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Chapter 8

STEADY-STATE HEAT LOSS

The steady-state heat loss component for a slab on the ground is treated in this chapter. The
thermal insulation thickness d; is constant over the slab.

Figure 8.1: Steady-state temperature process for a rectangular slab on the ground.

The thermal problem for the rectangular slab is shown in Figure 8.1 The temperature
in the house above the thermal insulation is T;. The thermal insulation is given by the
equivalent insulation thickness d according to Formula 3.16:

_Ad;
=%
The thermal conductivity of the ground is A {(W/mK). It is not necessary to know the thermal
diffusivity for the steady-state case. The annual average outdoor temperature is Ty. The
thermal resistance at the ground surface is given by dj, (3.19). This thermal resistance is

usually neglected, i.e. d;=0.
The steady-state heat loss is denoted Q, (W). For two-dimensional cases it is denoted by

¢s (W/m).

d (8.1)

8.1 HEAT LOSS FACTOR FOR A RECTANGULAR SLAB

Figure 8.1 illustrates the case with a rectangular slab on the ground. The length of the slab
is I, and the width is B. The steady-state temperature problem contains four lengths L, B, d
and dy. The heat loss factor h, then contains three non-dimensional parameters. For the
special case dy=0, the heat loss factor depends only on two parameters. We have:

Qs = XNT; - To)L - hs(L/B,d/B,d;/d} dy #0
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Qs = AT: — To)L - hs(L/B,d/B) di=20 (8.2)

Here we have used the length L of the slab as the multiplicative length factor. Thus Q,/L
will give the heat loss per unit length of the slab. The heat loss factor for a rectangular slab
can then be compared with the two-dimensional heat loss factor which also gives the heat
loss per unit length.

The heat loss factor h, has been calculated numerically for a number of parameter values.
Figure 8.2 and Table 8.1 gives the result for the case d; = 0.
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Figure 8.2: Heat loss factor h,{(L/B,d/B), dy = 0.

The error in the calculated heat loss factors is estimated to about 5% or less for the cases

d/B > 0.15. For 0.05 < d/B < 0.15 the estimated error lies in the range 5-10%. Around 13
000 grid points have been used in the calculations.
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L/B=1]15]20] 3 | 5 | o

d/B =0.05 3.98 | 3.53 | 3.30 | 3.05 | 2.85 | 2.71
0.10 3.21 | 2.89 | 2.72 | 2.53 | 2.40 | 2.28
0.20 2.37 | 218 | 2.08 | 1.97 | 1.87 | 1.79
0.50 1.37 | 1.30 | 1.26 | 1.21 | 1.18 | 1.16
1.00 0.81 | 0.78 | 0.77 | 0.75 | 0.73 | 0.72

Table 8.1: Heat loss factor h,(L/B,d/B), d1 = 0.

Example 8.1:

Consider reference case A presented in Section 1.7. We have the following
data:

T; =20°C To=5°C

L=12m B=8m
= 1.5 W/mK di=0

Ai = 0.04 W/mK  d;=0.08 m

These data give:

MT; - To))L=15-(20—5)-12 =270 W
d=0.081.5/004=3m

L/B=15 d/B =0.375

Figure 8.2 gives the heat loss factor:
hs(1.5,0.375) ~ 1.58

The steady-state heat loss becomes:

Q,=270-1.58=42T W

The thermal insulation for the reference case B is doubled compared with
case A:

d=016m—-d=6m
This gives:

he(1.5,6/8) s 0.97
Q. = 270 0.97 = 262W
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Reference case C concerns a larger slab:
L=30m B=15m d; =008 m
We get:

AMT; — To)L = 675 W

d=3m

he(30/15,3/15) = h,(2,0.2) = 2.08
@, =675-2.08 = 1404W

Figures 8.3-4 and Table 8.2 give the heat loss for the case dy % 0. The heat loss problem
for the case d = dj is solved analytically in a supplementary report, [4]. The solution (Formula
4.1 in [4]) for this three-dimensional problem has the form of a double integral with infinite
integration intervals. The integral is evaluated numerically. The estimated error due to
truncation of the integration interval and numerical errors is less than 1 %.

hs L/B=1 hs
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1.0
- Ny 1.0
. \
RN
1.0 % 1.0 \'\
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0 ¢
0 6.5 1.0d/B 0 0.5 1.0d/B

Figure 8.3: Heat loss factor hy(L/B,d/B,d;/d) for L/B =1 and 1.5.
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Figure 8.4: Heat loss factor h,(L/B,d/B,d;/d) for L/B = 3 and co.
L/B=17]d,/d=00] 05 | 1.0 | 1.5 L/B=15]d;/d=00] 0.5 | 1.0 | 1.5
d/B =0.05 3.98 [ 3.76 | 3.63 | 3.41 d/B =0.05 3.53 | 3.33 | 3.21 | 3.01
0.10 3.21 | 2.92 | 2.81 | 2.65 0.10 2.89 | 2.62 | 2.52 | 2.37
0.20 237 2.12 | 2.05 | 1.95 0.20 2.18 | 1.94 | 1.87 | 1.77
0.50 1.37 { 1.23 | 1.20 | 1.16 0.50 1.30 ) 1.16 | 1.13 ;] 1.08
1.00 0.81 | 0.74 | 0.73 | 0.72 1.00 0.78 | 0.71 | 0.70 | 0.68
L/B=3]d,/d=00] 05 | 1.0 | i5 I/B=c0 [ d,/d=00] 05 | 1.0 | L5
d/B =0.05 3.06 | 2.87 | 2.76 | 2.58 d/B =0.05 283} 238 228 2.13
0.10 2.53 | 2.29 | 2.20 | 2.06 0.10 233|195 1.84 | 1.73
0.20 197 | 1.73 | 1.66 | 1.56 0.20 1.81 | 1.51 | 1.41 | 1.34
0.50 1.21 1 1.06 | 1.03 | 0.98 0.50 1.15 | 0.96 | 0.90 ; 0.88
1.00 0.75 | 0.67 | 0.65 | 0.63 1.00 0.72 | 0.62 | 0.69 | 0.57

Table 8.2: Heat loss factor h,(L/B,d/B,d/d).

63



L/B=10] 15 | 30 | o

d1/B =0.05 5.00 | 4.31 | 359 | 2.97
0.10 4.44 | 3.83 | 3.18 | 2.50

0.20 392|338 |2.79 | 2.11

0.50 3.35 | 2.87 | 2.34 | 1.64

1.00 3.01 | 2.56 | 2.06 | 1.31

Table 8.3: Heat loss factor hy(L/B,d/B,d,/B), d = 0.

Figure 8.5 and Table 8.3 give the heat loss factor for the special case d = 0.
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Figure 8.5: Heat loss factor h,(L/B,d/B,d;/d) for d = 0.
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The heat loss @, is expressed by the heat loss factor h, in the formula above. Another
way to give the heat loss is to represent it by an ‘U’-value for insulation and ground. The
‘U’-value is defined by:

@s=U-(T; —To)A (8.3)

Here A is the area of the slab. The relation between U and h, is obtained by combining (8.2)
and (8.3), where A = LB for rectangular slab:
ALh,  Ah,
U=s — = — .
1 B (8.4)
A third way to express the heat loss is to represent the thermal resistance of the ground by
an equivalent soil thickness Dp,. The heat loss becomes:

_ T: —To A—ATi_TU
" di/Ai+Dm/AT Td+ Dm

Here the thermal resistances of the insulation (d;/A;) and of the soil (D,,/A) are coupled in
series. The total thermal resistance is obtained from the sum of these two parts. Combining
(8.2) and (8.5) we get the following relation between D, and h,:

A A

“i@+on PmTm ¢ (5.

Qe A (8.5)

hs

For a rectangular slab we get:

B B

h, = Dyp=—-—
8 d+ Dm m hs d (8.7)
The relation between U and D,, is:
A A
= D,.,=——-d .
V=3 + D S Vi (88)

8.2 APPROXIMATION FROM THE THEORY OF
OPTIMAL INSULATION

In [14] a theory is developed for optimal thermal insulation, i.e. how a given amount of
insulation should be distributed in order to minimize the heat loss. With the help of this
theary, approximate formula for the heat loss can be given, for which the thermal insulation
capability of the ground is separated from the thermal resistance of the insulation. The
accuracy of the formula is good for thick insulations. The formula are not valid for thin
insulations, the thermal resistance of which is small compared with that of the ground. From
{14] we have the following formula:

ot T‘i — TO .
* 7 di/ A+ Lotm/ A

The area of the building facing the ground is denoted A. The scaling length is L,. The
dimensionless parameter u,, does not depend on the insulation thickness parameter d/L,.
However, it depends on the other non-dimensional parameters of the problem. The ground
is represented by the eguivalent soil thickness Dy = L, - wm. See Section 8.1. The thermal
resistance L, - up /A for this equivalent soil thickness is added to the thermal resistance of
the insulation. Rearrangement of (8.9) gives:

A (8.9)

Q
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A

Qs”’\(Ti_TO)'m

(8.10)

For a rectangular slab, where d/ B is not too small, we get from [14] (/L — L/B, L, =
B/2,A=LB and up/2 — up):

LB
s AT —T) ———
Q (Ti — To) iiB o (8.11)
This gives the following formula for the heat loss factor:
hs /2 1 d/B > 0.3
8~d/B+um . (8.12)

For the case d; = 0 the parameter u,, depends on L/B only. It is given in Table 8.4.

L/BT10 [15 [20 |30 |50 |oo
um | 0.26 030 [0.33[0.36|0.39 | n/8

Table 8.4: The parameter uy, of formula (8.12} as a function of L/B, (dy = 0).

The approximation for h, according to (8.12) is shown in Figure 8.6 for L/B = 1 and 3. The
approximation gives an accurate value of A, for d/B > 0.3. The error is less than 7% for
1< L/B < oo compared with the numerically calculated values.

he
L0

numerical calculation
30 — — - optimal insulation

0 0.2 0.4 0.6 0.8 1.0
d/B
Figure 8.6: Comparison between numerically calculated heat loss factors and the approxima-

tion (8.12).

8.3 HEAT FLOW ALONG CIRCULAR ARCS

In many studies the heat flow from the building is assumed to follow circular arcs. This

assumption will be analysed in this section. A few approximate formulae will also be given.
A special heat loss theorem based on Green’s formula is derived in [11]. The heat loss

through a boundary having an arbitrarily varying temperature is related to the case with
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constant surface temperature. The heat loss is known, if we know the temperature under the
thermal insulation of the boundary. However, this temperature is usually unknown.

For the two-dimensional case, the heat loss formula may be interpreted as if the heat flow
followed circular arcs. With the help of this physical interpretation, approximate formul=
for the heat loss may be given.

In Section 8.3.1 the simplest case with an edge of a slab is treated. In Section 8.3.2 the
two-dimensional case with a slab of finite width is treated.

8.3.1 EDGE OF A LONG SLAB

For a long slab (L/B > 1) the steady-state temperature profile is approximately two-
dimensional in the plane perpendicular to the edge line. The heat flow problem in the
edge region of the slab is treated in this section. The equivalent insulation thickness d is
constant over 0 < z < oo, {z = 0). The case treated is shown in Figure 8.7.

T.
To !
Y/ X
/ e ~f{x)
v Y

¥

Figure 8.7: Edge region perpendicular to the edge line for a long slab. The unknown tem-
perature under the insulation is denoted by f(z).

The unknown temperature under the insulation is denoted by f(2),0 < z < co. The steady-
state heat loss g, over the slab 0 < z < oo is according to [11} given by the following integral:

s = fom —A(f(?z_ 7o) g4, (W /m) (8.13)

This formula is exact. However, the temperature f(z) is not known.

Figure 8.8 gives a physical interpretation of Formula 8.13. Let g,(z)} (W/m?) denote
the heat flow into the ground from the building. Consider the circular arc shown in the
figure. For the circular arc with the radius = the length of the heat flow path is wz. The
corresponding heat flow then becomes:

_AJ(z) - Th)

— (8.14)

b0

The total heat loss for the slab is given by the integral of g¢,, over the slab. Thus an assumption
of heat flow along circular arcs gives the exact formula for the heat loss g,. However, the
formula does not give point-wise correct values for g,.
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qpix)

v ’—f(xl

L f(x)
z Qp {XI=A - g5

Figure 8.8: Heat flow along circular arcs as a physical interpretation of Formula 8.13.

- X

For the heat flow through the insulation we have the exact formula:

M(T — .
gn(z) = i(Ts d‘.f(m)) _ MT; df(-"’))
To obtain an approximation of ¢, we combine Formule 8.14 and 8.15 and eliminate the
unknown temperature f(z). We get:

1
7z +d
This is a circular-arc approximation of the heat flow through the slab at the edge. We add
the length of the arc xz to the equivalent insulation thickness d. Over the total equivalent
insulation length 7wz + d we have the temperature difference (T; — 7).

The total heat loss over the interval 0 < z < X is denoted by ¢,(X). Integration of (8.16)
gives:

(8.15)

gn(x) = A(T; — To) - (8.18)

X 1
go(X) = '[0 Ga(2) do % A(Ts — To) = In(xX/d+ 1) (8.17)

This gives an approximation of the heat loss from the edge to the depth X. It should be
noted that the heat loss increases as In(X) for increasing X.

The arc approximation may be generalized to the case when the insulation thickness
varies with z. Let the equivalent insulation thickness at = be denoted by d{z). A circular-arc
approximation is then:

1
7z + d{z)
For cases with very thin insulations, the temperature f(z} approaches T;. The description

of heat flow paths along arcs will become more and more accurate. We may expect that the
circular-arc approximation will be best for thin insulation thicknesses. This is indeed shown

gn(z) = AT — To) - (8.18)

in Figure 8.11.

8.3.2 LONG SLAB OF FINITE WIDTH

Figure 8.9 shows the two-dimensional temperature problem for a long slab of width B. The
unknown temperature under the insulation is denoted by f(z},~B/2 < ¢ < B/2. According
to [11] the steady-state heat loss g, is given by the following integral:

B/2 1)
- A-/.B/z (W(B/z + ) 7|'(B/2 _ z)) (f(z) -To)dz  (W/m)  (8.19)

This formula is exact.
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x=-B/2 x=B/2
To I d; !Ti To

!
Sf{x)|-

NS

Figure 8.9: Two-dimensional temperature for a slab of width B. The unknown temperature
under the insulation is denoted by f(z).

X

Formula 8.19 may be interpreted in a physical sense as heat flow along two circular arcs.
This is illustrated in Figure 8.10.

xz-B/2  q.{x) x=B/2

To e To -
Lfix)
w(B/2+x) TmM(B/2-X)

N fix)-Tg fix)-T,
G XI=A - B T(B/2+x)

Figure 8.10: Heat flow along two circular arcs. This gives a physical interpretation of (8.19).

The centers of the two arcs lie at the edges of the slab. The length of the arcs become
7(B/2 — z) and 7{B/2 + z). The heat flow at z then becomes:

z) — T z) — T
gnl2) ~ '\w{fa)z o+ Aw’;gg/g o (W/m?) (8.20)
This formula does not give point-wise exact values for g, but the formula for the integrated
heat flow g, over the slab is exact.
Formula 8.19 is not of any direct use, since the temperature f(z) is unknown. A circular-
arc approximation for the heat flow is obtained by adding the equivalent insulation thickness
d to the length of the arcs:

1 1
n(2) ATz = To) ('N(B/2—- z)+d * W(B/2+$)+d) (8.21)

This way of adding the equivalent insulation thickness d is not the only way of doing it. An
alternative is to use the thermal resistance of the two arcs coupled in parallel and then add
the thermal resistance of the thermal insulation. This will however give a more complicated
formula for ¢, without any improvement of the accuracy.
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By integrating ¢y, (8.21), over the slab we get the following approximate formula for the
heat loss g,:

B/2 2
gs = f ) gn(z) dz = A(T; — Tg); In(rB/d+ 1) (8.22)
—-B/2
This gives the following approximation for the heat loss factor:
hy = %ln(wB/d—i— 1) (001 < d/B<03) (8.23)

A comparison between the numerically calculated heat loss factor and this approximation
is made in Figure 8.11. The approximation is good for thin insulation thicknesses. The
maximum error is 5% in the given interval.

Analogous formulz for the three dimensional slab may be derived. However, they do not
give any physical understanding of the thermal process, and they are complicated to use as
approximations.

8.4 TWO-DIMENSIONAL CASE

For a long slab (L/B > 1) the temperature is approximately two-dimensional in a plane
perpendicular to the y-axis (—L/2 < y < L/2) of Figure 8.1.

A semi-analytical calculation method for two-dimensional temperature problems is de-
rived in a supplementary report, [5|. The method, which has very high accuracy, allows for
an arbitrarily variable insulation thickness along the ground surface. The method is based
on conformal mapping technique and Fourier series expansions. The Fourier coefficients are
obtained by the use of an iterative formula with rapid convergency. The method is available
as a PC-program, [5].

The semi-analytical method is used in the calculations of the heat losses for the two-
dimensional cases below. The error in the calculated heat losses is less than 0.1 %.

8.4.1 CONSTANT INSULATION THICKNESS

Consider a slab with the width B and a constant equivalent insulation thickness d is. From
(5.18) we get:

gs = A(T; — To) - h,(d/B) (8.24)
The heat loss factor hs(d/B) is given in Figure 8.11 and Table 8.5. The approximate formulz
for thin, (8.23), and thick, (8.12) with u,, = x/8, insulations are also shown in the figure.

8.4.2 A FEW CASES WITH EDGE INSULATIONS

It is interesting to study the effect of an extra insulation at the edges of the slab. Figure 8.12
shows the case where there is an extra insulation of width D at the edges inside the house.
The inner part of the slab has the equivalent insulation thickness d, and the edges have the
equivalent insulation thickness d -+ d. The heat loss factor depends on three non-dimensional
parameters:

he = h,(d/B,d/d, D/B) (8.25)

The heat loss factor is given i Table 8.6.
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Figure 8.11: Heat loss factor h,(d/B) for a long slab with constant insulation thickness. The
approximation {8.12) is shown as a dashed curve, and the approximation (8.23) is shown as

a dotted curve.

