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AN ON-LINE ALGORITHM FOR APPROXIMATE MAXIMUM LIKELIHQOD
IDENTIFICATION OF LINEAR DYNAMIC SYSTEMS

T, Soderstrdm

ABSTRACT

A recursive algorithm for maximum likelihood estimation of
parameters in a linear dynamic system is presented. The basic
idea in the algorithm is a recursive optimization of the like-
lihood function. Different approximations are used. With special
simplifications the algorithm becomes identical to methods
earlier proposed. The properties of the algorithm are illu~
strated by application to data from simulated systems as

well as plant measurements, '
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T. INTRODUCTION

In the field of the identification of dynamic systems
special interest has been given to on-line methods. It may
be desirable to proceed the identification until a speci-
fied accuracy is achieved. An on-line identification method

also is necessary for adaptive control.

Several on-line identification methods have been proposed.
In Astrdm-Eykhoff (1971) a short description of different
methods is given. The algorithms deseribed in Young (1970),
Young-Shellswell-Nethling (1971) seem to work quite satis~
factorily.

When off~line methods are considered it is known that the
maximum likelihood method is a powerful one and in most
cases gives the "begt" estimates, Astrdm-Bohlin (1966),
Gustavsson (1969b). The purpose of this report is to describe
an approximative recursive version of this method using
ideas due to Astr®m, who has made an outline of the algo-
rithm.

It is well-known, Astrdm (1868), Astrém-Eykhoff (1971) that
the least squares (LS) method easily can be computed re-
cursivly. The recursive veréion can be interpreted as a
Kalman filter. The ML method can be considered as an ex-
‘tension of the LS method. One way to construct a recursive
ML algorithm is to generalize the Kalman filter of. the LS
case. This approach has been taken by Young for the esti-
mation of parameters of time series.

Panufka (1968) gives a similar algorithm based on stochastic
approximation. A comparison of PanuBka's algorithm and the

off-line ML method is given in Valis-Gustavsson (1969),

In this repcrt an estimation algorithm will be derived via

a recursive minimization of a time varying loss function.

When different approximations and simplifications are made




the algorithm is the same as the one used bty Young or

the one used by Panu#ka.

The approach of minimizing a loss function can be applied

to different models. Several well-known methods as least
squares, generalized least squares, Clarke (1967}, S8der-
strém (1972), the "ordinary" ML, Astr&m-Bohlin (1986) and

the method used by Bohlin (1970) can be interpreted as maxi-
mum likelihood models when appropriate assumptions of the
structure of the systems are made. ALl the methods can be .
expressed as a minimization of a loss funetion of the

form

N,
T e°(t38) (1.1)

7 A —
\.N(e) = .

raf -

t

N is the number of samples and a(t;a} the residual at time t,

The vector 8 is an estimate of 6, a vector containing para-

meters which describe the system. The elements of 8 will be

called the model parameters. The explicit expression of

ety 8) as a function of o differs between the different

methods. The variances-of the residuals can be estimated by
52

. 2 ‘
= 5 min VN(B) , (1.2)

oy P

%et éN min%mize VN(é). A recursive algorithm must give |
BN+1 from 64+ the measurements at time N+1 and a reasonably
small amount of collected information of the system. In the
recursive LS method this is done exactly but for the other

" methods approximations have to be used.

Another way of discussing the properties of a reasonable
algorithm it to use the concept of sufficient statistics,
When the disturbances are gaussian it is well-known that
there is a sufficient statistic in the LS pase, namely
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Vil 17s by-1 @nd a few of the latest measurements. In the
general case a sufficient statistic must inélude.all old
reasurements explipitly. Thus it is suitable to base an algorithm

on an approximate sufficient statistic.

In the next chapter an algorithm for the recursive minimiza-
tion of VN is developed. Different approximations are discuss-
ed.. In chapterIII the Kalman filter approach is taken into
consideration and some comparisons are made. Possible limits
to which the estimates may converge are analysed in chapter
IV, The fifth chapter contains some examples and discussions
about how to implement the algorithm. Finally examples using

plant measurements are presented in chapter VI.
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IT. A RECURSIVE MAXTMUM LIKELIHOOD ESTIMATOR

In this chapter the recursive algorithm is developed. The
first part deals with the recursive minimization of the
loss function
N, R
¥ e“(t;0) . (1.1)

Vo (8)
N 1

ro] —

t

i

in general. In the second part the algorithm will be applied
to the specific model, Astr&m-Bohlin (19686)

Al My t) = Baa™Huce) + ceqg” e(t8) (2.1)

where y{t) is the output and u(t) the input at time t.
The polynomial operators are

_1-

" _ =1 S -n
Algq ') = 1 + a,q ..ot oaq
B(q"") = b g 4. .4 b

1 v -

ey =1+ c1q"1+...+ c g &

q_? is the backward shift operator and

- _ e ~ -~ LS ~ ~ T

8 = [31“'anb1"'bnc1"'cn}
Let 8, be the minimum point of Yy (8. The esnﬂamaBN+ttﬁJ1:be
computed from a Taylor expansion of VN+1(B) around BN
Suppose that an expdn51on including second order terms is
accurate enough,

