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APPLICATION OF FRACTURE MECHANICS TO CONCRETE 

with emphasis on the work performed at Lund Inst. of Tech. 

Arne Hillerborg, Div. of Building Materials, Lund Inst. of Tech., 

Lund, Sweden. 

Abstract 

Different approaches to the application of fracture mechanics to 

concrete are discussed, with an emphasis on the models based on 

strain softening and strain localization, particularly the ficti

tious crack model. Examples of results of the theoretical analyses 

are demonstrated, and some practical conclusions are drawn. Future 

research is also commented. 

Introduction 

Conventional fracture mechanics is mainly based on the theory of 

elasticity and it is used for studying the stability and propagation 

of existing cracks. The modern form of application of fracture 

mechanics to concrete, which was first developed in Lund, differs 

from the conventional fracture mechanics in both these respects. 

In the basic form of conventional fracture mechanics it is assumed 

that the stresses and strains tend towards infinit y at a crack tip, 

Fig. 1. This is of cours e not realistic. In spite of this the 

theoretical results based on this assumption in many cases lead to 

realistic conclusions. In other cases this is not the case. This has 

since long b~en recognized, and in conventional fracture mechanics 

many methods have been advised to overcome this problem. Some of 

these methods are similar to the methods now applied to concrete, 

even though the re are fundamental differences. 

The most important practical difference between conventional 

fracture mechanics and the modern application to concrete is that 

conventional fracture mechanics has never been applied to structures 
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without any initial crack, whereas the modern mode l can also be 

applied to this case. It is now possible not only to study the 

stability and propagation of a crack, but also its formation. Thus 

the complete development of fracture can be analysed by means of one 

model as a continuous process. This is an expansion of fracture 

mechanics, which opens quite new possibilities to analyse fracture 

of real structures, as will be demonstrated by means of examples. 

This circumstance has been emphasized here, because it has not 

always been fully appreciated. Thus for example the new approach is 

sometimes described as a variant of the so called Dugdale-Barenblatt 

model. Dugdale and Barenblatt never realised the possibility to use 

this type of model for the analyses of uncracked structures. They 

only intended their models as explanations of the stress situation 

in the vicinity of the tip of an existing crack. 

Conventional fracture mechanics 

As a background for the understanding of the new model a short 

description will be given of conventional fracture mechanics, parti

cularly linear elatic fracture mechanics, of ten written LEFM for 

short. 

If a stress is applied perpendicular to a crack with a sharp tip, 

the linear elastic solution shows that a stress concentration will 

appear at the tip, such that the stress approaches infinit y, Fig. 1. 

Close to the crack tip the stress distribution is approximately 

described by the equation 

K 
a = 

y /27rx 

In this equation x is the distance from the crack tip and K is cal

led the stress intensity factor. This factor can be calculated from 

the equation 

K = Ya/a 
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Fig. 1 stress distribution according to the theory of elasticity. 

where a is the crack length (for a crack at an edge, or half the 

crack length for an interior crack), G is the stress which would 

have acted if there had been no crack, and Y is a dimensionless fac

tor, which depends on the type of structure, the loading conditions, 

and to some extent to the crack length. The value of Y is of ten 

approximately 2. 

According to this formal stress distribution the stress within a 

distance Xl exceeds the tensile strength f t . The stress distribution 

cannot be valid within this part. The larger the value is of Xl' 

the less accurate are the conclusions drawn by means of LEFM. 

As the stress approaches infinit y, the analys is of crack stability 

and crack propagation cannot be based on a comparison with the 

strength of the material. Instead it is necessary to introduce a new 

criterion, which says that the crack will start propagating when the 

stress intensity factor K reaches a critical value, the critical 

stress intensity Kc ' which is assumed to be a material property. 

It can be noticed that conventional fracture mechanics can only 

treat problems concerned with an existing crack, as Kbecomes zero 

when the crack length a is zero. For uncracked material the ordinary 

theory of strength of materials has to be used, with a comparison 
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between a stress and a strength as fracture criterion. This means 

that different models have to be used for cracked and uncracked 

material, with different fracture criteria and two different 

material properties, Kc and strength. This lack of continuity is a 

drawback, at least for materials like concrete. 

