can be expected to outperform conventional PID designs because the response speed is easily adjusted and it can also handle systems with time-delay.

The method is explained in section 4-2 and practical aspects are described in section 4-3.

4-2. Analysis of the relay experiment and control design

Chapter 2. has described how to find the period and the amplitude of the oscillations created under relay feedback. These measurements give the sampling rates and an indication of the achievable bandwidth.

In this section, it will be shown that conventional sampled data models can be determined using the wave-form of the oscillation. A measurement of some values of the process output will be computed in order to obtain this model. The following method will be used for the computation.

Parameter estimation

Remember that a relay feedback experiment in stationarity gives periodic input output signals for the process as shown in figure 4-1.
\[U(z) = \frac{z^n + z^{n-1} + \ldots + z}{z^n + 1} = \frac{E(z)}{z^n + 1} \quad (4) \]

\[Y(z) = \frac{y_{d+1} z^n + y_{d+2} z^{n-1} + \ldots + y_{d+n} z}{z^d (z^n + 1)} = \frac{D(z)}{z^d (z^n + 1)} \quad (5) \]

Then, the z-transform of equation (3) gives

\[Y(z) = \frac{B(z)}{A(z)} U(z) + \frac{Q(z)}{A(z)} \]

where the polynomial \(Q(z) \) corresponds to initial conditions which gives the steady state periodic output. Replacing \(Y(z) \) and \(U(z) \) by the expressions (4) and (5), it follows

\[\frac{D(z)}{z^d (z^n + 1)} = \frac{B(z) E(z)}{(z^n + 1) A(z)} + \frac{Q(z)}{A(z)} \]

and

\[A(z) D(z) + z^d B(z) E(z) = z^d (z^n + 1) Q(z) \quad (6) \]

where \(D(z) \) and \(E(z) \) are known. It is thus possible to determine the polynomials \(A, B \) and \(Q \) from the \((n + \text{deg } A) \) linear equations obtained from (6). The number of unknown parameters in the polynomials \(A, B \) and \(Q \) is \((\text{deg } A + 2 \text{deg } B + 1) \) i.e. \((3 \text{deg } A - 2d + 1) \). It gives a condition for \(n \); indeed to determine all the parameters of \(A, B \) and \(Q \), it is necessary to have

\[n \geq 2 (\text{deg } A - d) + 1 \quad (7) \]

It is thus straightforward to determine the coefficients of the process model (3) from the wave-form \(y_0, y_1, \ldots, y_{n-1} \) of the periodic solution. A fixed structure and a time-delay must be chosen for the process model in that method.

The procedure is illustrated by one example where \(A \) and \(B \) are first order polynomials and the time-delay is \(r \) sampling periods.

Example 1

Consider the process model

\[y(t+1) = a y(t) + b_1 u(t-rh) + b_2 u(t-rh-1) \quad (8) \]

Where \(h \) is the sampling period. Therefore

\[A = z^{r+1} (z - a) \]
\[B = b_1 z + b_2 \]

and \(d = r + 1 \)

The model has three parameters. It gives \(n \geq 3 \). It is simpler to choose \(n = 3 \), because there is the same number of parameters and equations.

The problem is thus solved with this value. The expression (6) becomes
oscillating signal. Let t_{max} be the distance from the extremum of the output to the previous switch of the input. The value of r should then be chosen so that

$$r \geq \frac{t_{\text{max}}}{h}$$

where h is the sampling period.

It must also be noticed that the output of the system is close to sinusoidal for certain processes. It is thus not possible to determine more than two parameters in the model when three amplitude values are used.

As it was said in chapter 2, it is useful to introduce hysteresis in the relay to avoid a too important sensibility to noise. The hysteresis amplitude can be determined by measuring the noise level in steady state. The relay amplitude can also be adjusted to avoid too large perturbations on the output signal during the relay experiment.

4-4. Conclusion

This chapter has determined a simple method for estimating a model from a relay experiment. The information about the full wave-form is used, and not only amplitude and frequency. Moreover the algorithm can cope with systems having time-delays.

The theoretical bases are given in this chapter and the practical problems will be treated in next chapter dealing with implementation.
Figure 5-1: Real-time implementation structure. 6 processes and 9 monitors share the execution time.

- **DataBuffer**: The plotter is a process with low priority which must get the signals U, Uc, and Y when it has time to plot them. These signals are put in a RingBuffer while waiting to be plotted.
- **ScaleMonitor**: The time scale of the plotting is stored in this monitor.
Figure 5-2: Process Regul (Priority 20)
Presentation of the Man-Machine interface

Figure 5-7 describes the screen after start-up. On the upper half of the screen are the measurement signal Y, the reference signal Uc and the control signal U. Below, are a number of mouse sensitive buttons, whose functions are described below.

The program can handle three different modes; Man (manual), PID (control with PID regulator) or Pole Placement Control (Automatic tuning of the regulator parameters according to pole placement design). Changing of mode is done by clicking one of the squares 1, 4, or 7.
Only the most important modules dealing with theory (Auto-tuning, control) and display of variables are given (see appendix D).

The Auto-tuning part

The tune is divided in three different parts: The first one measures the noise level on the output signal in order to choose the hysteresis of the relay. The relay is then included in the closed loop in the second part, and the amplitude of its output is fixed after an analysis of the amplitude of the process output. Indeed, the tune must not disturb the process too much. In the third part, the measurement of the amplitude, of the period of the oscillation and of certain values of the process output are computed. These measurements lead to a first estimation of the process by a first order model with time delay (choice explained in 4-3), then the design specifications (second order desired dynamics, reasonably fast and with a damping of 0.7) and the parameters of the RST controller are initialized.

Directions for use

At the starting point, the mode Manual is running and the control signal ,u, is equal to zero. Then the sampling period can be chosen by clicking in the box 2, according to the time constant of the process. Then, to start the controller based on pole placement design, the reference signal amplitude must be close to the process output amplitude (Bad stationarity can imply asymmetric relay oscillations). Afterwards, you just need to click on the square 7. At the end of the relay experiment, a fixed controller is started. To make it adaptive, you can click on the square 9, type 5(Adapt)-ENTER-1 then you type e- to exit (It is made adaptive only after exit). To get a fixed regulator again you use the same command in replacing the 1 by 0. The model and the controller can be read in the square 6 (but you can not change them by the keyboard of course). The design specifications initialized by the relay experiment can be read by clicking in the square 8 and changed by the keyboard (do not forget that they are in discrete time). The estimation specifications can be read and changed as well by clicking in square 9. Finally, the values measured in the relay experiment can be checked by clicking in square 3.

5-3 Conclusion

This chapter showed how the algorithm developed in chapter 4 has been implemented. It was tried to make a procedure for each simple task in order to decompose the complicated parts of the algorithm in understandable routines. The operator interface has not been improved as much as it could have been in order to spend more time studying the auto-tuning and the control theories involved in this controller. In appendix C, the most important routines used in the programming are described and their code is given in appendix D.
\[G(s) = \frac{1}{s+1} \] \hspace{1cm} (2)

Figure 6-1 shows that the relay experiment is quite symmetric and that the output is quite regular. Figure 6-2 shows that the step response of the process is of expected type (fast enough with damping of 0.7). Big variations on the control signal are required to obtain that performance. Then, when the adaptive controller is started with these parameters for the model and the controller, there is no bad transient neither on the output signal nor on the control signal and the estimator converges, after a while, to a more accurate model that the one initialized from the relay experiment (see table 1 in appendix C). Therefore, the goal is reached.

Figure 6-1: relay experiment with a first order process of type (2) without noise

Figure 6-2: step response with a first order process of type (2) in close loop with the fixed controller initialized after the relay experiment.
6-3 Further developments

A first order process is controlled better than with a PID. But a second order process (of the kind chosen in experiment 4 and 5) is quite difficult to initialize with a relay experiment especially if there is no noise on the output. Also, with processes of higher order than one, the choice of the delay seems to be of highest importance for the control. A fixed controller can generally not be calculated from the relay experiment initializing a model of the kind (1), but, in some cases, an adaptive controller can be started from this initialization.

The method is also quite sensitive to the value of the sampling period chosen at the beginning. It must be short enough to allow the measurement of several points during one period of the relay experiment. A too big sampling period will not make the system oscillate and a too small sampling period will give a pole close to one for each process and lead to a very bad control.

The initialization performed from the relay experiment can be improved with a test determining the structure of the model to be chosen so that processes with higher order than one can be modelized by a second order or by the product of a second order by a first order.

The output could also be filtered during the relay experiment to avoid the perturbations created by the noise on the measurements.

The initialization of the desired closed loop dynamics could be also improved by extensive simulations. This choice is however based on heuristic knowledge. The observer polynomial is also fixed to a dead beat polynomial, this could be improved in choosing a first order polynomial with known dynamics.

6-4 Conclusion

A first version of an auto-tuned adaptive controller has been realized in this project. It allows a good initialization of an adaptive controller based on pole placement design for first order processes with time delay and the controller has good performances. For processes with higher order which are also stable with monotone step response the performances and even the success of the initialization depend a lot on the noise level and on the relative location of the poles of the process.