(g) = (8 ) + v}

Ui et Nt (02 (0=8y) #

deaca 0 - A
+ (e eN) Vieq (oo (e 07

N+1
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Minimization gives
R R T e T S TR T I (2.2)
N+1 N N+1° "N N+1'°N )
which is the first iteration of a Newton Raphson algorithm
applied to the equation VN+1(é) = 0,
The estimated minimum value of VN+1(6) is
Vo By ) = Vo (80 = 2vt (00U (e )TV (80T (2.3)
N+1" "N+1 N+1 "N 2 H+1 N+1*'N N+1 )
To form a recursive estimator the relation between VN41(B}
and V (8) must be utilized. By definition
S I SRR
N+1(8) = VN(B) t e (N+1:8) (2.%)
N+7(8) = Vﬁ(e) + e{N+1;8)e’(N+138) (2.5)
V§+1(6) = Vﬁ(é) + e'(N+1;8)Te’(K+1;8) +e{N+130e"(N+1580)
(2.8)
The following approximations are made now
t —
vNieN) = 0 (2.7
E(N+1;BN)€"(N+1;GN) = 0 (2.8)
i N — " .
VN(GN) = VN(BN 1) (2.9)

The assumption (2.7) can be assumed to hold since 0y is

assumed to minimize Vy (ﬁ) For off-line ML the term

N

¥ e(t;6)e"(t36) has little influence on the minimization,
t=1 N
Gustavsson {1969). The equation (2.9) is motivated if . is
close to 6y .. Also notice that (2.7) - (2.9) as well as
the Taylor expansion hold exactly in the LS case.
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With the use of the approximations
" - o j_ Tgn noy
VN+1(GN+1)'VN(BN)+ 5 € (N+1, N) 2 N+1(6 v N4 1(6N) N#ﬁe )
(2.10)
N+1(9 ) = e(N+1;eN) d(N+1;GN) (2.11}
1" - 13 H .; T 1 .h 3
VN+1(BN} VN(GN ¢)+ e(N+1,LN} € (N+1,9N) (2.12)
Introduce the notations
Py = Voo, )7 (2.13)
N N-1 )
. T
@ = ' (N 8N—1) (2.14)
B ® E(N;BN__1) 7 (2.15)
Y =1 4+ TP 1) (2 165
N+1 N4+1 "N TN+ '
ThHen (2.2) can be written as
a1 T8 T Prua1®wer Buen (2.7
The well-known matrix lemma
TS N L e B I N T S e
applied to (2.12) gives
P, =P - —l_p T p (2.18)
N+1 Ny NN+ PN TN '
N+1
Finally (2.10) can be rewritten after some trivial calcula-~
tions as
- - 1 1 2
Vie1 COnaq? = Vg0 + 5 5 £y (2.19)

N+1
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In the general case it now remains to develop recursive
equations for'eN and @ . For the LS case this is very simple
since e(t38)} is linear in €. The derived algorithm coincides
with the well-known one.in the LS case. The expression (2.19)
can be found in Wieslander (1371) where it is derived using
a Kalman filter representation.
In the derivation of recursive eguations for €y and Oy
specialization will be made to the model
< e ~ o aq = ~
Alg Jy(r) = B(q Ju(t) + Clg Delt;s) (2.1)
which can be written in state space form as
—c, 1 1 {1 a, —b;i
: O ; o, [y cest)]
: ‘ ! Ly | |
B I!-” -
—; () 0 ; 0 a - §
1 n i _ n n_;
e{t;8) = xq(t)
The derivatives e'(t3;8) are given by
8@y 2B (e30) = y(t-i)
3a.,
i
» _.1. BE ~ . l
C(g ') —= (ty6) = -u(t-i) (2.21)
8b.
1
=1 de Sy . ‘g
Clg ) —== (£30) = -e(t-i3;8)
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A state space form of (2.21) is

e (t+136)=] T T CeT(ee) f-utt) (2.22)

i
| R o
i ‘th B 7 o O .

-
|

The initial values are x(0)= 0, €'(0;8) =0,

In order to compute e(t;é) and E'(tgé) (2.20) and (2.22)

have to be solved from t=0. Since e and e' must be computed
for new arguments at every time step this means an unreason-
able lot of calculations. Moreover, all old meagurements must
be saved. Note that no matrix multiplications have tc be dohe
explicitly. E.g. all but three components of a(t+1;é) can be
computed by shift,

One way of reducing the computational work is the following.
(2.20) and (2.22) are solved only once and with time vari-

able maitrices. When x(t) and e'(t; 8 ) are computed from

-1

x(t-1) respectively e’(t~1;ét~2} the components of @ are

t-1

used in the matrices. If 8, does not change very much with

t
t this approximation can be assumed to be good. The resulting
values of the residual will be denoted € o

A further simplification would be to substitute 6(q_1)

in (2.21) “with"1..This does not reduce the computations

very much but it has a nice interpretation which will be

shown in the next chapter.