An alternative treatment according to LEFM is based on the stress 

release rate when a crack propagates, i e the amount of energy which 

is released in the structure per unit crack area when the crack pro

pagates. An energy release rate G is theoretically calculated. The 

crack i assumed to propagate if G reaches a critical value, the cri

tical energy release rate Gc ' which is equal to the amount of energy 

that is absorbed in the fracture zone per unit area when the crack 

grows. It can be demonstrated that the approaches by means of stress 

intensity factors and energy release rates are equivalent, and that 

they are coupled by means of the following relation for the case of 

plane stress conditions. 

It has long been recognised that the unrealistic assumption that the 

stress and strain approaches infinit y can lead to erroneous results. 

Many methods are used to make corrections in order to take into ac

count the limited strength of the material. These methods will not 

be discussed here, as theyas a rule give results, which are not ac

curate enough for concrete structures of normal sizes. 

The basis of the new approach. 

The basic idea of the new approach is best demonstrated by means of 

a discussion of the stress-deformation behaviour of a specimen in a 

tension test, Fig. 2. It is assumed that complete stress-deformation 

curves are recorded simultaneously by means of four gauges. Gauges 

B, C, and D are of the same length and situated immediately af ter 

each other, whereas gauge A has a length which is equal to the sum 

of gauges B, C, and D. 
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Fig. 2. Deformations along diffe

rent gauge lengths in atensile 

test. 

w 

Fig. 3. General deformation 

properties. 

The test is assumed to be performed in deformation control, which 

means that the deformation is slowly increased. During the first 

phase of the test, the stress increases as the deformation increa

ses. This is said to be the ascending branch in the stress-deforma

tion diagram. If the specimen is assumed to be homogenuous, the 

relative elongation during this phase is the same along the whole 

specimen. This means that the deformation can be described by means 

of a strain E, defined as the deformation divided by the gauge 

length. The same stress-strain diagram is valid for the whole speci

men at this stage. 

Af ter the peak stress has been reached, the post-peak stage, a fur

ther increase in deformation means that the stress decreases. We are 

now on the descending branch in the diagram. The cause for the de

creasing stress is that the damage (microcracks) somewhere along the 

bar has become so high, that any increase in deformation leadsto a 

decreasing ability to transfer stresses. Within this damage zone or 

fracture zone an increase in deformation takes place, at the same 

time as the damage increases and the transferred stress decreases. 

As the stress decreases due to the increasing damage within the 

fracture zone, the parts outside this zone are unIoaded, and they 
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thus contract. At the post-peak stage an increase in the total 

deformation corresponds to a decrease in deformation for most parts 

of the specimen, but an increase in the deformation within the frac

ture zone. The term strain localization is of ten used to characteri

ze this behaviour. The increase in deformation is localized to the 

fracture zone, whereas no further increase in strain takes part out

side this zone. 

Another term, which is of ten used to describe the stress-deformation 

at the post-peak stage is strain sOftening, which means that the 

stress decreases as the average strain (or rather the deformation) 

increases. 

In Fig. 2 the stress-deformation curves from the fou~ gauges are 

shown on the assumption that the fracture zone is situated within 

gauge-length C. The sum of the deformations in gauges B, C and D is 

equal to the deformation in gauge A. 

From the figure it is evident that the curves from the different 

gauges are different, with the exception of gauges B" and D, which 

are equal. Thus the stress-deformation relation cannot be expressed 

by a single curve, as this relation depends on the gauge-length and 

on the position of the gauge with respect to the fracture zone. It 

isthus not possible to find a general stress-strain curve for a 

material, including the descending branch. This fact is of ten ne

glected. Many examples can be found in the litterature, where equa

tions for such stress-strain curves for concrete have been proposed. 