The program could be improved with intensive experiments which could allow a better choice of the empirical values. On the other hand, this tool must not be designed for a too small class of processes, and even if it does not control each particular process belonging to a certain class, with optimal performances, the purpose is that it gives average performances higher than with a PID regulator for a class as large as possible.
8. References

9. Appendix
A. About the relay experiment

Certain conditions must be fulfilled so that the process oscillates under relay feedback. In this section, the conditions for an oscillation to occur and the period of this oscillation will be studied. Therefore a linear system under relay control has to be investigated.

There are two means to analyse the conditions for existence of a periodic solution. First a linear system under relay control will be investigated and then the describing function analysis will give a good approximation of the answer by a simpler condition.

First method: investigation of the closed-loop nonlinear system

Consider a system described by

\[
\begin{align*}
\frac{dx}{dt} &= Ax + Bu \\
y &= Cx
\end{align*}
\]

(1)

This system is controlled by a relay with hysteresis of the following form

\[
u(t) = \begin{cases}
d_1 & \text{if } e > \varepsilon \text{ or } (e > -\varepsilon \text{ and } u(t-) = d_1) \\
d_2 & \text{if } e < \varepsilon \text{ or } (e < \varepsilon \text{ and } u(t-) = d_2)
\end{cases}
\]

(2)

where \(e = -y \), \(\varepsilon \) is the hysteresis of the relay and \(u \) is the controller output.

Conditions for relay oscillations have been given by Hamel (1949) and Tsypkin (1958). The key result is given by the following theorem.

Theorem A-1: Consider the system (1) with the feedback law (2). Assume that the matrix \(\Phi-I \) is regular. A necessary condition for a limit cycle with period \(T \) is then

\[
\begin{align*}
C[I-\Phi]^{-1} \Phi_2 \Gamma_1 d_1 - \Gamma_2 d_2 &= -\varepsilon \\
C[I-\Phi]^{-1} \left(-\Phi \Gamma_2 d_2 + \Gamma_1 d_1 \right) &= \varepsilon
\end{align*}
\]

(3)

where \(\tau \) is defined in figure 2-4, and

\[
\begin{align*}
\Phi &= e^{AT} & \Phi_1 &= e^{A\tau} & \Phi_2 &= e^{A(T-\tau)} \\
\Gamma_1 &= \int_0^\tau e^{As} ds B & \Gamma_2 &= \int_0^{\tau-\tau} e^{As} ds B
\end{align*}
\]

(4)
discrete time system. (The stroboscopic transformation) The inputs are \(u(t_{2k}) \) and \(u(t_{2k+1}) \) and the outputs are \(y(t_{2k+1}) \) and \(y(t_{2k+2}) \).

\[
\begin{bmatrix}
z_k \\
u_k \\
y_k
\end{bmatrix} =
\begin{bmatrix}
x(t_{2k-1}) \\
x(t_{2k})
\end{bmatrix}
\begin{bmatrix}
u(t_{2k}) \\
u(t_{2k+1})
\end{bmatrix}
\begin{bmatrix}
C \\
0
\end{bmatrix}
z_k
\]

The discrete time state equations of system (1) are

\[
\begin{cases}
x(t_{2k+1}) = \Phi_1 x(t_{2k}) + \Gamma_1 u(t_{2k}) \\
y(t_{2k+1}) = C x(t_{2k+1})
\end{cases}
\]

\[
\begin{cases}
x(t_{2k+2}) = \Phi_2 x(t_{2k+1}) + \Gamma_2 u(t_{2k+1}) \\
y(t_{2k+2}) = C x(t_{2k+2})
\end{cases}
\]

where the matrix \(\Phi_1, \Phi_2, \Gamma_1 \) and \(\Gamma_2 \) are given by (4).

Equation (5) can then be written as

\[
\begin{bmatrix}
z_{k+1} \\
y_k
\end{bmatrix} =
\begin{bmatrix}
\Phi & 0 \\
0 & \Phi
\end{bmatrix}
\begin{bmatrix}
z_k \\
u_k
\end{bmatrix}
\begin{bmatrix}
\Gamma_1 & \Phi_1 \Gamma_2 \\
\Phi_2 \Gamma_1 & \Gamma_2
\end{bmatrix}
\]

This is a time invariant discrete time system. Let the pulse transfer function of the system be

\[
H(z) =
\begin{bmatrix}
C [zI-\Phi]^{-1} \Gamma_1 & C [zI-\Phi]^{-1} \Phi_1 \Gamma_2 \\
C [zI-\Phi]^{-1} \Phi_2 \Gamma_1 & C [zI-\Phi]^{-1} \Gamma_2
\end{bmatrix}
\]

Putting \(z = 1 \) in (6), it follows that the condition (3) can be written as

\[
H(1) \cdot
\begin{bmatrix}
d_1 \\
-d_2
\end{bmatrix} =
\begin{bmatrix}
\epsilon \\
-\epsilon
\end{bmatrix}
\]

Symetric oscillations

The case \(d_1 = d_2 = d \) is of particular interest. It follows from (4) that

\[
\Gamma_1 = \Gamma_2 = \Gamma \quad \text{and} \quad \Phi_1 = \Phi_2 = \Phi.
\]

In this case, Equation (3) then reduces to

\[
C \begin{bmatrix}
I - \Phi \\
I - \Phi
\end{bmatrix}^{-1} \begin{bmatrix}
I - \Phi \\
I - \Phi
\end{bmatrix} \Gamma d = \epsilon
\]

or
But the conditions for existence of oscillations can be investigated by a simpler method which is an approximation of the exact formula given before.

Second method: The describing function analysis

This method is used to analyse systems with a nonlinear function in a control loop. To determine conditions for oscillation, the nonlinear block is described by a gain, N(a), which depends on signal amplitude, a, at the input of the nonlinearity. This gain is called the describing function. If the process has the transfer function G(i\(\omega\)), the condition for oscillation is simply given by

\[N(a) \cdot G(i\omega) = -1 \]

This equation is obtained by requiring that a sine wave with frequency \(\omega\) should propagate around the feedback loop with the same amplitude and phase. Since N and G may be complex numbers, this gives two equations for determining a and \(\omega\). The equations can be solved graphically by plotting \(-1/N(a)\) in the Nyquist diagram. If the negative inverse of the describing function is drawn in the complex plane (See fig A-1) together with the Nyquist curve of the linear system, an oscillation may occur if there is an intersection between the two curves.

Notice that the input U to G(s) is a square wave. In the describing function technique it is assumed that the input to the relay with hysteresis is a sine wave (Approximation of the input by its first harmonic). Therefore, it must be assumed that G(s) has a low-pass filter action, so that the amplitudes of the high frequencies in Y are small compared to the amplitude of the fundamental frequency. But, this is not a restrictive assumption, since almost all practical processes are of low-pass type.

The amplitude and the frequency of the oscillation are the same as the parameters of the two curves at the intersection point. Therefore, measuring the amplitude and the period of the oscillation, the position of one point of the Nyquist curve can be determined.

The describing function, N(a), for the relay is given by

\[N(a) = \frac{4d}{\pi a} \]

Since this function is real, the oscillation may occur where the Nyquist curve intersects the negative real axis. Thus, the conclusion is that the ultimate point is conveniently determined by a relay feedback experiment.

To make the system less sensitive to noise a relay with hysteresis can be used. The negative reciprocal of such a relay is
The continuous time transfer function of the process, \(G(s) \), has to be sampled. In that case, a zero-order-hold is perfect to connect the continuous system to the discrete input (square waves sampled at \(h = T/2 \)) (See fig. A-3).

![Diagram of a zero-order-hold system](image)

Figure A-3: Schematic diagram of the idealized model of a sample and hold circuit connected to a linear system.

The following theorem (in Åström, K.J., and Wittenmark, B., 1984) will be used to determine the sampled process description with zero-order-hold.

Theorem A-3: Let the function \(f \) have the Laplace transform \(F \) and the z-transform \(F' \), and let \(F^* \) be the Laplace transform of the sampled representation \(f^* \) of \(f \). Assume that for some \(\varepsilon > 0 \), \(|F(s)| \leq |s|^{-1-\varepsilon} \) for large \(|s| \) then

\[
F^*(s) = F'(e^{\frac{s}{h}}) = \frac{1}{h} \sum_{k=-\infty}^{\infty} F(s + ik\omega_s) \tag{9}
\]

Where \(\omega_s = 2\pi / h \) is the sampling frequency.