There are other possibilities to compute approximative values

" of the residuals. One is the folleowing which is used by Young
(1870) and Panuika (1968). The equation {2.1) can be written as

e(t) = () ~y(t=1) . =y (t-n) w(t=1)..ult-n) e(t=1)..0t-n) 1 (2.23)

An exact computation of ¢(t;8) requires the solution of
(2.23) from t=0 with constant 8., Similarly to the method
previously described e(t;Gt_q) can be approximated by

e{t;6

_t__fl) = Y('t) -

={=y(t=1) s~y (ten)  ult-1)..ult-n) f:(t--1;et_z)..s(tm;et_n_,llaﬁ_1

{(2.24)
The algorithm used by Young is obtained if (2.24) is used for

N and (2.21) with é{q'1) substituted by 1 -
for computations of P '

computations of e

PanuBka's algorithm uses a2 gradient method for the minimization.
In (2.17) PN is substituted by % I where K is a suitable con-

stant. ey and 9, are computed as in Young's algorithm.

The general algorithm and Young's version are compared using
simulated data in chapter V. For these examples both the meth-
ods may give bad'estimates if they are applied ~straight-forward.
Suitable modifications are discussed in chapter V. Further it
turns out that after these modifications both the methods seem
to work well in the present similated systems but Young's algorithm
gives larger variances  of the parameter estimates. For both the
methods the convergence of the A-and the B-parameters are con-
siderably faster'than the convergence of the C-parameters.

In Valis-Bustavsson (1969) a comparison is made between Panudka's

method and the off-line ML method. The comparison shows not
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unexpectedly that the off-line ML method is superior, Especially
the C-parameters seem to be difficult to estimate accurately
with PanuBka's method. '

TR LR i A S LT — e i T
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TIT. COMPARISON WITH KALMAN FILTERING

T+ ie well=known that the recursive least squares method can
be interpreted as a Kalman filter, Astrdm (1968), Astrdm-
Eykhoff (1271). Using some approximations this idea can be
used for the model (2.1) as well. It turns out that Young's

algorithm is very "natural" from this point of view.

The system correspending to the model (2.1) can be written

as

Blt+%) = 6(%)

y(t) = C(tIs(t) + e(t) (3.1)

. . . . . 2 .
where e(t) is white noise with variance A and

IH

C{t) [-y(t=1) . u~y(t-n)y ult=-1)..ult-n) e(t~-1),..e(t-n)]

6(t)

n

[a130~u5a,b15n-c,b;C,,.gs, Cn}

It n I

If C(t)were known a Kalman filter for estimating The state
o (t) would be

Beta1) = 6¢t) + K(t+1){y(ta1) - CCE+1IB(E)]

Kt

1

S TSR (3.2)
A

Pet) = Plrat)-Plt-1)C()TIa2eC()PLE=1C(E) T 1T C(eIP (t=1)

A way to overcome the difficulty of C(t) being partly unknown
is to rveplace e(t-1)...e(t-n) in C{t) by e{t-1)...e(t-n). The
residuals {e(+£)} are defined recursively through

e(tr1) = y(t+1) - C(t+1)8 ()

The algorithm obtained is exactly Young's method.




IV. ANALYSIS

To establish convergence of the algoprithm, i.e., to prove that
Bk + 8, k » » Is a very hard task. The purpose of the follow—
ing analysis only is to determine possible limits of {ek}.

First it is observed that the recursive algorithm given by
(2.17) - (2.138) formally can be interpreted as a recursive

least squares solution of the system of equations

— -
T r Th
ST PEq T 0y 0y
P, _;'-62 + (p?TG,E
‘ 8 = := (4.1)
_ , i
¢ . : ;
£ | L 3
This is *rue only formally since the right-hand side involves
803 81§Ill

n &
Assume that 8, tends to 6 with probability one when the number
*
of samples tends to infinity. Assume that 6 corresponds to a
* . .
model for which A (2) and C7(z) have all zeros outside the

unit circle.

If the initial values of the recursive least squares solution

are neglected then 8, must fulfil the normal equations

N

N N A
1 Ty ~ T
t=1 =1
It is shown in the appendix that 6y and 8, _, asymptotically
* ..
can be replaced by 8 ., Turther £, and o, (asymptotically)

t t
* * ]
can be replaced by &(t36 ) and &' (t3;8 ) respectively..Thus

(4,2) implies

N = *®
lim% S e(t38 Je'(tys ) = 0 (4. 3)
Neoo 1tz

12

I SATOTT
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Using standard ergodic theory it is possible to show, see
Soderstrdm (1972}, that (4.3) can be substituted by

% *
E e{t;e Je'(t;e ) = 0 (4.4

However, (4.4) is exactly the equation for. the stationary
points of

W(8) = Ele(t;6)]° (4.5)

In Sdderstrdm (1973) an analysis of the number of local
minimum points of W(8) is given., It is shown that 6 is al-
ways a minimum point and conditions are given which guarantee
that 68 is a unique local minimum point of W(e).