A general description of the stress-deformation properties can be 

given by means of two curves according to Fig. 3, one stress-strain 

(G-E) curve for strains smaller than the stress at the peak point, 

and one stress-deformation (G-w) curve for the additional deforma

tion w within the fracture zone, caused by the damage within this 

zone. The general equation for the deformation 81 on a gauge length 

l is then given by 

~l = El + w 
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where E is taken from the ~-E-curve and w from the rr-w-curve. The 

latter value is on ly used where there is a fracture zone within the 

gauge length in question. In other cases it equals zero. In the 

post-peak region the value of E is taken from the unIoading branch. 

One essentiaI propert y of the ~-w-curve is the area below the curve, 

as this area is a measure of the energy which is absorbed per unit 

area of the fracture zone during a test to failure. This value is 

usually called the fracture energy (more correct fracture energy per 

unit area), and is denoted by GF . 

For the behaviour of a specimen it is of importance how much of the 

deformation that is due to the rr-E-curve, and how much that is due 

to the G-w-curve. In other words it is important how these curves 

are related to each other. One way of defining this relation is by 

taking the ratio between a deformation equal to GF/ft from the G-w

curve and a .deformatio~ f t/E from the rr-E-curve. This yields a value 

which is called the characteristic length Ich of the material 

GF/ft corresponds to the maximum deformation w if the shape of the 

curve had been a rectangle, whereas f t/E is the maximum strain if 

the rr-E-curve were a straight line, see Fig. 4. The characteristic 

length Ich is a material property,which cannot be directly measu

red, but which is calculated from the measured values of E, GF and 

f t . 

rr 

Fig. 4. 
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The fracture zone. 

The development of the fracture zone starts by the formation of 

microcracks, which make this zone weaker. At this first stage the 

zone may comprise a certain length in the stress direction, and the 

additional deformation corresponds to the the sum of the additional 

deformations within these microcracks. 

As the deformation increases, it gets more and more localized, and 

in reality practicallyall the additional deformation happens within 

a narrow zone, which may best be described as an irregular crack, 

which changes direction, bifurcates etc, depending on the inhomoge

nities of the material. Thus the width of the fracture zone (the 

size in the stress direction) can be assumed to be practically zero. 

One way of expressing this is simply to assume as a formal model 

that the fracture zone is a crack with the width w and with the abi

lit Y to transfer stresses according to the IT-w-curve. A crack with 

the ability to transfer stresses is of course no real crack, but 

just a hypothetical model. It can therefore be said that the crack 

is "fictitious". This model has been called the "fictitious crack 

model". The model was first published by Hillerborg et al (1976), 

and it has later been further developed and applied in many pUblica

tions, e g by Petersson (1981) and Gustafsson (1985). 

However from the point of view of practical application it does not 

matter whether the additional deformation in the fracture zone is 

assumed to take part in a "fictitious crack" or if it is assumed to 

be distributed on a certain length, as long as this length is small 

in comparison with other dimensions of the structure. Thus there is 

hardly any practical difference between the "fictitious crack 

model", and the "crack band model" proposed by Bazant and Oh (1983), 

where they assume a distribution on a length equal to 3 times the 

maximum aggregat e size. These models are of ten implemented into a 

finite element scheme in different ways, but this is another ques

tion, which will be commented upon later. 
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The concentration of the fracture zone to a thin band or a single 

crack is typical for tensile fracture of concrete. It is not accom

panied by any significant lateral deformations or stresses, and thus 

it corresponds to a very simple one-dimensional stress and deforma

tion state. Therefore the a-w-curve can be assumed to be a material 

propert y, which is rather insensitive to the shape of the structure 

and the general stress state, as long as all other stresses (e g a 

possible perpendicular compressive stress) are low compared to the 

strength. 

For metals the stress state is much more complicated, as the yiel

ding of metals gives rise to a complicated three-dimensional stress 

state and lateral deformations. Fracture mechanics of metals cannot 

be treated with the same mode l that is used for concrete. 