Proof:

The definition of \(F^* \) gives

\[
F^*(s) = \int_0^\infty e^{-sf^*(t)} \, dt
\]

\[
F^*(s) = \int_0^\infty e^{-sf(t)} \left\{ \sum_{k=-\infty}^{\infty} \delta(t-kh) \right\} \, dt
\]

\[
F^*(s) = \int_0^\infty e^{-sf(t)m(t)} \, dt
\]

Interchange the order of integration and the summation gives

\[
F^*(s) = \sum_{k=-\infty}^{\infty} \int_0^\infty e^{-sf(t)} \delta(t-kh) \, dt
\]
\[H(h,-1) = \sum_{\infty}^{\infty} \frac{2}{\imath \pi (1 + 2n)} G(\frac{\imath \pi}{h}(1 + 2n)) \]

\[H(h,-1) = \sum_{0}^{\infty} \frac{4}{\imath \pi (1 + 2n)} G(\frac{\imath \pi}{h}(1 + 2n)) \]

Remember that \(h = T/2 \), so if \(H(h,-1) \) is approximated by the first term of the series expansion the condition (8) becomes

\[
\frac{4}{\pi} \Im G\left(\frac{\imath 2\pi}{T}\right) = -\frac{\varepsilon}{d}
\]

which corresponds to the describing function analysis

\[
\Im G\left(\frac{\imath 2\pi}{T}\right) = -\frac{\pi \varepsilon}{4d}
\]

This second condition is much more simple than the one obtained with theorem 2-1.

\[\text{Figure A-4: Singularities of } F \text{ and } M \text{ and the integration contour.} \]

Remark A-3: The Nyquist curve of a first order process, situated entirely in the right part of the Nyquist diagram will never intersects the negative inverse of the describing function, whereas a first order system oscillates under relay feedback control (That can be checked by the first method explained in this appendix).

In K.J. Åström and T. Hägglund (1984a) the conditions to get stable oscillations are discussed.
Recall about the variables used in the routines: d is the amplitude of the relay, Amp is the amplitude of the output oscillations and Ustat is the steady state value of U during the relay experiment.

Figure B-2: routine from AutoTune: RelayStarted.

Figure B-3: routine from AutoTune: Initialization of the relay amplitude.
Figure B-7: routine PolePlacement Control.
Description of the table C-1.

Experiments 1 and 2 are performed on the following first order process:

\[
\frac{0.113}{z - 0.887}
\]

(1)

Experiments 4 and 5 are performed on the following second order process:

\[
\frac{0.09z + 0.065}{z^2 - 1.21z + 0.368}
\]

(2)

The first order model is described by the following transfer function

\[
\frac{b_1z + b_2}{z^{delay} * z(z-a)}
\]

(3)

* h is the sampling interval
* y1, y2, y3, y4, y5 and y6 are the measurements points from the output signal
* Eps is the hysteresis of the relay
* emax and emin are respectively the maximum and the minimum values of y.
* TPP and TPN are respectively the length of the positive half period and of the negative half period.
* Tmax and Tmin are respectively the times where the maximum and the minimum occur on the output signal (counted from the same point).
* Amp is the amplitude of the oscillation on the output signal.
* Period is the period estimated during the relay experiment.

![Figure C-1: First order with noise (variance 0.2). Relay experiment.](image-url)
Figure C-5: DC-servo with feedback on speed (the gain is different from 1). Step responses.

Figure C-6: second order without noise.

Figure C-7: second order with noise (variance 0.2).
D. Code in Modula 2

This appendix contains the following definition modules and implementation modules:

_ Autoreg
_ AutoTuner
_ AdlSTR
_ DSpeBox
_ RegulModule
_ RLS

Each module is composed of a definition part which contains the declarations of the exported identifiers and an implementation module which contains the procedure body. The code of the calculations is very similar to Pascal.

* **Autoreg** is the main procedure.
* **AutoTuner** contains the implementation of the auto-tuning part and the design part.
* **AdlSTR** contains the implementation of the pole placement design.
* **DSpeBox** performs the display of the design specifications on the user interaction space
* **RegulModule** supervises the three different modes of the program: Man, PID, Tune.
* **RLS** contains the implementation of the recursive least square estimator.
MODULE AutoReg;

FROM AutoTuner IMPORT GlobalData;
FROM ErrorBox IMPORT PrintError;
FROM ExitAndEmergency IMPORT ExitWaitExit, ExitWaitForExit;
FROM IO IMPORT InitIO;
FROM MainBuffer IMPORT InitMainBuffer;
FROM PlotBuffer IMPORT InitPlotBuffer;
FROM Regulmon IMPORT InitRegulMonitor;
FROM RLE IMPORT InitRLE;
IMPORT Graphics, Plot, RegulModule, OpCom;
IMPORT RHMouse, ExitAndEmergency, GetValues;

VAR
 i : CARDINAL;

BEGIN
 RHMouse.Init;
 ExitWaitForExit;
 ExitIO;
 InitPlotBuffer;
 InitMainBuffer;
 InitRegulMonitor;
 InitRLE;
 OpCom.Start;
 ExitAndEmergency.Start;
 GetValues.Start;
 Plot.Start;
 RegulModule.Start;
END;

(* -----creation of a file from the array "FileData",
with the purpose to draw curves from the experiments in MATLAB------ *)

i := 0;
WITH GlobalData.PlotFile DO
 IF LogOn THEN
 FOR i=1 TO NoOfData DO
 Plot.Log(FileData[i]);
 PrintError("Fin Log");
 END;
 END;
 Plot.Close;
END;
END AutoReg.
\032
DEFINITION MODULE AutoTuner;
FROM Pcalc IMPORT cpoly;
FROM RegulModule IMPORT ArrtType, VectorType;

EXPORT QUALIFIED
 free, busy,
 Tunefar, Partype, Ymean,
 PlotType, SignalType, Type, DesignType, RegulatorType, RafSignalType,
 AdaptData, EstimData,
 GlobalData, TempData,
 InitAutoTune, AutoTune;

CONST
 free = 1;
 busy = 0;

TYPE
 Partype = RECORD
 E, T1, Td: REAL;
 END;

 Mode1Type = RECORD
 B, A, C : cpoly;
 AdditionnslPolynInOrigin : CARDINAL;
 delay : CARDINAL;
 ModelLow, ModelHigh : REAL;
 END;

 AdaptRegType = (fixed, indir, indir2, dirstr);

 PlotType = (Redraw, PlotBetween,
 PlotEvery, PlotEveryTwo, PlotEveryFour);

 SignalType = (external, square, triangle, sin, step, ramp);

 SetupData = RECORD
 channelRef,
 chanF1,
 chanY1,
 chanY2,
 chanY3,
 chanU : CARDINAL; (* 10 channels *)
 NumberOfInput : CARDINAL;
 PlotWhen : PlotType;
 HorizontalTime : REAL;
 Tsample : CARDINAL;
 RealTsample : REAL;
 Dt1, Dt2, Dt3 : CARDINAL; (* for intersample plotting *)
 Dlow, Dhigh : REAL;
 END;

 DesignType = RECORD
 Splus, Sminus,
 Emprin, An, Ao, Aaw : cpoly;
 IntegralMode : BOOLEAN;
 END;

 RegulatorType = RECORD
 RegType : ARRAY[4..12] OF CHAR;
 R, S1, S2, S3, T, Ao : cpoly;
 END;

 RafSignalType = RECORD
 SignalType : SignalType;
 Mean,
 Amplitude,
 Period : REAL;
 TimeInPeriod : REAL;
 END;

 EstimData = RECORD
 B, A : cpoly;
 D0 : REAL;
 Lambda : REAL;
 �性Time : REAL;
 HistoryCard : CARDINAL;
 EstPurpose : ARRAY[0..8] OF CHAR;
 (* MODELPOLY or REGULPOLY *)
 END;

 AdaptData = RECORD
 AdapReg : AdaptRegType;
 (* RegulatorMode : CARDINAL; *)
 ulimit : REAL;
 END;

 PlotFile = RECORD
 LogOn : BOOLEAN;
 NofData : CARDINAL;
 FileData : ARRAY[1..500] OF REAL;
 END;

VAR
 TunePar : RECORD
 Period, Time, T0, T1, TimePeriodPos, TimePeriodNeg : REAL;
 Amp, TStat, Eps, emaxmean, eiminmean
 TimeToMaxmean, TimeToMinmean, w, ratew
 NofPeriods : REAL;
 NofPeriods : INTEGER;
 END;

 Ymean : RECORD
 Xa : ARRAY [1..20] OF REAL;
 END;

 GlobalData : RECORD
 SetupData : SetupData;
 Model : ModelType;
 Design : DesignType;
 (* Regulator : RegulatorType; *)
 RafSignal : RafSignalType;
 PlotWhichCurve : BITSET;
 EstimData : EstimData;
 AdaptData : AdaptData;
 Adapt : BOOLEAN;
 PlotFile : PlotFile;
 END;

 TempData : RECORD
 SetupData : SetupData;
 Model : ModelType;
 Design : DesignType;
 Regulator : RegulatorType;
 RafSignal : RafSignalType;
 (* PlotWhichCurve : BITSET; *)
 END;
PROCEDURE InitAutoTune(G, Dc, Y, h: REAL);
PROCEDURE AutoTune(VAR g: REAL; X: REAL; Zc: REAL;
VAR TuningEnded, TuningOk: BOOLEAN);

END AutoTuner.
\032
IMPLEMENTATION MODULE Autotun;:

FROM Debug IMPORT DebugMouse;
FROM AdISR IMPORT StartIndirectStr,IndirectStr;
FROM ErrorBox IMPORT PrintError;
FROM MainBuffer IMPORT Seth,Geth;
FROM MathLib IMPORT exp,sqrt,sin,cos,arctan,entier;
FROM Scale IMPORT mdegree,power;
FROM PlotWindow IMPORT GetLimitsU,GetLimitsL;
FROM ReguModule IMPORT ArrayType;
FROM RegulMon IMPORT UpdateRegulatorState,RegulMonitor;
FROM Storage IMPORT ALLOCATE,DEALLOCATE;

