Time-domain Fresnel-to-Fraunhofer diffraction with photon echoes

Menager, L.; Lorgere, I.; Le Gouet, J; Mohan, R. K.; Kröll, Stefan

Published in:
Optics Letters

1999

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Time-domain Fresnel-to-Fraunhofer diffraction with photon echoes

Loïc Ménager, Ivan Lorgeré, and Jean-Louis Le Gouët
Laboratoire Aimé Cotton, Centre National de la Recherche Scientifique II, Bâtiment 505, 91405 Orsay Cédex, France

R. Krishna Mohan and Stefan Kröll
Lund Institute of Technology, Box 118, S-22100 Lund, Sweden

Received March 1, 1999

A photon echo experiment in Tm$^{3+}$:YAG is reported that shows, for the first time to the authors' knowledge, the time-domain equivalent of the transition from near- to far-field diffraction, including Talbot self-imaging effects. The experiment demonstrates the huge dispersion capability of photon echoes and opens the way to further exploration of space–time duality.

The shape of the three-pulse photon-echo signal, built, for instance, on an atomic transition of a rare-earth ion doping a crystal, can be described as

$$E_n(t) = E_1^*(t) \otimes E_2(t) \otimes E_3(t),$$

(1)

where $E_n(t)$ are centered about $t = 0$ and describe the envelopes of the excitation pulses, which are assumed to be temporally separated and with the time order E_1, E_2, E_3; \otimes represents the convolution product. From the point of view of time-domain holography the echo signal is the result of reading with pulse E_3 the spectral hologram engraved in the crystal by the first two pulses. The duration of the recorded shape $E_1^*(t) \otimes E_2(t)$ is limited by the dephasing time of the atomic transition, and its spectral bandwidth should not exceed the inhomogeneous width of the atomic transition in the host crystal. Equation (1) is readily transformed into a diffractionlike integral. Let E_2 be the input signal and E_1 a short reference pulse such that $E_1^*(t) \otimes E_2(t) = E_2(t)$. Now let E_3 be a long wideband chirped pulse, that is, a pulse whose spectral bandwidth is given by rt_3, where r is the chirp rate and t_3 is the pulse duration. If in addition this bandwidth covers uniformly that of the input signal, such a pulse can be written as $E_2(t) = \exp(i\pi rt^2)$ in echo expression (1), which then reads as

$$E_n(t) = \int E_2(t') \exp(i\pi rt - t')^2 dt'.$$

(2)

The echo here appears as the result of dispersion of input signal $E_2(t)$: Each frequency component ν is delayed by $T(\nu) = \nu/r$. In this dispersion process the maximum achievable group delay T is limited by the coherence time of the atomic transition. It can therefore be several tens of microseconds in thulium-doped crystals, which is to be contrasted with the 500 ps that a grating pair can typically achieve. This photon-echo process offers matchless group-delay dispersion. In addition, the group-delay dispersion rate $\partial T/\partial \nu$ is given by the inverse chirp rate and can therefore easily be controlled and varied over a broad range.

From the space–time duality point of view, this dispersion process is the time dual of diffraction over a
distance d, with the equivalence $\lambda d \rightarrow 1/r$, where λ is the optical wavelength. Indeed, Eq. (2) also gives, under the Fresnel approximation, the field $E_0(x)$ diffracted at distance d by a one-dimensional aperture with transmission function $E_2(x')$ and illuminated by a plane wave. If τ_2 is the duration of input signal $E_2(t')$, one can define a time-domain Fresnel number $F = r\tau_2^2$. As is well known in the space domain, the transition from near- to far-field diffraction is observed for values of the Fresnel number near unity. For $F > 1$ we are in the Fresnel diffraction range, where the diffracted pattern is highly sensitive to variation of the Fresnel number. Interesting effects such as Talbot self-imaging can be observed in this situation. For $F < 1$, the diffracted pattern intensity is given by the Fourier transform of the input field. The chirped photon-echo process described above gives the opportunity to observe this transition in the time domain, which we have verified experimentally.