/B h, [ 4/B hk,
0.05 2.827 || 0.55 1.083
0.10 2.330 || 0.60 1.026
0.15 2.030 || 0.65 0.974
0.20 1.814 || 0.70 0.928
0.25 1.647 || 0.76 0.886
0.30 1.511 || 0.80 0.848
0.35 1.398 {| 0.85 0.813
0.40 1.302 || 0.90 0.781
0.45 1.219 || 0.95 0.751
0.50 1.147 || 1.00  0.724

Table 8.5: Heat loss factor h,(d/B) for a long slab with constant insulation thickness.
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— o a+d

TIEERE 7,

Figure 8.12: Extra insulation at the edges inside the house.

d/B=0.2 d/B=0.4 d/B=0.6

D/B djd h, Y D/B  d/d h, || D/B  djd h,

0.05  -0.5  2.033 | 0.05 05  1.450 || 0.05 05 1.138
0.05 0.5 1.730 || 0.05 0.5 1.249 || 0.05 0.5  0.986
0.05 1.0 1.685 0.05 1.0 1.221 0.05 1.0 0.965
0.05 1.5 1.657 || 0.05 1.5 1.204 || 0.05 1.5 0.953
0.05 2.0 1.638 || 0.05 2.0 1.193 || 0.05 20  0.945
010 -05 2125 010  -0.5 1537 || 0.10 05 1215
0.10 0.5 1.683 0.10 0.5 1.211 0.10 0.5 0.955
0.10 1.0 1.610 || 0.10 1.0 1.163 0.10 1.0 0.919
0.10 1.5 1.564 || 0.10 1.5 1.133 0.10 1.5 0.896
0.10 2.0 1.532 || 0.10 2.0 1.113 0.10 2.0 0.831
020 -0.5 22181l 020 -05 1647} 020 05 1323
0.20 0.5 1.623 0.20 0.5 1.155 0.20 0.5 0.905
0.20 1.0 1.509 0.20 1.0 1.072 [} 0.20 1.0 0.846
0.20 1.5 1.454 || 0.20 1.5 1.020 || 0.20 15 0.799
0.20 2.0 1.381 || 0.20 2.0  0.984 || 0.20 20  0.771
030 -05 2.269| 030  -05 L719| 030  -0.5 1401
0.30 0.5 1.581 0.30 0.5 1.109 0.30 0.5 0.863
0.30 1.0 1.436 |[ 0.30 1.0 0.997 {| 0.30 1.0 0771
0.30 0.5 1.337 || 0.30 1.5 0.924 || 0.30 1.5 0712
0.30 2.0 1.265 || 0.30 20 0872 [ 030 20 0871

Table 8.6: Heat loss factor h,(d/B, d /d, D/B) for a ground slab with extra insulation at the
edges inside the house.
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Example 8.2:
Consider a long slab of width 10 m. We assume the following data for the

The heat loss factor for this case is from Table 8.5:
h, = 1.814

If we double the inside edge insulation thickness, i.e. d= d, over the width
D, we obtain the following heat loss factors from Table 8.8:

D (m) | o 0.5 1 2 3 5 )
ko 1.814 1685 1.610 1.509 1.436 1.302 d=2m
Reduction (%) | 0 7 i1 17 21 28

Here the reduction refers to the heat loss for d = 0 and the actual case with
extra insulation. The last heat loss factor in the table was obtained from Table
8.5 with d/B=0.4. We see that the maximum reduction of the heat loss for
doubled insulation thickness is 28 %.

It is also interesting to study the effect of increasing insulation thickness.
Consider the case D = 1 m and varying d. We obtain from Table 8.6:

d (m) | 0 1 2 3 4
h, 2.125 1.814 1.683 1.610 1,564 1.532 D=1m
Reduction (%) -17 0 7 11 14 16

The case d=-1 m means that the total equivalent insulation thickness d + d
at the edges is reduced to 1 m. The maximum reduction in heat loss is 16%
for d = 4 m. We see that the reduction of the heat loss due to a increase of d
from 3 to 4 meter is marginal.

The extra insulation may be placed at the edges outside the house as shown in Figure
8.13. The inner part of the slab has the equivalent insulation thickness d, and the edges have
the equivalent insulation thickness d. The heat loss factor depends on three non-dimensional
parameters as in (8.25). It is given i Table 8.7.
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Figure 8.13: Extra insulation at the edges outside the house.

d/B=0.2 d/B=0.4 d/B=0.6

D/B  d/d h, || D/B  d/d h, | D/B  d/d By

0.05 0.5 1.651 || 0.05 0.5 1.214 || 0.05 0.5 0.970
0.05 1.0 1.633 || 0.05 1.0 1.209 || 0.05 1.0 0.968
0.05 1.5 1.626 || 0.05 1.5 1.207 || 0.05 15  0.967
0.05 2.0 1.622 || 0.05 2.0  1.206 | 0.05 1.0 0.966
0.10 0.5 1.596 || 0.10 0.5 1174 | 0.10 0.5 0941
0.10 1.0 1.558 || 0.10 1.0 1.160 || 0.10 1.0 0.934
0.10 1.5 1.541 || 0.10 1.5 1.154 | 0.10 1.5 0.932
0.10 2.0 1.532 || 0.10 2.0 1.151 | 0.10 2.0 0.930
0.20 0.5 1.553 || 0.20 0.5 1.135 || 0.20 0.5 0910
0.20 1.0 1.488 || 0.20 1.0 1.105 || 0.20 1.0 0.894
0.20 1.5 1.456 || 0.20 1.5 1.093 || 0.20 1.5  0.888
0.20 2.0 1.436 || 0.20 20  1.086 || 0.20 20  0.884
0.30 0.5 1.536 || 0.30 0.5  1.116 || 0.30 0.5  0.893
0.30 1.0 1.456 (| 0.30 1.0 1.076 || 0.30 1.0 0.870
0.30 1.5 1.413 || 0.30 1.5 1057 || 0.30 15  0.866
0.30 2.0 1.387 || 0.30 20  1.046 || 0.30 2.0  0.854
0.50 0.5 1.522 || 0.50 0.5 1.100 || 0.50 0.5 0877
0.50 1.0 1.428 || 0.50 1.0 1.046 || 0.50 1.0 0.844
0.50 1.5 1.374 || 0.50 1.5 1.019 [} 0.50 1.5 0.828
0.50 2.0 1.338 || 0.50 2.0 1.001 || 0.50 2.0 0.818

Table 8.7: Heat loss factor h,(d/B, d/d, D/B) for a ground slab with extra insulation outside
the house.
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Example 8.3:
Consider a long slab of width 10 m. We assume the following data for the

The heat loss factor for this case is given in Table 8.5:
hs = 1.814

If we put an outside edge insulation of thickness d = d over the width
D (m) we obtain the following heat loss factors from Table 8.7:

D (m) | © 0.5 1 2 3 5 oo )
hy 1.814 1633 1.558 1.488 1.456 1.428 1.41 d=2m
Reduction (%) o 10 14 18 20 21 22

The last heat loss factor in the table was obtained from Table 8.2 with d/B =
0.2,d; = d. We see that the maximum reduction of the heat loss due to the

ground surface insulation is 22 %.
It is also interesting to study the effect of increasing insulation thickness.

Consider the case D = 1 m and varying d. We get from Table 8.7:

d (m) I o 1 2 3 4
h, 1.814 1.696 1.558 1,541 1.532 D=1m
Reduction (%) | 0 12 14 15 16

The maximum reduction in heat loss becomes 16% for the cases given in the
table.

From the examples 8.2-3 we see that the best way to place an extra insulation of the slab
varies depending on the width of the extra insulation. For small widths it is better to put
the insulation outside the house, while for larger widths it is best to put it inside the house.

We can also see from the examples that we only get marginal reductions in the heat loss
if the insulation thickness of an already well insulated edge is increased.

There is of course an optimal way of distributing the thermal insulation. If the extra
insulation is placed in the same way as shown in Figures 8.12-13 the optimal distribution can
be found with the help of Tables 8.6-7. The general theory of optimal insulation distribution
is treated in [14] and [15].

8.5 DEPENDENCE OF THE SHAPE

The heat loss for the rectangular slab has been treated in the previous sections. These results
will be used here in order to obtain approximate formula for slabs with other shapes.

75



8.5.1 HEAT LOSS FACTOR FOR CONSTANT AREA

The shape and size of the slab, and the thickness of the thermal insulation, determine the
heat loss. A long slab gives a larger heat loss than a quadratic one with the same area. The
difference in heat loss for rectangular slabs with constant area will be studied in this section.

Figure 8.14 shows a rectangular and a quadratic slab on the ground with the same area.
Both slabs have the equivalent insulation thickness d. The heat loss for the rectangular slab
is denoted Q, and for the quadratic Q2.

Figure 8.14: Heat loss for a rectangular and a quadratic slab with the same area.

The heat loss is given by (8.2). In the comparison, the ratio of the heat losses are studied.

We have:
Q. _ /= hoL/B,d/B)
Qt = VB L VB (8.26)

This ratio is given in Table 8.8 for some values of L/B and d/B. The values for the heat loss
factors are obtained from Figure 8.2.

L/B [d/B | G,/ | L/B [ /B ] Q.
1 all 1 2.0 0.2 1.06
1.5 0.1 1.03 2.0 0.5 1.05
1.5 0.2 1.03 2.0 1.0 1.04
1.5 0.5 1.02 3.0 0.1 1.14
1.5 1.0 1.02 3.0 0.2 1.14
2.0 0.1 1.06 3.0 0.5 1.09

Table 8.8: The ratioc @Q,/Q% as a function of L/B and d/B.

The table shows that the heat loss is rather insensitive to moderate variations of the
shape of the slab. The heat loss increases by 5%, when L/B is changed from 1 to 2. The
difference in heat loss increases for decreasing insulation thickness.

The heat loss is in general rather insensitive to moderate changes of shape. This gives
an approximate heat loss formula. Consider any slab with the area A and the equivalent
insulation thickness d. Using the heat loss formula for a quadratic slab we get the following
approximate formula:

Q. ~ MT; — ToWA - hy(1,d/V/A) (8.27)
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The heat loss factor is obtained from the curve L/B = 1 in Figure 8.2.

8.5.2 CIRCULAR SLAB

Figure 8.15 shows a circular slab on the ground with radius R. The equivalent insulation
thickness is d. The temperature above the slab is T; and the temperature at the ground
surface outside the slab is 7.

Figure 8.15: Heat loss from a circular slab on the ground

There are two length parameters in the problem: R and d. With our rules of scaling we get
the following heat loss formula:

Q% = AT, - To)R - k(d/R) (8.28)

The heat loss factor Aj(d/R) has been calculated numerically, and it is given in Figure 8.16.
In [14] an approximate formula for Q¢ is given (7 R?. ¢; — Q¢). This approximation is
valid for slabs with thick insulations. The approximation gives the following heat loss factor:

R ™ TR+ a/(3m)

This approximation is shown in Figure 8.16 by the dashed curve. For d/R > 0.6 the error
in this approximation is less than 3% compared with the numerically calculated heat loss
factors.

(8.29)

8.5.3 CIRCULAR VERSUS QUADRATIC SHAPE

In Section 8.5.1 the influence of the heat loss due to the shape of the slab was studied. The
comparison was made between a quadratic and a rectangular slab. In this section a quadratic
and a circular slab will be compared. Figure 8.17 shows a quadratic and a circular slab with
the same area. The equivalent insulation thickness is d for both cases. The heat losses are
denoted Q7 and Q¢.

The heat loss for the circular slab is given in Section 8.5.2 and for the quadratic one in
Section 8.1. The ratio between the heat losses is from (8.2) and (8.28):

Qi _ h{(1,d/B)
@ =V hely-arB)
For d/B > 0.12 the ratio is at most 1.02. Thus the heat loss from a quadratic and a
circular slab is approximately the same.

(8.30)

8.5.4 A FEW OTHER SHAPES

The heat loss from a L-shaped slab with the size shown in Figure 8.18 has been calculated
numerically for some values of the parameter d. The values of Q,/(A(T; — To)) are given in
Table 8.9.
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c
Q2= A (T; -Ty)R-ho{d/R}

0 T T T T T 1 T
0 05 1.0 1.5 2.0 2.5 3.0 35 4 0
d/R

Figure 8.16: Heat loss factor A for a circular slab. The dashed curve shows the approximation
(8.29).

Figure 8.17: Heat loss for a quadratic and a circular slab with the same area.
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Figure 8.18: L-shaped slab.

In Section 8.5.1 it was shown that the area of the slab is of great importance for the heat
loss. Two slabs with the same area and insulation thickness have approximately the same
heat loss. This will be used in the approximations for the L-shaped slab below,

Figure 8.19 shows two suitably chosen rectangular and quadratic slabs. The rectangular
slab has the width 8 m and the length 1446 m. Both slabs have the same arca as the L-shaped
slab shown in Figure 8.18.

Figure 8.19: Rectangular and quadratic slab used for approximation of the heat loss for the
L-shaped slab in Figure 8.18.

The heat loss is calculated according to Formula 8.2 and Figure 8.2. The results for the
rectangular and quadratic slab approximations are given in Table 8.9 together with the
numerically calculated heat loss for the L-shaped slab.

The rectangular and quadratic slabs give good approximations for the heat loss. The
error compared with the numerically calculated values is less than 10% for the studied cases.
A quadratic slab gives, as expected, too low heat loss. The rectangular slab overestimates the
heat loss. An improved approximation of the heat loss for an L-shaped slab is obtained from
the average value of the heat loss for the quadratic and the rectangular slab. The rectangular
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Q+/(MT: — To)} (m)

d (m) || Numerical | Rectangular | Quadratic | Average
1.0 46.3 48.0 43.6 45.8
2.0 34.8 37.0 335 35.2
3.0 28.2 29.0 27.3 28.1
4.0 23.8 24.6 23.4 24.0
5.0 20.7 21.4 20.6 21.0

Table 8.9: Numerically calculated heat loss Q,/(A(T; — To)) for the L-shaped slab, and the
heat loss from the approximations of Figure 8.19, and the average of these two.

and quadratic slabs are chosen in accordance with Figure 8.19. This heat loss approximation
gives an error of less than 2% for the given example.

The heat loss for a house with a courtyard of the type shown in Figure 8.20 has been
calculated numerically for different insulation thicknesses. The resuits are given in Table
8.10.

3Z2m

$ P Vi el A Tl

DIl i Pl 7 Wil Vil P W Wk W P Tl Pt

—d
Figure 8.20: House with a courtyard.

An approximation of the heat loss may be obtained from a long slab of width 8 m and the
length 32+32+16+16=96 m. The approximation of the heat Ioss is given in Table 8.10.
The heat loss has been calculated with the use of the two-dimensional heat loss ¢, (W/m)
multiplied by the length 96 meter. The approximation gives a maximum error of 6% compared
with the numerically calculated values in the given range for d.

The heat loss for the U-shaped slab shown in Figure 8.21 has been calculated numerically
for the case d = 2 m. The value obtained for @Q,/{A(T; — Tp)) is 167.3 m. A good approxi-
mation is obtained from two quadratic slabs (20-20 m?) and a long slab with width 4 m and
length 40 m. With Formula (8.2) and Figure 8.2 we get:

Qs

———— s 220 h,(20/20,2/20) + 40- h,(2/4) =

=2-20-3.214+40-1.16=1748 m (8.31)

The error in the approximation is about 4 %
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Qs/(A(T; - To)) (m)

d (m) | Numerical | Long slab
1.0 189.4 201.6

20 146.7 153.6

3.0 121.5 126.0

4.0 104.2 108.0

5.0 91.4 92.2

Table 8.10: The heat loss Q,/(A(T; — To)) for the house with a courtyard and for the approx-
imation by the long slab L = 96 m, B=8 m.

20m 40m 20m

—
-
A‘

16m

| AT T Y A

&m

—d=2m

Figure 8.21: U-shaped slab.

8.6 EDGE EFFECTS

The heat loss formulee presented in this chapter presuppose that the insulation thickness
of the slab is constant. Heat loss factors for slabs with extra edge insulation are however
presented for the two-dimensional case in Section 8.4. These results give us an idea of the
effect of an edge insulation. The Examples 8.2-3 showed that the maximum reduction in heat
loss due to doubled insulation thickness was 28 % for an inside edge insulation. For an edge
ingulation outside the house with the same thickness as the slab insulation the maximum
reduction was 16 %. The equivalent insulation thickness of the slab for these examples was 2
m, which corresponds to 8 cm mineral wocl and a thermal conductivity of the ground equal to
1.0 W/mK. For thicker insulation thicknesses the reduction becomes smaller, and for thinner
insulation thicknesses it becomes larger.

Figure 8.22 shows a rectangular house with an extra edge insulation. The equivalent
insulation thickness at the edges is d+- d, and it has the width D. The heat loss to the ground
is denoted by Q, (W).

The heat loss for a rectangular slab with an extra edge insulation inside the house has
been calculated numerically. We have the following data:

L=12m §:12m D=12m (8.32)

d=1m d=1m di=0
We get the following non-dimensional parameters:

L/B=1 d/B=1/12 D/B=01 dfd=1 (8.33)
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Figure 8.22: Rectangular slab with an extra edge insulation.

The numerically calculated heat loss factor becomes:
Q.

The heat loss factor for a rectangular slab with constant insulation thickness is obtained from
Figure 8.2:

Qs

2 (1, 3. d=0 :
T Ty, = he(L1/12) = 346 (8.35)

The reduction in the heat loss due to the extra edge insulation is 17 %. This is also the error
in an approximation of the heat loss, which neglects the extra edge insulation.

Figure 8.23 left shows the two-dimensional case for a building which has an extra edge
insulation. The width of the building is B. The equivalent insulation thickness at the edges
is d + d, and it has the width D. The heat loss to the ground is denoted by §Z (W/m).
Figure 8.23 right shows the slab without extra edge insulations.

/qs/
% // 8 %

Figure 8.23: Two-dimensional case with an extra edge insulation.