CONST MaxNrofHalfPeriods = 8;

VAR
 Check : RECORD
 ch : ARRAY[1..6],[1..3] OF REAL;
 END;
 NrofCalls,NrofSamples : CARDINAL;
 NrofHalfPeriods,NrofChanges : INTEGER;
 Ytars : ARRAYType;
 Status,StartMin,StartMax : REAL;
 StartPos,StartNeg,Ymin,Ymax : REAL;
 MinU,MinD,MinY : REAL;
 MinPos,MinNeg,MaxPos,MaxNeg : REAL;
BEGIN
 (* Remark: The variables are only defined once in the module:
 the first time they are used *)
 PROCEDURE Min(A,B:REAL):REAL;
 (* Finds the minimum between two reals A and B.
 The result is in Min(A,B) *)
 VAR C : REAL;
 BEGIN
 IF A<B THEN
 C := A;
 ELSE
 C := B;
 END;
 RETURN(C);
END Min;

PROCEDURE Max(A,B:REAL):REAL;
(* Finds the maximum between two reals A and B.
 The result is in Max(A,B) *)
VAR C : REAL;
BEGIN
 IF A>B THEN
 C := A;
 ELSE
 C := B;
 END;
 RETURN(C);
END Max;

BEGIN
 (* Procedure Autotun - The Autotuning part *)
 VAR TuningEnded,TuningOk : BOOLEAN;
 (* ----- Realizes the relay experiment if the process output
 has reached stationarity. It is the Auto-tuning part
 U is the control signal
 Y is the process output
 TuningEnded is a boolean which is true if the tune
 can not be computed
 TuningOk is a boolean which is true when the relay
 experiment is finished
 *)
 PROCEDURE Autotune(VAR U:REAL; Y:REAL; Uo:REAL);
 BEGIN
 TurningEnded := ((U<0.0) AND (Y<Stat-Eps)) OR ((U>0.0) AND (Y>Stat+Eps));
 RETURN(TuningEnded);
 TuningOk := FALSE;
 END;
END Autotune;

PROCEDURE ChangeRelayAmp(VAR d:REAL; VAR Changed:BOOLEAN);
(* ----- Analyses if the amplitude of the relay output
 must be decreased if the amplitude of the process output ls too big.
 The result is a boolean, "Changed" which is true if the
 relay output must be changed ----- *)
VAR Newd : REAL;
BEGIN
 WITH TunPar DO
 CASE
 WHEN Newd<0.0 THEN
 Newd := Max(-Maxd,Newd);
 ELSE
 Newd := Min(Maxd,Newd);
 END;
 IF ABS(Newd-d)>0.01*d THEN
 Changed := TRUE;
 ELSE
 Changed := FALSE;
 END;
 RETURN(Changed);
END ChangeRelayAmp;

PROCEDURE RelaySwitched(d:REAL;BOOLEAN);
(* ----- Analyses if the relay must switch or not from the amplitude
 of the process output y.
 The result is RelaySwitched which is true if the relay must switch ----- *)
VAR Switched : BOOLEAN;
BEGIN
 WITH TunPar DO
 CASE
 WHEN Switched := ((d<0.0) AND (Y<Stat-Eps)) OR ((d>0.0) AND (Y>Stat+Eps));
 RETURN(Switched);
END RelaySwitched;

PROCEDURE ChangeRelayAmp(VAR d:REAL; VAR Changed:BOOLEAN);
(* ----- Analyses if the amplitude of the relay output must be changed.
 It must be decreased if the amplitude of the process output ls too big.
 The result is a boolean, "Changed" which is true if the
 relay output must be changed ----- *)
VAR Newd : REAL;
BEGIN
 WITH TunPar DO
 CASE
 WHEN Newd<0.0 THEN
 Newd := Max(-Maxd,Newd);
 ELSE
 Newd := Min(Maxd,Newd);
 END;
 IF ABS(Newd-d)>0.01*d THEN
 Changed := TRUE;
 ELSE
 Changed := FALSE;
 END;
 RETURN(Changed);
END ChangeRelayAmp;

PROCEDURE Autotune(VAR U:REAL; Y:REAL; Uo:REAL);
BEGIN
 TurningEnded,TuningOk := BOOLEAN;
 (* ----- Realizes the relay experiment if the process output
 has reached stationarity. It is the Auto-tuning part
 U is the control signal
 Y is the process output
 TuningEnded is a boolean which is true if the tune
 can not be computed
 TuningOk is a boolean which is true when the relay
 experiment is finished
 *)
 PROCEDURE Autotune(VAR U:REAL; Y:REAL; Uo:REAL);
 BEGIN
 TurningEnded := ((U<0.0) AND (Y<Stat-Eps)) OR ((U>0.0) AND (Y>Stat+Eps));
 RETURN(TuningEnded);
 TuningOk := FALSE;
 END;
END Autotune;

PROCEDURE ChangeRelayAmp(VAR d:REAL; VAR Changed:BOOLEAN);
(* ----- Analyses if the amplitude of the relay output
 must be decreased if the amplitude of the process output ls too big.
 The result is a boolean, "Changed" which is true if the
 relay output must be changed ----- *)
VAR Newd : REAL;
BEGIN
 WITH TunPar DO
 CASE
 WHEN Newd<0.0 THEN
 Newd := Max(-Maxd,Newd);
 ELSE
 Newd := Min(Maxd,Newd);
 END;
 IF ABS(Newd-d)>0.01*d THEN
 Changed := TRUE;
 ELSE
 Changed := FALSE;
 END;
 RETURN(Changed);
END ChangeRelayAmp;

PROCEDURE RelaySwitched(d:REAL;BOOLEAN);
(* ----- Analyses if the relay must switch or not from the amplitude
 of the process output y.
 The result is RelaySwitched which is true if the relay must switch ----- *)
VAR Switched : BOOLEAN;
BEGIN
 WITH TunPar DO
 CASE
 WHEN Switched := ((d<0.0) AND (Y<Stat-Eps)) OR ((d>0.0) AND (Y>Stat+Eps));
 RETURN(Switched);
END RelaySwitched;
IF ABS(Y - YStat) < Delta THEN
 Tmin := Min(Y, Tmin);
 YMax := Max(Y, YMax);
 NOfCalls := NOfCalls + 1;
 NOfChanges := 0;
 TuningEnded := FALSE;
ELSE
 TuningEnded := TRUE;
 TuningOk := FALSE;
END;
ELSIF NOfCalls=NOfMeasurements+1 THEN
 WITH TunePar DO
 Eps := Max(EpsMin, YMax - YMin);
 END;
 d := Rand;
 U := YStat + d;
 NOfHalfPeriods := -1;
 NOfCalls := NOfCalls + 1;
 TuningEnded := FALSE;
ELSE
 CASE NOfHalfPeriods OF
 -1 :
 IF RelaySwitched(d, Y) THEN
 d := -d;
 END;
 WITH TunePar DO
 Amp := 0.0;
 END;
 0 :
 IF RelaySwitched(d, Y) THEN
 d := -d;
 WITH TunePar DO
 Amp := 0.0;
 END;
 NOfSamples := 1;
 NOfChanges := 0;
 NOfHalfPeriods := 0;
 END;
 U := YStat + d;
 TuningEnded := FALSE;
 1 :
 IF RelaySwitched(d, Y) THEN
 d := -d;
 WITH TunePar DO
 Amp := 0.0;
 END;
 NOfSamples := 1;
 NOfChanges := NOfChanges + 1;
 PrintError("Relay Switched");
 END;
 IF NOT Changed OR (NOfChanges = MaxNOfChanges) THEN
 NOfHalfPeriods := 1;
 END;
 NOfSamples := 1;
 WITH TunePar DO
 Amp := 0.0;
 d := -d;
 Time := 0.0;
 END;
 InitYMeasurement;
 YMeasurement(U, Y);
ELSE
 NOfSamples := NOfSamples + 1;
 WITH TunePar DO
 Amp := Max(Amp, ABS(YStat-Y));
 END;
 Uold := U;
 U := YStat + d;
 TuningEnded := FALSE;
 END;
 TuningEnded := FALSE;
 WITH TunePar DO
 Amp := 0.0;
 END;
 d := -d;
ELSE
 NOfSamples := NOfSamples + 1;
END;
END;
ELSE
 NOfSamples := NOfSamples + 1;
END;
END;
END TuningEnded := FALSE;
1. MaxNOfHalfPeriods :=
IF RelaySwitched(d, Y) THEN
 NOfHalfPeriods := NOfHalfPeriods + 1;
 NOfSamples := 1;
IF (NOfHalfPeriods <= MaxNOfHalfPeriods+1) THEN
 WITH TunePar DO
 Amp := 0.0;
 END;
 d := -d;
ELSE
 NOfSamples := NOfSamples + 1;
END;
END;
END TuningEnded := FALSE;
WITH TunePar DO
 Amp := 0.0;
END;
END;
END TuningEnded := TRUE;
TuningOk := TRUE;
END;
END AUTOtune;
U is the reference signal
Temp is the sampling interval ---