Thus if these condition are fulfilled and GT converges 4.s.

it must converge to the correct values,




V, NUMERICAI EXAMPLES

In this chapter some numerical examples will be given., It
has appeared to the author by practical experi. nce that

the algorithm cannot be successfully applied in a straight-
forward way, but suitable tricks make it work rather well.
Several tricks and modificatiens have been tried by the
author but only the best one is used in the examples pre-
sented. At the end of the chapter a brief discussion of

other tricks is given.

Two different versions of the algorithm are used in the
examples. One is called RMLE1 (Recursive Maximum Likeli-
hood Istimation, version 1) and the other RMLE?. Roth the
versions include the basic algorithm given by (2.17) -~

= {(2,18). The estimate of A is taken as

A :1;/2 (8 )
In RMLE1 the residuals are computed from (2.22). RMLE?
is the version used by Young (who calls it AML, Approxi~
mate Maximum Likelihood).

The initial values of all variables involved were all
chosen as 0 with the'éxception of Py which was chosen

100+I. In the off-line version of the ML algorithm a test
of stability of a(z) iz made at every tteration and the
estimates are modified to give stability, Gustavsson (1969b)
This trick was tried in the recursive algorithm as well

and it improved the result.

It would be valuable to have one number giving the accuracy
of the result. For instance, one can use ilé—ellz or more
generally (a-B)TQ(éne) where Q is some symmetric positive
definite matrix. -

In-the following examples an asymptotic loss function was

used, namely,

i

T R T R e




W(eso) = ;% E az(t}
A

where

clqg™ ety = A DHyt) - Bla™ M)

and the process is described by
2ty = BGa Hut) + cta”Hect), E el(r) = 12

with {e(t)} white noise. Thus

~ Nl =1 ~1yh, =1
W(a30) = ;% pifla JIB(g )-A(q” )B{(q ')

3t L atq" e

u{t) +

4 2

1

ek

A" g™
INCES I

)
)

:
i

4

a(t)

{E—

Assume that the input is independent of the noise., If ‘the
spectral density of the input is known (in the examples
the input is treated as white noise) W(8;0) can easily

be computed From integrals.

Clearly, Astrém-Stderstrém (1973), W(636) > 1 for all o
where equality implies 6 = g, Further W7 (638) = 0.

An expected asymptotic value of W(é;e) can be calculated.
Assume that 8 is asymptotically gaussian distributed. with
mean 6 and variance equal to the Cramér-Raoc lower bound,
i.e.
) ", -

Pe = % W(e;0) wée<e;e)
This assumption 1s valid for the off-line ML estimates,
Astrdm~Bohlin (1966). For rarge values of Ny W(63;8) then

can be approximated by 1 + % x where

R e R = %28k MgTes S

15
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-

x = (8-0) PI'(6-2)

. . 2 . . , - -
is asymptotically ¥ (3n) distrilbured, Uspescially, vnder

: .\ oo ; dn
these assumptions E Wioze) = 1 3 i

In order to analyse the properties of the methods, the
algorithms were zpplied t¢ data Trom simulated systems.
A number of realizations was used., The average vaiusg

-

and the RMS errors of ¢ were conputed. The RMS -errcrs are

. 5 1/7
{@i(j) - ei) )

=l

-
t

HoM R

]
whape §,(]) denotes the i:th component of 8 obtained 2t
tha identification of the j:th realization, The average
vsloez and the RMS errors ace compared with their: theo-
reticslly expected values based on the Cramér-Rao lower

bouwad.,

In all examples the number of samples was 2 000, The in-
put =2igral was a PRBES with amplitude 1.0, 11 different

reazllzatlons ware used.

For the first order system The algorithms applied straight-
forward work rather satisfactorily. RMLE1 produces & consi-

derably lower variance of c, than RMLEZ. The results are

1
given in table 5.1.
o 1 ihﬂi l\ W
'Y f D1 i L 'j ; 7
Fxpected mean |-0.8 1.0 10.7 1.0 1.0015
RMS ercor | 0.012 [0,017 [D.817 }0.032  [0.0019
]
RMLE mean  {~0.796 |1.005 {0,695 11.009 |1.0023
RMS ervor N.019 {0.020 !0.0%%  {0.027 ' ©0.0028

t
£

RMLE? mean  1=0.796 11.005 !0.875  {1.019  {1.0056
RMS error | 0.023 {6.027 {06,038 10.042 10,0067
E. - .La-..- ! . 3 -

Table 5.1, Results for a first ooder eystzim, MLET is the penerel slgovitln
given in chapter II. RiLE? is Young's algorithm.
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For a second order system, however, the results are consider-
ably inferior than in the first order case. The results of a
straight-forward application of the algorithms are given in
table 5.2.