-Dl ? W

We will now introduce correction terms to account for the heat loss factor for a rectangular
slab with an edge insulation. We define:

I i 8.36
& -~ MT: - To) (&.%6)

We also have the corresponding case with B replaced by L:
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A i 8.37
AT~ To) (8.57)
Here ;af and Al give the effect due to the extra edge insulation per meter slab with the

width B and L respectively. The heat loss factor can be expressed with heat loss factors from
Section 8.4:

8 = h,(d/B,d/d,D/B) — h,(d/B) (8.38)
= hy(d/L,d/d,D/L) — hy(d/L) (8.39)

The heat loss factors h,(d/B) and h,(d/L) are given by Figure 8.11. The heat loss factors
hs(d/B, d’/d D/B) and h(d/L, d/d D/L) are given by Tables 8.6-7, or by the PC-program,
[5]. The approximate heat loss formula for a rectangular slab with eztra edge insulation
becomes:

Qs ~ X(T; ~ To{L - ho{L/B,d/B) + L - kB + B - kL) (8.40)

The heat loss factor hy(L/B,d/B) for a rectangular slab with constant insulation thickness
1s obtained from Figure 8.2. Let us test Formula (8.40) on the example according to (8.32).
With (8. 38) and [5] we get:

= hs(1/12,1,0.1) — hy(1/12) = 2.168 — 2.464 = —0.296 (8.41)

The heat loss factor h" is also -0.296, since the house is quadratic. With (8.35) the approxi-
mation (8.40) for Q, becomes:

Q.

e — 346+ 2 (~0.206) = 2.86 42
NT: - To)L T2-(-0.296) = 2.8 (8.42)

The numerically calculated value was 2.96, (8.34). The error in the approximation is only
3%. This should be compared with the error 17 % obtained if the extra edge insulation is
neglected.

The approximate formula (8.40) is applicable as long as the width of the extra insulation
is much smaller than the width and the length of the slab.

In this section we have treated the case shown in Figure 8.22. Other types of edge
insulations, for instance vertical extra insulations, can be treated in a similar way. However,
the correction terms hB and hL cannot be obtained from the results in this report. Additional
two-dimensional heat Ioss calculations must be done.
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Chapter 9

PERIODIC HEAT LOSS

The periodic heat loss component for the slab on the ground is treated in this chapter. The
pericdic process is defined by Figure 4.3. The temperature varies periodically at the ground
surface with the time period iy and the amplitude 73. The temperature in the building is
ZEro.

9.1 HEAT LOSS FACTOR FOR AN EDGE

Figure 9.1 shows the fundamental periodic heat conduction problem at the edge of a slab.
The temperature is two-dimensional in a vertical plane perpendicular to the edge line. The
equivalent insulation thickness of the slab is d. The insulation extends from z = 0 to z = oco.
At the ground surface we have a complex-valued periodic outdoor temperature. The thermal
resistance at ground surface is zero (dy = 0).

0 d

T,-e 2TLit/ty i T-
X
,}{qu f/
s /

4

Figure 9.1: Fundamental periodic heat conduction problem at the edge of a slab.

The heat loss ¢, (W/m) is given by a formula of the type (5.21). The edge problem
contains only two lengths d and dy. The heat loss factor will depend on one parameter d/dy:

9p(t) = R/S { 2Ty - KY(d/dp) - €¥mt0} (9.1)

Here A is the basic periodic heat loss factor for the edge of a slab. Choosing the imaginary
part, with a sinusoidal temperature at the ground surface, we get:

alt) = =Ty - [hD] - sin(2n(t/to — 82)) 43 = —o—ars(h,) (9.2

An analytical solution for the ground temperature has been derived by using Wiener-
Hopf technique. The solution and the technique, which are quite complicated, are presented
in detail in the supplementary report [1]. However, the formula for the heat loss factor hg
becomes relatively stmple. From Formula 3.3.15 in [1] we have:
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r

= /1~ 2id?/d2 (9.3)

The variable r is given by the square root of a complex number. The heat loss factor ho isa
complex-valued function of the real variable d/d;. It is shown in the complex plane in Flgure
9.2. For every value of d/dy we get a point.

1 1
e/ do) = 5m (157)

Re (h))
0 0.25 0.50 075
0 L 1
d/do-‘lo
\
/\\ 2
=iy 1.5
L-d/d, T o7
0.5
0.3 02 035
-0.25
Irn(h?,)

Figure 9.2: Heat loss factor hg(d /dp) in the complex plane.

The absolute value of hg and the phase ¢g are shown in Figure 9.3 in a real-valued
representation. Asymptotic values for small and large values of d/dy are given in Figure
9.2-3. The parameter d/dy becomes large for well insulated slabs (large d}, or short time
periods (small dp). In complex—valued form the approximation for large d/dy becomes:

hd(d/do) ~ d/dy > 1 (9.4)

4d/d

This approximation is shown in Figures 9.2 and 9.3 as dashed curves.
The maximum phase delay ¢3 becomes 1/8 according to {9.2) and (9.4). For a time
period of one year the maximum time delay becomes 1 /8- 1 year=1.5 months.

Example 9.1:

We take the following data from reference case A:

T; = 10°C
d; =0.08 m a=0.75-10"% m?*/s
A=15 W/mK X =004 W/mK

These data give: d=3.0m

Case 1, tp=1 year

do = \ato/m = +/365-24-3600-0.75-10~%/7r = 2.74 m
d/do =]1.1
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Figure 9.3: Absolute value and phase qSS for the basic heat loss factor hg.

87

015

0.10

¢.05

0



From Figure 9.3 we get:
|kl ~0.24 0~ 0.094

Combining this with (9.2), we get the amplitude and time delay for the heat
loss:

ATy - |h)] = 3.6 W/m

qbg + tp=34 days
gp(t) = —3.6 - sin(2n(t/to — 0.094)) W/m

Cuase 1, tp=2 weeks

do = vato/x = /1424 -3600-0.75- 10~6/7r = 0.54 m

From Figure 9.3 we get:
|hp| ~ 0.061 ¢~ 0.12

Combining this with (9.2) we get the amplitude and time delay for the heat
loss:

ATy - |R)] = 0.92 W/m
q‘)g  £0=1.6 days
gp(t) = —0.92 - sin(27(t/to — 0.12)) W/m

Case w1, tp=1 day

dy = \/ato/x = 1/24-3600-0.75-105/x = 0.14 m
d/dg =21

From (9.4) we get:
|Ad] = 0.017, 40 ~s 1/8

Combining this with (9.2) we get the amplitude and time delay for the heat
loss:

ATy -|hJ =0.25 W/m
qbg - tg=3 hours
gp(t) = —0.25 - sin{2x(¢/to — 1/8)) W/m

For edge heat loss problem shown in Figure 9.1 we have dy = 0. Figure 9.4 shows
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the general case with a thermal resistance at the ground surface. The equivalent insulation
thickness is d; along 2 = 0, —oo < < 0. It may represent a heat transfer coefficient at the
ground surface or snow according to Formul= 3.19 and 3.22.

Figure 9.4: Periodic heat loss problem at the edge of a slab with a thermal resistance at the
ground surface (dy # 0).

The heat loss problem of Figure 9.4 contains three lengths: d,d; and dy. The heat loss
factor h, depends on two non-dimensional parameters. We will use d/dy and d;/d. The heat
loss becomes:

4p(t) = R/S{ ATy - B (d/do, dy/d) - e¥t/%0 ] (9.5)

For this case we use the notation h; to indicate that there is a thermal resistance with the
equivalent insulation thickness d; at the ground surface. This problem is solved in {1]. The
heat loss factor h}, can be expressed in terms of the basic heat loss factor hg. From Formulz=
3.3.14-15 in [1] we have:

A/ doyda /) = 35

pldi/do)  (d# dy) (9.6)

Here the complex-valued expression for hg is given by (9.3). The denominator becomes zero
for d = d;. For this case we have Formula 3.3.18 in [1]:

Ri(d/do,1) = }2 (hg(d/do) — %) (d=dy) (9.7)

The variable r is given in (9.3).
It is interesting to notice that h}, is symmetrical with respect to d and d;. Formula (9.6}
gives:

hy(d/do,d1/d) = hi(dy/do,d/dy) (9.8)

It is only necessary to give the heat loss factor for 0 < dy < d. The symmetry properties of
h} are studied in detail in [1].

Figure 9.2 shows ho(d/ dp) in the complex plane. The corresponding figure for the heat
loss factor hl(d/do,d) / d) is shown in Figure 9.5. Every pair of parameters gives a point in
the complex pla.ne The continuous curves give h1 as a function of d/dp for a fixed d;/d. The
curve dy/do = 0 gives ho according to Figure 9. 2 The dashed curves give h:, as a function
of di/d,0< dy/d < 1, for a fixed d/dp. The absolute value and phase of hy(d/do,d1/d) are

shown in Figure 9.6.
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Figure 9.5: Heat loss factor hl(d/dg, d1/d) represented in the complex plane.
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Figure 9.6: Absolute value |hl| and phase ¢} for the heat loss factor hy(d/do,d1/d).
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Example 9.2:
We take the following data:

d/dy = 0.5 di/d=0.2
The real and imaginary parts of h; are obtained from Figure 9.5:

hy(0.5,0.2) &~ 0.256 — 1 - 0.178

We may use Figure 9.6 instead:

|hl| ~ 0.310 $5 7 0.098
hﬁo.s,o.z) /2 0.310- ¢ 2m0.098 — g 953 _ ;.0.179

9.2 GENERAL HEAT LOSS FORMULA

Using the edge approximation given in Section 7.1, a general formula for the pertodic heat
loss can be given. Let the total periodic heat loss be denoted by @, {W). From (7.3-4) we
get:

Qo(t) = (1) - Le = R/S {-ATAL, - by - /0 4y < Ly /2 (9.9)

Here L, is the perimeter length. For a rectangular house it is equal to 2L +2B. The minimum
dimension of the foundation in the horizontal plane is L,y;,.

The heat loss factor hj, for the case d; = 0 is given by hJ(d/do) according to (9.3). It is
shown in Figure 9.3. For the general case d; # 0, h, is given by hi(d/do, d1/d) according to
Formula (9.6) and Figure 9.6.

Example 9.3:
The data of reference case C give:
AT1L,=1.5-10-(2:30+2-15) = 1350 W
d=0.08-1.5/0.04=3 m

dyp=2.74m d/doml.].
hy = hg(l.l)

Figure 9.3 gives:
|kl =0.24  ¢0=0.094
This gives:

Qp(t) = —324 - sin(2n(¢/to — 0.094)) W
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Thus the amplitude of the periodic heat loss becomes 324 W. The time delay
relative to the outdoor temperature becomes:

to - $3=34 days
Example 9.4:
The data of reference case A give:
AT L,=15-10-{2-12+2-8) =600 W
d=0.08-1.5/004=3 m
dy=2.74m d/dy=1.1
hy, = hg(l.l)
Figure 9.3 gives:
|hpl =0.24 40 =0.004
This gives:

Qp(t) = —144 - sin(2x(t/to — 0.094)) W

Thus the amplitude of the periodic heat loss becomes 144 W. The time delay
relative to the outdoor temperature becomes:

to - $9=34 days
Example 9.5:
The data of reference case B give:
AT Le=15.10-(2-30+2-15) =600 W
d = 0.16-1.5/0.04=6 m

do =274 m d/do = 2.2
hp = hO(2.2}

Figure 9.3 gives:
|AJ| = 0.14 o =0.11
This gives:

Qp(t) = —84 - sin(2x(t/ty — 0.11)) W
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Thus the amplitude of the periodic heat loss becomes 84 W. The time delay
relative to the outdoor temperature becomes:

to- ¢2=40 days

For an outdoor temperature which contains several periodic components, the total heat
loss is obtained by superposition. See Formula 4.12-13. The time period for the temperatures
(4.12) is tg/n, where n is an integer. The heat loss component @, , becomes:

Qpnlt) = —ATnLe - [hp,nl - sin(2x(nt/to — ¢pn) + fn) (9.10)
The amplitude and the phase are taken for the periodic penetration depth do n:

ato _ do
m'r—\/ﬁ

The total periodic heat loss is from {4.13):

don = n=12... (9.11)

Qp(t) = i Qp.a(t) (9.12)
n=1

Example 9.6:

In [17], approximate outdoor temperatures are given for different places
in Europe. The following temperature approximation with two periodic com-
ponents is given for Stockholm:

Tout(t) = 6.7+ 10.1 - sin(2nt/tg — 1.95) + 0.81 - sin(27 - 2t /¢y — 4.46) {(°C)

For reference case A we get:

d/do,l =1.1 |hg’1| =0.24 3,1 — 0.004
d/d0,2 = \/5' 1.1=1.6 |hg'2| = 0.18 (;52,2 =0.10

From (9.10) and (9.12) we get the periodic heat loss:

Qp(t) = —1.5-10.1- 40 - 0.24 - sin(2x(t/to — 0.094) — 1.95)—
~1.5-0.81-40- 0.18 - sin(2x(2¢/to — 0.10) — 4.46) =
= —145.4 - sin{2x(t/to — 0.094) — 1.95)—
—8.8sin(2m(2t/to — 0.10) — 4.46) (W)

We see that the second periodic term is negligible in this case.

It is interesting to compare the periodic heat loss with the steady-state
loss. According to Figure 8.2 and Formula 8.2 the steady-state heat loss for
the annual mean outdoor temperature of Stockholm (6.7 °C) becomes:

d/B=3/8 L/B=15 - h,=158
Q:=15-(20-6.7)-12-1.58 380 W
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9.3 A FEW EXAMPLES AND ANALYSES

9.3.1 VARIATION OF THE PERIOD TIME t,

The periodic penetration depth dy depends on the time period g, (4.45). The periodic
penetration depth dy is proportional to the square root of 5.

Example 9.7:

Let us study reference case A. We have the following data:
L=12m B=8m
The edge length becomes:

Le=2-12+2.8=40m

The total periodic heat loss is according to (9.9} equal to gp * Le. The edge
heat loss ¢, is obtained from Example 9.1. We get:

Case 1, tp=1 year

Qp(t) = —144 - sin(27(t/tg — 0.094)) W/m

Case 1, t,=2 weeks

Qp(t) = ~37 - sin(2n(t/to — 0.12)) W/m

Case i, tp=1 day

Qp(t} = —10 - sin(27(t/to — 1/8)) W/m

The steady-state heat loss for the corresponding reference case A is ob-
tained from Example 8.1:

Q. =42TW

Example 9.7 shows that the periodic heat loss with a time period of one day is negligible
compared with the steady-state heat loss and the heat loss with a time period of one year. The
periocdic heat loss with a time period of two weeks also gives a relatively small contribution
to the total heat loss.

9.3.2 VARIATION OF THE THERMAL PROPERTIES
OF THE GROUND

The thermal properties of the ground are given by the thermal conductivity A (W/mK)
and the thermal diffusivity a (m?/s). The thermal conductivity influences the heat loss in
two ways. It is a proportionality factor in all heat loss formulae . It also determines, together
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with the thermal resistance, the size of the equivalent insulation thickness d. The heat loss
increases for increasing A due to the proportionality. This is however somewhat counteracted
by the increased value for d.

The thermal diffusivity a influences the value of dy according to (4.45). The penetration
depth is proportional to the square root of a. The heat loss increases for increasing value of
a. It is however quite insensitive to small variations in a.

Example 9.8:

We take the data of reference case A except for the thermal conductivity
of the ground. For granite we have:

A=35W/mK a=16-10"%m?/s

We get:

ATyL,=35-10-(2-12+2-8) = 1400 W
d=0.08-35/004=Tm
do=+/1.6-107%.3600-24-365/7 = 4.0 m
d/do =1.75

Figure 9.3 gives:
|hg(L.75)] =017 ¢0(1.75) = 0.103
The imaginary part of Formula 9.9 gives the heat loss:

Qp(t) = —238 - sin(2n(t/to — 0.103)) W

The heat loss for reference A with the original data is according to Example
9.4:

Qp(t) = —144 - sin(2x(t/to — 0.094)) W

The change of ground material to granite increases the amplitude by 65%.

9.3.3 THERMAL RESISTANCE AT THE GROUND SURFACE

In Example 9.8 the thermal resistance at the ground surface was neglected (dp = 0). In
this section the effect of a finite heat transfer coefficient & (W/m?K) or snow at the ground
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surface is studied in a few examples.

Example 9.9:

The periodic heat loss for reference case A (d; = 0) with ty=1 year, 2
weeks and 1 day was calculated in Example 9.7. In this example we will study
the same problem but with a finite value for o at the ground surface. Let use
the following normal value:

a=10 W/mzK

According to {3.19) the equivalent insulation thickness d; becomes:

di=A/a=15/10=0.15m

Thus the heat transfer coefficient corresponds to 15 cm of soil. For the case
tg = 1 year we have:

dp=274m

The absolute value of the heat loss factor is obtained from Figure 9.6:

d=3m d/dy=11 d1/d=0.05
|h2(1.1,0.05)| = 0.20

In Example 9.4 the corresponding heat loss factor was:

|hy| = 0.24

The ratio between these two heat loss factors shows the effect of the heat
transfer coefficient o

|A3(1.1,0.05)|/|A)(1.1)| = 0.83

The amplitude for Q, is reduced by 17 %. For 1p=2 weeks we get:

dp =0.54 m
|h}(5.6,0.05)|/|h2(5.6)| = 0.036/0.060 = 0.60

For t3=1 day we get:

dp =0.14 m
|h1(21,0.05)|/}h0(21)| = 0.005/0.017 = 0.30
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Formula 9.6 and the approximation of hg for large values of d/dy have been
used for this last case.

Example 9.9 shows that a thermal resistance at the ground surface strongly reduces the
heat loss. The reduction is largest for short time periods. In Example 9.7 (d; = 0} it was
shown that the periodic heat loss is negligible for short time periods. This conclusion is
strengthened by the results in Example 9.9.

The reduction of the heat loss @, for the annual variation due to a thermal resistance at
the ground surface is moderate (17 % for the example). Thus the thermal resistance at the
ground surface must be considered in order to get a calculation of the heat loss with high
accuracy. However, o is not a critical parameter. The heat loss is not too sensitive for this
usually less known parameter.

