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Part C
CELLAR



Chapter 16

STEADY-STATE HEAT LOSS

Figure 16.1 illustrates the steady-state temperature process for a cellar. The constant equiv-
alent insulation thickness is d at the floor and d,, at the walls. The thermal resistance at the
ground surface is mostly neglected, dy = 0. The outdoor temperature is Tp, and the indoor
temperature is T;. The building is rectangular with the width B and the length L. We will
assume that L is larger than B (B < L). The depth to the cellar floor is H. The steady-state
heat loss into the ground from the cellar is denoted by Q, (W).

Figure 16.1: Steady-state heat loss component for a cellar with constant equivalent insulation
d at the floor and d,, at the walls.

16.1 HEAT LOSS FACTOR
According to the scaling in Section 5.1, the heat loss @, can be written in the following way:
Qs = MT; — To)L- b, (16.1)

Here h, is the dimensionless steady-state heat loss factor. The heat loss problem contains the
five lengths L, B, H,d and dy. The heat loss factor is then a function of four dimensionless
parameters. We get for the basic problem of Figure 16.1:

he = hy(L/B, H/B,d/B, du/B) (16.2)

The parameter di/d is added, if there is a thermal resistance (d; # 0} at the ground surface.
The heat loss factor for a slab on the ground is the special case of (16.2) with H/B = 0.

No complete tables or diagrams are given for the heat loss factor (16.2). A large number of
calculations must be done in order to cover all various combinations of parameters. A number
of approximations for the heat loss factor will be given below. Together they will cover the
most interesting cases. In Section 16.3 approximations for a cellar with totally insulated
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walls will be given. The approximations are obtained from three-dimensional calculations.
Approximations for the heat loss through the walls (and a counter-flow through the floor)
are given in Section 16.4. They are obtained from two-dimensional calculations.

Table 16.1 shows the numerically calculated heat loss factor (16.2) for a few cases. The
values are used in Example 16.1.

| L/B=15 H/B =025 |
d/B | d,/B hs
0 | 2/8 | 494 [L/B=2 H/B=2/15 |

1?8 ?ﬁ: :2: d/B | dw/B | hs
' 0 | 3/15 | 439

2/8 | 2/8 3.65
1/8 | 3/8 3.52 3/15| 3/15 | 3.08

2/8 | 3/8 | 3.12
3/8 | 3/8 | 287

Table 16.1: A few numerically calculated heat loss factors for a cellar.

Example 16.1:

The steady-state heat loss for the cellar reference cases D and E are cal-
culated below. The data are given in Section 1.7:

T; = 20°C Tp = 5°C

For the reference cases D1, D2 and D3 we have:

L =12m B =8m H =2m

These data give:

MT; - To)L=15-(20—5)-12=270 W
H/B=025 L/B=15

For case D1 we get:
d;=008m  d;, =0.08m

d=008-15/004=3m d,=008-15/004=3m
d/B=3/8 du/B=3/8

From Table 16.1 we get the heat loss factor:

h, == 2.87
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The steady-state heat loss becomes:

Q:,=270-287T=T75 W

For case D2 we have:
d;:0m d,-w=0.16m

d=0m d,=0.16-15/004=6m
d/B=0 d,/B=6/8

From Table 16.1 we get the heat loss factor:
h, =2 4.07
The steady-state heat loss becomes:

Q. =270-407=1099 W

For case D3 we have:
d,' =0.027m d;.w =0.027T m

d=0.027-15/004=10m dy=0.027-1.5/004=10m
d/B=1/8 d,/B=1/8

From Table 16.1 we get the heat loss factor:
h, = 5.11
The steady-state heat loss becomes:

Qs =270-5.11 = 1380 W

For reference cases E1 and E2 we have:

L =30m B = 15m H=2m

These data give:

ATi — To)L=1.5-{20—5)-30 =675 W
H/B=2/15 L/B=2
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For case E1 we have:

d; =0.08 m diw =0.08 m
d=0.08-15/004=3m dy =0.08-1.5/004=3m
d/B=3/15 d,/B=3/15

From Table 16.1 we get the heat loss factor:
h, =2 3.08
The steady-state heat loss becomes:

Q,=675-3.08=2079 W

For case E2 we have:

d;=0m  diy =008m
d=0m d,=008-15/004=3m
d/B=0 d,/B=23/15

From Table 16.1 we get the heat loss factor:
hs 2 4.39
The steady-state heat loss becomes:

Q: =675-4.39=29063 W

16.2 APPROXIMATION FOR A WELL-
INSULATED CELLAR

Approximate formulz for the heat loss of well-insulated cellar may be obtained from the
theory of optimal insulation distribution, [14]. With this theory, approximate formule for the
heat loss can be given, for which the thermal insulation capability of the ground is separated
from the thermal resistance of the insulation.

The optimal insulation distribution theory was discussed briefly in Section 8.2. The case
with an area A of the constant insulation thickness d was treated. For the cellar case we
have two insulation thicknesses d and d,,. The mean equivalent insulation thickness d,, will
be used instead of d. We get d,, from:

_ d-LB+dy- H(2L+2B)

= 16.3
m LB+ H(2L+2B) (16.3)
We get the following approximation for the heat loss from (8.10):
Qo = MT} — To)— (16.4)
' dm + B * Uvm
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Here the area A of the cellar becomes LB + H(2L + 2B). The length B - u,, represents the
equivalent soil thickness D,,, which is discussed in Section 8.1, (8.5). We get the following
formula for the heat loss of the cellar:

Qs = MTi — To)L - ho(L/B, H/B,d/B,d,/B)

_ 1 LB+ H(2L +2B)
* LB  dn/B+un

(16.5)

The dimensionless parameter ty, is a function of L/B and H/B. It does not depend on the
thermal insulations of the problem. The parameter u,y, has been calculated numerically. It
is given in Table 16.2.

H/B =0.10 | 0.15 | 0.20 | 0.25
L/B=1.0 020 | 0.22 | 0.24 [ 0.26
L5 0.25 | 0.27 | 0.28 | 0.30

3.0 0.33 | 0.34 | 0.36 | 0.37

o0 0.45 | 0.46 | 0.47 | 0.48

Table 16.2: The parameter u,, in Formula 16.5.

The maximum error in the formula, compared with direct numerical calculations, is less
than 6% for d/B and d, /B both greater than 0.35. The approximation is better the thicker
the cellar insulation is. The heat loss formula (16.5) is used for reference case D in Example
16.2. It is tested against the numerically calculated heat loss factors.

Example 16.2:

The approximation (16.5) of k,(L/B, H/B,d/ B, d,,/ B) for reference cases
D1, D2 and D3 are given below. The heat loss factor is compared with the
numerically calculated one:

D1: d/B=0.375 d,/B=0.375 h,=2.72 hy
D2: d/B=0 dy/B=0.T50 h, =247 hy
D3: d/B=0.125 d,/B=0.125 h,=4.31 hs

= 2.87 (num. calc.)
07 (num. calc.)
5.11 (num. calc.)

it is obvious that the approximation works well for case D1, which is the best
insulated cellar. For the other cases it fails.

16.3 CELLAR WITH TOTALLY INSULATED WALL

Figure 16.2 shows a cellar, for which we assume that the walls are totally insulated (dy = o).
The equivalent insulation thickness of the floor is d. The thermal resistance at the ground
surface is neglected {d; = 0). The heat loss to the ground is denoted by Q,;. It gives the
heat loss through the floor. The heat loss through the wall is zero. The heat flow through
the walls will be accounted for in Section 16.4.

The steady-state problem contains the four lengths L, B, H and d. The dimensionless
steady-state heat loss factor will depend on three dimensionless parameters. We get:

Qa1 = AT; — To)L - hsy(L/B,H/B,d/B) (16.6)
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Figure 16.2: Steady-state thermal process for a cellar with totally insulated walls and constant
insulation thickness d at the floor.

The heat loss for a cellar with a small depth to the floor is given approximately by the
formule for the slab with dy = H. We get for the case with finite floor insulation:

hoi(L/B,H/B,d/B) » h,(L/B,d/B,d1/d)|glab with dy = H (16.7)
d+£0 H/B<0.1

The heat loss factor for the slab {d # 0) is given by Figures 8.3-4. For the case without floor
insulation we get:

hsl(L/B,H/B,d/B) ] hS(L/B!d/Bidl/B)lsla,b with dy = H (16.8)
d=0 H/B<01

The heat loss factor for the slab (d = 0) is given by Figures 8.5.
The heat loss factor h.; has been calculated numerically for d = 0. The result is given
in Figure 16.3 and Table 16.3.

H/B =0.10 | 0.15 | 0.20 [ 0.25

I/B=1.0 459 | 4.33 [ 4.16 | 4.03
1.5 3.95 | 3.72 | 3.57 | 3.45

3.0 3.28 | 3.07 | 2.94 | 2.83

oo 2.78 | 2.56 | 2.42 | 2.31

Table 16.3: Heat loss factor hs for a cellar with totally insulated walls (dw = 00) and
uninsulated floor (d = 0).

16.3.1 APPROXIMATIONS FOR SMALL AND LARGE
VALUES OF d

The thermal resistance of the soil can be represented by an equivalent layer of soll Dp,.
We have from (8.6) for any d and in particular for d = 0:

LB LB
—— ha{L/B,H/B,0}) = —
L(d+ Dm) 1(L/B, H[B.,0) = 77,

Note that A is equal to the floor area LB, since the walls are totally insulated. We neglect
the dependence of Dy, on the insulation thickness for small d/B. Then we get:

hoi(L/B,H/B,d/B) = (16.9)
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Figure 16.3: Heat loss factor ks for a cellar with totally insulated walls (dw = oo) and
uninsulated floor {d = 0).
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1
d/B+1/ha(L/B,H/B,0)

The approximation is good only for floors with a very thin insulation thickness. The approx-
imation is shown in Figure 16.4 for the case L/B = 1.5 and H/B = 0.25.