For concrete in compression the fracture zone also develops in 

another way than in tension, as crushing is accompanied by lateral 

deformations. The compression fracture is much more complicated than 

tensile fracture. Some kind of descending rr-w-curve exists, but 

probably it cannot be regarded to be a weIl defined material pro

perty. The maximum stress as weIl as the shape of the curve can be 

expected to depend on e g confinement through stirrups or strain 

gradients. The application of the fracture mechanics ideas to com

pressive fracture is still an unexplored but interesting domain. It 

will only be very shortly commented upon at the end of this paper. 

Material properties. 

The stress-strain curve in tension for ordinary concrete deviates 

rather little from a straight line. Thus for most practical applica

tions this relation can be assumed to be a straight line. All appli

cations so far seem to have been based on this assumption. 

The stress-deformation curve corresponding to the descending branch 

can be measured by means of modern test equipment. The shape of this 

curve is now relatively weIl known. It has the general shape shown 

in Fig. 5. One important parameter of the curve is the enclosed 



Fig. 5. Ordinary shape 

of the ~-w-curve for 

concrete. 
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area, which equals the fracture energy GF • Another important proper

ty may be the initial slope of the curve. This propert y and its 

practical significance has not hitherto been studied in detail. 

The fracture energy GF can suitably be determined by me ans of a 

simple bending test on a notched beam according to a RILEM recommen

dation, Fig. 6. The load-deformation curve is recorded in the test. 

The total energy, that is absorbed during the test, is equal to the 

sum of the areas Al' A2 and A3 . Al is measured in the diagram, A2 is 

calculated as F1·S0 , where Fl is a central force giving the same 

bending moment as the weight of the beam and the loading equipment. 

A3 is assumed to be equal to A2 . This total energy is divided by the 

area b(h-a), that has been fractured, in order to get the value of 

GF · 

Fig. 6. Test for the 

determination of the 

fracture energy GF 
according to RILEM 

Recommendation (1985). 

F 
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For normal concrete qualities the material parameters are within the 

following ranges: 

E = 20 - 40 GPa 

GF = 65 -200 N/m 

f t = 2 - 4 MPa 

Ich = 0.1 - 1 m 

The value of Ich can be expected to be lower for high strength conc

rete and for light weight concrete than for ordinary concrete, which 

means that these materials are more brittle. 

For fibre reinforced concrete the shapes of the IT-E- and IT-w-curves 

may differ much from those for plain concrete. These curves then 

have to be determined and introduced into the analyses for the 

particular materials in question. 

Application, principles. 

Wherever tensile strains appear, which tend to pass the strain 

corresponding to the peak point in the tensile stress-deformation 

curve, a fracture zone starts to develop. Then the model outlined 

above can be applied, which means that the IT-w-curve is applied to 

the additional deformation in the fracture zone. 

Let us as an example look at the bent beam in Fig. 7. At low loads 

the simple beam theory can be used, which me ans that the strains and 

stresses vary linearlyacross the section, with a 'maximum stress 

equal to 

where M is the acting moment, b the width and d the depth of the 

beame When the maximum stress reaches the tensile strength f t a 

fracture zone starts developing if the deflection of the beam is 

increased. As the deflection increases, the fracture zone grows into 
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Fracture zone depth. af 

Fig. 7. stress development in an unnotched beame 

the beame At the same time the stress across this zone decreases, as 

the additional deformation increases. At the upper end of the frac

ture zone the stress is equal to f t • 

By means of a suitable numerical analysis the development of the 

stress distribution in the beam can be followed as the fracture zone 

grows. The corresponding development of the bending moment can be 

calculated, as it is shown in Fig. 7, as weIl as the deflection. 

Exactly the same procedure can be followed also if the beam contains 

a crack from the beginning, Fig. 8, which is the case treated by 

conventionaI fracture mechanics. In that case the fracture zone 

start to grow already as soon as a load is applied, due to the 

stress concentration at the crack tip. The growth is however slow in 

the beginning. It can be shown that the depth of the fracture zone 

at low loads in this case is approximately proportional to the 

square of the moment. 
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Fig. 8. stress development in a notched beame 

In more complicated cases it is possible that the fracture zone 

starts inside a structure and grows in two directions. This may for 

instance happen with some she ar cracks in reinforced beams or with 

splitting cracks under concentrated forces, like end anchors for 

prestressing tendons. 

size parameters. Brittleness number. 