Z oy, i ) ? :

| Expected mean (~1.5 0.7 1) jo.5  1-1.0 0.2 [1.0 |1.0030
§ RMS error | 0.007 {0.006 |0.022 ]0.029 | 0,023 | 0.022 |0.032 | 0,0032
i ‘ i

P l =

1418 10,624 10,990 10,513 §-0.747 | 0.103 §1.267 E1.16H

0.258 10,242 10,073 10.072 0.517 ; 0,116 {0,591 | 0.185

RMLE1 mean
EMS error

(S S
by resrvmimpm e

RMLE2  mean ~1.490 |0.688 {1.008 {0,487 |-0.867 | 0.0u4 |1.112 1,05
RUS error E 0.023 10.027 {0.028 {0,072 | 0.180 {0.161 | 0.180 | 0.076

T NS S

$

Table 5.2. Results for a second order system. Straight-forward application
of the algorithms. RMIE1 is the general algorithm given in chap~
ter TT. RMLE? is Young's algorithm.

In Figures 5.1 and 5.2 the estimates of one of the realiza-
tions (RMLE1 is used) are plotted versus time. A comparison
with: table 2 shows that the result of the identification of
this realization is among the best ones. From Figure 5.1 a
general tendency of the algorithm can be seen. It loses its
"gain" after some hundred samples and most often the estimates
of the C-parameters theh are not close to the correct values.
This fact indicates that some kind of restarts would be valu-
able.

This idea willvbe combined with another. In the computations

of the derivatives of the loss function &_ is used as an ap-

r+

proximation of e(t;8) for various values of 6, If 8 is fixe

for a number of samples, the approximation

L N e(t8) probably
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A
2,0

2.0

>
‘ Number of
1000 samples

Figure 5.1 Parameter estimates of a second order system. Straight-
forward application of the algorithm is done. The dash-

ed lines give the true values of the parameters,
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Pigure 5.2. Loss function of a1 second order system. Straight-for-
‘ward application of the algorithm is done. The dashed

line ‘gives the asymptotically expected loss,

e e g Sy —




20

will be considerably better. If this idea would have any

practical value 8 must not change too much in the rest of
the identification.

The second idea has been examined to some extent by simula-
tions. The particular system given in table 2 was used. In
seme simulations ét was fixed to the correct values for the
first 100 samples and after that e was estimated according
to the algorithm, Good results were obtained. In other si-
mulations the fipst 100 samples were used at an identifica-
tion with the off-line ML algcrithm., These off-line identi-
fications produced good initial values of the recursive

algorithm, which produced satisfactory results in this case.

The algorithm has been modified in the following way. Tt is
applied straight~forward in N1 steps. Then a test of "con-
vergence" is pevformed. If "convergence" has occurveds

the algorithm is continued straighthforward If no convepr~-
gence has occurred a restart is made with &Lkpenlnp its value
and the other variables as their ordinary start values. Gt

is constrained to he constant for the next N2 stepz. After
another N1 STeps a new test of "convergence" is made. The
estimate % is modified in an obvious way with regard to the
latest restart, This prodedure of successive restarts is

continued until "convergence" has occurred.

A suitable test of "convergence” would be to use W(é;a).

If this quantity is small (close to 1) "convergence" may be
considered to have occurred., However, this test quantity
cannct be used in practlce, since it requires knowledge of
 and A°. Instead W(et’st N1 N, ) is used with 2? substituted

by gi. Thls means that ¢ is substltuted by the estimate §
which was present when the latest test -of "convergence' was
made., If the test quantity is smaller than VTEST no mope

restarts are made.
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Simulations were made ueing the same realizations as before.
The values of the variables used were VTEST 1.05, N, = 300,
and N, = 50, It is the author's experience that the method

i1s not very sensitive to the values of the parameters VTEST,
Ny and N,. The results are good for RMLE] and a bit inferior,
but yet satisfactory for RMLE?, see table 5.3.

|

ki P2

i : i )
i H ! t i '

ey
)

.

Expected mean |-1.5 10,7 (1.0 0.5 i~1.0 0.2 1.0  1.0030

RMS error | 0,007 |{0.006 | 0,022

— ' i

{ : : g i

RMIE1 m=an i -1.498 {0.699 (0,998 iO.SUG i~0, 987 0.180 ;0,994 ;T.DOS?
4 : . i

RS erronr 0.008 {0.008 (0,022 £0.025 [ 0,034 3.0u2 :0,0u8 20.0085

. ¥ }
:
; H

10,029 7 0.023 | 0.022 0,032 - 0,0032
{

1

; ;
i

I
[ ; i i
RMLE? mean  {~1.508 {0,702 :1,002 |0.472 -0, 966 0.160
| | '
|

1.009
0.:080

1
P1.017
i
}

RMS error t 0,026

1
0.01% {0.074 {0,032 [0.062 ; 0.062 | 0,080
i | ! ;

o e e g

Table 5,3. Results for a second order system. The trick with restarts is
used. RMLET is the general algorithm given in chapter TT. RMLE?
is Young's algorithm,

In Figires 5.3 and 5.4 it is shown how the modified algorithm RMLE1 works
on the same data as were used in Figures 5.1 and 5.2.