In order to get an approximation for a cellar with a well-insulated floor, we use the theory
of optimal insulation, [14]. In section 16.2 the approximation according to optimal insulation
distribution was given for the case when both d and d,, was finite. For the case when the
insulation of the wall is total, we only have to consider the floor insulation d. The area A is
equal to LB. Using (8.11-12) we get:

_ 1

- d/B + Um1
The approximation is good for well-insulated cellar floors. The parameter u,,; depends on
L/B and H/B. However, it does not depend on the insulation thickness d. The approximation

is shown in Figure 16.4 for the case L/B = 1.5 and H/B = 0.25. The parameter um; is
calculated numerically. It is given in Table 16.4.

he(L/B,H/B,d/B) ~ d/B < 0.02 (16.10)

hat d/B>0.2 (16.11)

H/B=0}{0.10]| 0.15 | 0.20 | 0.25

L/B=10 0.26 1029|030 | 031|031
1.5 030|034 | 035|036 | 0.37

3.0 0.36 | 0.41 | 043 | 0.44 | 0.45

o0 0.39 | 0.50 | 0.53 | 0.54 | 0.56

Table 16.4: The parameter u,,) in (16.11).

16.3.2 GENERAL APPROXIMATION FOR A CELLAR WITH
TOTALLY INSULATED WALL

From the previous section we have approximations for A, both for small and large
insulation of the floor. An approximation for the intermediate region can be obtained from
these formula by using the mean value of the two approximations. Then we get:

_ 1
ha = d/B+1/h,(L/B,H/B,0) d/B < 0.02
1
h.sl - d/B+um1 d/B > 0.2 H/B 2 0.1

=1, 1 1
hot = 5 {d/B+1/h,1{L/B,H/B,0) + 3/ B+ tim1 } 0.02<d/B<0.2
(16.12)

This formula is valid for H/B > 0.1. The case H/B < 0.1 is covered by formulee (16.7-8).

It should be noted that the approximate formula (16.12) has small discontinuities at
d/B = 0.02 and at d/B = 0.2. We have not taken the trouble to remove them by a more
elaborate interpolation. Formula (16.12) has been compared with the heat loss factors for
the examples in Figure 16.4 obtained from numerical calculations. The largest difference 1s 7
%. The error in the formula is judged to be less than 10%. This is based on the comparison
of Figure 16.4 and experiences from other cases.
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L/B=1.5

\—(16.10)

H/B=0.25

0

0.5

1.0
d/B

Figure 16.4: The approximations (16.10) and (16.11) for h,; compared with numerical cal-

culations.

Example 16.3:

The approximation for ks, (L/B, H/B,d/B) and Qg for reference case D
are obtained from (16.12}, and Tables 16.3 and 16.4. The parameters hy; and
U1 are obtained by interpolation for reference case E.

Di:
D2:
D3:
E1:
E2:

h,1(1.5,0.25,0.375) ~ 1.34
hy1(1.5,0.25,0) = 3.45
h,1{1.5,0.25,0.125) ~ 2.22
he1(2,0.133,0.20) ~ 1.90
he1(2,0.133,0) ~ 3.50

16.4 WALL COMPONENT Q.

Figure 16.5 shows the superposition that is used to solve our original problem with finite wall
insulation. The first figure shows the original case to be solved. The heat loss to the ground
is Q,. The second figure shows the case with total insulation of the walls (d,, = o0), with the
heat loss Q1. The last figure represents the residual problem to be solved. It gives the heat
loss (J,3. The steady-state heat loss becomes:

Q: =@ +Qs

167

Qo1 ~ 362 W
Qs =932 W
Q41 ~ 600 W
Qs ~ 1287 W
Qa1 = 2362 W

(16.13)



T:TQ T‘—'TU T1 :Tg T1 =T0 T2:0 Tg:O

O :—GWZ‘G’ L dw

T (x,y,2) Qs Ty {x,v,2) Qs Tz (x,v,2) Us2

(Va"d
%
VT

Figure 16.5: The superposition of the temperature field Ty for a cellar with a totally insulated
wall and the residual temperature field T3 in order to get the temperature for the original
problem shown by the first figure to the left.

The temperature field T'(z,y,z) and the heat loss @, of our original problem depend
on the length parameters of the problem: L, B, H,d, and d,,. For the case with a totally
insulated wall the parameter d,, vanishes. Thus the temperature field Ty(z,y, z) and the
heat loss @, depend on the length parameters L, B, H, and d. The residual temperature
field T3(z,y, z) depends on all parameters of the original problem. However, the number of
parameters for this problem will be reduced by introducing an edge approximation. This is
discussed in Section 16.4.1.

The superposition technique is presented in Section 4.1. The case considered here is
somewhat more complicated, since there are two types of boundary condition at the cellar
wall. According to (3.15) (with d = dy) we have the following boundary condition at the
wall for the original problem.

dwg—z =T -1 (at the wall) (16.14)
The temperature T; is the indoor temperature. It is also the temperature at the inner surface
of the wall insulation. The heat flow, and hence the normal derivative, is zero for the case
with totally insulated walls. Thus for Ty we have:

% =0  (at the wall) (16.15)
With T = T} 4 T} inserted in (16.14), we get:

dwgﬂ*(le%m =T +T:-T; (at the wall) (16.16}
Using (16.15) we get:

dw% =Ty, —(T: —T1) (at the wall) (16.17)

This is a boundary condition of the type (16.14) for the residual temperature Ts(z,y, z). The
indoor temperature T; is replaced by 75 ~ 7. It should be noted that T is the temperature
outside the total insulation. It will be variable over (and along} the cellar walls.

16.4.1 EDGE APPROXIMATION

The boundary temperature, i.e. the temperature at the ground surface and inside the cellar
insulations, for the residual temperature T3 is zero everywhere except at the inside of the wall
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insulation. The temperature at the inner surface varies between 0 and T; — To. The highest
temperature occurs in the upper part of the wall near the ground surface.

The temperature T3 is largest in the ground near the walls of the cellar. The temperature
field can be treated as a disturbance, located at the edge regions of the cellar, which must be
added to T} in order to obtain the original temperature field T. Due to the local character of
the disturbance, it can be obtained with an acceptable accuracy from a two-dimensional edge
analysis. Figure 16.6 shows in analogy with Figure 16.5 the superposition for an edge of a
wide cellar {(H/B < 1). The temperature inside the wall insulation for the residual problem
becomes T; — Ty, .- This edge problem contains the length parameters H,d and d,. We
have reduced the numbers of parameters from five to three.

To
dw N
8
T 3 =
d'\ N
NN RN 94 N N L N AN NN SN N Y
Tix.z)
] To 0
Z +o0 —, J—
w § dw
N1 [ wall + T =Tt wan—
d- T; d 0
R A A A AT AN KA NN AN AN SN N Eémmmmﬁ%
qu
T, (x,2) T,(x.2)

Figure 16.6: The superposition of the temperature field Ty for a cellar edge with a totally
insulated wall and the residual temperature field T in order to get the temperature for the
original problem shown on the top of the figure.

The edge heat loss g,3 (W/m) due to the temperature field T3 is calculated for a cellar
of infinite width. The heat loss Q.3 is obtained from the following edge approximation:

Q32=Lg-q32 H/B<025
(16.18)
ds2 = A(Tt - TO) . th(d/Hadw/H)

The accuracy for the edge approximation is best for wide cellars H /B « 1. However, the
results from comparisons of (16.18) with several numerically calculated heat losses show that
the edge approximation gives a reasonable accuracy for H /B < 0.25. The dimensionless
steady-state heat loss factor h,; depends on the two parameters d/H and d,/H. The heat
loss factor is given in Table 16.5 and Figure 16.7. The cases d/H =0 and d/H = +oo are
solved analytically in [6], while the cases d/H =1 and d/H = 2 are calculated numerically.
The dashed curves show the approximation (16.19) below.

The temperature field T3 at an edge of a wide cellar is given in the supplementary report
[6]. The cases d = 0 and d = +oo are treated. The solution of the temperature problem
uses complex-valued analytical functions, and the known solution of the Riemann-Hilbert
problem for a half-plane. This is the problem of finding a function, analytical in a half-plane
and having a prescribed real part on the real axis. It is shown that the temperature is largest
near the wall and drops rapidly for increasing distance from the wall. The temperature is of
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Figure 16.7: Edge heat loss factor h,g for the residual temperature problem T3 of Figure 16.6.

dJH=0] 1 | 2 |

dy/H =01 156 | 1.63 | 1.68 | 2.26
0.2 1.15 | 1.29 | 1.34 | 1.77

0.3 0.93 | 1.08 | 1.12 | 1.47

0.4 0.79 | 0.93 | 0.97 | 1.27

0.5 0.68 | 0.82 | 0.85 | 1.12

1.0 0.41 | 0.52 | 0.54 | 0.71

1.5 0.30 | 0.38 | 0.40 | 0.52

2.0 0.23 | 0.30 | 0.31 | 0.42

Table 16.5: Edge heat loss factor hy; for the restdual temperature problem T3 of Figure 16.6.
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a local type.

Example 16.4:
The approximation for hy(d/H,d,/H) and Q. from (16.18) and Figure
16.7 are given below for the reference cases. The perimeter length for reference
case D is 40 m, and for reference case E it is 90 m.

Di: d/H=15 d,/H=15 h2%039 Qu~351W
D2: d/H=00 d,/H=30  hy~016 Qun~144 W
D3: d/H=05 dy/H=05 hg~075 Quw~6I5W
El: d/H=15 d,/H=15  h;~038 Qup~T0W
E2: d/H=00 du/H=15 ha~030 Qu=~60TW

16.4.2 EDGE APPROXIMATION FOR WELL-INSULATED CELLAR
WALLS

An approximate formula for the heat loss factor h,; according to the theory of optimal
insulation is useful for well-insulated cellar walls. The theory behind this will be presented
in a separate report, [15]. We will only present the results here. We have:

1—v,)?
hsy 7 di/H—-%lm (16.19)

The parameters u, and v, both depend on the variable d/H, but not on d,,/H. The
paramefers are calculated numerically and they are given in Table 16.6.

d/H| 0O 011} 05 | 1.0 | 20 | 5.0 | 100} oo
Uy | 034039040 | 041 | 041|042 | 043 | 0.44
v, [0301023]019(0.17}0.14 011008 | O

Table 16.6: The parameters u,, and vy, in (16.19).