Example 9.10:

Consider Example 9.9 with snow at the ground surface. Let us assume
the following data for the snow:

darow =0.06 m Asnow = 0.15 W/mK

The equivalent insulation thickness dy for the snow becomes, (3.22):

di=0.06-15/0.15=06m di/d=02

For the case with snow, only short time periods during the winter are consid-
ered. For {p= 2 weeks we get the following ratio between the heat loss factors
with and without the snow:

{hy(5.6,0.2)|/[R2(5.6)] = 0.015/0.060 = 0.25

The snow reduces the heat loss by 75 %. For tp= 1 day the ratio becomes:

|A}(21,0.2)}/|AJ(21)| = 0.0016/0.017 = 0.09
The snow reduces the heat loss by 90 %.

Example 9.10 deals with a small snow depth, 6 cm. In general we can conclude that snow
strongly reduces the heat loss for time periods up to a few weeks.
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Chapter 10

STEP CHANGE OF OUTDOOR
TEMPERATURE

The outdoor step-change temperature process is shown in Figure 4.5. The outdoor temper-
ature is increased from zero to T3 at time ¢ = 0. The outdoor temperature decreases if T% is
negative. The temperature above the insulation of the building is zero. The temperature in
the ground is zero at t = 0.

10.1 HEAT LOSS FACTOR FOR AN EDGE

Figure 10.1 illustrates the heat loss problem for a temperature step at the edge of a slab.
The temperature process is two-dimensional in a vertical cross-section perpendicular to the
edge line of the slab. The slab with the equivalent insulation thickness d extends from =z = 0
to z = co.

T=T, , t=0 [| T=0 d .
Y

T|,..%0 qt”’/
btV

Y

Z

Figure 10.1: Step change of the outdoor temperature at the edge of a slab.

10.1.1 HEAT LOSS FACTOR ki!

The thermal resistance at the ground surface, z < 0,z = 0, is assumed to be zero (d; = 0).
The heat loss is given by Formula (5.26). The problem contains the two lengths d and /at.
The basic step-change heat loss factor kY will depend on the dimensionless parameter v/ at/d
only:

@(t) = —ATy- K)(Vat/d)  (W/m) (10.1)

The analytical expression for the heat loss factor is given by Formula 5.2.12 in the supple-
mentary report [1]:

mo(r) = %/{: e*’ - erfc(s) ds (10.2)
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Here we have the non-dimensional time variable r = v/at/d. The basic heat loss factor ()
is given in Figure 10.2 and Table 10.1.

0

by (T)
1.0
//
/’/
//
P<3
0.5 /Z]
/ 7 (n{zt)+y/2)
4
|_ //
el
0
0 0.5 1.0 2.0 3.0 4.0 5.0
T

Figure 10.2: The function A%{r), (10.2), which gives the heat loss for an outdoor temperature
step according to (10.1-2).

r 0 01 02 03 04 05 10 15 20
() [0 0.053 0101 0.145 0.185 0.221 0.365 0.470 0.550
r 25 30 40 50 60 70 80 90 100
R}(r) | 0.616 0.670 0.758 0.828 0.885 0.935 0.975 1.012 1.045

Table 10.1: The function A9(r).

Asymptotic expressions for h(r) are given by Formula 5.2.19 and 5.2.22 in (1]:

M OES ﬁ (r < 0.2) (10.3)
RO(r) m % (n(2r) +7/2)  (r>2) (10.4)

4 = 0.5772.. . (Euler’s constant)

These approximations are shown in Figure 10.2 as dashed curves.

10.1.2 ACCUMULATED HEAT LOSS FACTOR ¢’

The accumulated heat loss Ej(t) (J/m) for the edge is defined in (5.27). The dimensionless
accumulated heat loss factor is denoted by €?. According to (5.30) it depends on the parameter

Vat/d only:
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Ey(t) = —CTad®- {(Vat/d)  (I/m) (10.5)

The factor CT;d* has the dimension J/m. Here C = A/a (J/m3K) is the volumetric heat
capacity. Combining (10.1-2) and (5.27} we get:

1 T .3 2
0 — 30 2, =) _ A - —
e (r) = h)(r) (T + 2) 2\/776 erfe(7) o (10.6)

The function ¢f(r) is shown in Figure 10.3. The dashed curves show approximations for small
and large values of 7.

e (1) ed (1)

0.25 20
/

/
0.20 416
1
12015+ ln(t))-0.167/
V]
0.15 4 12

0.10 / ¢/ 8

4 /
/
038 1°— 7] z/
0.05 b/ i 4
vz Z
0 // “// 0
0 0.5 1.0 2.0 3.0 40 5.0

1

Figure 10.3: Dimensionless accumulated heat loss factor for an outdoor temperature step
according to (10.5-6).

Example 10.1:

Consider a temperature step T3 at ¢ = 0 with data from reference case A
and B. The reference case C gives the same results as case A. We have:

A=15W/mK a=0.75.10"% m%/s
Ty =—15°C  dy =0

The volumetric heat capacity C becomes:

C=2A/a=2-10° J/m®K
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The equivalent insulation thickness d becomes:

d=008-15/004=3m  (case A)
d=0.16-15/004=6m  (case B)

Let t4 denote the time in days. We get:

7 =+at/d = /0.75-10-6 - 5 - 3600 - 24/3
T \/1/139 (case A)
T 23 1/t3/556  (case B)

For t3 =7 days we get the following heat loss for case A:

g =1.5-15- AY(\/T/139) ~ 1.5-15-0.112= 2.5 W/m
E;=2.0-10%.15-3% . ¢(1/7/139) ~ 0.99 - 10° = 0.27 kWh/m

The table below gives ¢; and F; for a few times for the two alternatives:

Case A (d=3 m):

t (days) 0 1/24 1 2 4 7 14 30 90
g: (W/m) 0 026 097 143 1.97 25 3.45 4.65 7.06
E, (kWh/m) | 0 0.0002 0.014 0.046 0.13 0.27 0.82 231 109

Case B (d=6 m):

t {days) 0 1/24 1 2 4 7 14 30 90
g (W/m) 0 0.13 050 0.74 0.97 131 1.86 2.59 4.15
E; (kWh/m) | 0 0.0001 0.007 0.023 0.056 0.14 043 1.25 6.19

10.1.3 THERMAL RESISTANCE AT THE GROUND SURFACE

The thermal resistance d; at the ground surface was zero in the previous sections. An
additional length occurs in the scaling of the heat loss factor for d; > 0. The thermal
problem contains three lengths: /at,d and d;. The heat loss factor becomes a function of

Vat/d and d,/d:
alt) = ATy - KE(Vat/d, di/d) (107

The upper index 1 of the heat loss factor is used to mark that d; # 0. From Formula 5.2.13
in [1] we get the following analytical expression for the heat loss factor:

d d
hi(Vat/d,di/d) = ——hO(Vat/d) + —

d—d; dy—d
Here A) is the previously defined basic heat loss factor (10.2). For the case d = d; the
denominator becomes zero. From Formula 5.2.14 in [1} we have:

W(at/d)  (dh#d) (108

-

The heat loss factor hi{r,d;/d), (10.8), has the following symmetry property, which
means that h} is the same, when dy and d are exchanged so that dy is the internal insulation.

hi(r,1) = B(r) — —=€" - erfe(r) (r = Vat/d) {d1 = d) (10.9)
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h}(vat/d,d,/d) = h}{Vat/dy,d/d}) (10.10)

1
hy (T, d,7d)
0 .50
d, /d=10 '/
1 -
0.25 - y
// - 0.2
,/ T 05 4+
////ﬁ’//’,._p//
==
0 =1 |
0 0.5 1.0
T-= m/d

Figure 10.4: The heat loss factor h}(r,d;/d} for an outdoor temperature step.

Example 10.2:
In Example 10.1 the heat loss ¢, became 2.5 W/m after 7 days for case A.
The heat loss factor was:

h0(+/7/139) = 0.112

Consider a change of the thermal resistance at the ground surface from dy = 0
to dy = 0.3 m. The parameter dy/d becomes equal to 0.1. We get the heat

loss factor from Figure 10.4:
h}(4/7/189,0.1) =~ 0.060

The heat loss ¢; is obtained from (10.7). The heat loss is reduced from ¢; = 2.5
W/m for dy = 0 to:

g:(t) ~ 2.5-0.112/0.060 = 1.3 W/m (t=7 days)

Example 10.2 shows that a thermal resistance at the ground surface gives a relatively
strong reduction in heat loss for a temperature step. The relative difference between the
curve d1/d = 0 and, for instance, di/d = 0.1 in Figure 10.4 decreases with increasing time.
Thus the importance of the surface resistance decreases with increasing time.

For a ground covered with snow we get large values for dy/d. Thus the heat loss is

reduced strongly for this case.
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10.2 APPROXIMATE HEAT LOSS FORMULA
FOR SHORT AND LONG TIMES

A general approximate formula for the step-change heat loss is derived in this section. The
heat loss Q: (W) is obtained from an edge approximation and a steady-state approximation.

So far we have discussed the two-dimensional temperature process at the edges of the
slab. This process is significant for short times. According to Formula 7.8 in Section 7.2 we
have the condition vat < Luyp /2, where Ly, is the minimum dimension of the foundation in
the horizontal plane. For large times the temperature process tends to the steady-state one.
The step-change heat loss factor tends to the steady-state one according to {(5.25). In the
intermediate time interval the step-change heat loss factor is obtained from three-dimensional
transient temperature calculations.

We will first study a two-dimensional case with a slab of finite width B and constant
insulation thickness d. Here there are three lengths in the heat conduction problem: Vat,d, B.

The heat loss factor will depend on two dimensionless parameters. From (5.24) and (5.26)
we get:

@(t) = —AT; - hy(Vat/d,d/B) (10.11)

Here we have chosen v/at/d instead of v/at/B. The heat loss factor is calculated numerically.
It is shown in Figure 10.5 for the case d = 0.3 - B.

h (T, B/d)
20 1 I | [ |
he e
| —
1.5_ — — 'l _— I — _"/_1"‘-—-_ R I
—— |
2.0 (1) ! =T |
1.0 t | -
# Y
#~ Vat:=822
0.5 // L
d=0.3B
0 T T T | T
0 1.0 2.0 3.0 4.0 5.0 55

1= (E‘/d

Figure 10.5: The heat loss factor h; for a two-dimensional case. The dashed curve gives the
edge approximation (10.12). The horizontal line gives the steady-state heat loss factor.

During the first time the edge approximation can be used. Using (10.1) for the two edges
we get:

0:(t) = —2XTy - A)(Vat/d) (10.12)
According to (7.8), the approximation is valid for:

Vat < B/2 (10.13)

The maxirmum error in this interval is 10 %.
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For large times the heat loss factor can be approximated by the steady-state one according
to {5.25):

he(Vat/d,d/B) ~ hy(d/B)  t> ty (10.14)

Here we have introduced a least time, t;, for the validity of (10.14). At the breaking time
the edge approximation is equal to h,. The steady-state heat loss factor h,(d/B) is obtained
from Figure 8.11. The approximations are shown in Figure 10.5

Thus we have the following approximation for the two-dimensional heat loss ¢: for a long
slab:

qt(t)wmATz-{ i;(}j%a/d) :;z: (10.15)

The breaking time is defined as the time when the two approximations coincide.
We get a similar approximation for a rectangular slab:

Qi m—at f BEF B < b (1016

The steady-state heat loss factor is given in Figure 8.2. The breaking time t; is defined as
the time when the two approximations coincide:

(2L +2B)-h)(ny) = L-ho(L/B,d/B)  m: = aly/d (10.17)

Example 10.3:

The breaking time for reference case A is given by:

40 - hY(me) = 12- hy(1.5,3/8) ~ 12 1.58
e = 1.53 (Figure 10.2)
tye = 3% -1.532/(0.75 . 107%) s=325 days

For reference case B we get:
40-hd(n:) =12-0.95 7, =0.70

tys = 272 days

For reference case C we get:

80 - hg(fbg) =30.2.08 Tyt = 3.2
tp: = 3.9 years

1t is interesting to note that the breaking times are very large. For a small house with
a width of about 10 m, the breaking time is roughly one year. For a larger house of the size
given by reference C (30- 15 m?) the breaking time a few years. The edge approximation is
thus valid during the whole heating season for ordinary buildings.
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10.3 PIECE-WISE CONSTANT OUTDOOR
TEMPERATURE

The case with piece-wise constant outdoor temperature was discussed in Section 4.3.2.
The outdoor temperature is given by Formula 4.16:

13
Tour(t) =To+ > _(T5— Tj-1) - H{t —t;) t<tnp (10.18)
i=1

10.3.1 HEAT LOSS FORMULA USING THE EDGE
APPROXIMATION

From the previous section we know that the edge approximation is valid during the whole
heating season for ordinary buildings with dimensions of 10 m or more. According to (4.18)
(7.8) and (10.1) the heat loss due to an outdoor temperature (10.18) becomes:

Q) ~ Qo — ALe- S (T, — Ty_s) - (\/a(t _ t_.,-)/d) by <t<tmy1 (10.19)
=1

H

Here L, is the perimeter length of the slab. The basic heat loss factor A? is given by Figure
10.2. The heat loss factor is replaced by A}, if there is thermal resistance at the ground surface.
The heat loss factor A} is given by Formula 10.8 and Figure 10.4. The approximation is valid
for times ¢ — t; less than L2, /(4a). Here Loy is the minimum dimension of the foundation
in the horizontal plane.

According to (5.27) and {10.5), the accumulated edge heat loss from time zero to ¢ is:

E(t)m~ By — Cd® Lo+ Y (T; — Tj_1) - & (\/a(t - t,-)/d) tp <t <tpy1 (10.20)
i=1

Here B, = Q, - t is the accumulated steady-state heat loss.

Example 10.4:

The outdoor temperature is given by Figure 10.6. Here we have put
To = 0O, since we are mainly interested in step-changes and not the steady-
state part. There is a constant temperature for each month. The data are
given by reference case A. We have:

d=3m L:.=40m
AL, =60 W/K
Cd*L, =2-10°.3%.40=720-10° J/K=200 kWh/K

Let t,, denote one month. The time in the argument of A? and €) can be
written in the following way:

aft —;)/d* =(t/tm — t;/tm)/(d /(atm))
d*/(atm)= 3-3/(0.75- 107° . 3600 - 24 - 365/12)=4.57
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The heat loss for the coldest month, 3 < t/t,, < 4, becomes:
Q(t) - Qs ~=

s 60 - {4 B/t /tm — 1)JA57) + 8- A (\/(t/tm — 2)/4.57)+
+5- B(v/(t/tm — 3)/4.57)}

The heat loss at the end of the coldest month, t/t,, = 4, becomes:

Q(t) - Qs s
60 - {4 h$(0.81) + 6 - R2(0.66) + 5 - h2(0.47)}
~60-{4-0.32+6-0.27+5-021} =23T W

Figure 10.6 shows the heat loss during the whole period of 8 months.

The accumulated heat loss is obtained by Formula 10.20. One month after
the last step (¢/t,, = 7) we obtain:

E(Tty) — B, =
200 {4+ e9(V/(T= 1)/457) + 6 (/{7 — 2)/4.57) + 5 - €(/(7 = 3)/4.57)
—6- e{(V(7T—4)/457) ~ 6 - (/[T 5)/457) - 3. (T - 6)/457) }

=200-{4-0.394+6-0.32+5-0.23 - 6-0.15—6-0.085 — 3-0.033} =612 kWh

The accumulated heat loss E; is shown in Figure 10.6.

It is interesting to compare these heat losses with the steady-state heat loss
for reference case A. From Example 8.1 we get:

Q. =42T W

The accumulated heat loss due to this steady-state heat loss during six
months is:

E, = 0.427 - 24 - 365/2 = 1900 kWh

The accumulated heat loss due to the pulses is relatively small compared with
the accumulated steady-state heat loss:

10.3.2 SINGLE PULSE

A single pulse with a change of the outdoor temperature from zero to T> during a time period
ts is studied in this section. For negative values of Ty, the pulse may be used to simulate the
decrease of the temperature during a cold spell. For positive values of T2 we can simulate a

heat wave.

The pulse of the magnitude T} starts at ¢ = 0 and has the duration t3:
Tout(t) = T2+ (H(t) — H(t ~ t2))
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Figure 10.6: Outdoor temperature, heat loss and accumulated heat loss for Example 10.4.
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Here we use (10.18) with Ty = 0. Using the edge approximation according to (10.19) we get
the following heat loss:

Q(t) m —ATL, - R2(Vat/d) 0 <t <ty _ (10.22)

Qt) ~ —ATy L, - {h?(\/a/d) - KO Jalt — t2) /d)} 1>t (10.23)

For large times the approximation (10.4) can be used. This gives the following simple
formula for the heat loss for large times:

1 t
Q(t) » ~AT3L, - 5-In (t k tz) (10.24)

The formula is valid if the conditions (7.8) and (10.4) are satisfied:

Valt—tz) >2d  Vat < Lyin/2 (10.25)

This gives both a lower and an upper limit. Sometimes these conditions are never satisfied.

In order to treat the case with very large times, we must leave the edge approximation.
Using (2.6) with ¢, = 0 we get the following formula for the accumulated heat loss due to a
single pulse:

t t
E(t) = /; Q:(t") dt" — /; Q:(t" —t)dt" t>ty (10.26)

Here @Q;(t) gives the heat loss due to a temperature step T3 starting at time zero. We get the
following formula:

B(t) = ft ; Qu(e") dt" (10.27)

We know that the heat loss Q;(t) tends to the steady state heat loss Q, for large times. The
steady-state heat loss is taken for the same temperature difference between the indoor and
the outdoor temperature as the temperature step (T; — To — 0 — T3). This gives:

t — oo E{t) — -/:tg Q.dt"=@Q, - t, (10.28)

Thus the total accumulated heat loss for a temperature pulse is obtained by taking the
corresponding steady-state heat loss during the time period t;. We get the following general
formula:

E(oo) =Q,-t2 (temperature pulse) (10.29)

The steady-state heat loss is scaled according to (8.2). Here we replace T; — Ty with —7T5.
We get:

E(00) = ~ATeLs - hy - t2 (temperature pulse) (10.30)

Figure 10.5 shows how the heat loss h; approaches the steady-state heat loss factor when ¢
tends to infinity. According to the numerical examples it takes about one year before h; can
be approximated by A, for a slab of the dimension of 10 m. For Reference case C (15-30 m?)
it takes about five years. An important thing to consider is that a part of the heat loss due
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to a temperature pulse does not occur during the heating season.

