Neurogenic and angiogenic actions of electroconvulsive seizures in adult rat brain

Hellsten, Johan

2005

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Electroconvulsive Seizures Induce Endothelial Cell Proliferation in Adult Rat Hippocampus

Johan Hellsten, Malin Wennström, Johan Bengzon, Paul Mohapel, and Anders Tingström

Background: Electroconvulsive seizures, an animal model for electroconvulsive treatment, induce a strong increase in neurogenesis in the dentate gyrus of adult rats. Hippocampal neurogenesis has previously been described as occurring in an angiogenic niche. This study examines the effect of electroconvulsive seizures on proliferation of vascular cells in rat hippocampus.

Methods: Rats were subjected to either a single ECS trial or a sham treatment at 1400. Electroconvulsive seizures were delivered via silver electrode ear clips (Monadic Sales AB, Sweden) 50 mA, 5 second, 50 Hz (unidirectional square wave pulses). The rats were monitored after ECS to ensure that clonic movements of the face and forelimbs (indicative of limbic motor seizures) occurred for a minimum of 20 seconds. Rats receiving three ECS and five ECS trials were given the remaining treatments once daily on days 1 and 2 or 1 to 30 seconds. Rats receiving three ECS and five ECS trials were given the remaining treatments once daily on days 1 and 2 or 1 to 30 seconds. Rats receiving three ECS and five ECS trials were given the remaining treatments once daily on days 1 and 2 or 1 to 30 seconds.

Results: A dose-response effect on the number of bromodeoxyuridine-labeled endothelial cells located in the granule cell layer, hilus, and molecular layer was noted, as was the case with the number of neural precursors in the subgranular zone. The time-course study revealed that endothelial cell and neural precursor proliferation occurred in concert in response to a single electroconvulsive seizure.

Conclusions: Our data suggest that in response to electroconvulsive seizures, endothelial cell and neural proliferation is correlated. The increase in endothelial cell proliferation may act to support the increased neural proliferation and neuronal activity or vice versa, possibly leading to structural changes within the hippocampus of importance for the antidepressant effect of electroconvulsive seizures.

Key Words: ECS, seizures, neurogenesis, angiogenesis, hippocampus, major depression

The hippocampus is one of few areas of the mammalian brain where there is an ongoing neurogenesis in adulthood (Altman and Das 1965; Eriksson et al 1998). Dividing hippocampal precursor cells, residing in the subgranular zone (SGZ), express a variety of neuronal and/or glial progenitor markers and are often referred to as neural precursors (Palmer et al 2000).

Electroconvulsive seizures, an animal model for electroconvulsive treatment, induce a strong increase in neurogenesis in the dentate gyrus of adult rats. Hippocampal neurogenesis has previously been described as occurring in an angiogenic niche. This study examines the effect of electroconvulsive seizures on proliferation of vascular cells in rat hippocampus.

Methods: Rats were subjected to either a single ECS trial or a sham treatment at 1400. Electroconvulsive seizures were delivered via silver electrode ear clips (Monadic Sales AB, Sweden) 50 mA, 5 second, 50 Hz (unidirectional square wave pulses). The rats were monitored after ECS to ensure that clonic movements of the face and forelimbs (indicative of limbic motor seizures) occurred for a minimum of 20 seconds. Rats receiving three ECS and five ECS trials were given the remaining treatments once daily on days 1 and 2 or 1 to 30 seconds. Rats receiving three ECS and five ECS trials were given the remaining treatments once daily on days 1 and 2 or 1 to 30 seconds. Rats receiving three ECS and five ECS trials were given the remaining treatments once daily on days 1 and 2 or 1 to 30 seconds.

Results: A dose-response effect on the number of bromodeoxyuridine-labeled endothelial cells located in the granule cell layer, hilus, and molecular layer was noted, as was the case with the number of neural precursors in the subgranular zone. The time-course study revealed that endothelial cell and neural precursor proliferation occurred in concert in response to a single electroconvulsive seizure.

Conclusions: Our data suggest that in response to electroconvulsive seizures, endothelial cell and neural proliferation is correlated. The increase in endothelial cell proliferation may act to support the increased neural proliferation and neuronal activity or vice versa, possibly leading to structural changes within the hippocampus of importance for the antidepressant effect of electroconvulsive seizures.