The error in the formula is less than 12 % for d,,/H > 1.

171



16.5 GENERAL APPROXIMATION FOR @,

The various formula and approximations will be summarized in order to get a general ap-
proximation. The following scheme can be followed in order to get an approximation of @,
for the case H/B < 0.25 with an error less than 10%.

d/B or d,,/B < 0.35:
Qs =Qs + Qa2
Qs = MT; — To)L - hyy(L/B, H/B,d/ B)
Quz=1Le gz oz = A(Tt — To) - hoa(d/ H,dy/ H) (16.20)

hy: H/B < 0.1 Formula 16.7-8,Figures 8.3-5
H/B > 0.1 Formula 16.12, Table 16.3-4, Figure 16.3

hao: Table 16.5 and Figure 16.7
d/B and d,,/B > 0.35:

Formula 16.5, Table 16.2 (16.21)

Example 16.5:

The heat loss approximations for cellars according to (16.20-21) are ap-
plied to the reference cases D and E. The result is given below. The approxi-
mations for Q41 and Q.2 are obtained from Examples 16.3-4. The heat losses
from a direct numerical calculation are also given.

D1: Q,~T734 W 775 W (num.calc)
D2 Q. ~Quq+Qsx=932+144 W=1076 W 1099 W (num.calc)
D3: Q,~Qq + Qs =600+675 W=1275 W 1380 W (num.calc)
El: Q,~ Q.+ Q =12824+ 790 W =2072 W 2079 W (num.calc)
E2: Q. Qa1+ Qo2 = 2362+ 607 W =2960 W 2963 W (num.calc)

We see that the error in the approximation is less than 8 % for the reference
cases. The poorest accuracy is obtained for D3. For this case @, and Q2
are of the same magnitude. The approximation for @,z obtained from a two-
dimensional analysis is not very good for small and well insulated cellars. The
approximation for case D1 is obtained from (16.21). If (16.20) is used instead
the heat loss becomes 710 W.
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Chapter 17

PERIODIC HEAT LOSS

The periodic heat loss component for the cellar will be treated in this chapter. The outdoor
periodic temperature process is illustrated in Figure 4.3. This temperature process has been
discussed in Section 7.1 for a rectangular house. There are six length parameters in the
problem: L, B, H,d,d,, and the periodic penetration depth dg. Thus the periodic heat loss
factor will depend on five dimensionless parameters. If the thermal resistance at the ground
surface is accounted for (dy # 0), the heat loss factor will depend on one further parameter.

The use of the edge approximation discussed in Section 7.1 reduces the number of pa-
rameters. Figure 17.1 shows the edge problem. The periodic edge heat loss is denoted by
gy (W/m). The heat loss factor for the edge heat loss will depend on the four parameters
H,d,dy and dp. The number of dimensionless parameters is reduced from five to three. The
periodic heat loss @, (W) for the whole cellar becomes according to (7.3-4):

Qp(t) ] Le " q?(t) dO < Lmin/2 (171)

Here L. is the perimeter length of the building. For a rectangular house it is 2 + 2B. The
length L., is the minimum dimension of the foundation in the horizontal plane. For a
rectangular house it is B.

In general we will only treat the case where the thermal resistance at the ground surface
is neglected (dy = 0). However, the basic case in Section 17.2.1 takes d; into consideration.
An approximate correction factor for the thermal resistance at the ground surface is given
separately in Section 17.7.

17.1 HEAT LOSS FACTOR FOR AN EDGE

The periodic edge heat loss problem is shown in Figure 17.1. The problem contains the
lengths H,d,dy, and dyg. The following formula for the edge heat loss gp (W/m) is obtained
from the scaling in Section 5.2:

0p(t) = R/ {~\T1 - hy(d/do, dy/do, H/do) - ¥ 110} (17.2)

The slab on the ground is a special case of a cellar where H/dp = 0. For the case with a ther-
mal resistance at the ground surface the heat loss factor depends on one further parameter,
for instance dj /dy,.

For a sinuscidal temperature variation, T} - sin(2xt/;), at the ground surface we get the
heat loss ¢, from the imaginary part of (17.2). Combining (17.1) and (17.2) we get:

Qplt) % ~XTAL, - Ihy| - sin(2a(t/t0 — 4)) ¢ = —5ars(hy) (179
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Figure 17.1: Periodic heat loss at the edge of a cellar.
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The periodic heat loss factor h, has been calculated numerically for a few cases. The results
are given in Table 17.1. The last four heat loss factors in the table concern the reference
cases.

dfdo | dw/do | H/do | |hs|l | &p
0 1/2 1/2 | 0.82 | 0.057

0 1 1/2 | 064 |0.070
0 2 1/2 || 0.53 | 0.081
0 4 1/2 || 0.48 | 0.091
0 oo 1/2 || 042 |0.10
0 o0 1/4 | 0.61 | 0.062
0 oo 1 ] o022 |o018
0 oo 2 | 0.072 | 0.34
i/2 | 1/2 | 1/2 | 063 |0.053
1 1 1/2 | 0.38 | 0.064

3/2.74 | 3/2.74 | 2/2.74 | 0.39 | 0.067
0 6/2.74 | 2/2.74 { 0.45 | 0.099
1/2.74 | 1/2.74 | 2/2.74 | 0.85 | 0.049
0 3/2.74 | 2/2.74 || 0.58 | 0.081

Table 17.1: A few numerically calculated heat loss factors h, for the edge problem, (17.2).

Example 17.1:

The periodic heat loss for reference cases D and E are calculated below.
The data for the reference cases are given in Section 1.7. We get:

do=274m  H/dg=2/2.74
ATy = 15 W/m
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For reference cases D1, D2 and D3 we have:

L,=40m

For case D1 we get:

d=3m  d/dy=3/2.74
dy=3m  dy/do=3/2.74

From Table 17.1 we get :

|hp| = 0.39 ¢p == 0.067

The amplitude of the periodic heat loss becomes:

ATi|hp|+ L~ 15-0.39 - 40 = 234 W

The heat loss becomes:

Qp(t) = —234 - sin(2x(t/tp — 0.067)) W

For case D2 we get:

d=0m d/dy=0
dy=6m  d,/do=6/2.74

From Table 17.1 we get:

|hp| & 0.45 ¢, 2 0.099

The amplitude of the periodic heat loss becomes:

ATi|hp| - L, =~ 15-0.45- 40 = 270 W

The heat loss becomes:

Q,(t) ~ —270 - sin(2x(t/to ~ 0.099)) W

For case D3 we get:

d=1m djdy=1/2.74
dy=1m  dy/do=1/2.74
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From Table 17.1 we get :

thy| ~0.85 ¢, ~ 0.049

The amplitude of the periodic heat loss becomes:

ATy|hy|- L, 22 15-0.85- 40 = 510 W

The heat loss becomes:

Qp(t) = —510 - sin(27(t/to — 0.049)) W

For reference cases E1 and E2 we have:

Le=90m

For case E1 we get:

d=3m  d/dy=3/2.74
dw:3m dw/d0=3/2.74

From Table 17.1 we get:

|hy| % 0.39 @, = 0.087

The amplitude of the periodic heat loss becomes:

ATi|hy| - Le 2 15-0.39-90 = 526 W

The heat loss becomes:

Qp(t) = ~526 - sin(2x(t/to — 0.067)) W

For case E2 we get:

d=0m d/dozo
dy =3 m dw/do = 3/2.74

From Table 17.1 we get:

|hp| % 0.58 &, a2 0.081
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The amplitude of the periodic heat loss becomes:

ATylky|- L, % 15-0.58 - 90 = 783 W

The heat loss becomes:

Qp(t) = —783 - sin(2x(t/to — 0.081)) W

It is interesting to compare the heat loss for a slab and a cellar with the same insulation
thickness. Reference cases A and D1 both have the equivalent insulation thickness d = d,, — 3
m. The amplitude for the slab is 144 W, while it is 234 W for the cellar case. The heat loss
is 62 % higher for the cellar.

Our periodic edge heat loss problem, shown in Figure 17.1, depends on three dimension-
less parameters. A large numbers of time-dependent calculations must be done in order to
cover all combinations of parameters. Therefore no complete tables or diagrams will be given
for the heat loss factor. However, a general approximation of the heat loss factor will be
given in Section 17.6. It is based on a few basic solutions. The first one gives the heat loss
for an infinitely deep cellar. This case gives the heat flow through the wall. The second basic
solution treats the heat loss through the floor. We neglect the heat flow in the horizontal
direction for the ground region outside the house, 0 < z < H. The soil layer is considered
as a complex-valued thermal resistance. The formula for the slab, derived in Chapter 9, are
then used for the heat loss through the floor. With these two basic solutions an approxima-
tion for deep cellars is given in Section 17.4. For shallow cellars a superposition technique
similar to the one presented for the steady-state case in Section 16.4 is used. The results are
given in Section 17.5. General formul® for deep and shallow cellars, as well as cellars of an
intermediate depth, are given in Section 17.6.