Example 10.5:

Data from reference cases A,B and C will be used. A cold spell with
Ty = —15° C starts at t = #; = 0 and stops at t = t3 = 7 days. The perimeter
length is:

L,=40m case A B
L,=9% m case C

The time variable r is calculated in Example 10.1. The time in days is denoted
by t;. We have:

T = \/14/139 case A,B
T =+/13/556 case C

The heat loss ¢; is given in Example 10.1. For the cold spell the heat loss is
given by L, - q; for times less than 7 days. For times larger than 7 days, the
heat loss for case A is given by (10.23):

Q(t) = 1.5 - 15 - 40 { Q(v4a/139) - (vt — T)/189)} (W)

The heat loss Q(t) is given for a few times in the following table:

t(days)[O 1 2 4 7 8 14 50
case A [0 41 57 79 101 66 36 13
caseB |0 20 30 39 52 37 23 8
case C |0 92 128 177 225 148 81 29

Q) (W)
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The heat loss due to the cold spell for case A is shown in Figure 1.6 by the
dashed curve. It is superimposed on the steady-state heat loss and the pe-
riodic heat loss. The steady-state heat loss and the maximum periodic heat
loss for case A are: Q, = 427 W and (Qp)maz=144 W, respectively. These
numbers show that the heat loss due to the cold spell is rather small, but it
cannot be neglected.

Example 10.6:

The heat loss is given for three pulses with varying duration in the table
below. We have t; = 1,7 and 30 days for case A and Ty = —15°C.

b =14 t days 0 05 1 2 4 7 14

2T T W) (o 29 41 16 9 6 4

t, = 1 week t days o1 2 4 7 8 14 50
2= Q) (W) |0 41 57 79 101 66 36 13
b lmomh Ld3¥s |0 15 30 45 60 90 120
2= I MOMRTOR) (W) [0 141 186 79 60 37 31

The example shows that pulses with a duration of about one day can be
neglected.

Example 10.7:

The heat loss for the pulses in Example 10.6 decreases when there is snow
on the ground. Consider the following data:

donow =0.15m  Agpow = 0.15 W/mK

The ratio between the equivalent insulation thickness of the snow and the slab
is:

di/d =05

The heat loss factor is obtained from Figure 10.4. We get for the three pulses:

4 =1 da t days 0 05 1 2 4 7 14
2= "o (W) |0 19 36 32 2.8 20 18
b lweex Jtdays |0 1 2 4 7 8 14 50
=AW QR) (W) |0 4 7 12 20 19 15 8
b 1 meneh d3¥S |0 15 30 45 60 90 120
2= IO (W) [0 37 59 45 42 23 21

The snow reduces the heat loss strongly. The maximum heat loss is reduced
to a third or less for pulses with a duration up to a month. For a snow depth
of thickness 1 dm or more the heat loss due to a cold spell, with a duration
less than a month, can be neglected.
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Chapter 11

THERMAL BUILD-UP

During the first few years of a new building there is a thermal build-up of a warm region
below the foundation. The heat loss for this transient process will be treated in this chapter.

Figure 4.7 shows the thermal build-up problem. The temperature above the slab insula-
tion is 75 for t > 0. We simplify the process by neglecting the temperature variation at the
ground surface during the year. Thus the ground surface temperature is Ty. The temperature
variations in the initial ground temperature are neglected. We have a constant temperature
Ty in the ground at ¢ = 0.

The heat loss for the thermal build-up is denoted by @ (#) (W). For the two-dimensional
case it is denoted by gu(t) (W/m).

The temperature in the ground gradually approaches the steady-state temperature field.
This means that Q; approaches Q,, when the time tends towards infinity:

Qult) = Q, t—oo (11.1)

The thermal build-up heat loss is always larger than the steady-state heat loss. The difference
in the heat losses, Q4 (t) —Q;, is expended for the thermal build-up. The accumulated thermal
butld-up is in accordance with (5.35) given by:

Ea)) = [ @u(")-Q) & () (11.2)

11.1 HEAT LOSS FOR A RECTANGULAR SLAB

The scaling rules of the heat loss @ (t) for the thermal build-up process is treated in Section
5.3. For a rectangular slab with constant equivalent insulation thickness d we get from (5.31-
32):

Qu(t) = M(T: — To)L - hu(Vat/B,L/B,d/B) (11.3)

The non-dimensional heat loss factor hy, is a function of the time variable v/af/B, and
two parameters /B and d/B. It has been calculated numerically for some values of the
parameters (d/B = 0.1,0.3,0.6 and L/B = 1,1.5,2,00). The result is given in Table 11.1.

For large times Q4 approaches the steady-state heat loss Q,, {11.1). For the heat loss
factor this means that h;; approaches the steady-state heat loss factor h,. In accordance with
(5.33) we get:

htb(OO,L/B,d/B) =hs(L/B’d/B) (11'4)

The function h, is given in Figure 8.2.
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At the starting time the temperature under the slab is Ty. The heat loss at time zero
becomes:

N(T; - MT; — T
Qu(0) = ME-To) g ME-To) ,p (11.5)
d; d
The heat loss factor at time zero becomes:
1
hu(0,L/B,d/B) = /B (1L.6)

at/B*=0 0.019 0.038 0.076 0.151 0.302 oo
L/B=1 10.0 4.21 374 344 3.28 322 321
d/B=0.1 1.5 10.0 4.08 356 3.21 302 292 2.89
2 100 402 347 3.10 288 277 272
o0 100 391 329 284 256 240 2928

at/B*=0 0.019 0.038 0076 0.151 0.302 oo
L/B=1 3.33 231 2.14 2.02 1.94 1.90 1.88
d/B=0.3 1.5 333 228 209 194 184 179 1.78
2 333 226 207 190 179 172 1.70
00 3.33 2.24 2.02 1.82 1.67 1.57 1.51

at/B*=0 0.019 0.038 0.076 0.151 0.302 oo
L/B=1 1.67 137 131 125 122 120 1.186
d/B=086 1.5 167 136 129 123 1.18 1.15 1.11
2 167 1.35 128 121 1.16 113 108
o0 1.67 135 126 1.18 1.11 1.06 1.02

Table 11.1: The thermal build-up heat loss factor hy for a rectangular slab on the ground.

The accumulated heat loss that exceeds the steady-state heat loss is denoted Ey(t),
(11.2). For a rectangular slab with constant equivalent insulation thickness d, and d; = 0,
we get from (5.27) and (5.39):

Ew(t) = C(T; — To)LB? - ey(Vat/B,L/B,d/B) (11.7)

Here we have used LB? as volume factor instead of L3. The scale factor C(T; — To) LB? (J)
is the heat content for a ground volume L - B - B for a temperature interval T; — Tg. The
non-dimensional factor for the accumulated heat loss e;; is given in Table 11.2 for the same
set of parameters as for A; in Table 11.1.

Example 11.1:

For reference case A we have:

d=3m AT;—To)L=270 W
L/B=15 d/B=03T5
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at/B*=0 0.019 0038 0.076 0.151 0.302

L/B=t 0 0.087 0.051 0.0864 0.074 0.079
d/B=0.1 1.5 0 0.041 0058 0.076 0.091 0.101
2 0 0.044 0062 0.082 0.101 0.115

00 0 0.052 0.076 0.104 0.134 0.161

at/B*=0 0.019 0.038 0.076 0.151 0.302

L/B=1 0 0012 0.018 0.025 0.030 0.032
d/B=03 1.5 0 0014 0.022 0.030 0.037 0.040
2 0 0015 0.023 0.032 0.041 0.044

00 0 0.019 0.030 0.045 0.062 0.077

at/B*=0 0.019 0.038 0.076 0.151 0.302

L/B=1 0 0.005 0.007 0.010 0012 0.014

d/B =06 1.5 0 0.006 0.009 0.012 0.016 0.018
2 0 0006 0.009 0.013 0.017 0.019

oo 0 0.008 0.013 0.021 0.030 0.039

Table 11.2: The non-dimensional factor e; for the accumulated heat loss, (11.7), for the
thermal build-up under a rectangular slab on the ground.

The value L/B = 1.5 occurs in Table 11.1. For d/B = 0.375 we have to inter-
polate between d/B = 0.3 and d/B = 0.6:

(0.6 —0.375)/(06 - 03)=3  of the case d/B =0.3

(0.375-0.3)/(0.6 —0.3) =1 of the case d/B =0.6

Let 3 denote one day:
tg=1day  aty/B%?=0.75-10"%.3600- 24/64 = 0.00101
The value for the heat loss factor at infinite time is obtained from Table 11.1;

his{c0,1.5,0.375) s 1.78 - 3/4 + 1.11- 1/4 = 1.61

This is in good agreement with the value of h, obtained from Figure 8.2 and
Example 8.1. At time ¢t = O the heat loss factor is obtained from (11.6):

hep(0,1.5,0.875) = 8/3 = 2.67

After 19 days we get:

h(0.019,1.5,0.375) ~ 2.28 - 3/4+ 1.36 - 1/4 = 2.05

115



We get the heat loss from (11.3):

Qi = 270-2.05 = 554 W

This can be compared with the steady-state heat loss:
Qin(00) = Q, ~ 270 1.61 = 435 W

The following table gives the heat loss for a few times:

t(days) |0 19 38 78 151 302 oo
Qu(t) (W) | 720 554 510 476 452 440 435

From (11.7) we get the accumulated heat loss that exceeds the steady-state
heat loss. The data for reference case A give:

C(T; —To)LB* =2-10%-15-12- 8% J==6400 kWh

For example, after 38 days we get:

e13(0.038,1.5,0.375) ~ 0.022 - 3/4+ 0.009 - 1/4 = 0.019
E;(38ty) = 6400 - 0.019 = 120 kWh

This can be compared with the accumulated steady-state heat loss:
E,=Q,-t=435-38.3600-24 J=397 kWh

The following table gives Ey, and E, = Q, - t for a few times:

t (days) |o 19 38 76 151 302
Eu(t) (kWh) |0 77 120 163 203 221
Q.-t (kWh) |0 198 397 793 1576 3150

Example 11.2:

For reference case C we have the following data:

L/B=2 d/B=0.2

The heat loss factor for L/B = 1.5 is given in Table 11.1. For d/B = 0.2 we
have to interpolate between d/B = 0.1 and d/B = 0.3.

For the time scaling we have:

atg/B% = 0.75- 1076 . 3600 - 24/225 = 0.00029
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For example, after the time 0.019/0.00029=66 days we get from Table 11.1:

hey ~ 4.02/2 + 2.26/2 = 3.14
Qu = 2120 W

This can be compared with the steady-state heat loss:

he = hyp(00) m 2.72/2 4+ 1.70/2 = 2.21
Qs = Qul(o0) = 1490 W

The following table gives Qu, Eyp and E, = Q, -t for a few times:

t (days) |0 66 130 260 520 1040 oo
Qu (W) 3375 2120 1870 1687 1576 1515 1490
Ey (kWh) |0 1660 2390 38200 3990 4470 -

Qs+t (kWh) | O 2360 4650 9300 18600 37200 oo

Examples 11.1-2 show that the heat loss expended for the thermal build-up process is
rather small compared with the steady-state heat loss. For reference case A, Ey; is about 10
% of the steady-state heat loss after the first year. For the large slab of reference case C, the
corresponding figure is 20%.

The above results show that the extra heat loss due to the thermal build-up can normally
be neglected.

11.2 HEAT LOSS FOR SHORT TIMES
11.2.1 ONE-DIMENSIONAL APPROXIMATION

The indoor temperature step process at the edge of a slab was studied in Section 6.3.2. It
was shown that the temperature field was approximately one-dimensional at a distance of
vat or more from the edge. The temperature is given by Formula (6.25). 1t depends on the
variable z/v/at and the parameter d/ Vot only.

The one-dimensional heat fiow due to a temperature step above the insulation is given
by (2.4) and (6.25):

wo(®) = 2T /aray (W jm) (11.8)

f(r) = €™ - erfe(r) (11.9)

The function f is shown in Figure 11.1. The following approximation gives an error of less
than 1%:

24T
2+ (14 4/\/m) 1 + /7 - 72

The heat loss Qg (t) can be approximated by the one-dimensional heat flow for short
times. For a slab with the area A we get:

Qult) = A~ gno(t) (small t) (11.11)

e’ - erfc(r) ~ 0<r <00 (11.10)
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Figure 11.1: The function (11.9) which gives the one-dimensional heat loss according to
(11.8).

This approximation is improved in the next section by taken the two-dimensional temperature
process at the edges into consideration.

11.2.2 EDGE HEAT LOSS

At the edges of the slab the temperature process becomes, for short times, two-dimensional
in a plane perpendicular to the edge line. This is the case except for the regions near the
corners, where the temperature process becomes directly three-dimensional,

The two-dimensional edge temperature process is shown in Figure 11.2. The temperature
in the ground at the starting time ¢ = 0 is Ty. The ground surface temperature is 7. The
equivalent insulation thickness for the slab is d. The equivalent insulation thickness for the
ground surface is dy. First we treat the case dy = 0. For the edge problem the thermal
insulation is extended along the whole positive z-axis. The temperature above the thermal
insulation of the slab is Tj.

T:TO T;Ti’f:O fd

VAN IV I TN AN NN N N P

7
/
T, =T qn(x,ﬂ/
o Mleo™To 17 /80t ,

'

z

Figure 11.2: Two-dimensional edge heat loss problem for a thermal build-up.

The heat flow through the insulation is denoted by g,(z,t),0 < z < co. At a distance
z > +/at the temperature process is approximately one-dimensional. Using (11.8) we have:

gn(00,1) = gno(?) (11.12)
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The heat flow near the edge is larger than this one-dimensional heat flow. We obtain the
extra heat flow due to the edge by integrating the difference over the positive z-axis. This
integrated heat loss will be denoted by gqu. (thermal build-up, edge heat loss):

dive(t) = fo ” (@n(2,8) - guo(8) d= (W /m) (11.13)

The edge heat loss gu.(t) has the dimension W/m. It gives the heat loss that exceeds the
one-dimensional one.

The edge heat loss can be expressed by a non-dimensional heat loss factor. The scaling
factor becomes equal to A(Z; ~ 7). The problem contains only the lengths \/at and d for the
case di = 0. The heat loss factor will be a function of the non-dimensional time v/at/d only.
We get:

Give (£} = A(T; — To) - hfy,(Vat/d) (11.14)

The upper index 0 is used to mark that dy = 0.
An analytical expression for the heat loss factor is obtained from Formule 5.3.16, 5.2.12,
and 5.3.13 in [1}:

1 T
h?be(r) = \/_T_I'./c; e - erfe(s) - {1 e erfe ( 72— g2 } ds >0 (11.15)

The integral has been evaluated numerically. The result is shown in Figure 11.3 and Table
11.3. The function h),, is also shown in greater detail in Figure 11.4 for the interval 0 < 1 < 1:

0.6 //

(11.16) —A

oel\-

A i
1N/
i/ / :
0. 2+——111.17)
I/ :
0 —
0 2 A 6 8 10

T
Figure 11.3: Edge heat loss factor (11.15) for an indoor temperature step {Figure 11.2).

We have the following approximation for small values of r:
By, ~ 72(0.5 — 0.6167 +0.5347%) 7 < 0.3 (11.16)

The approximation is shown in Figure 11.3. The maximum error is less than 3% for r < 0.3.
At 7 = 0.45 the error is 9%. From Formulee 5.3.16, 5.3.21, and 5.2.19 in [I| we get an
approximation for large values of r:
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r JoO 05 10 15 20 25 30 35
R, | 0 0.072 0.187 0.293 0384 0.461 00527 0.584

r |40 45 50 60 7.0 80 90 100
KD, | 0634 0678 0.718 0.787 0.844 0.894 0941 0.974

Table 11.3: Edge heat loss factor (11.15) for an indoor temperature step (Figure 11.2).

1 1 ~ In(2)
0 [ R — ——— — —_—
hgp, - (1 ﬁr) (ln(2r) + 2) i 7> 3.5 (11.17)
v = 0.5772

The approximation is shown in Figure 11.3. The maximum error is 4% for 7 > 3.5. At
7 = 2.4 the error is 10 %.

The case with a thermal resistance at the ground surface (d; > 0) is also treated in [1].
The edge heat loss factor is then a function of v/at/d and d)/d. Formula 11.14 is replaced
by:

ge(t) = A(T; — To) - by (Vat/d,di/d) (11.18)

The analytical expression for the heat loss factor is obtained from Formula 5.3.14 in [1]. The
edge heat loss factor is shown in Figure 11.4.

1
hype (T, dy/d)

0.2 — — d,/d=

N
N
o OO

N
\\s

0 — | }
0 0.5 1.0

T
Figure 11.4: Edge heat loss factor {11.18) for a step-change of the indoor temperature (Figure

11.2). The equivalent insulation thickness at the ground surface is dj.

We may now improve approximation {11.11) for the heat loss Qu. Let the area of
the slab be denoted A and the perimeter length L.. For short times, we get the following
approximation, if the three-dimensional effect at the corners is neglected:

Qu(t) ~ A-gno(t) + Lo - gue(t)  (small £} (11.19)
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Inserting (11.8-9) and (11.14) we get the following approximation for the case d; = 0:
A
Qus(t) ~ AT, — Ty) - {E A(r)+ L, - h?bc(r)} r=+ai/d (short times)(11.20)

Here f is given by (11.9) and Figure 11.1, and h),, by Figure 11.3. The edge heat loss is
replaced by (11.18) in the case dy > 0.