The characteristic length lch is a material property. If a characte

ristic size of a structure is divided by lch' this gives a dimen
sionless ratio, which relates a propert y of the structure to a pro

perty of the material. Fora beam the depth d is of ten chosen as the 

characteristic size, and the ratio then is d/lch . This ratio is 

sometimes called brittleness number, as it gives an indication of 

the brittleness of the structure. The higher the brittleness number, 

the more brittle the structure. 

As will be demonstrated later, the relative strength of a structure, 

expressed as aratio between a formal stress at maximum load and f t, 

is a function of d/lch . In this way many results of the theoretical 

analyses can be given in dimensionless general diagrams. 
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Application by means of finite element analysis. 

The application by means of the finite element method (FEM) is rat

her straightforward if the fracture zone follows the direc.tion of 

the element boundaries. The fracture zone then can be modelled eit

her as a separation between elements (the fictitious crack model) or 

as a change in stress-strain properties of a row of elements (the 

crack band model). 

In the fictitious crack model it may for instance be suitable to 

calculate the forces in the node points between the elements. When 

such a force reaches a value corresponding to the tensile strength, 

a separation between the elements is assumed, Fig. 9. Forces are 

introduced between the separated node points. The values of these 

forces depend on the separation distances w according to the 

a-w-curve for the material, see Fig. 3. In this way the development 

of the fracture zone and the corresponding force s and deformations 

can be followed. 

In the crack band model the formal stress-strain-curve for an ele

ment, where the fracture zone passes, is simply determined according 

to the general formula 

Fig. 9. The formation 

and growth of a 

fracture zone, modelIed 

by means of a successive 

separation of node points. 
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where El is the formal average strain in the element, E and w are in 

accordance with the properties of the material, and l is the size of 

the element in the direction of the tensile stress. 

In the types of analyses described above, the fracture zones and the 

cracks propagate along discrete cracks or bands. Therefore this type 

of approach is called the discrete crack approach. This approach is 

more difficult to apply when the fracture zone does not follow along 

the direction of the element boundaries, but crosses the elements at 

skew angles. certain possibilities exist for the application of the 

discrete crack approach to such cases, but these are complicated, 

and will not be discussed here. 

When the direction of the fracture zone does not follow along the 

element boundaries it is easier to apply the smeared crack approach. 

In this approach a formal stress-strain relation is assumed for the 

material, just like in the crack band model described above. Even 

though this approach may be formally easier to apply, it involves 

some problems and risks of misinterpretations. 

When the formal stress-strain relation shall be calculated the value 

of the length l is not weIl defined when the direction of the tensi

le stress forms a skew angle with the element directions. This leads 

to an uncertainty in the determination of this relation, which gives 

rise to an uncertainty in the results. 

still worse, however, is that the properties of many types of finite 

elements are not suitable for describing the growth of a fracture 

zone in arealistic way. When the strain in an element reaches the 

descending branch in the stress-strain curve, this corresponds to a 

negative modulus of elasticity for further deformations. Such an 

element may then be coupled more or less in parallell with an adjoi

ning element with a positive modulus of elasticity. The result may 

be very discontinuous stress and strain distributions, which are un

realistic. In order to avoid large mi stakes it is necessary to be 

very careful when the smeared crack approach is used. An uncritical 

application may lead to quite unreliable results. Af ter this warning 
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has been given, the smeared approach will not be discussed any fur

ther in this paper. 

Application to the bending of beams. 

All the results which will be shown beolw are based on the applica

tion of the fictitious crack model. The assumed rr-E-relation is al

ways a straight line, whereas two different relations have been used 

for the G-w-relation according to Fig. 10. The single straight line, 

denoted "SL", is the simplest possible assumption for the numerical 

analyses, whereas the bilinear relation is meant to be a good app

roximation for the real shape. It is denoted "C" for concrete. 

E w w 

Fig. 10. Simplified assumptions regarding material properties. 