CONST ProcDelta = 0.03;
ProcMax = 1.1;
ProcMin = 0.02;
VAR Hi,Lo : REAL;
L,J : INTEGER;
BEGIN
h := Temp;
UStat := 0;
GStat := Gc;
GetLimits(YLo,Hi);
Delta := ProcDelta*(Hi-Lo);
EpsMin := ProcEpsMin*Uo;
GetLimits(ULo,Hi);
Max := Max(ProcMax*Hi-Lo, Min(UStat-Lo,Hi-UStat));
YMax := Y;
YMin := Y;
NroOfMeasurements := enter(5,0/h);
NroOfCalls := 1;
WITH YmeFunc DO
 FOR i := 1 TO 20 DO
 Ym[i] := 0.0;
 END;
END;
WITH TunePar DO
 NroOfPeriods := 0;
 To := 0.0;
 T3 := 0.0;
 Time := 0.0;
 eMax := 0.0;
 eMin := 0.0;
 w := 0.0;
 rate := 0.5;
 TimePeriodPos := 0.0;
 TimePeriodNeg := 0.0;
 TimeToMax := 0.0;
 TimeToMin := 0.0;
END;
END InitAutoTune;

(* Computes the measurement of values of the process output. --- *)
PROCEDURE Ymeasurement(Y,Y:REAL);
WITH TunePar DO
 Time := Time + h;
END;

(* Measurement of the first point *)
IF (U-Stat<V0.0) AND ((U-Stat)>V0.0) THEN
 WITH TunePar DO
 IF NroOfPeriods=0 THEN
 StartPos := TRUE;
 END;
 IF NOT StartNeg THEN
 NroOfPeriods := NroOfPeriods + 1;
 END;
 IF NroOfPeriods>1 THEN
 hprlm := TIMEPos/3.0;
 END;
 TIMEPos := 0.0;
 TO := TIME;
 IF NroOfPeriods>1 THEN
 Time1 := TIME - TimePeriodNeg + TIME/FLAT(NroOfPeriods-1);
 IF NroOfPeriods>2 THEN
 Time2 := TIMEToMax - TIMEToMaxmean + TIME/FLAT(NroOfPeriods-2);
 Time3 := TIMEToMin - TIMEToMinmean + TIME/FLAT(NroOfPeriods-2);
 eMaxmean := eMaxmean + (eMax - eMaxmean)/FLAT(NroOfPeriods-2);
 END;
 WITH YmeFunc DO
 Ym[1] := Ym[1]+(Y-Stat)/ABS(d);
 END;
 END;
 END;
ELSE
 IF (U-Stat)>V0.0 THEN
 TimePos := TIMEPos + h;
 END;
END;

(* Measurement of the second point *)
WITH TunePar DO
 IF (ABS(TIME-To-hprlm)<(h/2.0)) AND (NroOfPeriods>1) THEN
 Time2 := TIMEToMax - TIMEToMaxmean + TIME/FLAT(NroOfPeriods-2);
 Time3 := TIMEToMin - TIMEToMinmean + TIME/FLAT(NroOfPeriods-2);
 eMaxmean := eMaxmean + (eMax - eMaxmean)/FLAT(NroOfPeriods-2);
 END;
 WITH YmeFunc DO
 ch[1,NroOfPeriods-1] := hprlm;
 END;
 Ystore[1,NroOfPeriods-1] := (Y - YStat)/ABS(d);
 END;
END;
ELSE
 IF (U-Stat<V0.0) THEN
 TimePos := TIMEPos + h;
 END;
END;

(* Measurement of the third point *)
WITH TunePar DO
 IF (ABS(TIME-To-hprlm)<(h/2.0)) AND (NroOfPeriods>1) THEN
 Time3 := TIMEToMax - TIMEToMaxmean + TIME/FLAT(NroOfPeriods-2);
 WITH YmeFunc DO
 ch[3,NroOfPeriods-1] := hprlm;
 END;
 Ym[3] := Ym[3]+(Y-Stat)/ABS(d);
 END;
END;
(* Measurement of the fourth point *)
IF (((Gold-UStat) > 0.0) AND ((U-UStat) < 0.0)) THEN
 WITH TunePar DO
 IF NrOfPeriods = 0 THEN
 StartNeg := TRUE;
 END;
 IF NOT StartPos THEN
 NrOfPeriods := NrOfPeriods + 1;
 END;
 IF NrOfPeriods > 1 THEN
 hprim := TimePos/3.0;
 END;
 TimeNeg := 0.0;
 T3 := Time;
 END;
 END;
END;

(* Measurement of the fifth point *)
WITH TunePar DO
 IF (ABS(Time-T3-hprim) < h/2.0) AND (NrOfPeriods > 1) THEN
 Ystore(5, NrOfPeriods-1) := (Y - YStat) / ABS(d);
 WITH Checkh DO
 ch[5, NrOfPeriods-1] := hprim;
 END;
 WITH Ymean DO
 Ym[6] := Ym[6] + ((Y-YStat) / ABS(d) - Ym[6]) / FLOAT(NrOfPeriods-1);
 END;
 END;
END;

(* Measurement of the last point *)
IF (((ABS(Time-T3-2.0hprim) < h/2.0) AND (NrOfPeriods > 1)) THEN
 Ystore(5, NrOfPeriods-1) := (Y - YStat) / ABS(d);
 WITH Checkh DO
 ch[5, NrOfPeriods-1] := hprim;
 END;
 WITH Ymean DO
 Ym[4] := Ym[4] + ((Y - YStat) / ABS(d) - Ym[4]) / FLOAT(NrOfPeriods-1);
 END;
END;

(* Calculation for the time where Ymax happens *)
WITH TunePar DO
 IF (((Y-YStat)/ABS(d)) > max) AND (NrOfPeriods > 1) THEN
 TimeToMax := Time - T0;
 max := (Y - YStat) / ABS(d);
 END;
 IF ((Y-YStat)/ABS(d)) < min AND (NrOfPeriods > 1) THEN
 TimeToMin := Time - T0;
 min := (Y - YStat) / ABS(d);
 END;
END;

(* Measurement of the last point *)
WITH TunePar DO
 IF (ABS(Time-T3-2.0hprim) < h/2.0) AND (NrOfPeriods > 1) THEN
 Ystore(5, NrOfPeriods-1) := (Y - YStat) / ABS(d);
 WITH Checkh DO
 ch[5, NrOfPeriods-1] := hprim;
 END;
 WITH Ymean DO
 Ym[4] := Ym[4] + ((Y - YStat) / ABS(d) - Ym[4]) / FLOAT(NrOfPeriods-1);
 END;
END;

(* Determination of the delay *)
PROCEDURE InitModel;
(* --- Initialize a first order model with time delay --- *)
VAR
 f1, f2, f3, d2, det, b1, b2, b3, b4 : REAL;
 ind1, ind2, ind3, ind4, ind5, ind6, ind7, ind8 : INTEGER;
BEGIN
 (* Determination of the delay *)
WITH Tunepar DO

dl := 1/tan(°2MinMean/h);
END;

WITH Yamaan DO
 IF ABS(Yn[1]+1)>ABS(Yn[d1-1]) THEN
 d := d1;
 ELSE
 d := d1+1;
 END;
END;

(" Initialization of the model ")

indice1 := (d+2) MOD 3;
IF indice1 = 0 THEN
 ind: := 3;
END;

indice2prim := power(-1.0,(d+1-indice1) DIV 3);
indice3 := (d+3) MOD 3;
IF indice3 = 0 THEN
 indice4 := 3;
END;

indice3prim := power(-1.0,(d+3-indice3) DIV 3);
indice4 := (d+4) MOD 3;
IF indice4 = 0 THEN
 indice4 := 3;
END;

indice4prim := power(-1.0,(d+4-indice4) DIV 3);

WITH Yamaan DO
 IF Yn[1]<0.0 THEN
 f1 := Yn[1];
 f2 := Yn[2];
 f3 := Yn[3];
 Yn[1] := Yn[4];
 Yn[2] := Yn[5];
 Yn[3] := Yn[6];
 Yn[4] := f1;
 Yn[5] := f2;
 Yn[6] := f3;
 END;

 Yn[d+2] := indice2prim * Yn[indice2];
 Yn[d+3] := indice3prim * Yn[indice3];
 Yn[d+4] := indice4prim * Yn[indice4];
 determinant := Yn[d+3] - Yn[d+2];
END;

IF ABS(determinant)<0.0001 THEN
 WITH Yamaan DO
 b11 := -power(Yn[d+2],2) - power(Yn[d+3],2) - power(Yn[d+4],2);
 b11 := power(Yn[d+2],2) - power(Yn[d+3],2) - power(Yn[d+4],2);
END;

WITH GlobalData.Model DO
 (* --- (z-a) --- *)
 coeffs[0] := 1.0;
 WITH Yamaan DO
 END;
 FOR 1:=2 TO mdegree DO coeffs[1] := 0.0; END;
 degree := 1;
END;