It can be seen that the restarts give the algorithm larger "gain <than
befors which causes a je’r*kia'iess of the estimates. The long range effect,
however, is that the estimates are considerably closer to the
correct values than without restarts.

Now a brief discussion of other tricks and approaches tried
by the author is given. His experience is that these tricks

do not give a satisfactory improvement of the algorithm,




22

_‘]5 S e e . S s 51
_2‘0
! f I ] i | [ I !
50 1000 Numberof

‘samples

Figure 5.3 Parameter estimates

of ‘a second order system. The
modified algorithm is used. The dashed lines give
the true values of the parameters,
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Figure 5.% Loss functicn of a second order system., The modified

algorithm is applied. The dashed line gives the asymp-
totically expected loss.
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"o~

The inverse VN(GN-1)—1 was computed by inversion of
o~ *

-

n ad
instead of (2.18). Since V.{8) is not independent of @
this may change the result of the algorithm.

VN(8N~1}’ i.e. (2.12) was used together with inversion
e(“‘

rs H ~
The term E(N+156N)s (N+T;6N) was not dropped in the
it ~

computation of VN+1(6N)‘

If the a}gorithm does not really minimize VN the approxi-~

- mation VN(GN) = 0 may not be accurate. The equation (2.11)

of: the gradient was changed to

T - [ ~ A 1 -
VN+1(€N)-= aVN{BN) + e(N+1;6N)e (N+?;8N)

The parameter o was chosen In the interval [0, 1]. When
4

$1

0 the previous algorithm is obtained. The choice of
¢ = 1 caused very large changes in the parameter esti-
mates and was very unsatisfactory. The choice o« = 0.6
gave some improvements of the convergence but it was

not satisfactory enough.

In order toc speed up the convergence it may be appropriate
to change (2.17) to

“ e e
ON+1 T O T N B et By

where € < 8 < 1., This attempt gave no improvement in a
few simulated examples.

The normalized loss function %VN(GE was minimized

instead of VN(S}. No significantly improvements occured.
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VI, APPLICATION TO PLANT MEASUREMENTS

It was shown in chapter V that the recursive ML method
worked well on the simulated data. In order to examine
the properties of the algorithm when it is applied to
real data, plant measurments were used, Measurements from
a nuclear veactor and from a laboratory heat diffusion
process were tried. Iderntification using an off-line ML
algorithm on the same data have been made by others.
Comparisons are made between the results of the different
methods.,

It turned out that it is much more difficult to get the
algorithm to work satisfactorily on real data. There are
probably several reasons for that, for éxample thatdthe
structure and the order of the prdcess is not known.

Different values of the parameters N and VTEST were

1 N?’
tried. The results of the identifications were not very
sensitive to the choice of these values. However, it cannot
be excluded that better results may be possible to obtain:
by other choices or by a suitable combination of the tricks

mentioned in chapter V.,

To illustrate the on-line identification procedure the
estimates ét and the residuals ;t are plotted versus
the time t. The comparison between the results of the
off-line and the on-line algorithms are illustrated with

plots of the following signals:

1. the input u(t)
2. the output y{t)
Ba~ ")
3. the modél output ym(t) = T“EZT-
' Alg )

u(t)

4, . the model erronr em(t) = y(t) - ym(t)

5. the residuals =(t;0)

F T ST T T T TR
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The model outputs of the on-line models were computed
using the parameter estimates obtained at the last

sampling interval.in the idéntification.

Example 1

The system is a nuclear power reactor in Agesta, Sweden. The
data were supplied %o the Division of Automatic Control by
AB Atomenergil, Studsvik, Sweden. The system is described
briefly in Gustavsson (196%2) where also ML identifications
are reported. The number of date 1€ 1700 and the measure-
ments are called AR 60, The irput is control rod position
and the output is the nuclear power. An idealized input
signal was used both for on-line and off-line identifi-
cation. The sampling interval is 1 second. Using an F-test
it is concluded in Gustavsson (196%z) that the system is
of third order.

When recursive ML identification was performed for a model

of third order several problems arose. The parameter esti=
mates did nét converge., At no time their values were close

to the parameter values obtained in CGustavsson (196%a).
However, the model outputs of the two models d&id not differ
significantly. A possible explanation of these phenomena

is that the order of the model was chosen too high. An in-
dication of this is that both the model in Gustavsson (136%a)
and the model obtained by on-line identification have approxi-

mately one -pole and zero in common.