17.2 INFINITELY DEEP CELLAR

The special case with a cellar of infinite depth is studied in a supplementary report, {3]. The
heat flow region becomes a quadrant with the wall along the z-axis. See Figures 6.10 and 17.1.
Analytical solutions for the heat loss and the temperature in the ground are given. Some of
the results are presented here. The heat loss for an infinitely deep cellar will be denoted by
q;; (infinite). The corresponding heat loss factor is denoted by h:,. We will consider the case
with a thermal resistance at the ground surface (dy # 0). The problem contains the three
lengths dy,,d; and dy. It is of course independent of H. We have:

q(8) = R/ { 2Ty - hi(du/do, d1/dy) - emt/t0} (17.4)

The heat flow over the upper part of the infinitely deep cellar wall is of interest. The
heat loss over the wall segment # = 0,0 < 2 < H of an infinitely deep cellar is denoted by
9 (wall). The corresponding heat loss factor is denoted by hy. For this case the thermal
problem again depends on the length H. We consider the case d; = 0 only. We get:

g2 (t) = R/S { ATy - b2 (dy/do, H/do) - #™/*0 ] (17.5)

17.2.1 HEAT LOSS FACTOR

The heat loss factor h:, for a cellar of infinite depth is obtained from Formula 3.28 in [3]:
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i (o do, 1/ du) = 5o «L/dw ~dy/dy { ho(dl/ do) - zd_ iy (/o) }

hO(dy/do) = 2—L n G J_“ :) r = /1 - 2i(dy/do)? (17.6)

The heat loss factor is shown in Figure 17.2. The basic heat loss factor ho is the same one
that was used in Chapter 9. It is given by Figure 9.3. For the special case d1 = 0 we get the
following formula:

Ry (dw/do,0) = 2- hO(d,,/do) (17.7)

The formula shows something very interesting. The heat loss is exactly twice as large as
for the corresponding case with a slab on the ground, see Section 9.1. The heat conduction
region for the cellar case can be described as a wedge of angle 7/2, and {or the slab a wedge
of angle 7. The heat loss is doubled when the angle is halved.

i 1
Ly = 5o arg (hp)
1.5 - : 0.25
1 i -
4&\ | —Hurg[h&,} d1/dw-0.5_£)__’_________
— 0.20
n o T "
——— 0./
/ //
10 \\ / //
/'/ /// 0.05 T— 015
-—-—""—-—-—-_-_.
\\ / /// —
| "]
> /
| -_-_______________._--—-—-—'-—_
el 010
AR
0.5 A A XN,
' % \\
AN
\\\\ dy/d, = 0 | 0o
D |
[———
0.5
-\Q______~__-—-,___~_______
0 0
0 1.0 2.0 3.0 4.0 5.0
AT,

Figure 17.2: Heat loss factor h:, (dw/do, d1/dy) for a cellar of infinite depth.
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17.2.2 HEAT LOSS FACTOR FOR A WALL SEGMENT

The analytical solution for the integrated heat flow over the wall segment z =0,0 < z < H
for the case dy = 0 is given by Formula 3.30 in [3]. We have:

h¥(dw/do, H/do) = 2 - h3(dy,/do) — % [0 e~ (ML /d5-1)-HE[(48%d0) orfe(s) ds (17.8)

The integral is evaluated numerically and the heat loss factor is shown in Figure 17.3.

W
M -ZLT[ arg (hp)
1.0 : 0.10
W dy /dg =+@ 4 7]
— |hp - —
L =t LT
el /4/ — L -
/ - t » — S
B ) > — f = o '0/5‘ —
0.54 /4,05 ~ ~4 ‘///;/ = ' 0.05
W/t - '/ N L AT A
s cann
7 |~ - S m———,
/,1//45,/ — ]
4 S
N e
ZaW)
0 0
0 1.0 2.0

H /d,

Figure 17.3: Heat loss factor hY(dy/do, H/do) for the heat loss over the wall segment
=0,0 <z < H for a cellar of infinite depth (dy = 0).

Figure 17.4 shows h} in the complex plane as a function of dy/H for a fixed d,,/H. For
do/ H >> 1 the heat loss factor is real-valued. This means that there is no time-delay between
the outdoor temperature and the heat loss through the wall segment. The local temperature
process in the region around this wall segment is quasi-stationary. For the example in Figure
17.4 this quasi-stationary process is approximately reached for do/H > 2.0

17.3 HEAT FLOW THROUGH THE FLOOR

The heat loss formulee for the slab are used in this section in order to get an approximate
formula for the heat loss through the floor. The layer of soil of thickness H outside the cellar
is treated as a thermal insulation. The soil introduces a phase-delay. The soil is therefore
given by a complex-valued thermal resistance.

We neglect the horizontal heat flow component in the layer 0 < 2 < H,0 < z < co. We
get for each = a one-dimensional periodic heat flow process in the layer 0 < # < H. The
formulze of Section 3.1.2 are applicable. The amplitude of the periodic variation is T) at
z =20, and T(x,H } at 2 = H. See left part in Figure 17.5. The heat flow through the two
boundaries of the layer is given by (3.10). The variables are replaced by the present ones:
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0 0.5 Re(n})

dw/H:1

-0.5 »
Im{hp)

Figure 17.4: Heat loss factor k) (dyw/do, H/dp) in the complex plane. The parameter do/H is
varying, while d,,/H is fixed (d; = 0).

di — H,A; — A, dio — do, z — z. The results in Section 3.1.2 are given in a real-valued form.
The complex-valued solutions are given inside the brackets with the factor €*™t/t excluded.
The heat flow at z = H in z-direction is: —~A3T/dz(x, H). It corresponds to the complex-
valued form of gy(H,t) in (3.10). The heat flow can directly be written down by the use of
superposition. The first part has the temperature Ty at # = 0 and zero at z = H , and the
second one has the temperature T (z, H) at z = H and zero at z = 0. The resulting heat flow
through the boundary z = H is obtained from the two formulz in (3.10):

(1+1)A 1
do sinh{(1++¢)H/dp)

aT
—)\5';(.'17, H) = T]_

. 1+4)A .
- T(=z, H)(%t)— coth({1+4)H/dy) (17.9)
0

This formula may be written in the following way:

Ty . -~ 9T
=Tz, H)-H-—(z,H 17.10
cosh((1 + ) H/dp) (2,5 8z (=, H) ( )
Here we have introduced the complez-valued thermal resistance H for the soil layer0 < z < H:
"= 1cfs£tanh((1+i)H/dg) (17.11)

Formula (17.10) is compared with equation (4.46) for the boundary condition at the ground
surface. The outdoor temperature T} is replaced by T/ cosh{{1+1¢)H/dy), and the equivalent
insulation thickness d; at the ground surface is replaced by H. This thermal problem is shown
in the right part of Figure 17.5.
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The thermal problem illustrated in Figure 17.5 contains the lengths H,d and dy. The
parameter d,, for the thermal insulation of the wall vanishes. The heat loss is denoted by q{,

floor). The heat loss factor is denoted by hf and depends on two dimensionless parameters.
W (2
e get:

gl (t) = R/ {-2Ty - h(d/do, H/do) - €*™/*0} (17.12)

Ty

Figure 17.5: The left figure illustrates the one-dimensional heat flow in the region
0 <z <00,0<z< H. In the right figure this layer is treated as a complex-valued surface
resistance H. The outdoor temperature amplitude T is replaced by T/ cosh{(1 + i}H/dp).

The heat loss for the problem may be obtained with the use of the formule for the
slab given by (9.6). The insulation length d; is substituted by H, and the amplitude T} is
increased by the factor T/ cosh((1 + #}H/dp). The heat loss through the floor becomes:

S

1 d 0 H 0r A
cosh((1 + ©)H/dp) (d _ f}hp(d/do) + ?I__dhp(ﬂ/do)) (17.13)

We get a simpler expression for hf: in the special case d = O:

hy(d/do, H/do) =

1 o7 1 cosh((1 +¢)H/dp) +1
cosh((1 + ¢) H/dp) - ho(H /do) = by In (cosh((l ) H)do) — 1) (17.14)

The function hJ(0, H/dp) is given in Figure 17.6.

h"pf(o’ H/dO) =

The heat loss factor h;; may be vsed as an approximation for the case with a totally
insulated wall. We get for the heat loss factor in (17.2):

hS & hy(d/do, 00, H/do) (17.15)

The approximation will underestimate the heat flow through the floor due to the restriction
of the heat flow paths.
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Figure 17.6: The heat loss factor h}; (0,H/do). The phase qSi': is given by —arg(hg) /2m.
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Example 17.2:
We test the approximation (17.15) for the following data:

H/dg:()25 dw/dg-*—-oo d/dozo

From Figure 17.6 we get:

|h]| ~ 060 ¢ ~ 0.067

The direct numerical calculation gives according to Table 17.1:

|hp| = 061 ¢, & 0.062

Another set of data occurring in Table 17.1 is:

H/dy=05 dy/do=o0 dfdy=0

From Figure 17.6 we get:

|hj|~ 041 @] = 0.099

The numerical calculation gives according to Table 17.1:

lhp| # 042 ¢, = 0.10

The error in the absolute value for the approximation (17.15) for the cases in Example 17.2
is less than 3%. The error is less than 8% for the phase. We see that the slab approximation
gives an underestimation of the absolute value of the heat loss factor as expected, and that
the phase-delay is too large. The real heat flow takes a shorter way than the approximated
one, and thus it is larger and has less phase delay. The last case in Example 17.2 is an
exception concerning the phase. It is probably caused by insufficient accuracy in the numerical
caleulation,

17.4 APPROXIMATION FOR DEEP CELLARS

It is shown in Section 6.4.1 that the temperature amplitude at the wall at the depth z = dj is
damped to at least 37% of the amplitude at the ground surface. For deep cellars ( H/dp > 1)
the main part of the temperature influence from the ground surface is located at a depth less
than H. The temperature at the cellar wall is approximately the same as for the infinitely
deep cellar. A good approximation of the heat loss through wall is therefore given by the
heat loss formula for a wall segment, {17.8). In order to account for the heat loss through
the floor, which is small for deep cellars, we add the floor heat loss derived in Section 17.3,
(17.13). We get the following approximate heat loss formula for deep cellars:

ho(d/do, dw/do, H/do) r hi(d/do, H/do) + h¥(dy,/do, H/do) (17.16)
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The heat loss factor hl-f (d/do, H/do) is given by Figure 17.6 for the case d = 0. For d # 0
Figure 9.3 must also be used. The heat loss factor hy'(dw/do, H/dp) is given by Figure 17.3.