WITH GlobalData.Model DO
 (* AdditionalPolesInOrigin := d;*)
 IF ABS(coeffs[0])<0.001 THEN
 delay := d;
 END;
 IF ABS(coeffs[1])<0.001 THEN
 AdditionalPolesInOrigin := d+1;
 ELSE
 AdditionalPolesInOrigin := d;
 END;
 ELSE
 delay := d+2;
 END;
 IF ABS(coeffs[1])>0.001 THEN
 AdditionalPolesInOrigin := d+1;
 END;
 PrintError("b1+b2=0,Impossible");
END;
END;

WITH GlobalData.Model DO
 (* --- Initialization of a controller based on pole placement design --- *)
 CONST
 p1 = 3.1416;
VAR
 i : INTEGER;
 interi, alpha, beta : REAL;
BEGIN
 WITH GlobalData DO
 (* ---if the model is a first order like k/(z-a) the desired closed loop denominator is also a first order---*)
 IF ABS(coeffs[1])<0.001 THEN
 WITH Tunepar DO
 w := rate/Period;
 alpha := exp(-w*°);
 END;
 Design.Am.degree := Model.delay+1;
 Design.Am.coeffs[0] := 1.0;
 FOR 1:=2 TO mdegree DO Design.Am.coeffs[1] := 0.0; END;
 interi := Model.B.coeffs[0]/Model.B.coeffs[1];
 IF ABS(interi)<0.001 THEN
 Design.Bprim.degree := 0;
 Design.Bprim.coeffs[0] := (1.0-alpha)/inteni;
 FOR 1:=1 TO mdegree DO Design.Bprim.coeffs[1] := 0.0; END;
 ELSE
 PrintError("b1+b2=0");
 END;
 END;
(* ---if we are not in the previous case the closed loop desired denominator
is a second order --- *)

WITH TuneFar DO
 w := rate*2.0*pi/Period;
 alpha := exp(-0.7*wh);
 beta := cos(w*t*sqrt(1.0-0.7*0.7));
END;

Design.Am.degree := Model.delay+2;
Design.Am.coeffs[0] := 1.0;
Design.Am.coeffs[2] := power(alpha,2);

FOR i:=3 TO mdegree DO Design.Am.coeffs[i] := 0.0; END;

inter1 := Model.B.coeffs[0]+Model.B.coeffs[1];

IF ABS(inter1)>0.001 THEN
 Design.Bmpri.degs[0] := (1.0-2.0*alpha*beta/power(alpha,2))/inter1;
 Design.Bmpri.coeffs[0] := Design.Bmpri.coeffs[0];
 END;
ELSE
 PrintError("b1+b2 = 0");
END;

END Design;
END InitFPDesign;

END AutoTune.
\032
DEFINITION MODULE Adistr;

EXPORT QUALIFIED
 StartIndirectSTR, IndirectSTR;

PROCEDURE StartIndirectSTR(Adapt:BOOLEAN; VAR ok:BOOLEAN);
PROCEDURE IndirectSTR(Adapt:BOOLEAN; a,y:REAL);

END Adistr.
\032
IMPLEMENTATION MODULE ADISTR;
(*
Routines for poles placement design
*)
(*
Michael Lundy
March 1988
*)
FROM AutoTuner IMPORT ModelType, DesignType, RegulatorType,
GlobalData, AdaptDataType, TempData;
FROM ErrorBox IMPORT PrintError;
FROM Regulator IMPORT NewAdaptiveRegulator,
GetPolyInRegulator, NewPolyInRegulator;
FROM Fcals IMPORT mdegres, opoly, Polnom, Polmul, Diophantine, FixDegree;
FROM FLS IMPORT RestartEstimation;
CONST
relative = 1.0E-8;
VAR
A0Am, Integr, Temp, Aext, AextInterg : opoly;
amseq1 : REAL;

PROCEDURE StartIndirectSTR(Adapt:BOOLEAN; VAR ok:BOOLEAN;)
(Adapt=TRUE when adaptive regulator running, FALSE when initialisation *)
VAR i: CARDINAL;
BEGIN
???????????? hur ar det madellen -- behovar tester qoros *)
WITH GlobalData.Design DO
Polmul(Ao, Am, relative, A0Am);
IF Polnorm(AoAm)<0.0001 THEN
PrintError(' Am * Ao = 0 ');
ok := FALSE;
RETURN;
END;
IF Polnorm(Reprim)<0.0001 THEN
PrintError(‘ Em’ = 0 ’);
ok := FALSE;
RETURN;
END;
IF IntegrAction THEN
WITH Integr DO
degree:=1; coef[i]:=1.0; coef[1]:=1.0;
FOR i:=2 TO mdegree DO coef[i]:=0.0; END;
ELSE
WITH Degr DO
degree:=0; coef[i]:=1.0;
FOR i:=1 TO mdegree DO coef[i]:=0.0; END;
END;
WITH Aext DO (* handle additional poles in the origin *)
degree:=GlobalData.Model.AdditionalPolesInOrigin;
coef[0]:=1.0;
FOR i:=1 TO mdegree DO coef[i]:=0.0; END;
END;
Polmul(Integr, Aext, relative, AextInterg);
(* degree test deg(Ao)+deg(Am) >= 2deg(A)-deg(B)+1-1 *)
WITH GlobalData.Model DO
IF A0Am.degrees < 2*(A0Am.degrees+Aext.degrees) - 0 +Integr.degrees -1 THEN
ok:=FALSE;
PrintError(‘ Degree fault ’);
RETURN;
END;
END;

TempData.Regulator.Name := 'ISTR';
TempData.Regulator.R.degree := A0Am.degrees - Aext.degrees;
TempData.Regulator.R0.degree := TempData.Regulator.R.degree;
TempData.Regulator.S2.degree := 0;
TempData.Regulator.S3.degree := 0;
FOR i:=0 TO mdegree DO
TempData.Regulator.S2.coef[i]:=0.0;
TempData.Regulator.S3.coef[i]:=0.0;
END;
END;
NewPolyInRegulator(TempData.Regulator);
ok:=TRUE;
END;
RestartEstimation(FALSE, ok);
END StartIndirectSTR;

PROCEDURE IndirectSTR(Adapt:BOOLEAN; VAR ok:BOOLEAN;)
(Adapt=TRUE when adaptive regulator running, FALSE when initialisation *)
VAR i: CARDINAL;
VAR a1, As, Bl: REAL;
amseq1 := 0.0;
BEGIN
WITH GlobalData DO
Polmul(Model.A, AextInterg, relative, A0Am);
(* B = B + B = 1 *)
Polmul(Model.B, Design.Reprim, relative, B);
amseq1 := 0.0;
END;
FOR i:=0 TO km.degre DO (* km(1) *)
 bmqeql := bmqeql + km.coeffs[i];
END;
t0 := amqeql/bmqeql;

WITH TempData.Regulator DO
 Diophantine(al.Model.B, AoAm, r1, S1);
 Polmul(r1, Integr, relative, R);
 FinDegree(S1, R.degre);
 R0:=R.coeffs[0]; (* = 1.0 always ??? *)
 FOR i:=0 TO R.degre DO
 R.coeffs[i] := R.coeffs[i] / R0;
 S1.coeffs[i] := S1.coeffs[i] / R0;
 T.coeffs[i] := Tmp.coeffs[i] / R0 * t0;
END;
END;

NewAdaptiveRegulator(TempData.Regulator);
END IndirectSTR;

END AdISTR.

\032
DEFINITION MODULE DSpeBox;

FROM Graphics IMPORT rectangle;

EXPORT QUALIFIED Init, Draw, DSpe;

PROCEDURE Init(s:rectangle);

PROCEDURE Draw;

PROCEDURE DSpe;

END DSpeBox.
IMPEIMENTATION MODULE DSBox;

FROM AD1STR IMPORT StartIndirect, Indirect;
FROM AutoTuner IMPORT GlobalData, TempData, RegulatorType;
FROM ConvReal IMPORT RealToString, StringToReal;
FROM ErrorBox IMPORT PrintError;
FROM GraphHelp IMPORT GetTextColor, GetBoxColor, SetPoint, SetRectangle, GetLeftIn, ClearLeft;
FROM Graphics IMPORT handle, rectangle, color, point, VirtualScreen, SetWindow, SetViewport, DrawString, SetFillColor, SetTextColor, FillRectangle, ReadString, Charactersize, EraseChar, HideCursor, ShowCursor;
FROM IO IMPORT ADIn,
FROM MainBuffer IMPORT ActualData;
FROM NumberConversion IMPORT CardTostring, StringToCard, IntToString, StringPoint;
FROM Region IMPORT UpdateRegulatorState;
FROM Strings IMPORT Copy, Insert;

VAR DSHandle: handle;
 Box: rectangle;
 Text: ARRAY[0..2], [0.10] OF CHAR;
 TextPoint: ARRAY[1..2] OF point;

(* -- *)
PROCEDURE Init(ViewPort:rectangle);
BEGIN
 VirtualScreen(DSHandle);
 SetViewport(DSHandle, ViewPort);
 SetRectangle(Box, 0.0, 0.0, 0.1, 0.1);
 SetWindow(DSHandle, Box);
 SetFillColor(DSHandle, GetBoxColor());
 SetTextColor(DSHandle, GtTextColor());
 Copy("Design", 0.6, Text[1]);
 SetPoint(TextPoint[1], 0.1, 0.4);
 Copy("Specific", 0.7, Text[2]);
 SetPoint(TextPoint[2], 0.1, 0.4);
END Init;