The results of the on-line identifiéation of a second order
model were more satisfactory. The parémeters Nq, Ny and VITEST
were chosaen as 300, 50 and 1.05 respectively. The parameter
estimates obtained are given in Table 6.1. In Gustavsson
(1969a) 95 % confidence intervals of the parameter estimates
are given. Only the parameters ; and 82 of the model obtain-

1
"ed on=-line are inside these intervals.
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! i n-line Off-line |
 algorithm algorithm |
é used i used !
et
; : i
a, . -0.95  -1.08
E 9 0,1k é 0.20 i
5 ’; T
S ; i |
i b, . 1.69 : 1,69 f
g P4 Ly :
i b? % 1,12 ? 131 é
| a, i
boon i i ?
i e, L -0.76 ; -0.92 5
P { ? ;
§ c, 0.23 g 0.27 e
P f | %
{ A | 0.18 0.17 i

Al

fu
'3

Table 6.1 Results of identification of the nucie

reactor datz.

S

Figure 6.1 shows how the parameter estimates ®. and the

- : e * »
estimated residuals e, vary with time. The large values

of e, at t = 300, 650? 1000 and 1350 are due to the re-
starts. The large residuals at t = 471, 143, 1233, 1291,
1517, and 15987 are explained by large measurement errors
at these points. The measurement errors can be seen clear-

ly from plots of the data.,

“n Figures 6.2 the model outputs and the residuals are
shown for different models. When the second order models
are compared it is clear from Table 6.1, Figures 6.1 and
6.2 that there are only small differences between the re-
sults of en-line identification and the result of off-line
identification. Tha model output for a third order model

computed by onw-line identification was very similar to the

T e e R L
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medel outputs of the gecond order mocdels. The best result
is obtained with a third order mndal Sbtained by off-~
line identification. However, the improvements are not
very great as can be seen in Figure 5.2. The slow oscilla-
tion with small amplitude 3in the model error disappears,

however,

Example 7

The system is & laboratory heat diffusion process at the
Division of Automatic Control, Lund Institute of Techno-
logy. The process consists of a long copper rod, The end
temperatures can be controlled using Peltier elements.
Tderntification results of the system using the off-line

ML method as well as a short description of the process is
given in Leden (1971). The data used here are called series
S1. The input is the temperarvure of one of the end pointe

of +the rod. The other end point temperature was kept constant.
The output of the process ic The temperature in the middle

of the rod. The number of data is 862 and the sampling inter-
val is 10 seconds. Leden (1971) found that a model of fourth

order was appropriate.

Recursive identification was performed with N, @ 200,

N2 = 50,and VTEST = 1.05. The resulting parameter estimates
are given in Table 6.2, They differ very much from the esti-
mates obtained with off-line identification. In Figure 6.3
it is shown how the estimates vary with time, The large
values of the residuals at t = 200 and 450 are due to the

restarts.

The model identified off-line is obtained by a straight-for-
ward application of the ML algorithm. In Leden (1871) also

a congiderably better model 15 obtained by inclusion of esti-
mation of initial values and constant errors and by limiting
the residuals. This improved model has four real-valued poles

and the model ervor is much smaliler than before.

e S e ¢ L TR SR M T SR ET A




R &
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On-l11ine : ;
algorithm | algorithm

| userd ! used E

; e —1

' a, ~0.88 % -2.03 §

% ] , 1

' a, é -5.35 ; 1.40

boa i i

L a, i -0.,01 ! -0, 40 :

b : |

Pa, | 0.27 , G.0H ;

P 03] %

P Dys107 1.08 6.02 ;

P, ed0° L ! 0.46

Pz ! =

. 3 :
byt10° TR 3.90
:

b0 L .87 * 2.30

-

e 0.ty ~0.86 i

(o, 0.32 0.54

p -

% ¢ 0.26 0.15

% e, -0.03 0.2h

P 3

| 210 2.53 0.36

Table 6.2 Résults of identification of the heat rod data.

In Figure 6.4 the model identified on-line and the model
identified by & straight~forward off-line ML algorithm

are compared. Thése ‘two models differ very much in the
parameter values. It can be seen from Figure 6.4, however,
that the model obtained by on-line identification describes
the slowest modes of the process well. When the input is
constant for a longer pericd the residuals are small, The

fast modes of the process are badly estimated.
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All variables are given in ©C. Constant levels are added to
the input, the output and the model outputs.: The sampling
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CONCLUSIOMNS

The following conclusions are based on the examples given.

o) The algorithm must be applied with caution. It does

not give as good estimates as the off-line ML algorithm.

o Applied to simulated data the algorithm works quite well

when suitable tricks are used.