Example 17.3:

Formula 17.16 is tested for the reference cases. For these cases we have
H/dy = 2/2.74. The numerically calculated heat loss factors from Table 17.1
are also given in the table .

(17.16) Table 17.1
Case || |hy| | ¢p ol | o
D1 | 0.41 | 0.067 || 0.39 | 0.067
D2 || 0.50 | 0.095 || 0.45 | 0.099
D3 | 0.90 | 0.052 || 0.85 | 0.049
E1 | 0.41 | 0.067 { 0.39 | 0.067
E2 § 0.65 | 0.080 { 0.58 | 0.081

The maximum error is about 10% for the reference cases using (17.16). The
error is probably not that big. The error in the rumerical calculation is in the
range of 5-10%, i.e. the numerical value is 5-10% too small. The actual error
in the approximation is therefore estimated to 5%.

17.5 APPROXIMATION FOR SHALLOW CELLARS

Let us now consider the heat loss for a shallow cellar (H/dy <« 1). A superposition technique,
analogous to the one presented in Section 16.4, is used in this section. From (4.28) the ground
temperature can be written as:

Ty(z,2) = R/S {F(z,2) - 2710} (17.17)

Here T'(z, 2) is a complex-valued temperature. The heat conduction equation for 7' is obtained
from (4.44), and the boundary conditions from (4.46). The temperature is equal to T} at the
ground surface. The temperature 7T will be obtained from a superposition of two temperature
fields T (z, 2) and Ty(xz, z). Figure 17.7 shows the superposition. The wall is totally insulated
(dw = o0) for the first part Ty{z, 2). The outdoor temperature is attributed to the first part.
The second, residual temperature Tg(:c ) is zero at the ground surface and above the floor
insulation. The temperature inside the wall insulation is equal to —74. Here T} is the ground
temperature at the outside of the wall.

The temperature T4 takes care of the main part of the heat flow through the floor. The
second, residual temperature field T takes care of the heat flow through the wall. The edge
heat loss becomes:

0p(t) = gp1(t} + gpa(t)

gp1(t) = R/S ATy s - 210} ga(t) = R/S{ ATy -y etmitito} (17.18)

It is reasonable to approximate the heat loss factor hpy by hJ from (17.13). The boundary
condition of zero heat fiux at the wall is satisfied. However, the heat conduction in the region
0 < z < H is simplified. We have:

hp1 % hS (17.19)
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Figure 17.7: Superposition of the temperature field T} for a cellar edge with a totally insulated
wall and the residual temperature field T3 in order to get the temperature for the original
problem shown in the left figure.

This approximation was also given in (17.15). It was tested in Example 17.2, where it gave
small errors (for the examples presented).

For shallow cellars {H/dy < 1) the local temperature process at the cellar wall is ap-
proximately the same as the steady-state one except for the time-dependent factor e2™¢/to,
This was shown in a similar problem studied in Section 17.2.2. A formula for the heat flow
over a wall segment x = 0,0 < z < H for a cellar of infinite depth is given. The heat loss
factor for this problem is shown in a complex representation in Figure 17.4. For small values
of H/dp the heat loss factor becomes real-valued. It tends to a corresponding steady-state
heat loss factor.

The whole temperature field ’f‘g(:ﬂ, z) is located to the cellar edge region. It has virtually
vanished at a distance dy from the cellar wall. The local thermal process around the wall
is approximately given by the steady-state conduction equation with the actual outdoor
temperature. Thus it coincides with the temperature T3(z, z) (where T; = 0 and Ty = T1)
studied in Section 16.4.1. We get the same heat loss factor for hye as hs:

hpz ~ haZ (1720)

This steady-state heat loss factor is given by Figure 16.7.

The heat flow gy does not only account for the heat loss through the wall. It also contains
a counter-flow through the floor. The contributions from g¢p; and g2 to the total heat loss
through the floor have opposite signs. Thus, an approximation of the heat loss through the
floor that is given by ¢p1 only becomes an overestimation.

We get the following approximate heat loss formula for shallow cellars:

hy(d/do, dy/do, H/do) = hi(d/do, H/do) + hey{d/H,dy/H) (17.21)

The heat loss factor hi(d/do, H/do) is given by (17.13). It is given by Figure 17.6 for the
case d = 0. For d # 0, Figure 9.3 must also be used. The heat loss factor h,; is given by
Figure 16.7. The formula is tested for the reference cases in Examples 17.4-5.

185



Example 17.4:

Formula 17.21 is tested for the reference cases. For these cases we have
H/dy = 2/2.74. The absolute value |h,| and phase ¢, are given in the table
below. The numerically calculated heat loss factors from Table 17.1 are also

given.

(17.21) Table 17.1

Case j| |hy| | ¢y lhpl | 4o
D1 i 0.42 | 0.030 || 0.39 | 0.067
D2 4 0.44 | 0.085 || 0.45 | 0.099
D3 | 0.83 | 0.027 || 0.85 [ 0.049
E1 { 0.42 | 0.030 | 0.39 | 0.067
E2 0.56 | 0.065 || 0.58 | 0.081

A comparison with the table in Example 17.3 shows that the amplitudes of
the heat loss factor are better predicted by (17.21) than (17.16), but the error
in the phase is larger.

Example 17.5:

We have also tested Formula 17.21 on the case H/dy = 0.5, dy,/do = 0.5
and d/dp = 0. The approximation gives:

thy| ~ 0.79 — arg(hy) ~ 0.05 (approximation(17.21))

A numerical calculation, Table 17.1, gives:

|hp| = 0.82 — =arg(hy) = 0.06 (numerical calculation)

The error for this case is less than 4 % for the amplitude and less than 12 %
for the phase.

17.6 GENERAL APPROXIMATION FOR @,

In this Section we will summarize the outdoor periodic heat loss formulz for the cellar. The
edge approximation for the heat loss gives:

Qp(t) ~ QP(t) * Le do < Lmin/2
o(t) = R/S {—)\Tl »bhp(d/do, dw/do, H/do) - CZﬁmU} (17.22)

Here L, is the perimeter length of the building. For a rectangular house it is 2L + 2B. The
length L..;, is the minimum dimension of the foundation in the horizontal plane. For a
rectangular house it is B.

An approximate formula for h, may be obtained from the results in Section 17.4-5. We
have one approximation for deep cellars and one for shallow cellars. From Examples 17.3-5 we
find that H/dy = 0.5 should be a suitable limit of validity between the two approximations.
For the case H/dy > 0.5 we get from (17.18):
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hy(d/do,dw /do, H/do) 2 hf(d/do, H/do) + h2(dw/do, H/do) H/dy > 0.5

(17.23)
RI(d/do, H/dp) = 1 d h(d/dp) + A RO(H /do) (17.24)
AN cosh((1+4)H/do) \d— B * H-d7 '
5 do .
H= 1+£tanh((1+t)H/do) (17.25)
w 2 00 s2(24dZ [d2—1)— H2 /(45242
hY =2 hO(dw/do) — 7 fo e~ (L /d—1)—H?/(45%d0) oy () ds (17.26)

The heat loss factor h£ (d/do, H/dy) is given by Figure 17.6 for the case d = 0. For d # 0,
Figure 9.3 must also be used. The heat loss factor h}'{d,,/do, H/do) is given by Figure 17.3.
For the case H/dy < 0.5 we get from (17.21):

ho(d/do,dw/do, H/do) = hS(d/do, H/do) + hea(d/H,dy/H) H/dg < 0.5
(17.27)

The heat loss factor h,z is given by Figure 16.7.

17.7 CORRECTION FOR SURFACE RESISTANCE

The general formule for the periodic heat loss given in Section 17.6 neglect the thermal
resistance at the ground surface (d; = 0). A simple approximation for the correction of
the heat loss due to the surface resistance will be presented here. The equivalent insulation
thickness at the ground surface is d;. Let us assume the temperature field near the ground
surface is approximately the same as the one in undisturbed ground. The temperature at the
ground surface is then, according to {6.23), (ds = dy):

1 .
Tp(z,0) = R/S{ T} - . - 2’"*/‘0} 17.28
(o,0) = #/9{ Ty e (17.28
Thus the ground surface temperature amplitude is reduced from T to T3/(1 + (1+1)dy/dp).
The approximation of the heat loss factor for the case with a surface resistance at the ground
surface becomes:

1
h, = - h
r 1+(1+3‘)d1/d0 pld,_:O

dlfdo <0.2, d]/H < 0.2 (17.29)
Here hpl; _, is the heat loss factor for the case d; = 0 given in Section 17.6.

Example 17.6:

Consider the case;

do/do =10  dy/dy=0.1

This gives:

dy/dp = 0.1
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The factor in front of Ay|; _, becomes:

1/(1+ (1 41)-0.1) = 0.905 - ¢~ 2x:0.0144

The surface resistance reduces the heat loss amplitude by 10 %. It causes an

extra time delay of 0.0144 - t5, which is 5 days for ¢; equal to one year.
Formula (17.8) consider the case with an infinitely deep cellar. It ac-

counts for the thermal resistance at the ground surface. The heat loss factor
hy(dw/do, d1/dy) is given in Figure 17.2. The heat loss factor for the case with
and without a thermal resistance at the ground surface becomes:

|h;(1,0)| = 0.526  |Ri(1,0.1)| 5 0.458

Using the correction formula (17.29) we get:

|h3(1,0.1)| = 0.526 - 0.905 = 0.476

The error for this example is only 4 %.
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Chapter 18

STEP CHANGE OF OUTDOOR
TEMPERATURE

The outdoor step-change temperature process for a cellar will be treated in this chapter.
It is illustrated in Figure 4.5. The temperature process has been discussed in Section 7.2
for a rectangular house. There are six length parameters in the problem: L,B H,d,d,,
and the time-dependent v/at. Thus the step-change heat loss factor will depend on five
dimensionless parameters. The heat loss factor will depend on one further parameter, if the
thermal resistance at the ground surface is accounted for (d1 #0).