Methods and Materials

Animals and Design of Study

The general layout of the experimental procedures performed is shown in Figure 1.

Electroconvulsive seizures were delivered via silver electrode ear clips (Monadic Sales AB, Sweden) 50 mA, 5 second, 50 Hz (unidirectional square wave pulses). The rats were monitored after ECS to ensure that clonic movements of the face and forelimbs (indicative of limbic motor seizures) occurred for a minimum of 20 seconds. Rats receiving three ECS and five ECS trials were given the remaining treatments once daily on days 1 and 2 or 1 to 30 seconds.

Conclusion: Our data suggest that in response to electroconvulsive seizures, endothelial cell and neural proliferation is correlated. The increase in endothelial cell proliferation may act to support the increased neural proliferation and neuronal activity or vice versa, possibly leading to structural changes within the hippocampus of importance for the antidepressant effect of electroconvulsive seizures.
Administration of Bromodeoxyuridine

Bromodeoxyuridine (BrdU) (RS002; Sigma-Aldrich, St. Louis, Missouri) was dissolved in phosphate buffered saline and administered intraperitoneally. All rats in the dose-response and survival study received 10 injections of BrdU (100 mg/kg) in 12-hour intervals (900 and 2100), during days 2 through 6 after the initial ECS treatment. The rats in the time-course study were given four injections of BrdU (100 mg/kg) in 2-hour intervals (900, 1100, 1300, and 1500), either the same day or 2, 4, 6, or 8 days after the single ECS trial.

Tissue Preparation

Twenty hours (in the time-course study), 5 days (in the dose-response study), or 21 days (in the survival study) after the last injection of BrdU, the rats were anesthetized with sodium pentobarbital (60 mg/ml). In the absence of nociceptive reflexes, the rats were transectomed with 9% saline for 2 minutes, followed by 4% ice-cold paraformaldehyde for 10 minutes. Following decapitation, the brain was removed from the skull and perfused in 4% paraformaldehyde at 4°C overnight. Before sectioning on a freezing microtome, the brains were left in 30% sucrose in phosphate-buffered saline (PBS) until they sank. Coronal sections, 60 µm thick, were cut through the middorsal hippocampus (~5–50 mm to ~45.2 mm relative to bregma) (Paxinos and Watson 1986) and stored in antifreeze cryoprotectant solution at −20°C until the immunohistochemical procedure.

BrdU/Rat Endothelial Cell Antigen-1/Laminin and BrdU/Neuron-Specific Nuclear Protein Immunofluorescence Stainings

Brain sections were rinsed (5 × 10 minutes) in 0.2 mol/L potassium phosphate-buffered saline (KPBS) and then incubated in blocking solution (KPBS + 5% normal donkey serum [NDS] [Harlan Sera-Lab, Belfont, United Kingdom] + 25% Triton X-100 [Sigma-Aldrich]) for 1 hour at room temperature. Sections were then incubated with 1:25 mouse anti-rat endothelial cell antigen-1 (RECA-1) (Serotec MCA 970, Oxford, United Kingdom) in KPBS + 0.25% Triton X-100 for 24 hours in darkness at 4°C. After washing with KPBS, the sections were incubated with 1:100 rabbit anti-laminin (Sigma-Aldrich, St. Louis, Missouri) in blocking solution for 40 hours in darkness at 4°C. Sections were then rinsed in KPBS (3 × 10 minutes) and subsequently incubated with 1:200 Donkey anti-Mouse (Jackson 715-065-151, Jackson Immuno Research, West Grove, Pennsylvania) in blocking solution for 24 hours at 4°C. Sections were then rinsed in KPBS (3 × 10 minutes) and subsequently incubated with 488 Fluor (Molecular Probes, Eugene, Oregon) in KPBS+ for 24 hours in darkness at 4°C. After washing with KPBS, the sections were incubated in 4% paraformaldehyde for 10 minutes at room temperature, subsequently rinsed (2 × 10 minutes) in KPBS, and then incubated in 1 mol/L hydrochloric acid (HCl) for 30 minutes. After rinsing in KPBS (3 × 10 minutes), the sections were then exposed to blocking solution (KPBS+ + 5% normal donkey serum) for 1 hour in darkness at room temperature and then incubated with 1:100 rat anti-BrdU (Oxford Biotechnology, ORF 0030; Kidlington, United Kingdom) and 1:100 rabbit anti-laminin (Sigma-Aldrich, St. Louis, Missouri) in blocking solution for 40 hours in darkness at 4°C. Sections were then rinsed in KPBS+ (2 × 10 minutes) and KPBS+ + 2% NDS (modified blocking solution) (2 × 10 minutes) before being incubated with 1:200 Cy-3 Donkey-anti-Rat (Jackson 712-965-153, Jackson Immuno Research, West Grove, Pennsylvania) and 1:200 Cy-5 Donkey-anti-Rabbit (Jackson 714-175-152, Jackson Immuno Research, West Grove, Pennsylvania) in modified blocking solution for 24 hours in darkness at 4°C. After rinsing in KPBS, the sections were left in 30% sucrose in phosphate-buffered saline (PBS) until they sank. Coronal sections, 60 µm thick, were cut through the mid-dorsal hippocampus (~5–50 mm to ~45.2 mm relative to bregma) (Paxinos and Watson 1986) and stored in antifreeze cryoprotectant solution at −20°C until the immunohistochemical procedure.