Example 11.3:

Consider reference case A. The heat loss Qu was calculated in Example
11.1 with the help of the numerically calculated values of Table 11.1. It is
interesting to compare this with the approximation ( 11.20). We have the fol-
lowing data:

A(T; — Ty) = 22.5 W/m
A/d=12-8/3=32m L[,=40m

After 19 days we have:

t=19-3600-24s
7 = vat/d = 0.370

£(0.37) = 0.690 (Figure 11.1)

h%,.(0.37) = 0.044 (Figure 11.3)

Qi 7~ 22.5- {32.0.690 + 40 - 0.044} = 497 + 40 =53T W

The numerically calculated heat loss is obtained from Example 11.1:

Qu ~ 554 W

The agreement is very good considering that there is a certain error in the
numerically calculated values. The following table gives the heat loss for a few

times:
t (days) |0 19 38 70 150 302
Qi (W) Approximation 11.20 720 537 505 482 476 494

Qu (W) Numerical calculation {Ex.11.1) | 720 554 510 476 452 440
The approximation (11.20) is in this case valid during, say, the first half year.
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Chapter 12

VARIABLE INDOOR TEMPERATURE

This chapter treats cases with variable indoor temperature. Both the indoor step-change and
periodic temperature process are dealt with.

The indoor periodic temperature problem is shown in Figure 4.4. The amplitude of the
temperature is T3 and the time period is t3. The outdoor temperature is zero.

The indoor step-change temperature problem is shown in Figure 4.6. The indoor temper-
ature is increased from zero to T4 at ¢ == 0. The outdoor temperature and the initial ground
temperature are zero.

12.1 PERIODIC INDOOR TEMPERATURE

The temperature process at the edge of a slab was studied in Section 6.3.1. It was shown that
the temperature field is approximately one-dimensional at a distance ds or more from the
edge. Here dj is the periodic penetration depth for the indoor periodic temperature process,
(4.49). The temperature field at the perimeter is essentially two-dimensional, except for the
corners where it is three-dimensional.

The indoor periodic heat loss is denoted by Q,; {(W). A one-dimensional approximation
for this heat loss is given in Section 12.1.1. The approximation is improved in Section 12.1.2
by taking the two-dimensional temperature process at the perimeter into account.

12.1.1 ONE-DIMENSIONAL APPROXIMATION

The one-dimensional temperature field of the inner region of the slab is given by (6.22-23).
It depends on the variable z/ds and the parameter d/ds. The analytical expression for the
one-dimensional heat flow is obtained from (2.4) and (6.22-23):

wolt) = 32/ { Ty < v (12.1)
= %%m/%{e”‘“/*a—%ol} (12.2)

The variables rng and ¢,o depend on ds/d:

o \/(1 + dséd)2 +1 (123)

1 1 d
= 12.4
$no 8 2 arctan (d + d3) ( )
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The heat loss into the ground can be approximated by this one-dimensional heat flow, as
long as the dimensions of the slab are larger than 2d3. For a slab with the area 4 we get:

Al : _
Quilt) = A guo = AT R/ {1 ~0u0) (12.5)

For a sinusoidal indoor temperature T - sin(2at/t3), the heat loss is given by the imaginary
part of (12.5):

Quilt) Angﬁ sin(27(t/t5 — éno)) (12.6)

12.1.2 EDGE HEAT LOSS

The temperature problem at the edge of a slab is shown in Figure 12.1 for the case d; =
0. The thermal insulation is extended to the whole positive z-axis. This two-dimensional
temperature problem is also studied in Section 6.3.1.

e o

Figure 12.1: Two-dimensional temperature problem at the edge of a slab with a periodic
indoor temperature.

The heat flow through the insulation is denoted by ¢,(z,t),0 < z < co. At a distance
¥ > dg the temperature process is approximately one-dimensional. With (12.1) we have:

tn(00,1) = gno(t)  (W/m?) (12.7)

The heat flow near the edge is larger than this one-dimensional heat flow. We obtain the
extra heat flow due to the edge by integrating the difference over the positive z-axis. This
integrated heat loss will be denoted gy, (periodic edge heat loss):

ielt) = [ (an(2t) = quo(t)) d= (W/m) (128)

The edge heat loss gp(t) has the dimension W/m. It gives the heat loss that exceeds the
one-dimensional one.

The edge heat loss can be expressed by a non-dimensional edge heat loss factor. The
multiplicative scaling factor is AT5. The problem contains only the lengths d3 and d for the
case dy = 0. Thus we get:

Gpe(t) = T3 - /S {5, (d/ds) - e*7/1 } (12.9)
The upper index 0 is used to mark that d; = 0.
From Formula 4.9 (with dy = d3 and d; = 0) in {1] we get the following analytical formula:

da

d(1+4) + ds (12.10)

hpe = hy(d/ds) -
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The function hg is given in Section 9.1. It is the basic heat loss factor for the case with
periodic outdoor temperature.
The heat loss factor hge can be expressed by its absolute value and phase:

1 (0
0 —2xs
= |hJ| - e (#3+90) (12.11)

The functions ry and ¢ depends on d/ds:

ro = \/(1+ d/ds)? + (d/ds)? (12.12)

1 d
do = 2, arctan (d—l— da) (12.13)

The function ry tends to 1 and ¢q tends to 0, as d tends to zero. This means that ho tends
to h0 for thin insulations. The functions | hol and ¢.0 are known from Section 9.1 and Figure
9.3. For a sinusoidal temperature variation above the insulation we get the heat loss from
the imaginary part of (12.9) with {12.11) inserted:

ape(t) = ATs - |hg|% - sin(2n(t/ts — 42 — do)) (12.14)

The case with a thermal resjstance at the ground surface (dy > 0) is also treated in [1].
Another length arises, and the heat loss factor depends on two variables:

Qpe(t) = XTs - R/ { B}, (d/ds, d1/d) - 2/} (12.15)
The edge heat loss factor h; is related to the outdoor periodic heat loss factor hl From
Formula 4.9 (with dy = dg) in [1] we get:

e " A(1 +1) + d

The functions r; and ¢; depend on d/d; and d;/ds:

- h3(d/ds, d1/d) = [R}| - — - e~} 4] (12.16)
1

@iyt
1= (dl -+ d3)2 + d.i')

1 d dy ))
b1 = o (arctan (d3+ d) arctan (d3 T (12.18)

The heat loss factors A}, and h} are equal for d = d;. The functions lh},l and ¢, are given in
Figure 9.6.

We may now improve Formula 12.5 for the heat loss Qpi(t). Let the area of the slab be
A and the perimeter length L,. We get the following heat loss approximation:

Qp,'(t) A qno(t) + L, qpe(t) Lopin > 2-ds (1219)

(12.17)

Here Lyin is the minimum dimension of the foundation in the horizontal plane. We may
write the expression for the heat loss (d; = 0) in the following way:

L 2ni(t/ta—duo) + L B 1 .ezm‘(t/ts—éﬂ—%)} (12.20)
o

rno

Qp,'(t) 2 ATy ?R/Q‘ {%

Here rpo and ¢ are given by (12.3) and (12.4). The variables ry and ¢g are given by (12.12-
13). The absolute value of hg and the phase qbg are shown in Figure 9.3. For the case dy # 0
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the functions rg, ¢o, |hg| and ¢2 are replaced by r1, ¢y, |hl| and @1 respectively.

Example 12.1:

Consider a sinusoidal indoor temperature with the amplitude T3 = 5°C
and the time period t3=1 week. This amplitude is quite large for ordinary
indoor temperatures. For reference case A we get:

d=3m  AsA/d=240 W
ds = /T-24-2600-0.75- 10-6/7 = 0.38 m

The one-dimensional approximation is given by (12.6). The functions r,p and
@no are given by (12.3-4):

roo =107 ¢n0 = —0.0095

The approximate heat loss becomes:

Q,i(t) ~ (240/1.07) - sin(2n(t/ts + 0.0095)) = 224 - sin(2w(t/t3 + 0.0095))

The approximation is improved by taking the edge heat loss into account. We
have for reference case A:

dfds =789  ATsL, =300 W

From Figure 9.3 we get:
|hg| =0.045 49 =0.12
From (12.12) and (12.13) we get:

ro = 8.38 $o = 0.116

The edge heat loss becomes:

300 - 0.045 - (1/8.38) - sin(2x(t/ts — 0.12 — 0.116)) = 1.6 - sin(2x(¢/t3 -- 0.24))

In total we get the improved approximation (12.20):

Qpi(t) ~ 224 - sin(2n(t/ts + 0.0095)) + 1.6 - sin(2n(t/ts — 0.24)) W

We see that the contribution from the edge heat loss is negligible compared
with the one-dimensional heat loss approximation.
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I'or the case t3=~1 month we get in the same way:

@pi(t) ~ 210 - sin(2x(t/t3 + 0.019)) + 4 - sin(2#(t/ts — 0.22)) W

For the case t3=1 year we get:
Qpi(t) = 158 - sin(2x(t/t5 + 0.048)) + 32 - sin(2x(t/t; — 0.17)} W
Here the edge heat loss is about 20 % of Q.
These heat losses should be compared with the steady-state heat loss and

the heat loss due to the outdoor periodic temperature. From Examples 8.1
and 9.1 we have the following heat losses for reference case A:

Q.= 42T W
Qp(t) = —144 - sin(2x(t/to — 0.094)) W (to = 1 year)

For this example, the heat loss due to a periodic indoor temperature (t3 = 1
week, T3=>5 °C) is of the same magnitude as the steady-state and the periodic
heat losses (tg = 1 year, T)=10 °C)

Example 12.2:

Consider a sinusoidal indoor temperature Ty - sin{2x(¢/t3)) with the am-
plitude T3 = 5°C and the time period ¢3=1 week. For reference case A we
have from the above example:

Qpi(t) /e 224 - sin(27(t/t3 + 0.01)) + 1.6 - sin(2w(¢t/ts — 0.24)) W

For reference case B we get:

Qpi(t) = 116 - sin(2m(t/tg + 0.005)) + 0.3 - sin(2x(¢/t; — 0.25)) W

For reference case C we get:

Qpi(t) ~ 1050 - sin(2x(t/13 + 0.01)) + 3.6 - sin(2#(¢/ts — 0.24)) W

The slab of reference case B has a larger insulation thickness than case A.
Case C concerns a slab with larger area than case A, but they have the same
insulation thickness. The larger slab obtains a relatively smaller contribution
from the edge heat loss.
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The steady-state heat loss @, for the three cases A,B and C are 427, 262
and 1404 W, respectively. The heat loss due to the periodic indeor tempera-
ture gives a heat loss of the same magnitude as the steady-state component.
It should however be noted that we have used a large amplitude for the indoor
temperature. The temperature swing is 5+5=10 °C.

12.2 STEP CHANGE OF THE INDOOR TEMPERATURE

The basic indoor step-change temperature process is illustrated in Figure 4.6. The indoor
temperature is Ty for ¢ > 0. The ground surface temperature and the initial ground temper-
ature are zero. The heat loss due to an indoor temperature step is denoted by Q4 {W).

This indoor temperature step process is similar to the thermal build-up process illustrated
in Figure 4.7, which process was treated in Chapter 11. The indoor temperature step 1s T; —Tp
instead of Ty4. All formulez in Chapter 11 can therefore be used.

The one-dimensional approximation of the heat loss for the slab with the area A is from
(11.8) and (11.11) in Section 11.2.1:

Qui(t) » AT% -f(Vat/d) (12.21)

The temperature step 7; — Tp has been replaced by Ty4. The function f is given by (11.9) and
Figure 11.1. The approximaticn is valid for short times.

The approximation (12.21) can be improved by taking the edge heat loss into consid-
eration. In Section 11.2.2 the edge heat loss g, = qu. is given. It gives the heat loss that
exceeds the one-dimensional loss. For the case dy = 0 we get from (11.14):

gte(t) = ATy - hg(Vat/d)  (W/m) (12.22)

The upper index O for the heat loss factor indicates that the thermal resistance at the ground
surface is zero. The heat loss factor k), is given by (11.15), Figure 11.3, and Table 11.3. For
the case di > 0 we get from (11.18):

gre(t) = ATy b (Vat/d,di/d) (W /m) (12.23)

The edge heat loss factor is given in Figure 11.4.
Let the area of the slab be A and the perimeter length L.. Analogous with (11.20) we
get the following improved formula:

Qui(t) ~ AT, - {% () + L. - h?bc(r)} r = at/d (12.24)

Here f is given by Figure 11.1 and A%, by Figure 11.3. The edge heat loss L, - kY, is replaced
by L, - kY, for the case d; > 0.

Let us now consider a single temperature pulse for the indoor temperature. The puise
starts at time ¢, and has a duration ¢4. It can according to (10.21) be written as:

Ty (H(t—t,) — H{t — t, — t4)) (12.25)

Heaviside’s step function H is defined in (4.17). The heat loss during the pulse is given by:

Q(t) =~ ATy - {-‘3 () + L, - hg’be(f)} r e falt—8)/d 1, <t < ts+(12.26)

After the pulse we get:
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Q) w37 {5+ (1) = ) + Lo (Wanlr) - Hislr)) } (12.27)

r=rfalt—t,)/d mi=+falt—t, —t4)/d t>1ts+14 (12.28)

Figure 12.2 shows the temperature pulse and the heat loss for Example 12.3.

Example 12.3:

Consider a temperature pulse in the indoor temperature with the follow-
ing data:

Ty=5°C ty = 1 week t, =0

-

Remaining data are taken from reference case A. We get:

d=3m a=0.75-10"%m?/s
ATy - A/d=240 W  AT4L, =300 W

The one-dimensional heat loss approximation is given by (12.21). The func-
tion f is given in Figure 11.1. At the start time 7 = 0 we get f(0)=1, and the
heat loss becomes:

Q(0) =240 W

The edge heat loss is zero at this time. Immediately before the end of the
pulse we get:

r=1/0.75.10-6.7.24 - 3600/3 = 0.22
f(0.22) = 0.793

The one-dimensional heat loss approximation gives:
Q(ts —0) ~ 240-0.793 = 190.3 W

The edge heat loss is given by the latter part of (12.26).
From Figure 11.3 we get:

RY,.(0.22) = 0.0188

The edge heat loss becomes:

300-0.0188 =56 W
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This extra heat loss is negligible in comparison with the one-dimensional con-
tribution. Qur improved approximation becomes:

Qts —0) ~ 196 W

Immediately after the end of the pulse we get the heat loss:

Q(ts+0) ~ 196 — 240 = —44 W

The temperature step with the negative amplitude T4 gives at its start
(t = t4) the heat loss -240 W. The negative sign means that heat flows into
the building from the ground. The net effect is 44 W of heat lowing into the
building. The heat has been accumulated in the ground during the pulse.

The following table gives the heat loss (12.26-27) for a few times:

t (weeks) | 0 1-0 1+0 2 3 4 5
Q) (W) | 240 196 -44 -11 -68 -46 -33

The result is shown in Figure 12.2.

For a pulse with the duration of one month (4 =1 month) we get:

At the beginning of the pulse: @ =240 W
At the end of the pulse: @ =~ 15144+ 19.7=17T1 W
Immediately after the end of the pulse: Q ~ —69 W

For a pulse with the duration of one year (¢4 =1 year) we get:

At the beginning of the pulse: Q@ = 240 W
At the end of the pulse: @ ~ 72.14+94.8=16T W
Immediately after the end of the pulse: Q = —7T3 W

The first number for the heat loss at the end of the pulse gives the one-
dimensional approximation, and the second one gives the edge heat loss.

Example 12.4;

Here we will study a pulse with Ty = 5°C, t4—1 week for reference cases
A,B and C. The heat losses are given at the start time of the pulse, at the end
of the pulse, and immediately after the end of the pulse.

Reference case A, according to Example 12.3:
At the beginning of the pulse: @ = 240 W

At the end of the pulse: @ ~ 1903+ 56=196 W
Immediately after the end of the pulse: Q ~ —44 W
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Figure 12.2: Indoor temperature pulse and corresponding heat loss for Example 12.3.

Reference case B:

At the beginning of the pulse: @ = 120 W
At the end of the pulse: Q =~ 106.4+ 1.6 = 108 W
Immediately after the end of the pulse: Q = —12 W

Reference case C:

At the beginning of the pulse: @ = 1125 W
At the end of the pulse: Q =~ 892.1 + 12.3 =~ 904 W
Immediately after the end of the pulse: @ ~ —221 W

For the smaller slab the edge heat loss is a relative larger part of the heat loss
than for the larger slab. This is also the case for a slab with thinner insulation
compared with a slab with thicker insulation and same area.
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Chapter 13

DISCUSSION OF SIMPLIFICATIONS

13.1 GROUNDWATER

Flowing groundwater is often assumed to be a very important parameter in the calculation of
the heat loss. For instance, the Swedish building code assumes a groundwater level 6 meters
down. The groundwater temperature is assumed to be constant and equal to the annual
mean outdoor temperature Ty during the whole year. In order to study this we will consider
a rather simple two-dimensicnal case.

We will first consider the general heat balance equation in the case with groundwater
flow. The flowing groundwater gives the following convective heat flow term:

CuTqw  (W/m?) (13.1)

Here C,, is the heat capacity of water, 4.18 - 10° J/m% K. The groundwater flow is given by
the vector ¢y (z,y,2,t) (m2 /m?s or m/s). The heat content is chosen to be zero for T' = 0.
The convective heat flow gives an additional term in the heat balance equation (2.1):

aT ‘

We introduce a scale factor gyo and a dimensionless vector ¢4 for the groundwater flow:

Fw = quo * qu (13.3)
We consider the case with a constant thermal conductivity. Then we get from (13.2-3):

14T Cwwo 1

—— =V (VT - T G .

L =V (v - Cistrg) (13.9)
A new length £ (m) arises in the problem:

A
£= 135
Cuquo ( )

In the scaling of the thermal processes including groundwater flow, this length must be
accounted for.

We now consider the two-dimensional steady-state case for a slab on ground shown in
Figure 13.1. The depth to the groundwater table is Hy, (m). The lower level of the ground-
water region is assumed to be extended to z = co. This case gives a larger influence on the
heat loss than a case with a groundwater region of finite depth. We consider the case with
horizontal and constant groundwater flow: @, = ¢y + £. Here  is a unit-vector pointing in
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Figure 13.1: Building with a groundwater table at the depth H,, below the ground surface.

the z-direction. For simplicity, we assume that the thermal conductivity is the same in the
ground above and below the groundwater table.