The use of the edge approximation discussed in Section 7.2 reduces the number of pa-
rameters. Figure 18.1 shows the edge problem. The step-change edge heat loss is denoted
by g¢ (W/m). The heat loss factor for the edge heat loss will depend on the four parameters
H,d,d, and v/at. The number of parameters is reduced from five to three. The step-change
heat loss @; (W) for the whole cellar becomes according to (7.8-9):

Qu(t) ~ Le» qu(t)  Vat < Lymin/2 (18.1)

Here L. is the perimeter length of the building. For a rectangular house it is 2L + 2B. The
length Lpy, is the minimum dimension of the foundation in the horizontal plane. For a
rectangular slab it is equal to B.

In general we will only treat the case where the thermal resistance at the ground surface
is neglected (d; = 0). However, the basic case in Section 18.2.1 takes d; into consideration.

18.1 HEAT LOSS FACTOR FOR AN EDGE

The step-change heat loss problem for an edge is shown in Figure 18.1. The case with a slab
on the ground is a special case where H = 0. The problemn contains the lengths H, d,d, and
vat. The following formula for the edge heat loss ¢, (W/m) is obtained from the scaling in
Section 5.3:

@(t) = —ATy - he(Vat/H,d/H,d,/H) (18.2)

For the case with a thermal resistance at the ground surface, the heat loss factor depends on

further one parameter, for instance dy/d,,.
The step-change heat loss factor has been calculated numerically for the reference cases.

The results are given in Figure 18.2.
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Figure 18.1: Step-change heat loss at the edge of a cellar.
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Figure 18.2: Heat loss factors for the reference cases.
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Examples 18.1:

The heat loss due to a cold spell for reference case D1 is calculated below.
We have the following data:

d=3m dy=3m H=2m
a=0.75-10"% m?/s Ty =-15°C A=15 W/mK
L.=40m ts = 1 week

We let the cold spell start at £ = 0. The cold spell has the duration ta. The
heat loss during the cold spell is, from (18.1-2):

Q(t) = —ATy - L. - he{\/at/H, d/ H,dy/ H)

The heat loss for a slab due to a temperature pulse is treated in Section 10.3.2.
We have similar formulee for the cellar. The heat loss after the cold spell is
obtained by superposition. We have as in (10.23):

Q) = -ATy - Lo - { he(Vat/H,d/ H,dw/ H) - hi(\/alt = &)/ H,d/ H,dy/H))

Let t4 denote the time in days. We get the following formula for the heat loss
during the cold spell:

Q(t) = 900 ke (VE4/617, 1.5, 1.5)

After the cold spell we get:

Q(t) = 900 - by { (VEa/617,1.5,1.5) — h, (/{Ea — 7)/617, 15,1.5) }

The table below gives the heat loss for a few times:

t (days) lo 1 2 4 7 8 14 50
Q(t) (W), case D1 {0 82 114 154 198 123 57 14
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It is interesting to compare the result for this cellar case with reference case
A, which is the corresponding case for a slab on the ground. The insulation
thickness of the floor is the same as the floor and wall insulation thickness
for case D1. The heat loss for case A is given by Example 10.5. The heat
loss for the cellar is approximately twice as large as for the slab. This will be
explained in Section 18.2.1.

Example 18.2:

The maximum heat loss for a cold spell occurs at the end of the cold spell.
For a cold spell that starts at £ = 0 and has the duration ¢, we get the heat
loss from formulee (18.1-2). For the reference cases with T = —15°C and
ta=1 week we have:

1!at2/H = 0.337 ATy = —22.5 W/m

For reference cases D1, D2 and D3 we have;

L:=40m

For case D1 we get from Figure 18.2:

hy 7 0.22

The peak heat loss becomes:

Qu(te) = —ATohy - L, = 22.5-0.22-40 = 198 W

For case D2 we get from Figure 18.2:

The peak heat loss becomes:

Qi(tz) = —ATehs - L, = 22.5-0.185 - 40 = 166.5 W

For case D3 we get from Figure 18.2:
The peak heat loss becomes:

Qiltz) = —ATeh; - L, = 22.5.0.53-40 = 477 W
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For reference cases E1 and E2 we have:

Le=90m

For case E1 we get from Figure 18.2:
hy 22 0.22
The peak heat loss becomes:

Qi{ts) = —ATyh; - L, = 22.5-0.22-90 = 445.5 W

For case E2 we get from Figure 18.2:
h; =~ 0.24
The peak heat loss becomes:

Qi(ta) = —ATyh; - L, = 22.5-0.24-90 = 486 W

18.2 INFINITELY DEEP CELLAR

The special case with a cellar of infinite depth is studied in the supplementary report [3].
The heat flow region becomes a quadrant with the wall along the z-axis. See Figures 6.12
and 18.1. Analytical solutions for the heat loss and the temperature in the ground are given.
Some of the results are given here. The heat loss for an infinitely deep cellar will be denoted
by ¢} (infinite). The corresponding heat loss factor is Ai. We will consider the case with a
thermal resistance at the ground surface. The problem contains the three lengths d,,,d; and
Vat. It is of course independent of H. We have:

gi(t) = —ATz - hi(Vat/dw,d1/du) (18.3)

The heat loss over the upper part of the infinitely deep cellar wall is of interest. The
heat loss over the wall segment z = 0,0 < z < H of an infinitely deep cellar is denoted by
¢’ (wall). The corresponding heat loss factor is denoted by h{’. For this case the thermal
problem again depends on the length /. We consider the case d; = 0 only. We get:

g¥(t) = —ATy - h?(Vat/dy, H/dy) (18.4)

18.2.1 HEAT LOSS FACTOR

The heat loss factor ki for a cellar of infinite depth is obtained from Formula 4.20 in [3}:

. 1 I et/ Vat Vat
ht(\/&/dw,dl/dw) = m [e t/dwe t/dl. - erfc (E) - erfc (d_l) - ].jl (185)

2
1+ (di/dy)?

2

1+ (dw/d1)? i (Vat/d)

+ Ry (Vat/di) +
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R(r) = \—}—1? /‘: e’ - erfc(s) ds (18.6)

The heat loss factor is shown in Figure 18.3. The basic heat loss factor hY is the same one
that was used in Section 10.1. It 1s given by Figure 10.2.

hi (VaF/dw,d; /du)

0.8
| //
d‘]y///
0.1
0.4 /
// 0.5 -
/,//,4//
// g
0 "4’4/ I
0 0.5 1.0

_ vat/d,,
Figure 18.3: Heat loss factor A} for a cellar of infinite depth.

For the special case dy = 0 we get the following formula:
B = 2. hd(Vat/dy) di/dy =0 (18.7)

The formula shows something very interesting. The heat loss becomes twice as large as for
the corresponding case with a slab on the ground. See Section 10.1. The heat conduction
region for the cellar case can be described as a wedge of angle # /2, and for the slab a wedge
of angle r. For this special case the heat loss is doubled when the angle is halved.

18.2.2 HEAT LOSS FACTOR FOR A WALL SEGMENT

The integrated heat flow over the wall segment z = 0,0 < z < H for the case d; = 0 is given
by Formula 4.22 in {3]. We have:

\/a—t/dw 2 2 222
R (Vat/dy, Hldy) = 2 - h){(Vat/dy) ~ %/; e ~H /(45%40) erfc(s) ds  (18.8)

This heat loss factor is shown in Figure 18.4. Figure 18.5 shows Ay’ for varying Viat/H and
a fixed value of d,,/H. For Vat/H > 2 the steady-state heat loss is approximately obtained.
For this case it is equal to 0.58.
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Figure 18.4: Heat loss factor h¥{\/at/dw, H/dw) for the heat loss over the wall segment
z=0,0<z< H for d;y =0.
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1.0
dw/H:1,d1;O
L
0.5 -
O T T T I
0 1 2 L 6 B 10
Jat/ H

Figure 18.5: Heat loss factor A’ for the heat loss over the wall segment x = 0,0 < z < H for
dy = 0. The parameter \/ﬁ/ H is varying, while d,,/ H is fixed.
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18.3 HEAT LOSS THROUGH THE FLOOR

The heat loss for a cellar with a totally insulated wall is studied in this section (Figure 18.1
with dy, = o0). We will get approximate formulae for the heat loss through the floor. The
heat loss will be denoted by g;; (W/m), and the corresponding heat loss factor is denoted
by h:1. This notation will be used later in Section 18.5 (Figure 18.8). The thermal problem
contains the lengths H,d and v/at. The parameter d,, for the thermal insulation of the wall
vanishes. We get:

ga(t) = —ATy - huy(Vat/H,d/H) (18.9)

The heat loss factor A;; has been calculated numerically. It is given in Figure 18.6,

hq
0.5 |
) d/H= 0 |
//
0.4 ~ e -
0.25 4"
|
7 // /__/I
0.2 // - ] ‘]//
’ / // —
0 = ; :
0 0.5 1.0 1.5 2.0
Jat /H

Figure 18.6: Heat loss factor A for a cellar with a totally insulated wall.

It is interesting to note that it takes some time before the heating from the ground surface
is felt at the floor. The parameter \/a_t/ H is approximately 0.3 before there is any heat loss
through the floor. For our reference cases with H = 2.0 m and a = 0.75 - 10~® m?/s this
corresponds to 22 days.

For a case dy # oo the heat loss through the floor is less than g1 due to the cooling of
the ground by the wall.

18.3.1 APPROXIMATE FORMULA

An estimation of the maximum heat loss through the floor for a cellar with totally insulated
walls is given in this section. Consider the temperature field far away from the cellar in
undisturbed ground. The temperature at the depth H is from (6.12) in Section 6.1:

T(z,H,t) = T, - erfc( H/+/4at) (18.10)
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The temperature at this depth closer to the building is less than (18.10)}, due to the ground
under the cellar. It is cooled by the region around the corner where the wall meets the floor.
An upper limit of the temperature at z = H,z > 0 is given by (18.10).