Brain sections were rinsed (5 × 10 minutes) in 0.2 mol/L potassium phosphate-buffered saline (KPBS) and then incubated in blocking solution (KPBS + 5% normal donkey serum [NDS] [Harlan Sera-Lab, Belfont, United Kingdom] + 25% Triton X-100 [Sigma-Aldrich]) for 1 hour at room temperature. Sections were then incubated with 1:25 mouse anti-rat endothelial cell antigen-1 (RECA-1) (Serotec MCA 970, Oxford, United Kingdom) in KPBS + 0.25% Triton X-100 for 24 hours in darkness at 4°C. Sections were then rinsed in KPBS (3 × 10 minutes) and subsequently incubated with 488 Fluor (Molecular Probes, Eugene, Oregon) in KPBS+ for 24 hours in darkness at 4°C. After washing with KPBS, the sections were incubated in 4% paraformaldehyde for 10 minutes at room temperature, subsequently rinsed (2 × 10 minutes) in KPBS, and then incubated in 1 mol/L hydrochloric acid (HCl) for 30 minutes. After rinsing in KPBS (3 × 10 minutes), the sections were then exposed to blocking solution (KPBS+ + 5% normal donkey serum) for 1 hour in darkness at room temperature and then incubated with 1:100 rat anti-BrdU (Oxford Biotechnology, ORF 0030; Kidlington, United Kingdom) and 1:100 rabbit anti-laminin (Sigma-Aldrich, St. Louis, Missouri) in blocking solution for 40 hours in darkness at 4°C. Sections were then rinsed in KPBS+ (2 × 10 minutes) and KPBS+ + 2% NDS (modified blocking solution) (2 × 10 minutes) before being incubated with 1:200 Cy-3 Donkey-anti-Rat (Jackson 712-965-153, Jackson Immuno Research, West Grove, Pennsylvania) and 1:200 Cy-5 Donkey-anti-Rabbit (Jackson 714-175-152, Jackson Immuno Research, West Grove, Pennsylvania) in modified blocking solution for 24 hours in darkness at 4°C. After rinsing in KPBS, the sections were left in 30% sucrose in phosphate-buffered saline (PBS) until they sank. Coronal sections, 60 µm thick, were cut through the mid-dorsal hippocampus (~5–50 mm to ~45.2 mm relative to bregma) (Paxinos and Watson 1986) and stored in antifreeze cryoprotectant solution at −20°C until the immunohistochemical procedure.
sections were mounted on Poly-L-Lysine coated slides, air dried, and coverslipped with glycerol-based mounting medium. The BrdU/Neuron-Specific Nuclear Protein (NeuN) staining was performed as described above with regard to origin of antibodies (except for NeuN below), rinsing, DNA denaturation, and blocking. The sections were exposed to the primary antibodies in blocking solution (1:100 Rat anti-BrdU + 1:100 Mouse anti-neuron-specific nuclear protein (NeuN) [MAB 377, Chemicon, Temecula, California] for 40 hours at 4°C. After washing, the sections were incubated with the secondary antibodies in modified blocking solution (1:200 Cy-3 Donkey-anti-Rat + 1:200 Britn Donkey-anti-Mouse) for 2 hours in darkness, at room temperature. Sections were then rinsed (5 × 10 minutes) in KPBS + before incubation with 1:200 Alexa 488 in KPBS + for 2 hours in darkness, at room temperature. Sections were rinsed and mounted as previously described.