The groundwater flow ¢, is given by Darcy’s law. For our simple case, the constant
groundwater flow is given by, {18]:

quw — K * I (13.6)

Here K is the hydraulic conductivity in the groundwater region. The factor 7 (m/m) is
the slope of the groundwater table. It gives the pressure drop per unit length in the flow
direction.

The hydraulic conductivity varies between 1071! m/s for clay and 10! m/s for gravel.
The slope of the water table varies between, say, 1/1000 and 1/100. Then the groundwater
flow varies between 1071% and 10~° m/s. The upper limit 10~ m/s exists only under rather
extreme conditions with high pressure gradients in coarse sand and gravel. The parameter
¢ is given by (13.5). With a ground water flow in the interval 107 < ¢,, < 1073 m/s the
parameter £ will lie in the range from 0.5 mm to 5-107 m, (A=2,Cypm~4- 10%).

The steady-state heat loss problem shown Figure 13.1 depends on the two parameters d
and B only, if groundwater flow is not accounted for. The heat loss factor depends on one
non-dimensional parameter, h;(d/B). The heat loss factor will depend on the two additional
parameters £ and H,,, when the groundwater is accounted for. We get:

gs = MT; - To) - hs(d/ B, Hu/B, B/8) (13.7)

For the case H, = oo the heat loss factor is given by h,(d/B).

The heat loss has been calculated numerically for a few cases. The result of the calculation
is given in Table 13.1 for different values of H, /B and B/Z, while d/B is fixed to 0.1. The
difference Ah, gives the change of the heat loss factor compared with the case without
groundwater flow. The reference heat loss factor h,(0.1) is given by Figure 8.11. It is equal
to 2.33.

Ahg = ho(d/B, Hy/B, B/€) — hy(d/B) (13.8)

Consider a case with a ‘normal’ groundwater flow g, &~ 107® m/s. With A = 2.0 W/mK
and B » 10 m the magnitude of B/£is 10. The maximum difference in heat loss is 5% for a
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H,/B B/t Ah, Ah,/h,(d/B)

00 - 0 0

0.9 0.0001 | O 0.0

0.9 1 0.01 0.006

0.9 10 0.09 0.05

0.9 1000 | 0.17 0.10 ¢/B=01
0.5 10 0.20 0.11

0.5 1000 | 0.44 0.25

0.3 10 0.35 0.20

0.3 1000 | 0.88 0.49

Table 13.1: The difference in heat loss factor due to groundwater flow.

groundwater table at the depth of one house width.

In general, the effect due to the groundwater flow can be neglected for soils of low per-
meability such as clay.

The figures in Table 13.1 show that the influence from the groundwater normally is small.
This can be understood from the following physical interpretation. The groundwater receives
heat from the ground under the house and moves downstream with higher temperature. After
the water has passed the house the ground becomes colder, and the water releases the extra
heat to the ground. This gives a displacement of the isotherms in the ground. It will not
change the heat loss from the house in any larger extent.

13.2 FREEZING OF THE GROUND

The effect of freezing has been neglected in the previous chapters. In order to estimate
the error due to this simplification, we will calculate the heat loss with a numerical model
that takes into account freezing and the different thermal properties in frozen ground. The
numerical model is presented in [9].

We choose a two-dimensional case in order to simplify the numerical calculation, and to
get a better accuracy than a three-dimensional calculation has.

The outdoor temperature varies sinusoidally as shown by the upper curve of Figure 13.2.
We take the following data:

B=8m d=3m di =0

A=15W/mK «¢=0.75-10"%m?/s (13.9)
T; = 20 °C To=5°C Ty =10°C '
to =1 year

The previously given heat loss formulea neglect the effect of freezing. The steady-state
part is given by (8.24). The periodic heat loss for an edge is given by (9.2). In the two-
dimensional case we have two edges. This gives a factor 2. We get the following formula for
the heat loss:

4(t) = A(T; — To) - ho(d/B) — 27Ty - |hQ(d/do)]| - sin(2n(t/to — ¢3)) (W/m)  (13.10)

The heat loss factors are given by Figures 8.11 and 9.3. From {(13.10) with data according to
(13.9) we get:

q(t) = 30.2 — 7.2 - sin(2x(t/to ~ 0.094)) W/m (13.11)
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This heat loss is shown in Figure 13.2 by the continuous curve.

The freezing of the ground depends on the thermal properties of the ground, the outdoor
temperature and the heat flow from the slab. The thermal conductivity of frozen ground is
denoted by A; (W/mK) and the heat capacity Cy (J/m®K). The volumetric latent heat of
the ground is denoted by L¢ (J/m?®). It is determined from the water content of the ground.
We take the following data:

A =2.5 W/mK
C; = 1.5-10°% J/m®K (13.12)
Ly = 225-333-1000 =175 -10°% J/m®

The water content of the ground is 225 kg per cubic meter. The calculated maximum frost

depth far away from the slab becomes about 1 m. The calculated heat loss for the slab is
shown by the dashed curve in Figure 13.2. The heat loss is a little larger when the freezing

Tyt (°0)

15

1G~///,/””’—-—
54

0

-5 \ /

g{t) (W/m)
40

304+— B E— e

20+

— — — with freezing

109 without freezing

G 1

]
0 tg/2 to

Figure 13.2: The heat loss with and without taking freezing of the ground into account. Data
are given by (13.9) and (13.12). The two horizontal lines are the annual mean values of the
heat loss.

of the ground is taken into account. The maximum difference is 5 %. The annual mean value
is 2 % higher. The two horizontal lines show the annual mean heat loss for the two cases.
The accumulated heat loss during the heating season from t, = 4.5 /12-t5 to t; = 12.5 /12 - tg
(see Figure 15.1) becomes 4% higher when the freezing of the ground is accounted for.

The thermal conductivity is larger for frozen than for unfrozen ground. This increases
the heat loss. The example shows that the error neglecting freezing is small. The heat loss
is given with good accuracy by the formulz given earlier which neglect the freezing of the
ground.

136



13.3 SNOW

Snow on the ground acts as thermal insulation. The snow crystals build a porous structure
with a lot of stagnant air. The thermal resistance for deep snow is therefore large. This effect
of snow has been neglected in the previous chapters. In order to estimate the error due to
this simplification the heat loss is calculated numerically for a case with snow. The outdoor
temperature varies according to the top curve in Figure 13.3. We consider the same case as
in {13.9) with snow during the three coldest winter months. The following snow data are
used in the example:

donow = 0.2 m (during three months)

Asnow = 0.15 W/mK (13.13)
The equivalent insulation thickness (3.22) becomes:
Ad
B= Sy 2T (13.14)
Aanow

The value of d; during the year is shown by the middle curve in Figure 13.3.

The calculated heat loss with snow (and freezing of the ground) is shown in Figure
13.3. The heat loss, when the snow and freezing are neglected, is given by (13.11} and the
continuous curve in Figure 13.3. The heat loss becomes smaller when snow is accounted for.
The maximum difference is 25%. The annual mean heat loss is 12 % lower when the snow is
accounted for. The accumulated heat loss during the heating season from ¢, == 4.5/12-#p to
ty = 12.5/12 - t5 (Figure 15.1) becomes 12% lower when snow is accounted for.

Near the slab there is no freezing of the ground under the snow. Just before the first
snow falls the depth of frozen ground is 1 dm. Just after the snow fall, the frozen ground
thaws. For the region more than 4 meters from the slab we get a thin layer of frozen ground.

During the winter, the error due to the neglected snow is rather large. To get a higher
accuracy the snow must be accounted for in some way. One idea 1s to use a constant thermal
resistance at the ground surface during the whole year. A natural choice is to use the annual
mean value of dy:

_0-9+2-3
T12
The annual mean value of the snow depth is used over the whole year.

If the freezing of the ground is neglected, we get an expression similar to (13.11) for the
heat loss. We get:

d —05m (13.15)

a(t) = A(Ti~To) ke (d/ B, dy /d)—2)Ty-}h(d/do, d1/d)|-sin(2x(t/to—$1)) (W /m)(13.16)

The heat loss factors are given in Figures 8.4 (L/B = oo) and 9.6. We get the following heat
loss:

¢(t) = 27.3 — 4.9 - sin(2x(t/to — 0.13)) W/m (13.17)

The heat loss is shown by the continuous curve in Figure 13.4. The dashed curve is the
numerically calculated heat loss shown earlier.

The maximum difference in heat loss between the two cases shown in Figure 13.4 is 10%.
The difference in the annual mean heat loss is 2 %. The difference in the accumulated heat
loss during the heating season is 1%.

The example shows that we get a fairly good approximation just by neglecting the snow.
The accurmnulated heat loss during the heating season becomes 10 % too high for the example
above. In order to get a better approximation, the heat loss is calculated for a ground surface
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Figure 13.3: The heat loss with and without taking the snow on the ground surface into
account. Data are given by (13.9),(13.12) and (13.14). The two horizontal lines give the

annual mean values of the heat loss.
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Figure 13.4: The heat loss with snow during the winter and with a constant insulation d;
equivalent to the average snow depth during the year. Data are given by (13.9),(13.12) and

(13.15). The two horizontal lines give the annual mean values of the heat losses.

139



with constant thermal resistance. The thermal resistance is given by the annual mean value
over the year. The maximum error in the heat loss is 10 % for the example given above,
while the error for the annual mean value is a few percent only.

13.4 STRATIFIED GROUND

The thermal conductivity in the ground has been constant in the cases considered so far. It
is quite common that the soil consists of strata with different thermal conductivities. The
difference of conductivity is considerable between soil and rock.

We will consider the two-dimensional case shown in Figure 13.5. The thermal conduc-
tivity is A for 0 < z < Hy, and Ay for z > Hy. The heat loss is calculated numerically. We

1

-\ | Ty+T,esin (2T0H/1))
/ A\
\

q(t) H

~—]

Aq

N

Figure 13.5: Heat loss for a slab with a ground consisting of two layers of soil with different
thermal conductivities.

use the same data (13.9) as in the previous sections. The lower layer of the ground consists
of granite with the thermal conductivity:

M=35 W/mK (13.18)

The heat loss is shown in Figure 13.6 for three different values of H;. From the figure
we see that the annual mean heat loss for the slab varies with Hy. The steady-state heat loss
for the three cases is:

Hi(m) |11 29 o
gs (W/m) | 35.4 314 30.2

We see from Figure 13.6 that the periodic part of the heat loss is virtually independent
of Hy. The different thermal conductivity at the depth H; does not change the periodic heat
loss, since the periodic penetration of the temperature is limited.

The steady-state heat loss for a soil with constant thermal conductivity is given by (8.24):

i
=
Consider a homogeneous ground of the thermal conductivity 1. The steady-state heat loss
for this case gives the upper limit for our slab shown in Figure 13.5. A homogeneous ground

gs = MT; — To) - ho(d/B) d

(13.19)
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Figure 13.6: Heat loss for a slab with a ground consisting of two layers of soil with different
thermal conductivities. Data from (13.9) and (13.18)

of the thermal conductivity A gives in the same way a lower limit for the heat loss. From
(13.19) and Figure 8.11 we get the interval limits for the heat loss:

A =15 W/mK: gs|, = 30.2 W/m (13.20)
A=35W/mK: gy, =41.8 W/m (13.21)

The heat loss for varying H; may be obtained from a suitable weighing of these values.
In Section 8.1 the equivalent thickness D,, of the soil was discussed. It is given by:

B
Dp=—-d (13.22)

h,
A reasonable approximation for the heat loss is obtained by a weighing of the heat loss interval
limits (13.20-21) with respect to Hy and D,,. We chose the following approximation of the

heat loss for a ground with the conductivities A and A;:
4y &= anA Hy > Dy,

e Di; . qsl)‘ + DmDmHI . q3|'\1 Hl < Dm (1323)
The equivalent soil thickness Dy, is given by (13.22) using the thermal conductivity A. The
approximation (13.23} is of course possible to use for three-dimensional cases as well. The
heat loss ¢, is then replaced by ;.
Other types of weighing formulz are of course possible. We fiest our approximation for
the examples above. First the heat loss factor must be calculated:

8
he(3/8) =134 Dm=15 -3=29Tm (13.24)

The approximation for the heat loss becomes:
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11 297-1.1

=11m: ——.30.24 T~ . 41.8 =37.
Hi=11m €™ oo + 297 41.8 =375 W/m
29 297-22
Hl =29m: gs =~ 5"“’9*;7‘ -30.2 4 W -41.8 = 30.5 W/m (1325)

The error in the approximation is 3% and -6%, respectively.

13.5 SLAB WITH REINFORCED EDGES AND
UNDERLYING THERMAL INSULATION

The slabs considered so far are laid directly on the ground with the thermal insulation
along the ground surface. The ground under the house is described as a semi-infinite region
of homogeneous material. This is of course a simplification. Concrete slabs are usually
reinforced at the edges, and dug down a few decimeters. The thermal insulation can lie
over or under the concrete slab. Figure 13.7 shows a slab of the latter type. The type of
reinforcement of the edges may vary. We have used a rectangular type for simplicity.

)

i
//1|,/ / 0.6 /
YOID Vi

Figure 13.7: Concrete slab with reinforced edges and underlying insulation.

The underlying insulation is of mineral wool (A; = 0.04 W/mK) of the thickness 0.08 m.
We choose the same data (13.9) as in the previous sections. The data for the reinforced edge
are given in Figure 13.7. The thermal properties for the concrete are assumed to be the same
as for the soil. The numerically calculated heat loss is shown by the dashed curve in Figure
13.8.

The prediction of the heat loss by our formulz for this two-dimensional case is obtained
from (13.11). It is shown in Figure 13.8 by the continuous curve.
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Figure 13.8: The dashed curve gives the numerically calculated heat loss for a slab with
reinforced edges according to (13.9) and Figure 13.7. The continuous curve gives the heat
loss according to (13.11).

The annual mean heat loss and the amplitude of the heat loss become:
] Formula 13.11 Numerical calculation
Qs (W) 30.2 315

Qplmaz (W) 72 74

The difference in the annual mean value is about 4%, and in the amplitude of the periodic
component 3%.

143



Chapter 14

DESIGN RULES

The accumulated heat loss during the heating season and the peak effect are of interest in
energy balance calculations for a building. Simple design rules based on the presented results
are given for a slab on the ground. The basic case with a rectangular slab and constant
equivalent insulation thickness is treated in detail. Some complications and the way how to
handle them are discussed. The design rules are available as a PC-program. See Section 14.5.
This chapter is at the same time a brief summary of the previous chapters of Part B.

14.1 OUTDOOR TEMPERATURE

The outdoor temperature determines the heat loss from the building. It may vary strongly
during the day and from day to day. However it has been shown that variations with short
time period or duration can be neglected. The outdoor temperature can be approximated by
a simplified expression.

It should normally be sufficient to use the following approximation of the outdoor tem-
perature for the calculation of the heat loss during the heating season:

Tout(t) =To+T- SiIl(Z?rt/to) (14.1)

Here T} is the annual mean temperature, and 77 is the amplitude of the sinusoidal temper-
ature variation with the time period tg=1 year. The function (14.1) may be determined by
fitting to mean values over, for instance, every week of the year for the actual place. The
temperature (14.1) is shown by the continuous curve in Figure 14.1.

The sinusoidal temperature represents a mean temperature during the winter months.
In order to calculate the peak effect we need to represent the outdoor temperature in greater
detail, in particular during the coldest period. It should normally be sufficient to use a single
suitably chosen pulse, which starts at ¢ = ¢1 and ends at t = t; + t;. The magnitude of the
pulse is T3. The value of T3 is negative for a eold spell. The maximum heat loss is obtained
at the end of the pulse. The chosen representation of the outdoor temperature is shown in
Figure 14.1.

14.2 HEAT LOSS DURING HEATING SEASON

The heat loss to the ground is denoted by Q(t) (W). For the outdoor temperature (14.1) we
get a steady-state (time-independent) component @, and a periodic component Q,(t):

Q) = Qs + @p(t) (14.2)
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Figure 14.1: Representation of the outdoor temperature for the calculation of the energy
demand (continuous curve) and the peak effect (continuous + dashed curve).

The steady-state component is treated in Chapter 8, and the periodic one in Chapter 9. For
a rectangular slab with constant insulation thickness we have according to formula (8.2) for
the steady-state heat loss:

Qs = MT; — To)L- hy(L/B,d/B) (14.3)

Here L is the length of the slab, and B is the width. The insulation thickness is given by
the equivalent length d = Ad;/);. See Section 3.2. The non-dimensional heat loss factor A,
1s given in Figure 8.2. The periodic component is obtained from the imaginary part of (9.9):

Qp(t) = —ATy- (2L + 2B) - |hy| - sin(2n(t/to — 43)) (14.4)

The functions |hg| and :;Sg depend on d/dy. They are given in Figure 9.3. The periodic
penetration depth dy = y/atg/n is discussed in Sections 4.5.2 and 6.1.1. In the formula abave
the thermal resistance at the ground surface is neglected (d; = 0).

Consider a heating season between the time f; and #;. The total heat loss E, (year)
during the heating season is given by the integral of (14.2) over the time t, < t < t;,. This
gives the following formula for the accumulated heat loss during the heating season:

Ey, = XNT; — To)L + ho(L/B,d/B) - (ty — ta)+ (14.5)

+ ATy(2L + 2B) - |h3| . %07; . {cos(21r(tb/to - ng)) — cos(2n (s /t0 ¢g))}

14.3 PEAK EFFECT DURING THE WINTER

Let Q;(t) denote the heat loss due to the cold spell. The total heat loss for a temperature
according to (14.1) with a superimposed cold spell as shown in Figure 14.1 becomes:

Q(t) = Qs + Qp(t) + Q:(2) (14.6)

The formula for Qy(t) is obtained from Section 10.3.2. For a rectangular slab we get from
(10.22):
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Qut) = —ATy(2L + 2B) - K (\/a(t _ tl)/d) <t<t+ig (14.7)

The negative sign is due to the fact that T% is negative for a cold spell. The function h9(r)
is given in Figure 10.2. The formula neglects the thermal resistance at the ground surface.
The largest value for Q;(t) is obtained at the end of the cold spell: t = #; + ¢5.