We now have a problem similar to the slab on the ground for the region 2 > H, —oco <
z < co. The outdoor temperature is Ty - erfc(H/v/at) instead of T, which was treated in
Chapter 10. The heat flow ¢ is given by Duhamel’s theorem, {13}, formula (18.10) and
(10.2). We get the following inequality:

hi < j: erfc{ H/v/4ar) - gi-:h? (\/a(t - ‘r)/d) dr (18.11)

This expression becomes:

Jai/d )
h <[ f(H Zd\/tdz—z)-’ fe(s) d 18.12
n < [ erfc | H/(2d\/at/ s?) ) - e erfc(s) ds ( )

This approximation is shown in Figure 18.7 by the dashed curve for the case H/d = 1. The
continuous curve gives the numerically calculated heat loss factor. The relative error in the
approximation is less than 42 % for /at/H < 1.

by
0.3

H/d=1

0.2 1

0.1+

G ¢.5 1.0

Jat/H
Figure 18.7: The numerically calculated heat loss factor hyy for H/d = 1, and the approxi-
mation (18.12) (dashed curve).

18.4 APPROXIMATION FOR DEEP CELLARS

Tt is shown in Section 6.4.2 that the undisturbed ground temperature at the depth 24/at is
reduced to 16 % of the ground surface temperature. For deep cellars (and not too long times),
Vat /H < 1, the main part of the temperature influence from the ground surface is located
at a depth less than H. The temperature at the cellar wall is approximately the same as for
the infinitely deep cellar. A good approximation of the heat loss through the wall is therefore
given by the heat loss formula for a wall segment, (18.8). In order to account for the heat
loss through the floor, which is small for deep cellars, we add the heat loss derived in Section
18.3, (18.9). We get the following approximate heat loss formula for deep cellars:
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h(Vat/H,d/ H,dw/H) ~ hu (Vat/H,d/H) + K (Vat[dy, H/dy) (18.13)

The approximation is tested in Figure 18.9 for reference case D1. The dotted curve shows
the approximation (18.13), where h; is obtained from the numerically calculated values in
Figure 18.6. For the dashed-dotted curve the approximation (18.12) is used for hy;.

18.5 APPROXIMATION FOR SHALLOW CELLARS

Let us now consider the heat loss for a shallow cellar. A superposition of the same type as in
Section 17.5 is used in this section. The temperature in the ground is denoted by T(z, z, t}.
It is equal to 73 at the ground surface. The boundary temperature at the cellar is zero. The
temperature can be obtained from a superposition of the two temperature fields Ty(z, z,¢)
and Ty(z, z,t). Figure 18.8 shows the superposition.

T=T, T,=0
dw dw
257"
T=0 Tix,z,t] = + T,(x,7,t)
dqt Tzo& dg T2=0x
94 Q+;

Figure 18.8: Superposition of the temperature field Ty(z, z,t) for a cellar edge with a totally
insulated wall and the residual temperature Ta(z, 2,t) in order to get the temperature for the
original problem shown in the left figure.

There is no heat flow through the wall (d,, = oo) for the first component Tj(z, z,t), which
takes care of the main part of the heat loss through the floor. The second, residual tem-
perature field T3(x, z,t) takes care of the heat flow through the wall. The edge heat loss
becomes:

q:(t) = g (t) + qea(2)
gty = —ATz-ha  gu2(t) = — ATz - ha (18.14)

The heat loss factor hyy has already been treated in Section 18.3.

For shallow cellars v/at/H > 1 the local temperature process in the cellar wall region is
approximately the same as the steady-state one. This was shown in a similar problem studied
in Section 18.2.2. A formula for the heat flow over a wall segment z = 0,0 < z < H for a
cellar of infinite depth is given. For large values of \/Ei/ H the heat loss is approximately
equal to the steady-state heat loss.

The whole temperature field T2(z, z) is located in the cellar edge region. It has virtually
vanished at a distance of v/at from the cellar wall. The local thermal process around the
wall is approximately given by the steady-state conduction equation with the actual cutdoor
temperature. Thus it coincides with the steady-state temperature field T3(z, z) (where T;=0
and Ty = T3) studied in Section 16.4.1. We get the same heat loss factor for ks as hy:
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htZ ~ hsg (1815)

This steady-state heat loss factor is given by Figure 16.7.

The heat loss h¢2 does not only give a heat loss through the wall. It also gives a counter-
flow through the floor. The floor heat loss contributions from g1 and ¢ have opposite signs.
Thus an approximation of the heat loss through the floor that is given by ¢;; becomes an
overestimation.

We get the following approximation of the heat loss for shallow cellars:

hi(Vat/H,d/H,du/H) ~ hyy(Vat/H,d/H) + hoa(d/H,d,/ H) (18.16)

The heat loss factor £y is given by Figure 18.6. (An approximate formula for the heat loss
factor is given by (18.12).) The heat loss factor h,3 is given by Figure 16.7. The approximation
is shown in Figure 18.9 by the dashed curve for reference case D1. The approximation does
not estimate the heat loss factor satisfactory for small times as expected.

18.6 APPROXIMATE EDGE HEAT LOSS FORMULA

In this section we will summarize the outdoor step-change heat loss formulz for the cellar.
A general approximate formula for the edge heat loss of the cellar will be ocbtained. We have;

Qi(t) ™ L. - @it)  Vat < Lin/2 (18.17)

Here L, is the perimeter length of the building. For a rectangular house it is 2L + 2B. The
length L., is the minimum dimension of the foundation in the horizontal plane. For a
rectangular slab it is equal to B.

We have one approximation for deep cellars in Section 18.4 and one for shallow cellars
in Section 18.5. From Figure 18.9 below we find that v/at/ H=1 should be a suitable limit of
validity between the two approximations,

hy % hyy(Vat/H,d/H) + h¥ (Vat/dy, H/d,) Vat/H < 1 (18.18)
he ~ hyy(Vat/H,d/H) + hoa(dw/H,d/H)  Vat/H > 1 (18.19)

The heat loss factor h¥ is given by (18.8) and Figure 18.4, and Ay is given by Figure
18.6. The steady-state heat loss factor A, is obtained from Figure 16.7. The approximations
(18.18-19) for the heat loss factor h; are shown in Figure 18.9 for reference case D1I.
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—— -— Deep cellars, {18.12)
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Figure 18.9: Comparison between the numerically calculated heat loss factor and the approx-
imation (18.13) for deep cellars and (18.16) for shallow cellars for a cellar edge for reference
case D1. The dashed-dotted curve shows the approximation for deep cellars where the upper
limit approximation (18.12) is used for the heat loss factor hyy.
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Chapter 19

DESIGN RULES

The accumulated heat loss during the heating season and the peak effect are of interest in
energy balance calculations for a building. Simple design rules based on the presented results
are given for a cellar. The basic case with a rectangular building and constant equivalent
insulation thickness at the floor and at the wall is treated in detail. The design rules are
available as a PC-program. See Section 19.4. In the last section the design rules are applied
on the reference cases.

19.1 OUTDOOR TEMPERATURE

The outdoor temperature determines the heat loss from the building. It may vary strongly
during the day, and from day to day. However it has been shown that variations with a short
time period or duration can be neglected. The outdoor temperature can be approximated by
a simplified expression.

It should normally be sufficient to use the following approximation of the outdoor tem-
perature for the calculation of the heat loss during the heating season:

Here Tp is the annual mean temperature, and 7T} is the amplitude of the sinusoidal temper-
ature variation with the time period tp=1 year. The function (19.1) may be determined by
fitting to mean values over, for instance, every week of the year for the actual place. The
temperature (19.1) is shown by the continuous curve in Figure 19.1.

- The sinusoidal temperature represents a mean temperature during the winter months.
In order to calculate the peak effect we need to represent the outdoor temperature in greater
detail, in particular during the coldest period. It should normally be sufficient to use a single
suitably chosen pulse, which starts at ¢ = ¢; and ends at ¢t = ¢; + ¢t2. The magnitude of the
pulse is T3. The value of T is negative for a cold spell. The maximum heat loss is obtained
at the end of the pulse. The chosen representation of the outdoor temperature is shown in
Figure 19.1.

19.2 HEAT LOSS DURING HEATING SEASON

The heat loss to the ground is denoted by Q(t) (W). For the outdoor temperature (19.1) we
get a steady-state (time-independent) component @, and a periodic component Q(t):

Q(t) = Qs+ Qp(t) (19.2)
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Figure 19.1: Representation of the outdoor temperature for the calculation of the energy
demand (continuous curve) and the peak effect (continuous + dashed curve).

The steady-state component is treated in Chapter 16, and the periodic one in Chapter 17.
For a rectangular cellar with constant insulation thickness at floor and cellar wall, we have
according to formula (16.1-2) for the steady-state heat loss:

Qs =AT; -To)L-h,(L/B,H/B,d/B,d,/B) (19.3)

Here L is the length of the cellar, B the width, and H is the depth to the cellar floor. The
insulation thickness of the floor is given by the equivalent length d = Ad; /Ai, and for the
wall it is dy = Adiy/Aiw. The non-dimensional heat loss factor h, is calculated according to
(16.20-21). The periodic component is obtained from the imaginary part of (17.22):

Qp(t) = —AT1- (2L + 2B) - |hy| - sin(2n(t/to — ¢p)) (19.4)

The functions |hy| and ¢, depend on d/dy, dy/do, and H/dy. They are calculated according
to (17.23-27). The periodic penetration depth dy = /atp/7 is discussed in Sections 4.5.2
and 6.1.1. In the formula above the thermal resistance at the ground surface is neglected
(dy = 0).