Endothelial Barrier Antigen Immunohistochemistry

Sections were rinsed in KPBS and incubated in blocking solution for 1 hour at room temperature. Sections were subsequently exposed to the primary antibody solution (blocking solution + 1:1000 Mouse anti-endothelial barrier antigen (EBA) [SMI 71, Sternberger Monoclonals, Lutherville, Maryland] overnight at 4°C. After washing with KPBS+, the sections were incubated with the secondary antibody in modified blocking solution (1:200 Britn Donkey-anti-Mouse) for 2 hours at room temperature. Sections were then rinsed (15 × 10 minutes) in KPBS + before incubation with avidin-biotin-peroxidase complex (Vectastain Elite ABC kit, Vector Laboratories Inc., Burlingame, California) in KPBS for 1 hour, at room temperature. After rinsing in KPBS, peroxidase detection was performed for 7 minutes (.5 mg/mL diaminobenzidine [DAB], .5 mg/mL NiCl, 0.01% hydrogen peroxide [H2O2]), followed by three rinses in KPBS, mounting, dehydration, and coverslipping.

Data Quantification and Statistical Analysis

Coronal 40 μm sections through the middorsal hippocampus (~3.30 mm to ~4.52 mm, relative to bregma) (Paxinos and Watson 1986) were analyzed by observers blind to the treatments. Cell proliferation was assessed in the GCL (including the SGZ), hilus, and molecular layer of the dentate gyrus, using an Olympus AX70 fluorescence microscope (Olympus Optical Co., Ltd., Tokyo, Japan) with a 40× objective. Proliferated endothelial cells were counted in the granule cell layer, hilus, and molecular layer. Cells lying within two cell diameters of the granule cell and hilus border were included in the granule cell layer count. Every fourth section throughout the middorsal hippocampus (averaging eight sections from each animal) was counted, and these values were averaged and expressed as means per section.

Endothelial cells in the GCL not associated with clusters were counted in a regular fluorescence microscope as described above; however, for cells in the subgranular zone appearing in tight clusters, no distinction was made between endothelial cells and other cell types, such as neural precursors, while counting in the fluorescence microscope. The percentage of the cluster cells (endothelial plus neural) in the zero and five ECS groups from the dose-response study expressing endothelial cell markers was determined by confocal analysis using a Zeiss confocal microscope (Zeiss, Tokyo, Japan) with a 40× objective and BioRad software (BioRad, Burlington, Massachusetts), in which 20 clusters per animal (four animals from each group) were analyzed for possible BrdU/RECA-1 double-labeling.

Vascular Cells Display an Endothelial Phenotype

Rat endothelial cell antigen (RECA-1) immunoreactivity is expressed on the luminal side of endothelial cells (Dai et al. 1992), while the basement membrane enclosing the central vessel structure expresses lamin (Banerjee et al. 1985). Between these two layers lie endothelial cells and pericytes. The pericytes are completely surrounded by the basement membrane (McCarthy et al. 1993), while the endothelial cells are limited by the basement membrane at the abluminal side and RECA-1 positive structures at the luminal side. Utilizing fluorescence microscopy, cell nuclei were denoted as being of vascular origin by defining them by the following morphologic criteria: flattened and slightly cupped, somewhat elongated, and in immediate contact with the RECA-1 stained capillary luminal surface. Using confocal microscopy and analyzing a subset (n = 100) of vessel-associated BrdU-stained nuclei, we noted that all cells defined as vascular cells, as described above, were enclosed by RECA-1 and lamin positive structures, and we therefore concluded that this cell type is indeed of vascular origin and of an endothelial phenotype (Figure 2).