A simple example is the bent unreinforced beam, without or with a 

notch (crack) on the tensile side. Figs. 11-14 show results of such 

analyses. The strength of the beam is expressed as a formal bending 

stress at failure, for the unnotched beam 

and for the notched beam 

f net = 6Mjb(d-a)2 

where M is the maximum moment and a is the notch depth. 
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The value of the ratio ff/ft can be taken from diagrams of the type 

shown in Fig. 7, and the ratio fnet/ft from Fig. 8. 

Fig. 11 shows the variation of the flexural strength (modulus of 

rupture, MOR) with d/Ich' From this diagram it can e g be seen that 

the ratio between flexural strength and tensile strength for a 100 

mm deep beam with Ich = 400 mm can be expected to be about 1.6, 

which is in a reasonable agreement with experience. 

with the model it is also possible to study the influence of shrin

kage stresses. Fig. 12 shows an example of this, where the shrinkage 

strains have been assumed to have values of an order which can be 

expected in a normal interior structure. 

Fig. 11. Ratio between 

flexural strength and 

tensile strength. 

Fig. 12. Influence of 

shrinkage stresses on 

the ratio between 

flexural strength and 

tensile strength. 
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Fig. 14. InfIuence of the 

notch depth on the net 

bending strength. 

Fig. 13 shows the variation of the strength of a notched beam with 

d/Ich. In this case the strength is very sensitive to the depth for 

deep beams. As a matter of fact the strength for deep beams approa

ches values which are predicted by linear elastic fracture mecha

nies, which means that they are inversely proportional to the square 

root of the beam depth. 

Fig. 14 shows how the depth of the notch influences the net bending 

strength of a notched beame For a low value of d/Ich the notch has 

practically no influence on the net bending strength f net , which is 

nearly the same as the bending strength ff of an unnotched beame 

These beams are said to be notch insensitive. For high values of 

d/Ich the value of f net decreases as soon as there is a notch, which 

means that these beams are notch sensitive. It can be not ed that the 

notch sensitivity is not a material propert y , but a propert y that 

depends on the beam depth d as weIl as on the material propert y Ich. 
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In all the figures it can be seen that the strength depends on the 

size d of the beame Thus there is a size effect, which is explained 

by means of the fracture mechanics approach. The size effect is 

greater for notched beams than for unnotched, particularly for deep 

notched beams. For unnotched beams this size effect increases when 

shrinkage or temperature stresses are acting. 

In Figs. 11 and 13 it can be seen that the strength approaches the 

value predicted by the theory of plasticity for small beams, and 

that it approaches the value predicted by the theory of elasticity 

for large beams. The analysis covers all cases between these 

extremes for unnotched as weIl as notched beams. It thus has a 

general applicability. A small value of the "brittleness number" 

d/Ich gives a more plastic-tough behaviour, whereas a high value 

gives a more elastic-brittle behaviour. 

Sensitivity analysis. 

The formal strength according to the above results depends on the 

value of d/Ich' where Ich in its turn depends on E, GF snd f t accor

ding to the relation Ich = EGF/ft 2 • The diagrams are given in loga

ritmic scales (except Fig. 12). For a small change in d/Ich the 

relation can approximately be written 

lnff = A + (1-2B)lnft - BInd + BlnE + BlnGF 

where A and B are constants, with B showing the negative slope in 

the diagram at the studied part of the curve. 

A differentiation gives 

df f dft dd dE dGF 
~ = (1-2B) f t - Ber + BIf + B GF 
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This expression shows the relative change in the formal strength ff 

for a small relative ch ange in one of the parameters. This can be 

called the sensitivity, and it is determinded from the slope -B in 

the diagrams. It must be not ed that the diagrams are given with the 

scale on the vertical axes 4 times as large as the scale on the 

horizontal axis. Therefore the slopes, which are measured in the 

figures, must be divided by 4. If for example the measured slope is 

-0.6, the value of B is 0.15, which means that the sensitivity with 

regard to Gp is 0.15 and with regard to f t 0.7. In this case an 

increase in f t with 10 percent increases ff with 7 percent, whereas 

an increase in Gp with 10 percent increases ff with 1.5 percent. In 

the same case an increase in the beam depth d with 10 percent 

decreases ff with 1.5 percent. 