0 Applied to real data it is difficult to get the algorithm-
working satisfactorily. An improper choice of the order
of the model may cause considerable difficulties. The
most dominating modes of the process are well estimated.
It is probably often appropriate to use a low order model.
o The cholce of the values of N

N and VTEST is not

13 25

very ¢rucial.
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APPENDT X
The purpose of this appendix is to show that the equation
(4.2) can be substituted by (4.3). The basic tool is the

foliowing lemma which is taken from Ljung (1973),

Lemma, Let {fn} be a strictly stationary process such that

Eifp] exists.Assume that the sequence {a } fulfils

a_ -+ 0 a.,8. n > «@

Then

a,f. » 0 a,s. N =+ =
Corr 1. Let {en} be a sejquence of stochastic variables such
that
g = 8 3.5, n > =
Further let {fn(e)} be a strictly stationary process, which
depends on the parameter 6 such that fn(B) is (continuously)
differentiable with respect to 8 a.s. and that E[fé(e)]g
) *
exists if 8 belongs toc some neighbourhocod of 6 .
Assume that the sequence {an} is bounded a.s. Then

N *
¥ {f.{e.) - £,(8 dla. » 0 a.s. N + =
1 =1 L 1 1 1

A B

Proof The assumptions imply

*

* -
l‘fi(ei) - £.(0 o< Milei -8 | iz N
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for some Ny, where {Mi} is a strictly statiornary process
such that E[Mi| exists, Thus

N

Lr 1.0,y - £ ) ]a. ] <
N. o, ttitTd i R
i=1
Ng N
<1 If.(e)-fCe*)l |al4‘j-E ]f(e)—f(e*)l[al
S, RN i i H.* i1 i i
i=1 1-N0+1
N
<l (£.¢0,) - £.(8 >} ]a.l +1§M|e -0 ]la,]
SWL, i i 5 WD, i i

The first term trivially tends to zero as N tends to infini-
ty. Tt follows from the lemma that the second term tends to

Zero as well,

Corr 2. Let the assumption of {a_} in Corr 1 be changed.
Assume instead that {an} is a strictly stationary process
such that Elanlzexist;, Then the result of Corr 1 remains
true,

In the present algorithm &, and ¢,_ are computed in ah

approximate way as 618cusde in c;apter II. To simplify
the calculations it will be assumed here that they are
computed exactly. The results of Ljung-Wittenmark (1973)
indicate that it may be possible to extend the calcula=
tions to the actual £, and @,

Assumptions on the distribution of the noise will be made

indirectly. It will be assumed that the expectations
Elet(t;8)]? and  Ele"(t3e)]?

exist for all 8 such that the corresponding polynomials
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A{z) and C(z) have all zeros outside the unit circle.

The residuals s(t;g) and the gradient e'(t;é) are strictly

stationary processes if the initial values are chosen pro-

perly. However, the effect of the initial values do not af-
fect the result and it will be assumed generally that they
are chesen in a proper way,

To simplify,the following notations will be used

— T . - ' ¥
W, =8 (t’gt—1) P =& (t;6 )
~ * *
ey = z(t,et_q) £y = e(ti8 )

The calculations are organized as proofs of three assertions.

: g N 7 R
Assertion 1 lim i ¥ mtwtew = (lim—-zimtwt 1] 4.8,
Neroo "tz : N-—-maN +=b

Proof  After a decomposition the sum of the left hand side
is written as

N N
1 T 1 * KL K
= L 00 8, = = X (@@, )8
N Zqp TtTEN T N T, et
N N
1 T *T - : 1 . *’T o _’*'
t g {: (@ 0 -0, 0 "), + 7.5 0.0 (88 )

It follows from Corr 1 that the second term tends to zero

and from the lemma that the third term tends *to zero,




L2

: . 4 N T2 .1 * kT
Assertion 2 l;mj.x wtwtst-1 = (1iml ¢ 0. 0, )6 a,s.
N N oy e

N N -
1 i 1 * AT %
TE 0w 8, ., ==X (pw g
N2y tPtfe-1 7RI T
N ¥
1 T ¥ % - 1 *7 - *
* ﬁtij (0,0 — @0, )8y + ﬁtzqwtmt (6y.9-0 )

Using the same type of arguments as in the preceding proof
the assertion follows.

Asgertion 3 lim

M N N
1 1 Sk 1 *
gL ELp. 2= L e, @, + =5 oe, (@ )
NeTq tTE T ORI, et TR D%
1 7 ok + 1 r (om0, —0h)
* ﬁt§1(5t'5% O F N, - SCRTIRAL P N

The second and the third terms tend to zero according to

Corr 2. It follows from the lemma (put fnai) that the fourth term tends
to zero. a

It can be shown, see e.g. Sderstrdm (1972), that the right hand szdes of
the assertions really exist under mild conditions,




CORRECTIONS

The abbreviation pa.b denotes page =z, line b.

pl.2 Delete "the"

p7.5 Read "derived for the LS case"

p8.17 Read "residuals”

p16.Table5.1 The theoretical RMS error of A is 0.016

p17.Tableb.2 and p21.7able5.3 The theoretical RMS error of X is
0,016 and the theoretical RMS error of W is 0.035

p17.7 and p20.5 Read "table 5,2"

pi9 The scale on the W-axis is incomplete. Figure 5.4
shows the correct scale.

D25.14 Read "are not known'

p26.31  Replace "31" with "D, "

pi.11 Replace Wpt" in the right hand side with ”mz“