(* -- *)
PROCEDURE Draw;
BEGIN
 HideCursor;
 FillRectangle(DSHandle, Box);
 WriteString(DSHandle, TextPoint[1], Text[1]);
 WriteString(DSHandle, TextPoint[2], Text[2]);
 ShowCursor;
END Draw;

(* -- *)
PROCEDURE Dsp;
(*--- performs the display of the design specifications in the user interaction space --- *)
CONST NToStrings: 7;
 un=1;
 zero=0;
VAR DSpHandle: handle;
 rect: rectangle;
 Value, Y, U: REAL;
 Len: INTEGER;
 Nustring, Len;
 TextPoint: ARRAY[1..2] OF point;
 PromptPoint, ReadPoint1, ReadPoint2, ReadPoint3, ReadPoint4, ClearPoint: point;

BEGIN
 ModifyAm := FALSE;
 VirtualScreen(DSpHandle);
 GetLeftIn(ViewPort);
 SetViewport(DSpHandle, ViewPort);
 SetRectangke(Box, 0.0, 0.0, 0.1, 0.1);
 SetWindow(DSpHandle, Box);
 SetFillColor(DSpHandle, GetBoxColor());
 SetTextColor(DSpHandle, GetTextColor());
 Charactersize(DSpHandle, width, height);
 FOR Line= 1 TO NToStrings DO
 SetPoint(TextPoint[Line], 0.05, 1.0-FLOAT(Line)*1.2*height);
 END;
 SetPoint(PromptPoint, 0.05, 0.05);
 SetPoint(ReadPoint1, 0.05+width, 0.05);
 SetPoint(ReadPoint2, 0.05+2.0*width, 0.05);
 SetPoint(ReadPoint3, 0.05+3.0*width, 0.05);
 SetPoint(ReadPoint4, 0.05+4.0*width, 0.05);
 SetPoint(ReadPoint4, 0.05+5.0*width, 0.05);
 SetPoint(ReadPoint4, 0.05+6.0*width, 0.05);

REPEAT
 Copy(*'A0, degree", 0.11, Text[1]);
 Copy(*'A2, 0.5, Text[2]);
 Copy(*'A3, 0.4, Text[3]);
 Copy(*'A4, 0.3, Text[4]);
 Copy(*'Bn", 0.5, Text[5]);
 Copy(*'IntAction", 0.11, Text[6]);
 Copy(*'Exit", 0.6, Text[7]);
 Len:=7;
 WITH GlobalData, Design DO
 CardToString(Ao, degree, NumString, Len);
 Insert(NumString, Text[1], 11);
 RealToString(Ao, coefs[0], NumString, Len);
 Insert(NumString, Text[2], 10);
 IF Ao.degree=1 THEN
 RealToString(Ao, coefs[1], NumString, Len);
 Insert(NumString, Text[2], 13);
 END;
 IF Ao.degree=2 THEN
 RealToString(Ao, coefs[2], NumString, Len);
 Insert(NumString, Text[2], 22);
 END;
END;
END:
CardToString(Ao, degree, NumString, Len);
Insert(NumString, Text[3], 11);
RealToString(Ao, coefs[0], NumString, Len);
Insert(NumString, Text[4], 4);
RealToString(Ao, coefs[1], NumString, Len);
Insert(NumString, Text[5], 13);
RealToString(Ao, coefs[2], NumString, Len);
In `StringToReal`:

```pascal
IF Pos<>0 THEN
  GlobalData.P1.coeffs[2]:=Value;
ELSE
  PrintErrr("Conversion Error");
END;
ELSE
  PrintErrr("Adaptive Regulator");
  PrintErrr("Modification impossible");
END;
END;
END;
```