Application to unreinforced concrete pipes. 

An interesting practical application has been made to the strength 

of unreinforced concrete pipes. Por these there are essentially two 

different types of failure, that are of interest, see Pig. 15. One 

is the bending failure (or beam failure), where the pipe is suppor

ted and loaded like a beame The other is the crushing failure (or 

ring failure), where the pipe is loaded and supported along its 

length. This type of load results in bending failures in sections 

along the pipe, at the top and the bottom, and at the two sides. The 

structure is under these conditions statically indeterminate, which 

means that a moment redistribution can take place before the maximum 

load is reached. The amount of this moment redistribution depends on 

the toughness of the structure, and therefore increases with a 

decrease in size. 

-------~-------- ~cr 
l' ~) 

----~----

Pig. 15. Bending failure and crushing failure of a pipe. 
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In Fig. 16 the variation in the formal bending strength with the 

size of the pipe is shownfor these two loading situations. The for

mal strength ff is the maximum stress at maximum load, calculated 

according to the theory of elasticity. 

From the figure it is evident that the formal strength is much 

higher for the crushing failure than for the beam failure. The size 

dependence is also much higher for the crushing failure. The reason 

for the difference in strength is that the section depth for the 

acting moment is much lower for the crushing failure (the wall 

thickness) than for the beam failure (the diameter of the pipe). The 

reason for the higher size dependence for the crushing failure is 

that this structure is statically indeterminate. 

The values according to Fig. 16 are in a good agreement with test 

results. They have found a practical application for redesign of 

certain pipes. 
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Application to shear failure of beams. 

The shear strength of reinforced beams without shear reinforcement 

has also been analysed by means of the fictitious crack model. This 

is a very complicated case, as it depends not only on the concrete 

properties in tension, but also on concrete properties in compres

sion and shear, on the steel properties, on the bond behaviour bet

ween concrete and steel, and on many other factors. The fracture 

zone and the resulting cracks are curved, and they can appear in 

many different positions. 

Due to the complexity of the she ar fracture the analysis which has 

been performed so far has had to be performed on the basis of many 

approximations and simplifications. Thus only one crack at a time 

has been studied, but this crack has been varied in order to find 

the most dangerous situation. The shape and position of the crack 

has been assumed in advance for each calculation, but afterwards it 

has been checked that the crack is nearly perpendicular to the prin

cipal tensile stress. Dowel action has not been taken into account, 

nor aggregat e interlock. The properties of the reinforcement, bond 

properties, and failure in the concrete compression zone have been 

taken into account. 

Fig. 17. Theoretical ratio 

between formal shear strength 

and tensile strength for 

a beam with longitudinal 

reinforcement. 
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The results of the analyses are shown in Fig. 17. The variables have 

been the depth (expressed as d/Ich)' the span to depth ratio, and 

the reinforcement ratio 9. Of a special interest is the influence of 

the beam depth, which is wellknown from tests, but which has not 

earlier had any rationaI explanation. 

A very large number of tests have been performed regarding the shear 

strength of beams, and as a matter of fact all our knowledge, as ex

pressed in building codes and text books, is based on these tests. 

As we now for the first time have a pure theoretical analysis of the 

shear failure, it is interesting to compare this with test results 

and with the code formulas. Such comparisons are shown in Figs. 18 

20. As all the material parameters in the tests are not known, par

ticularly not the fracture enegy GF , it has on ly been possible to 

make relative comparisons, which means that all curves in a diagram 

have been drawn through one common point. 

From all the figures it is evident that the theoretical results are 

in a good agreement with the test results. Regarding the influence 

of beam depth and reinforcement ratio they are also in a good agree

ment with the CEB Model Code, which is mainly based on the same test 

results. The ACI code does not show any good agreement with the 

theoretical results or the test results. 