Results

Endothelial Cell Proliferation

A single electroconvulsive seizure increased the proliferation of endothelial cells in the GCL, hilus, and molecular layer (ML). Proliferation was further enhanced by three and five electroco-
vulsive seizures (Figures 3 and 4). In agreement with an earlier study (Madsen et al 2000), this effect was also noted on clustered cells located in the SGZ (Figure 3 and 4), expressing either the early neuronal marker doublecortin (data not shown) or the endothelial marker RECA-1.

Endothelial and Cluster Cells Proliferate in Concert in Response to ECS

In response to a single electroconvulsive seizure, we detected a profound increase in endothelial cell proliferation in the GCL, hilus, and ML at day 2, with a very marked increase in the number of BrdU-labeled endothelial cells (Figure 5). No significant increases in endothelial cell proliferation relative to control could be detected at any of the other time points studied (Figure 5). In agreement with previously described results by Madsen et al (2000), the proliferation of cluster cells in the SGZ reached a maximum between days 3 and 5 (day 4) (Figure 5). At day 2, the rate of endothelial cell proliferation in all regions except the hilus was approximately 14 times higher than in the control animals, while the rate of proliferation of cluster cells in the SGZ at day 4 was approximately 3 times higher compared with control. We conclude that the nonclustered endothelial cells proliferate at a faster rate in response to a single ECS than the cluster cells located in the SGZ.

Increased Fraction of Endothelial Cluster Cells after ECS

The fraction of cells in the SGZ located in clusters, double-labeled with BrdU and RECA-1, was determined by confocal microscopy analysis. In four animals, each from the zero ECS and five ECS groups in the dose-response study, a total number of 87 \pm 8.8 and 117 \pm 6.2 cells, respectively, were analyzed per animal. The average cluster size in the zero ECS group was significantly smaller than in the five ECS group (4.6 \pm 2 and 5.8 \pm 2 cells per cluster, respectively).

Increased Fraction of Endothelial Cluster Cells after ECS

To determine the fate of the cells proliferating after zero or five ECSs, rats were given BrdU at days 2 through 6 after the first ECSs. Twenty-one days after a series of five ECSs, we detected significantly elevated numbers of BrdU-labeled cells in the GCL and ML of rats receiving five ECS compared to control (Figures 7 and 8). We also note that the number of BrdU/RECA-1-labeled cells in the GCL, hilus, and ML of rats receiving five ECSs are also still elevated compared to control (Figures 7 and 8).

www.elsevier.com/locate/biopsych
No Reduction of EBA-Expression after ECS

We detected no differences in staining intensity of EBA between control and ECS-treated animals in either the time-course study (control and days 0 through 4) (Figure 10) or the dose-response study (zero and five ECSs) (data not shown). As a positive control for the staining, we used brain sections from rats subjected to 2 hours of middle cerebral artery occlusion (MCAO). These animals display extensive and profound loss of EBA expression in regions of the brain ipsilateral to the insult (Figure 10).

Discussion

We show that electroconvulsive seizures, which previously have been shown to induce a marked increase in proliferation of neural precursors residing in the SGZ, also induce a very pronounced increase in proliferation of hippocampal endothelial cells. The seizure-induced proliferation of endothelial cells and neural precursors occurs in concert and the effect is dose-dependent, meaning that the number of proliferating endothelial cells increases with the number of electroconvulsive seizures administered.

Electroconvulsive seizures are associated with an intense activity in hippocampal neural networks. Despite extensive studies, cell death, as regularly seen after prolonged epileptic seizures (i.e., status epilepticus) (Kondratyev et al 2001) has not been observed after ECS. Hallmarks of physiologic hippocampal activation, such as neurotrophin regulation, mossy fiber sprouting, synaptic remodeling, and neurogenesis, have all been described after ECS (Duman and Vaidya 1998; Madsen et al 2000; Stewart and Reid 2000). The magnitude of these molecular, subcellular, and cellular changes is generally greater after ECS than during normal physiologic hippocampal activity.

The causes and consequences of the dramatic endothelial cell proliferation reported in this study are not known, but it is tempting to speculate that increased neural network activity and remodeling, in response to ECS, may lead to a concomitant angiogenic response. Whether the endothelial cell proliferation is followed by an expansion of the vascular tree is yet to be determined. Quantitative stereological analyses to assess possible ECS-induced topological changes in the hippocampal vasculature are currently underway.