We performed the experiment illustrated in Fig. 1 on a 0.1-at. % thulium-doped YAG crystal, 5 mm thick, from Scientific Material Corporation. The crystal was immersed in a liquid-helium cryostat and held at ~4 K. The light source was a cw argon-pumped Ti:sapphire laser. The laser frequency, with a linewidth of ~200 kHz, was tuned to 12604.3 cm$^{-1}$, the center of the $^3H_6 \rightarrow ^3H_4$ absorption line of the Tm$^{3+}$ ions. The maximum optical density of the crystal was measured to be ~0.75. The inhomogeneous width of this transition is ~15 GHz. The optical setup was a collinear photon-echo setup. For a better extinction ratio two acousto-optic cells, AO1 and AO2, fed by the same rf driver, were used to modulate in amplitude and frequency the cw laser output. The frequency shifts produced by the two AO cells added amplitude and frequency the cw laser output. The laser power that prevented us from making these records ranges from 2.5 to 10. This means that minor deviations of $<10\%$ from the experimental chirp-rate values were necessary for optimal fit. Observation of Figs. 3(a) and 3(b) shows that the amplitude of the oscillations is smaller on the experimental traces than on the simulations. Shot-to-shot fluctuations of the temporal position of the echo signal may explain this difference, since experimental traces a and b result from averages over 4 and 64 shots, respectively. These fluctuations can arise from jitter on the delay between the first and second pulse trains and from laser frequency instabilities. More disconcerting is the phase difference between the experimental and the simulated oscillations in Fig. 3(b). More research is necessary to explain the latter discrepancy.

Figure 2 shows for reference the squares of the theoretical pulse-train autocorrelation function and power spectrum. These are the expected echo shapes for infinitely high and low chirp rates, respectively, which are time duals of diffraction over zero and infinite distance. The experimental records show the transition between these two situations. Indeed, one can clearly identify in Figs. 3(a) and 3(b) the periodic peaks whose 200-ns period is that of the pulse train and that are inscribed under a bell-shaped envelope. The recordings of Figs. 3(c) and 3(d) show the three distinct peaks that are characteristic of the pulse-train power spectrum. The time-domain Fresnel number $r\tau_2^2$ for these records ranges from 2.5 to 10. This means that...
the chirp rate has never been low enough for the echo field to be truly given by the Fourier transform of the input signal, which is obvious from comparison of Figs. 3(d) and 2(b). It is the use of a collinear photon echo setup that prevented us from exploring lower chirp rates, because in this geometry the echo must be separated in time from the reading third pulse.

On the other hand, one may wonder about the behavior of the echo for higher chirp rates. In particular, because the input signal has a periodic pattern one may expect Talbot self-imaging effects. In the space domain the Talbot parameter when one is observing at distance d the diffraction pattern from a periodic mask with period p is $\lambda d/p^2$. For distances such that this parameter is an integer the original mask pattern is recovered, save for a π phase shift for odd integers. For half-integers, doubling of the input signal frequency is expected. In our experiment the Talbot parameter is $Q = 1/2r\tau_m^2$, where $\tau_m = 200$ ns is the pulse-train period. We verified with the computer program used to simulate the echo signal that the expected self-imaging and frequency doubling effects should indeed be observed for $Q < 5$. For higher Q values the frequency doubling effect is no longer observed, and self-imaging becomes degraded because of increasing Fresnel number. The lowest Q value achieved in the experiment actually corresponds to $Q = 11/2 r = 4.55$ MHz/μs, which unfortunately is too high for frequency doubling. The maximum chirp rate in the experiment was limited by the ramp generator driving both the AO1 and the AO2 cell. Higher chirp rates could easily be achieved with existing technology. Investigation of time–domain Talbot effects would then be possible.

To summarize, we have performed a photon-echo experiment in Tm$^{3+}$:YAG that showed for the first time to our knowledge the transition from Fresnel to Fraunhofer diffraction in the time domain. This experiment demonstrates the unequalled dispersion capability of the photon-echo process in rare-earth-doped crystals and opens the way to further investigation of space–time duality. In particular, this dispersion capability, characterized by the inverse of the chirp rate r, could be best if it were associated with the time lens such that the combination were a 1-f Fourier transformer. As a matter of fact, chirping the signal at the opposite chirp rate, $-r$, gives the appropriate lens. Hence several photon-echo schemes can be designed for time-to-frequency Fourier transformation of rf optical signals.

The experimental part of this study was carried out in Lund, Sweden, under the European Community Training and Mobility of Researchers grant “Access to Large Scale Facilities,” contract ERBFMGECT950020D G12. I. Lorgere’s e-mail address is lorgere@lac.u-psud.fr.

References