Consider a heating season between the time ¢; and #;. The total heat loss E, (year)
during the heating season is given by the integral of (19.2) over the time ¢, < ¢ < t;. This
gives the following formula for the accumulated heat loss during the heating season:

Ey = A\(Ti — To)L - ho(L/B, H/B,d/B, dw/B) - (ts — ts)+ (19.5)

+ ATy (2L + 2B) - [hy| - £2 - {cos(2n(ts/to — $,)) — cos(2n(ta/to — 5))}

19.3 PEAK EFFECT DURING THE WINTER

Let Q:(t) denote the heat loss due to the cold spell. The total heat loss for a temperature
according to (19.1) with a superimposed cold spell as shown in Figure 19.1 becomes:
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Q) = Qs + Qp(t) + Qu(t) (19.6)

The formula for Q,(t) is obtained from Chapter 18. For a rectangular building we get from
(18.1-2):

Qit) = —ATo(2L+2B) - he (1/a(t “t)/H, d/H,dw/H) 1<t <t +15(197)

The negative sign is due to the fact that T, is negative for a cold spell: The function h; is
calculated according to (18.18-19). The formula neglects the thermal resistance at the ground
surface. The largest value for Q;(t) is obtained at the end of the cold spell: t = t; + .

We choose the time #; +¢2 so that the maximum heat loss due to the cold spell coincides
with the maximum of the periodic heat loss. With (19.6}, (19.3-4) and (19.7) we get the
following formula for the peak effect during the year:

Q1) ez = MTi — To)L - ho(L/B, H/B,d/B,dy,/ B) + AT\(2L + 2B) - {h,|
~XT2(2L + 2B) - hy (Vaty/H,d/ H,dy /H) (19.8)

The three heat loss factors are given by (16.20-21), (17.23-27), and (18.18-19).

Figure 1.7 and Example 18.2 show that the contribution from the temperature pulse is
normally quite small. A thermal resistance at ground surface strongly reduces the heat loss
Q:(t). This makes it possible to neglect the heat loss due to the pulse, if there is snow at the

ground surface. The maximum heat loss is then obtained from the first two parts of formula
(19.8).

Q)| maz = MTi—To)L-he(L/B,H/B,d/B, dw/B)+ATi1(2L+2B)-|h,| (snow)(19.9)

19.4 PC-PROGRAM FOR THE DESIGN RULES

The formulz of the above design rules for a rectangular building with a cellar foundation with
constant insulation thickness at the floor and at the wall are available as a small PC-program
described below. The program runs under MS-DOS on IBM-PC and compatible computers.
The input is given interactively. The manual is given in the supplementary report 8]

The design rules assume an outdoor temperature of the type (19.1). With an arbitrary
phase ¢ we get:

Tout(t) = To + T1 - sin(27(tgays/365 — ¢)) (19.10)

Here %45y, is the time in days. A temperature pulse is superimposed on the outdoor temper-
ature (19.10) during the coldest period of the winter. The magnitude of the pulse is T3 and
it has the duration 5.

Input data

L Length of building{m)

B Width of building (m)

H Depth to the floor of the cellar (m)

d; Insulation thickness of the floor (m)

din Insulation thickness of the wall (m)

Ai Thermal conductivity of the floor insulation (W/mK)
Aiw Thermal conductivity of the wall insulation (W/mK)
T Indoor temperature (°C)

205



To Annual mean outdoor temperature {°C)

T Amplitude of the periodic outdoor temperature (°C}

A Thermal conductivity of the ground (W/mK)

C Volumetric heat capacity of the ground (J/m®K)

ta Start time for the heating season (days)

ty End time for the heating season {days)

T2 Increase of outdoor temperature due to temperature pulse (°C)
ta Duration time for the pulse (days)

Restrictions on input data

There are the following restrictions on the input variables:

LyB)di:diw;)‘-i;’\iw:'\scstZ >0 (19.11)

B<IL (19.12)

0< H/B <025 (19.13)

EAX 5 0.0 (19.14)

B

diwk//\:'w

=2 > 0.10 )
T2 (19.15)

ta <1 (19.16)

Output data

Qs Annual mean heat loss (W). It is given by (16.1-2)
and (16.20-21).

Qrlmaz Amplitude of the periodic heat loss (W). It is given
by the absolute value of (17.22), where hj, is given
by (17.23-27).

by The phase delay, (-), for the periodic heat loss is
given by (17.23-27).

E, Accumulated heat loss over the heating season
(J,kWh). It is given by (19.5).

Q)| smas Peak effect during the winter (W). It is given by

(18.1-2) and (18.18-19).
With these output data the heat loss (except for the pulse) becomes:
Q(t) = Qs + Qpl,pas - 5i0(27(aays /365 — & — ¢p)) {(19.17)
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An example

Reference case D1 is used as a test example. Time zero corresponds to the time 00.00 on 1
of January.

Input data:
L=12m
B=8m
H=2m
d; =0.08 m
diy, = 0.08 m

A = 0.04 W/mK
Ajw = 0.04 W/mK

T; =20°C

T — 5oC (19.18)
Ty =10°C

A =15 W/mK

C =2.0-10°% J/m3K

t, = 8.5/12- 365 = 258.5 days

ty = (12 + 4.5)/12 - 365 = 502 days

T; = —15°C

tz = 7 days

Qutput data:

Qs =T34 W (19.19)
Qplpay = 246 W {19.20)
$p = 0.067 (19.21)
E, =1.74.10" J = 4840 xWh (19.22)
Q(t)| oy = 198 W (19.23)

19.5 TOTAL HEAT LOSS FOR THE REFERENCE CASES

The various heat loss components for the reference cases have been treated separately in the
previous chapters. The results are summarized in this chapter in order to get a complete
picture of the heat loss for the cellars. The reference cases are defined in Section 1.7.

We have a constant indoor temperature:

T; = 20°C (19.24)
The outdoor temperature is:
Toue(t) = 5 + 10 - sin(27t/t) (°C) to = 1 year (19.25)

In order to estimate the peak heat loss, a cold spell is superimposed on this temperature.
See Figure 1.5. The pulse starts in the middle of the winter (¢; = 3t3/4) and stops a week
later (t3 = 1 week). The heating season starts in the middle of September (ta = 4.5/12- to)
and stops in the middle of May (¢, = 12.5/12 - tp).

The lengths, widths, and depths of the cellars are:
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L=12m B=8m H=2m reference case D (19.26)
L=30m B=15m H=2m reference case E (19.27)

The equivalent insulation thicknesses for the reference cases are given in Example 16.1:

Di1: d=3m dy=3m
D2: d=0m dy,=6m
D3: d=1m dy=1m (19.28)
E1l: d=3m dy=3m
E2: d=0m dypy=3m

The periodic penetration depth is:

dy=274m (19.29)

Example 19.1. Reference cases D.

The heat loss for reference cases D is given below. The result for reference
case D1 has been already shown in Figure 1.7. For the periodic component
we need the following data:

~ATy(2L + 2B) = 600 W
Reference case D1:
The steady-state heat loss is obtained from Example 16.5:

Q, =T34 W

The periodic heat loss factor is given in Example 17.3. With (17.2-3) we get:

Qp = —248 - sin(2x(t/to — 0.067)) W

The total heat loss becomes:

Q(2) = 734 — 246 - sin{2x(t/to - 0.087)) W

The maximum heat loss for the cold spell is calculated in Example 18.2:

Qtlmes = 198 W

The maximum of the total heat loss becomes, according to (19.8):

Qlay = 734+ 246 + 198 = 1178 W
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The accumulated heat loss during the heating season is, from (19.5):

E, = 4840 kWh

Reference case D2:
The steady-state heat loss is obtained from Example 16.5:

Q, = 1076 W

The periodic heat loss factor is given in Example 17.3. With (17.2-3) we get:

Qp = —300 - sin(2x(¢/to — 0.095)) W

The total heat loss becomes:

Q(t) = 1076 — 300 - sin(2x(t/to — 0.095)) W

The maximum heat loss for the cold spell is calculated in Example 18.2:

Qil,,., = 167 W

The maximum of the total heat loss becomes, according to (19.8):

Q|,py = 1076 + 300 + 167 = 1543 W

The accumulated heat loss during the heating season is, from (19.5):

E, = 6995 kWh

Reference case D3:
The steady-state heat loss is obtained from Example 16.5:

Q,=12T5 W

The periodic heat loss factor is given in Example 17.3. With (17.2-3) we get:

Qp = ~540 - sin(2x{t/tg — 0.052)) W

The total heat loss becomes:

Q(t) = 1275 — 540 - sin(2r(t/to — 0.052)) W
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The maximum heat loss for the cold spell is calculated in Example 18.2:

Qtl,par = 4TT W

The maximum of the total heat loss becomes, according to (19.8):

Q| e = 1275 + 540 + 47T W

The accumulated heat loss during the heating season is, from (19.5):

E, = 8615 kWh

Example 19.1. Reference cases E.

The heat loss for reference cases E is given below. For the periodic com-
ponent we need the following data:

—ATi(2L +2B) = 1350 W
Reference case El1:
The steady-state heat loss is obtained from Example 186.5:

Q, =202 W

The periodic heat loss factor is given in Example 17.3. With (17.2-3) we get:

Qp = —554 - sin(2x(t/tg — 0.067)) W

The total heat loss becomes:

Q(t) = 2072 ~ 554 - sin(2x(t/tg — 0.067)) W

The maximum heat loss for the cold spell is calculated in Example 18.2:

Qt| ey = 446 W

The maximum of the total heat loss becomes, according to (19.8):

Q.. = 2072+ 554 4 446 = 3072 W
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The accumulated heat loss during the heating season is, from (19.5):

E, = 13350 kWh

Reference case E2:
The steady-state heat loss is obtained from Example 16.5:

Q, = 2069 W

The periodic heat loss factor is given in Example 17.3. With (17.2-3) we get:

Qp = 878 -sin(2nx(t/to — 0.080)) W

The total heat loss becomes:

Q(t) = 2969 — 878 - sin(2n(t/to — 0.080)) W

The maximum heat loss for the cold spell is calculated in Example 18.2:

Qt)par = 486 W

The maximum of the total heat loss becomes, according to (19.8):

Q| inas = 2969+ 878 + 486 = 4333 W

The accumulated heat loss during the heating season is, from (19.5):

E, = 19375 kWh
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