It is, however, important to recognize that apart from the obvious role of angiogenesis in meeting an increased metabolic

Figure 5. The proliferation of endothelial and neural cells occurs in concert. The numbers of BrdU-labeled endothelial cells detected in the GCL, hilus, and ML after a single ECS are significantly elevated compared with control at day 2 but at no other time points analyzed following the ECS trial (A). The number of BrdU-labeled proliferating cluster (endothelial plus neural) cells in the SGZ detected after a single ECS are elevated compared to control. (B) Values represent mean ± SEM number of cells detected per coronal section of the dentate gyrus. Data were analyzed with analysis of variance (ANOVA) and Bonferroni/Dunn post hoc test (*p < .05; **p < .01; ***p < .001). Asterisk(s) indicate significant increase from control in the respective region analyzed. BrdU, bromodeoxyuridine; GCL, granule cell layer; ML, molecular layer; ECS, electroconvulsive seizure; SGZ, subgranular zone; ANOVA, analysis of variance.

Figure 6. Confocal image of the relationship between proliferating cells in the subgranular zone and the vasculature. In the left panel, BrdU-labeled cells in a proliferative cluster from a rat having received five electroconvulsive seizures are depicted. In the right panel, an adjacent capillary immuno-reactive for RECA-1 and laminin is also shown. Arrows indicate neural cell nuclei, while arrowheads indicate endothelial cell nuclei. Scale bar, 20 μm. BrdU, bromodeoxyuridine; RECA-1, rat endothelial cell antigen-1.

Figure 7. Distribution of proliferated cells 21 days after ECSs. Overview of the dentate gyrus of rats receiving no (left) and five ECSs (right), with a survival time of 21 days after ECS. Proliferated BrdU-labeled cell nuclei are stained red, and brain vessel endothelium positive for RECA-1 appears green. The BrdU-labeled cells in the granule cell layer have distributed evenly over the extent of the layer, while the BrdU-labeled endothelial cells in the granule cell layer, hilus, and molecular layer are still present. Scale bar, 100 μm. ECS, electroconvulsive seizure; BrdU, bromodeoxyuridine; RECA-1, rat endothelial cell antigen-1.
demand, newly formed endothelial cells may have different properties than their mature counterparts, for example, producing a different set of growth factors or expressing other cell-cell or cell-matrix receptors, thereby contributing to an alteration in hippocampal cell-cell interactions. In line with this hypothesis, a recent investigation (Louissaint et al 2002) describes a close relationship between adult brain neurogenesis and angiogenesis in the higher vocal center (HVC) of female canaries. Testosterone is shown to induce a vascular endothelium growth factor (VEGF)-mediated increase in endothelial cell proliferation. This event is followed by expansion of the vascular tree and a subsequent production of brain-derived neurotrophic factor (BDNF) by the endothelial cells. The authors suggest a causal interaction between angiogenesis and neurogenesis where endothelium-derived BDNF promotes neuronal recruitment into the HVC from the HVC ventricular zone.

Similar interactions between endothelial cells and neurons may also occur in the mammalian brain. It is known that BDNF is secreted by endothelial cells (Leventhal et al 1999) and that it has both mitogenic and antiapoptotic effects on neuronal cells (Linserwoson et al 2000; Pencina et al 2001; Zagera et al 1998). The two angiogenic factors, VEGF and basic fibroblast growth factor (bFGF), can be produced by endothelial cells (Bens et al 1994; Hevra et al 1996; Speranza et al 1999), and both are known to stimulate neurogenesis (Jin et al 2002; Wagner et al 1999). Furthermore, VEGF-stimulates axonal outgrowth in the peripheral nervous system (Randell et al 1999), and bFGF can regulate synaptic function and has been described as a neurotransmitter (for review, see Abe and Saito 2001). Conversely, the neurotrophic nerve growth factor (NGF) has been reported to induce postnatal angiogenesis in rat superior cervical ganglia (Calza et al 2001).