In Japan (Iguro et al, 1984) a test series has been performed, where 

the beam depth has been varied between 0.1 m and 3 m, i e by a 

factor of 30. From these tests it was concluded that the shear 

strength is inversely proportional to the fourth root of the depth. 

This corresponds to a 450 slope in Fig. 17, and it is thus in a good 

agreement with the theoretical results. 

Based on the theoretical analysis and the test results it can app

roximately be assumed that the following equation is valid for a 

beam with a constant span to depth ratio and a constant re in force

ment ratio: 
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where Vu is the formal shear strength (shear force divided by the 

cross section area) and k a constant. This expression can be rear

rang ed by inserting the definition Ich = EGF/ft 2 : 

From this expression it can be seen that the shear strength depends 

as much on GF as on'ft 2 • It is generally accepted that the tensile 

strength f t is approximately proportional to the square root of the 

compressive strength. Thus f t 2 can be assumed to be proportional to 

the compressive strength. The conclusion from this is that the shear 

strength of a beam depends as much on the fracture energy of the 

concrete in the beam as on its compressive strength. 

When a laboratory test is performed on a concrete structure, the 

compressive strength is traditionally always measured and reported. 

From the above it follows that the fracture energy should also be 

measured and reported where shear tests are performed, as this pro

perty is as important as the compressive strength. The same may hold 

also for many other types of structural tests. 

AIso in code formulas for shear strength the fracture energy ought 

to be taken into account in some way or other. How this should be 

done is too earl y to specify, but one possibility could be to give 

some type of correction factor, depending on the type of concrete, 

for example reduction factors for light weight concrete and for high 

strength concrete. 

Direction of future research. 

It has been demonstrated above that the application of fracture me

chanics to concrete structures can give important contributions to 

the understanding of the behaviour of structures in cases where our 

knowledge earlier has been mainly based on empirical studies, like 

the ratio between flexural and tensile strength, the influence of 

shrinkage on the flexural strength and the shear strength of beams. 
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still we are however only in the beginning of a development. If we 

for example look on the application to shear fracture, the results 

which were demonstrated are based on analyses where many rather 

rough approximations have been made. These were partly due to a lack 

of knowledge, e g regarding the aggregat e interlock and the dowel 

action, and part ly on the complexity of the problem, which made it 

too difficult to take all factor into account with the existing 

finite element program. 

Thus one important type of research is to find more adequate materi

al properties to be inserted into the finite element analyses. One 

example of such a research work is mentioned below. 

An other important type of research is to develop finite element 

programs, which are better adopted to handle this type of fracture 

mechanics, with localization of fracture zones and strain softening. 

It is also important to apply the mode l in a systematic way to real 

structures in order to achieve a better understanding of different 

types of behaviour, e g as a background for better design rules and 

codes. The results of such systematic analyses can preferrably be 

given in dimensionless general diagrams of the types shown above. 

Present research in Lund (spring 1988). 

A large test program is going on regarding the behaviour of a frac

ture zone in mixed mode, i e with shear deformations and stresses in 

a fracture zone af ter it has started in tension. Some results were 

presented in 1987. More systematic results will be presented at a 

conference in vienna in July 1988, and the final complete report is 

expected to appear in 1989. One example of a test result is presen

ted in Fig. 21. 

A first attempt has also been made to apply the model with localiza

tion and strain hardening to the fracture in the compression zone of 
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a reinforced beame These first results indicate that the stress

strain relation to be used for the practical design should prefer

rably have an ultimate strain equal to kl/x, instead of the normally 

assumed 3.5 permille, where kl is a material propert y and x is the 

depth of the compression zone. If this conclusion is correct, it 

will have a significant influence in many practical situations. 

Further research is needed before the result is sufficiently confir

med. 

In a third project a number of tests are being performed on some 

simple unreinforced structures in order to check the general appli

cability of the fracture mechanics aproach. A wide range of diffe

rent materials are tested, particularly with respect to different 

toughness. Very brittle materials are tested, like pure cement pas

te, as weIl as wery tough materials, like fibre reinforced concrete, 

and some materials in the intermediate range. 
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