In `RealTostring`:

```pascal
IF (Ans[1]="1") THEN
  IF NOT GlobalData.Adapt THEN
    ModIfAAd := TRUE;
    Readstring(DSHandle,ReadPoint2,NumString);
    Pos:=0;
    StringToCard(NumString,Value,Test);
    IF Test THEN
      GlobalData.P1.degree:=Value;
      PrintError("Conversion Error");
      END;
      ELSE
        PrintError("Adaptive Regulator");
        PrintError("Modification impossible");
        END;
    END;
    END;
    IF (Ans[1]="2") THEN
      IF NOT GlobalData.Adapt THEN
        ModIfAAd := TRUE;
        Readstring(DSHandle,ReadPoint2,NumString);
        Pos:=0;
        StringToReal(NumString,Pos,Value);
        IF Pos<>0 THEN
          GlobalData.P1.coeffs[0]:=Value;
          PrintError("Conversion Error");
          END;
          IF (Ans[1]="3") THEN
            IF NOT GlobalData.Adapt THEN
              Readstring(DSHandle,ReadPoint3,NumString);
              Pos:=0;
              StringToReal(NumString,Pos,Value);
              IF Pos<>0 THEN
                GlobalData.P1.coeffs[1]:=Value;
                PrintError("Conversion Error");
                END;
                ELSE
                  PrintError("Adaptive Regulator");
                  PrintError("Modification impossible");
                  END;
                  END;
                  END;
                  Reset(Aux);
StartIndirectSTR(GlobalData, Adapt, OK);
IF OK THEN
  PrintError("IndirectSTR started");
  Y := ADInY();
  U := ActualData, y0;
  IndirectSTR(FALSE, U, Y);
  UpdateRegulatorState;
ELSE
  PrintError("Indirect STR not started");
END;
END;
ClearLeft;
END DSpe;
END DSpeBox.
\032
DEFINITION MODULE RegulModule;

EXPORT QUALIFIED Start, ArrayType, VectorType;

TYPE VectorType = ARRAY[1..11] OF REAL;

TYPE ArrayType = ARRAY [1..6], [1..3] OF REAL;

PROCEDURE Start;

END RegulModule.

\032
IMPLEMENTATION MODULE RegulModule;

IMPORT DebugPMD;
FROM ADISTR IMPORT IndirectSTR;
FROM AutoTune IMPORT TunePar, Partype, IniAutoTune, AutoTune,
            GlobalData, TempData, Mean;
FROM ErrorBox IMPORT PrintError;
FROM IC IMPORT ADInf, ADInExt, DAOutU;
FROM Kernel IMPORT Time, SetPriority, GetTime, InTime, WaitUntil,
            CreateProcess;
FROM MainBuffer IMPORT ModeType, GetMode, SetMode, GetPar, GetSet, GetSignal,
            SetSignal, Get, SetTuningOk, GetSSSignals, GetSSignal, SignalType, ActualData;
FROM PlotBuffer IMPORT PutData;
FROM PlotWindow IMPORT GetLimits;
FROM Regulator IMPORT ControlSignal, InRegulator, ResetRegulator;
FROM Regulator IMPORT NewControlSignal, NewAdaptiveRegulator,
            UpdateRegulatorState;
FROM RS IMPORT Estimate;
FROM Storage IMPORT ALLOCATE, DEALLOCATE;

VAR
   K, Mean : REAL;

(* --------------------------------------------------------------- *)
PROCEDURE InitMean;
BEGIN
   K := 100.0;
   Mean := 0.0;
END InitMean;

(* --------------------------------------------------------------- *)
PROCEDURE UpdateMean(X:REAL);
(* Computes the mean of a real signal, X *)
CONST Lambda = 0.95;
BEGIN
   K := K/(1+Lambda);
   Mean := Mean + K*(X-Mean);
END UpdateMean;

(* --------------------------------------------------------------- *)
PROCEDURE GetMean():REAL;
BEGIN
   RETURN(Mean);
END GetMean;

(* --------------------------------------------------------------- *)
PROCEDURE Regul;
(* Process which supervises the choice of the modes Man, PID, Tune,Adapt *)
VAR Mode, LastMode, ModeBeforeTuning : ModeType;
   h, u, y, x, v, OMIn, OMax, Dimmy : REAL;
   Par : Partype;
   TuningEnded, TuningOk : BOOLEAN;
   T : Time;
BEGIN
   SetPriority(20);
   LastMode := GetMode();
   GetLimits(OMin, OMax);
   u := 0.0;
   LOOP
   (* --------------------------------------------------------------- *)
   GETTime(T);
   h := Geth();
   InTime(T, TRUNC(1000.0*h));
   Mode := GetMode();
   CASE Mode OF
      Man : uc := GetSignal(Uc);
      y := ADInY();
      SetSignal(Y,y);
      GetPar(Par);
      Dummy := ControlSignal(u, y, u, h, Par);
      v := GetSignal(Y);
      IF v < UMin THEN
         u := UMin;
         ELSE IF v > UMax THEN
            u := UMax;
            ELSE
               IF p := v;
               EXIT;
               DAOutU();
               END;
               (* --------------------------------------------------------------- *)
               Tune : y := ADInY();
               IF GetSet(V) THEN
                  v := GetV();
               AUTO(uc,v, GetSignal(Uc), Y, h);
               SetSSSignals(v, y, ADInExt());
               ModeBeforeTuning := LastMode;
               END;
               AUTO(uc,v, GetSignal(Uc), Y, h);
               IF v < UMin THEN
                  u := UMin;
               ELSE IF v > UMax THEN
                  u := UMax;
                  ELSE
                  u := v;
                  EXIT;
                  DAOutU();
                  END;
                  (* --------------------------------------------------------------- *)
                  PID : u := GetSignal(Uc);
                  y := ADInY();
                  SetSignal(Y,y);
                  GetPar(Par);
                  v := ControlSignal(uc, y, u, h, Par);
                  IF v < UMin THEN
                     u := UMin;
                     ELSE IF v > UMax THEN
                        u := UMax;
                        ELSE
                           IF p := v;
                           EXIT;
                           DAOutU();
                           END;
                           (* --------------------------------------------------------------- *)
                           Tuning : y := ADInY();
                           IF LastMode <> Tune THEN
                              v := GetV();
                              GetAutoTune(v, GetSignal(Uc), Y, h);
                              SetSSSignals(v, y, ADInExt());
                              ModeBeforeTuning := LastMode;
                              END;
                              GetAutoTune(v, y, uc, TuningEnded, TuningOk);
                              IF v < UMin THEN
                                 u := UMin;
                                 ELSE IF v > UMax THEN
                                    u := UMax;
                                    ELSE
                                       IF p := v;
                                       EXIT;
                                       DAOutU();
                                       END;
                                       (* --------------------------------------------------------------- *)
                                       PID : u := GetSignal(Uc);
                                       (* --------------------------------------------------------------- *)
                                       Tuning : y := ADInY();
                                       IF TuningOk THEN
                                          TuningOk := SetTuningOk;
                                          NewAdaptiveRegulator(TempData, Regulator);
                                          PrintError("Tuning was successful.");
                                          SetMode(Control);
                                          ELSE
                                          PrintError("Tuning wasn't successful.");
                                          SetMode(ModeBeforeTuning);
                                          END;
                                          END;
                                          (* --------------------------------------------------------------- *)
                                          Control : uc := GetSignal(Uc);
y := ADInY();
SetSignal(Y,y);
WHEN ActualData DO
  refl0 := uc;
ylt0 := ADInY();
y2t0 := 0.0;
y3t0 := 0.0;
  ut0 := NewControlSignal(refl0,ylt0,y2t0,y3t0);
END;
v := ActualData.ut0;
IF v < uMin THEN
  u := uMin;
ELSIF v > uMax THEN
  u := uMax;
ELSE
  u := v;
END;
DAOutU(u);
Estimization(u,y);
IF globalData.Adapt THEN
  IndirectStr(TRUE,u,y);
END;
UpdateRegulatorState;
END; (* case *)
UpdateMean(u);
SetSignal(U,u);
PutData(u,uc);
LastMode := Mode;
WaitUntil(T);
END;
END Regul;

(*  ----------------------------------------------- *)
PROCEDURE Start;
BEGIN
  InitRegulator;
  InitMean;
  CreateProcess(Regul,20000);
END Start;
END RegulModule.
DEFINITION MODULE RLS;

EXPORT QUALIFIED
MaxStore, maxindex, col, matr, EstimateParameters,
RestartEstimation, InitRLS, Estimation, DORLS;

CONST
MaxStore = 710;
maxindex = 10; (* max number of estimated parameters *)

TYPE
col = ARRAY[0..maxindex] OF REAL;
matr = ARRAY[0..maxindex] OF col;

Filter2State = RECORD
  z1, z2 : REAL;
END;

VAR
  EstimateParameters: RECORD
    Theta : col; (* estimated parameters *)
    Phi : col; (* regression vector *)
    L : matr; (* lower triangular part of LD decomposition of P. Notice that the elements are stored columnwise *)
    D : col; (* diag. part of LD decomposition of P *)
    N : CARDINAL; (* number of estimated params *)
END;

PROCEDURE RestartEstimation(zerotheta:BOOLEAN; VAR ok:BOOLEAN);
PROCEDURE InitRLS;
PROCEDURE Filter2(z:REAL; VAR states:Filter2State; VAR xf:REAL);
PROCEDURE Estimation(a,y:REAL);
PROCEDURE DORLS(VAR thetas:dircol; VAR l:matr; phi:col; n:CARDINAL);

END RLS.
IMPLEMENTATION MODULE RLS;
(*---------------------------------------------------------------*)
(* Routines for recursive least square estimation                *)
(*---------------------------------------------------------------*)
(* Michael Lundh March 1988                                     *)

FROM Peaco IMPORT mdegree, coefficient, poly;
FROM AutoTuner IMPORT ModelType, GlobalData, EstimDataType;
FROM ErrorBox IMPORT PrintError;

CONST
relative = 1.0E-8;

VAR ufl, uf2, uf3 : REAL;
ufilterstate, yfilterstate = Filter2State;

PROCEDURE Filter2(x:REAL; VAR states:Filter2State; VAR yf:REAL);
(* Second order filter for regressors *)
VAR nx1, nx2 : REAL;
BEGIN
WITH GlobalData, EstimData DO
nx1 := -Af.coeffs[1]*x1 - Af.coeffs[2]*x2 + x;

z[1] := (Bf.coeffs[1]-Bf.coeffs[0])*Af.coeffs[1]*x1
+ (Bf.coeffs[2]-Bf.coeffs[0])*Af.coeffs[2]*x2 + Bf.coeffs[0]*x;

x2 := nx1;
x1 := nx2;
END;
END Filter2;

PROCEDURE RestartEstimation(zerothetabool:BOOLEAN; VAR ok:BOOLEAN);
VAR i, j : CARDINAL;
BEGIN
WITH GlobalData,Model DO (* set model polynomials *)

IF A.degree>B.degree THEN PrintError('Deg A > Deg B');
ok := FALSE;
RETURN;
END;

FOR i:=A.degree+1 TO mdegree DO A.coeffs(i) := 0.0; END;
FOR i:=B.degree+1 TO ndegree DO B.coeffs(i) := 0.0; END;
A.coeffs(0) := 1.0;

IF zerothetabool THEN (* default settings of A and B *)
FOR i:=A.degree+1 TO mdegree DO A.coeffs[i] := 0.0; END;
CAND EG A.degree OF
1: A.coeffs[1] := -0.5;
END;
FOR i:=0 TO B.degree DO B.coeffs[i] := 2.0; END;

}
WITH EstimateParameters DO (* transfer parameters from model *)
  Theta[0] := 0.0;
  FOR i:=1 TO A.degree DO
    Theta[i] := A.coeffs[i];
  END;
  FOR i:=0 TO B.degree DO
    Theta[i+A.degree+1] := B.coeffs[i];
  END;
  N:=A.degree+B.degree+1;
  FOR i:=N+2 TO maxindex DO
    Theta[i] := 0.0;
  END;

  FOR i:=0 TO maxindex DO
    FOR j:=0 TO maxindex DO
      L[i,j] := 0.0;
    END;
    L[i,1] := 1.0;
    D[i] := GlobalData.EstimData.D0;
    Phi[1] := 0.0;
  END;

  GlobalData.EstimData.EstPurpose := 'MODELPLY';
  END RestartEstimation;

(* ----------------------------------------------- *)
PROCEDURE InitRLS;
VAR l,j : CARDINAL;
ok : BOOLEAN;
BEGIN
  RestartEstimation(TRUE,ok);
  WITH ufllterstate DO x1:=0.0; x2:=0.0; END;
  WITH yfilterstate DO x1:=0.0; x2:=0.0; END;
  uf1 := 0.0; uf2 := 0.0; uf3 := 0.0;
  GlobalData.EstimData.EstPurpose := 'MODELPLY';
  END RestartEstimation;

(* ----------------------------------------------- *)
PROCEDURE DORLS(VAR theta:real; VAR l:matrix; VAR phi:col; n:CARDINAL);
BEGIN
  LDfilter(theta,d,l,phi,GlobalData.EstimData.Lambda,n);
END DORLS;

(* ----------------------------------------------- *)
PROCEDURE Estimation(VAR u,y:real);
VAR i : CARDINAL;
uf0,yf0 : real;
BEGIN
  Filter1(u, ufllterstate, uf0);
  Filter2(y, yfilterstate, yf0);
  WITH EstimateParameters DO
    Phi[0] := yf0;
    IF GlobalData.Adapt THEN
      DORLS(Theta, D, L, Phi, 0);
      END;
    WITH GlobalData.Model DO
      (* Update regressors (phi-vector) and transfer parameters to model *)
      FOR i:=0 TO 2 BY -1 DO
        Phi[i] := Phi[i-1];
      END;
      Phi[1] := -yf0;
      CASE delay OF
        1: Phi[A.degree+1] := uf0;
        2: Phi[A.degree+1] := uf1;
        3: Phi[A.degree+1] := uf2;
        4: Phi[A.degree+1] := uf3;
      END;
      IF GlobalData.Adapt THEN
        FOR i:=1 TO A.degree DO
          A.coeffs[i] := Theta[i];
        END;
        FOR i:=0 TO B.degree DO
          B.coeffs[i] := Theta[i+A.degree+1];
        END;
      END;
    END;
  END;
  uf3 := uf2;
  uf2 := uf1;
  uf1 := uf0;
  END Estimation;
END RLS.

\032