Recently, a close spatial relationship between endothelial cells and neural progenitors has been proposed. Palmer et al (2000) found that at days 2 through 7 after BrdU-labeling, a substantial amount of the proliferating cells in the SGZ express the endothelial cell marker RECA-1. When analyzing clustered, newly proliferated cells within the SGZ, we found that in control animals approximately 9% of these cells are BrdU/RECA-1 positive. This fraction increased to 19% after a series of free electroconvulsive seizures. The vast majority of these BrdU-labeled cluster cells are not positive for RECA-1 but are instead grouped around and in close proximity to capillaries in the SGZ, still allowing for close contact between the vasculature and the neural progenitors (Figure 6). We believe that the increase in the fraction of RECA-1-positive cells per cluster noted after free ECSs is a reflection of the fact that, as compared to neural precursors, endothelial cells proliferate at a higher rate in response to ECS. It is important to emphasize that proliferating endothelial cells are not only seen in the SGZ but along the full extent of capillaries around and in close proximity to capillaries in the SGZ, still allowing for close contact between the vasculature and the neural progenitors (Figure 6). We believe that the increase in the fraction of RECA-1-positive cells per cluster noted after free ECSs is a reflection of the fact that, as compared to neural precursors, endothelial cells proliferate at a higher rate in response to ECS.
detect a fifteenfold to fiftyfold increase in endothelial cell proliferation in the various layers of the dentate gyrus analyzed after a series of five ECSs. As described above, there is a potential role for endothelial cell proliferation in the process of neurogenesis but not less importantly, the increases in endothelial cell proliferation in the nonneurogenic zones could also affect neuronal function in these regions. The ML harbors the afferent synapses of the dentate gyrus and the dendrites of the granule cells, while the hilus contains axons from the granule cells (mossy fibers) connecting to pyramidal neurons in the CA region. The increase in endothelial cell proliferation in the ML and hilus could thus possibly affect synaptogenesis, as well as dendritic and axonal outgrowth in the respective region.

Brain endothelium and neighboring cells, i.e., astrocytes, have been shown to be able to interact and are believed to thus affect both blood brain barrier permeability and neuronal energy supply (for review, see Abbott 2002). In this article, the authors argue that while situations where the blood brain barrier is compromised are generally expected to be deleterious, transient and reversible barrier opening could also be beneficial by, for example, supplying blood-borne factors that could stimulate neuronal growth and sprouting. Proliferation of vascular cells has in ischemic models been associated with severe blood brain barrier breakdown (Katayose et al 2003) however, when studying for endothelial barrier alterations, which is expressed on endothelial cells with uncompromised barrier function (Dimension et al 1992), we detect no differences between control and ECS-treated animals either at day 0, day 2, or day 4 in the time-course study (Figure 10) or after five ECSs in the dose-response study (data not shown). This implies that any such blood brain barrier breakdown, if present, is transient and reversible or maybe not severe enough to affect the expression of EBA.

Remodeling and growth are in various organs commonly accompanied by increased vasculatization to meet the raised metabolic demands, and conversely, a reduced blood supply is followed by atrophy. Major depression has been associated with hippocampal volume reductions, as assessed in clinical materials with magnetic resonance imaging volumetry (Sheline et al 1999). Although conflicting results exist, studies using single photon emission computed tomography point to decreased blood flow in limbic and subcortical brain regions in patients with major depression (Bonne and Krausz 1997; Bonne et al 1996; Bonne and Krausz 1997). Interestingly, an increase in regional cerebral blood flow has been observed in the temporal lobe at approximately 1 week after clinically successful electroconvulsive treatment (Davidsen et al 2004; Yang et al 2003). Whether this increase is caused by an increased vasculatization or a change in the regulation of the regional blood flow is, at present, not known. The findings reported here represent the first evidence that electroconvulsive seizures, commonly used to treat severe depression, induce proliferation of brain endothelial cells. It is tempting to speculate that the very profound increase in endothe- lial cell proliferation detected as an response to ECSs leads to changes in the hippocampal cell-cell interactions and possibly to an expansion of the vascular tree, alterations that could oppose negative effects on hippocampal structure and function associated with major depression.

This work was supported by grants from 1) the Saenat Lundbeck Foundation, 2) the Spohrer Foundation, 3) the Gade- borg Foundation, and 4) the Swedish Research Council. We thank Professor Olle Lundback for insightful comments on the manuscript.
Stewart CA, Reid I (2000): Repeat ECT and fluoxetine administration have equivalent effects on hippocampal synaptic plasticity. Psychopharmacology (Berl) 148:217–223.