We choose the time #; + 12 so that the maximum heat loss due to the cold spell coincides
with the maximum of the periodic heat loss. With (14.8), (14.3-4) and (14.7) we get the
following formula for the peak effect during the year:

Q) maz = MT; — To)L - hy(L/B,d/B) + AT1(2L + 2B) - |hJ)|

—XT,(2L + 2B) - Y (Vatz/d) (14.8)

The three functions in the formula are obtained from Figures 8.2, 9.3 and 10.2.

Figure 1.6 and Example 10.5 show that the contribution from the temperature pulse is
normally quite small. A thermal resistance at the ground surface strongly reduces the heat
loss Q;(t). This makes it possible to neglect the heat loss due to the pulse, if there is snow
at the ground surface. The maximum heat loss is then obtained from the first two parts of
formula (14.8).

Q)| mae = AM(T: —~ To)L - he(L/B,d/B) + XTy(2L + 2B) - |h| (snow)  (14.9)

14.4 COMMENTS

During the first years of a new building there is a thermal build-up of a warm region below
the foundation. The heat loss for this transient thermal process is treated in Chapter 11. For
small buildings the extra heat lost in raising the temperature in the ground during the first
year is small. See Example 11.1. After the first year it can be neglected. For large buildings
the extra heat loss must be considered during the first years. Formule for this heat loss are
given in Chapter 11,

Formule for the steady-state heat loss for slabs with shapes other than the rectangular
one are given in Section 8.5. The periodic heat loss is calculated according to Section 9.2.
The heat loss due to a temperature step at the ground surface is calculated according to
Section 10.2.

The design rules presuppose that the ground is homogeneous with constant thermal
properties. Effects due to freezing of the ground and flowing groundwater are neglected.
These processes are studied in Chapter 13.

There is normally a thermal resistance between the ground surface and the air. In the
given formulz a constant value for the thermal resistance is assumed. Except for the case with
snow, this thermal resistance can normally be neglected for the steady-state case. Formula
for the periodic component are given in Section 9.1, and for the temperature step in Section
10.1.3. The examples in Chapter 9 and 10 show that the periodic heat loss and the heat loss
due to a cold spell are heavily damped when there is snow at the ground surface. The heat
loss for a cold spell of 1 month can be neglected when there is a snow depth of 1 dm or more.
The same conclusion is valid for periodic temperature variations with a time period less than
one month.

If necessary, the cutdoor temperature can be represented by further terms. The heat loss
due to these terms is superimposed on the first heat loss approximation. The other terms
may consist of further periodic temperature variations or temperature pulses. See Sections
4.3.1 and 4.3.2.
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Periodic temperature variations and temperature steps may be superimposed on the
constant indoor temperature T;. These may give quite large effects if the indoor temperature
swing is large. Formula for these heat losses are given in Chapter 12.

14.5 PC-PROGRAM FOR THE DESIGN RULES

The formule of the above design rules for a rectangular building with a foundation of the type
slab on the ground with constant insulation thickness are available as a small PC-program
described below. The program runs under MS-DOS on IBM-PC and compatible computers.
The input is given interactively. The manual is given in the supplementary report (8-

The design rules assume an outdoor temperature of the type (14.1). With an arbitrary
phase ¢ we get:

Tout(t) = To + T - sin(27(taaya/365 — 4)) (14.10)

Here t44y, is the time in days. A temperature pulse is supertmposed on the outdoor temper-
ature (14.10) during the coldest period of the winter. The magnitude of the pulse is T and
it has the duration 5.

Input data

L Length of building (m)

B Width of building (m)

d; Insulation thickness (m)

Ai Thermal conductivity of the insulation (W /mK)

T; Indoor temperature (°C)

To Annual mean outdoor temperature (°C)

T Amplitude of the periodic outdoor temperature (°C)
A Thermal conductivity of the ground (W/mK)

C Volumetric heat capacity of the ground (J/m3K)

ta Start time for the heating season (days)

1 End time for the heating season (days)

Ty Increase of outdoor temperature due to temperature pulse (°C)
to Duration time for the pulse (days)

Restrictions on input data

There are the following restrictions on the input variables:

L:B)dia’\t',A:C:tﬂ >0 (1411)

B<L (14.12)

did/ X > 0.05 (14.13)
B

ta <1y (14.14)
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Output data

Qs Annual mean heat loss (W). It is given by (8.2)
and Figure 8.2.
Qplmaz Amplitude of the periodic heat loss (W). It is

given by the absolute value of (9.9), where the
absolute value of k, is given by Figure 9.3.

Py The phase delay, (-), for the periodic heat loss
is given by Figure 9.3.

E, Accumulated heat loss over the heating season
(J,kWh). It is given by (14.5).

Q)| mas Peak effect during the winter (W). It is given by

(10.22) and Figure 10.2.
With these output data the heat loss (except for the pulse) becomes:
Qt) = Qs + Qpl oz - SIN(27(Laays /365 — & — ¢p)) (14.15)

An example

Reference case A is used as a test example. Time zero corresponds to the time 00.00 on 1 of
January,

Input data:
L=12m
B=8m
d,' =0.08 m
A; =0.04 W/mK
T, =20°C
T() =5°C
T, =10°C (14.16)
A =1.5W/mK

C =20-10° J/m3K

t, = 8.5/12- 365 = 258.5 days

ty = (12 + 4.5)/12 - 365 = 502 days
Ty = --15°C

tz = 7 days

Output data:

Qs =42TW (14.17)
Qplinae = 144 W (14.18)

p = 0.094 (14.19)
E, =9.54-10° J = 2650 kWh (14.20)
Q(t)|,,.p =672 W (14.21)
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Chapter 15

EXAMPLES

15.1 TOTAL HEAT LOSS FOR THE REFERENCE CASES

The various heat loss components for the reference cases have been treated separately in the
previous chapters. The results are summarized in this chapter in order to get a complete
picture of the heat loss for the slabs. The reference cases are defined in Section 1.7.

We have a constant indoor temperature:

T: = 20°C (15.1)
The outdoor temperature is:
Tout(t) = 5+ 10 - sin(2xt/2) (°C) to = 1 year (15.2)

In order to estimate the peak heat loss, a cold spell is superimposed on this temperature.

The pulse starts in the middle of the winter () = 3#0/4) and stops a week later (t; = 1

week). The outdoor temperature is shown in Figure 15.1. The heating season starts in the

middle of September (¢, = 4.5/12-t) and stops in the middle of May (¢, = 12.5/12 - t).
The lengths and widths of the slabs are:

L=12m B=8m reference cases A and B (15.3)
L=30m B=15m reference case C (15.4)

The equivalent insulation thicknesses are calculated in Example 8.1:

d=3m reference cases A and C (15.5)
d=86m reference case B (15.6)

The periodic penetration depth is obtained from Example 9.1,
dg=2T74m (15.7)
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Example 15.1. Reference case A.

The heat loss for reference case A is given below. The result has been
already shown in Figure 1.6. The steady-state heat loss is obtained from Ex-
ample 8.1:

Q, = 42T W

The periodic heat loss is given in Example 9.4:

Qp(t) = —144 - sin(2nx(t/to — 0.094)) W

The total heat loss becomes:

Q(t) = 427 — 144 - sin(2x(t/to — 0.094)) W

The maximum heat loss for the cold spell is calculated in Example 10.5:

Qtl ez = 101 W

The maximum of the total heat loss becomes, according to (14.8):

Qlmar = 427+ 144+ 101 =672 W

Figure 15.1 shows the heat loss. The accumulated heat loss during the heating
season is, from (14.5):

E, = 2650 kWh

The contribution from the periodic heat loss is 156 kWh, which is only 6% of
the total accumulated heat loss. In the beginning of the heating season the
periodic heat loss reduces the heat loss. Heat (from the warm summer) flows
into the building from the ground. The heat loss level is then below the steady-
state one. See Figure 15.1. At the end of the heating season the periodic heat
[oss increases the heat loss. Heat is flowing down into the ground. The sign of
the periodic heat loss contribution changes, and thus the net effect becomes
small.

Example 15.2. Reference case B.

The steady-state heat loss is obtained from Example 8.1:

Q, =262 W
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The periodic heat loss is given in Example 9.5:

Q,(t) = —84 - sin(2n(t/to — 0.11)) W

The total heat loss becomes:

Q(t) = 262 — 84 - sin(2x{t/ig — 0.11)) W

The maximum heat loss for the cold spell is calculated in Example 10.5:

Qtlmaz =52 W

The maximum of the heat loss becomes, according to (14.8):

Qlnas = 262+ 84 + 52 = 398 W

Figure 15.1 shows the total heat loss. The accumulated heat loss during the
heating season is, from (14.5):

E, = 1650 kWh

The contribution from the periodic heat loss is 7% of the total accumulated
heat loss.

Example 15.3. Reference case C.

The steady-state heat loss is obtained from Example 8.1:

Q,= 1404 W

The periodic heat loss is given in Example 9.3:

Q,(t) = —324 - sin(2x(t/ty — 0.004)) W

The total heat loss becomes:

Q(t) = 1404 — 324 - sin(2n(t/to — 0.094)) W

The maximum heat loss for the cold spell is calculated in Example 10.5:

Qtl ez =225 W
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The maximum of the heat loss becomes, according to (14.8):

Q| may = 1404 + 324 4+ 225 = 1953 W

Figure 15.1 shows the total heat loss. The accumulated heat loss during the
heating season is, from (14.5):

E, = 8550 kWh

The contribution from the periodic heat loss is 4% of the total accurnulated
heat loss.
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Figure 15.1: Outdoor temperature and heat loss for reference case A,B and C (M=May, and
so on). The horizontal lines show the steady-state heat loss during the heating season.

15.2 COMPARISON WITH THE SWEDISH
BUILDING CODE

It is interesting to compare the results from this study with the Swedish building code
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(SBN), [39]. The comparisons are made for reference cases A,B and C.

The Swedish building code gives a method for calculating the U-value. The maximum
heat loss is calculated from the U-value and a given lowest outdoor temperature {according
to formula (15.8) below). Except for this, no explicit formulation as to how the heat losses
should be calculated is given. In the comparisons below with the formula of this study, we
will use (15.8) with the U-values given by the Swedish building code.

The U-value gives the heat loss per square meter for a difference of one degree Centigrade
between indoor and outdoor temperature. We get the following formula:

Q(t) = U- A(Tin -~ Tout(t)) W (U-SBN) (15.8)

Here A is the area of the slab. The heat loss is proportional to the temperature difference
between indoor and outdoor temperature. Implicitly this means that the heat loss is given
by the steady-state heat loss every time using the actual temperature difference.

In the Swedish building code the slab is divided into an outer, an intermediate, and a
central region. A thermal resistance for the ground is given for each region. The U-value for
the whole slab is calculated from the thermal resistances of the ground and the insulation.

15.2.1 HEAT LOSS

The heat losses for the reference cases are calculated according to (15.8) for a whole year.
The heat losses are then compared with the heat losses given by Examples 15.1-3.

The Swedish building code gives the thermal resistance of the soil for the three regions
mentioned above. For clay, sand and gravel with the thermal conductivity 1.4 W/mK we
get the following thermal resistances for the three regions: 1.0, 3.4 and 4.4 m?K/W. The
thermal conductivity for reference cases A,B and Cis 1.5 W/mK. Thus the thermal resistances
are reduced by the factor 1.4/1.5 to 0.93, 3.2 and 4.1 m*K/W, respectively. Using these
resistances we get the following U-values:

AU=02 B:U=016 C:U=022 (W/m’K) (15.9)

The areas of the three slabs are 96, 96 and 460 m?.

The heat loss during the year for reference cases A and C is shown in Figure 15.2. The
heat losses calculated in Examples 15.1 and 15.3 are also shown. The maximum difference
between the two calculation methods is 130 %. The U-value method cannot handle the
periodic heat loss component or the cold spell, i.e. the transient components. However,
the calculated steady-state heat losses are quite close to each other. The amplitude of the
periodic component becomes 3 times too large by the U-value method, and there is no time-
delay between the outdoor temperature and the heat loss. The heat loss due to the cold spell
becomes 6 times too large.

15.2.2 STEADY-STATE HEAT LOSS

The steady-state heat loss is given in Table 15.1 for the reference cases. The annual mean
value of the outdoor temperature is used in (15.8) in order to get the steady-state heat loss.
The difference in the steady-state heat loss is about 10 %. The U-value method underesti-
mates the heat loss for the smaller slab and overestimates it for the larger slab.

The heat loss for the slab is determined by the thermal insulation of the slab, which
is known, and the thermal resistance of the ground. The latter may be represented by the
equivalent soil thickness Dy, discussed in Section 8.1. In order to test how well the Swedish
building code estimates the thermal resistance of the soil alone, we calculate Dy, for the two
methods. For reference case A we get:
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Figure 15.2: Heat loss for reference cases A and C calculated with U-values according to
Swedish building code (U-SBN) and according to Examples 15.1 and 15.3. The outdoor
temperature is shown in Figure 15.1. The time period o is one year.

|A B C
(82) | 427 262 1404
U-SBN | 378 235 1467

Table 15.1: Steady-state heat loss Q, (W) for reference cases A,B and C calculated according
to (8.2) and the Swedish building code (U-SBN).
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D, =28m (from U-SBN) D,,=2.1m (from (8.2)) (15.10)

The error, when U-SBN is used, in the estimation of the thermal resistance of the soil is
about 25 %. The total thermal resistance, which gives the heat loss, is given by the sum of
the equivalent insulation thickness and the equivalent soil thickness (d + D). Both these
parameters are about 3 meters. An error in D,, of 25 % then gives an error in the heat loss
of half the magnitude. For slabs with thick insulation the equivalent insulation thickness is
much larger than D,,, and then the error in the heat loss becomes small.

In the calculations of the thermal resistance for the outer region (0-1 meter from the
edge), the heat flow is assumed to follow circular arcs. The circles have their center at the
edge line. For the central region the heat flow is assumed to go straight down to a depth where
the temperature is constant. This depth is assumed to be 6 meters. For the intermediate
region (1-6 meters from the edge) a mean value between these lengths are used.

The arc approximation for the outer region underestimates the heat flow, since the re-
striction of heat flow paths to circular arcs reduces the heat flow. The arc approximation
1s analysed in Section 8.3. In order to get a better approximation, heat flow along two arcs
should be used for a two-dimensional case. This type of circular arc approximation is shown
in Figure 8.10.

For the central region the heat flow is assumed to go straight down to a depth where the
temperature is constant. This assumption of a straight heat flow path (with the arbitrary
length 6 m) gives an overestimation of the heat flow.

The assumptions for the outer and the central region results in an underestimation of
the heat loss for small slabs, and an overestimation for large slabs.

15.2.3 ACCUMULATED HEAT LOSS DURING HEATING SEASON

The accumulated heat loss over a heating season E, is given by the area under the curves in
Figure 15.2 for the time between ¢, and ¢,. With (15.8) we get:

ts
E,=U-4 [ (Tin — Tous(t)) 2 (15.11)
ta

The integral gives the number of degree-days (°C days) during the heating season. For the
reference cases we have ¢, = 4.5/12-1p and ¢, = 12.5/12-t5. The outdoor temperature is
given by (15.2). It gives 4 600 degree-days.

The accumulated heat loss Ey is given in Table 15.2 for the reference cases according
to (15.11) and (14.5). The difference in E, is 6, 3 and 30 % for reference case A,B and C,

lA B ¢
(14.5) 2650 1650 8550
U-SBN | 2800 1700 11000

Table 15.2: Accumulated heat loss By (kWh) during the heating season for reference cases
A,B and C according to (14.5) and the Swedish building code (15.11) (U-SBN).

respectively.

Figure 15.2 shows how the heat loss varies periodically around an annual mean value.
The difference in this mean value is small for the two methods. However, for the periodic
variation the difference becomes much larger. It is shown in Chapter 9 that the periodic heat
loss is located at the edge regions. The inner parts of the slab do not give any significant
contribution to the heat loss. Thus formula (15.8) gives a strong overestimation of the periodic
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heat loss. The error becomes large for large slabs. For cases A and B the errors in the annual
mean heat loss and in the periodic heat loss counteract. This results in a small error of E,.
For the large slab the errors in the annual mean value and in the periodic heat loss have the
same sign, and the total error becomes large.

15.2.4 PEAK EFFECT

According to the Swedish building code (Chapter 35 in {39]), the peak effect is obtained from
formula (15.8) with the outdoor temperature equal to the dimensioning lowest temperature
(LUT) of the year.

The calculation of the peak effect for the reference cases is based on the representation
of the outdoor temperature shown in Figure 14.1. The superimposed cold spell results in
the lowest temperature of the winter, -20°C. This will be used as the dimensioning lowest
temperature (LUT) in the calculation of the peak effect. The peak heat losses for the reference
cases are given in Table 15.3. The maximum difference in peak effect is 100 %.

|A B C
{14.8) | 670 400 1950
U-SBN | 1000 615 3960

Table 15.3: Peak effect Q|,,,, for the reference cases calculated according to Swedish building
code (U-SBN) and according to (14.8).

The U-value method does not take the dynamics of the heat transfer in the ground
into consideration. Figure 1.6 shows an example with a superimposed temperature pulse
during the winter. The heat loss due to the pulse starts at zero and slowly increases to a
maximum value at the end of the pulse. For a very long pulse this final value is obtained
from the steady-state value for the actual temperature difference between the in- and outdoor
temperature. In the calculation according to the Swedish building code the heat loss is given
by this steady-state value during the whole pulse. For short pulses the error is therefore very
large during the whole pulse. It takes a longer time for a large slab to reach the steady-state
heat loss. The error is therefore larger for large slabs than for small ones.

According to Example 10.3 it takes about one year to reach the steady-state heat loss
for reference cases A and B. For the larger slab of reference case C, it takes four years.

This analysis is applicable to the periodic heat loss as well. The periodic outdoor tem-
perature can roughly be approximated by two pulses of opposite sign. The first pulse gives
the mean summer temperature, and the second one gives the mean winter temperature. The
length of the pulses is then /2. These two pulses have a long duration time in comparison
with the cold spell, which had the duration of one week only. The calculated heat loss ac-
cording to (U-SBN) should therefore become much better for the periodic case than for the
cold spell. This is indeed shown in Figure 15.2.
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