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Abstract

The objectives of this thesis are to study time-dependent fracture behaviour in
concrete. The thesis consists of an experimental study, constitutive modelling and
numerical analysis.

The experimental study was undertaken to investigate the influences of time on
material properties for the fracture process zone and on crack growth and fracture in
plain concrete structures. The experiments include tensile relaxation tésts, bending tests
on notched beams to determine fracture energy at varying deflection rates, and sustained
bending and compact tensile tests. From the tensile relaxation tests, the envelope of the
o-w relation does not seem to be influenced by holding periods, though some local
detrimental effect does occur. Fracture energy seems to decrease as rates become
slower. In the sustained loading tests, deformation (deflection or CMOD) growth curves
display three stages, as usually observed in a creep rupture test. The secondary stage
dominates the whole failure lifetime, and the secondary deformation rate appears to
have a good correlation with the failure lifetime.

A crack model for time-dependent fracture is proposed, by applying the idea of the
Fictitious Crack Model. In this model, a modified Maxwell model is introduced for the
fracture process zone incorporated with the static o-w curve as a failure criterion, based
on the observation of the tensile relaxation tests. The time-dependent o-w curve is
expressed in an incremental law.

The proposed model has been implemented in a finite element program and applied
to simulating sustained flexural and compact tensile tests. Numerical analysis includes
simulations of crack growth, load-CMOD curves, stress-failure lifetime curves, size
effects on failure life etc. The numerical results indicate that the model seems to be able
to properly predict the main features of time-dependent fracture behaviour in concrete,
as compared with the experimental results.

Keywords: concrete, crack model, creep, creep crack growth, creep rupture, Fictitious
Crack Model, finite element method, fracture mechanics, rupture test, sustained
loading, tensile fracture, time-dependent fracture, visco-elastic fracture.
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NOTATIONS

Notations and symbols are explained in the text when they first appear. The main
notations are listed below.

Latin letters

a crack length

a, critical crack length

a; total crack length (= real + fictitious crack length)
b thickness, width

crack mouth opening displacement (CMOD)
CMOD crack mouth opening displacement
COD  crack tip opening displacement (CTOD)

d depth, height

E modulus of elasticity
f. compressive strength
f; flexural strength

f. net flexural strength
f, tensile strength

FCM  Fictitious Crack Model

g gravity acceleration (9.8 Kgm/s?)
G, fracture toughness

Ge fracture energy

h height

K stress intensity factor

Kz tangential stiffness matrix

la characteristic length (=EG./f?)
L length

LEFM linear elastic fracture mechanics



Min
min

KEgEQEL "0 0T

mass
maximum

minute

minimum

load

relaxation

span

second

time

failure lifetime in rupture tests
deflection

potential energy
deformation in fracture zone
depth

geometry factor

Greek letters

oM 8N Q Q Q

stress

net section stress

relaxation limit constant
relaxation time

strain

crack tip opening displacement

Others

time differential

I, II, III basic modes of crack extension



Chapter 1
Introduction

1.1 Background

Cracking appears to be inevitable even in reinforced concrete structures. Due to the
low tensile strain capacity of concrete, cracks may readily be initiated by structural
deformations, shrinkage, thermal strains and so on. As the need for structures such as
marine and nuclear facilitities is rapidly growing, a thorough understanding of various
failure mechanisms including tensile cracking is crucial to ensure safe and economic
designs. Furthermore, crack problems can be of great concern from the aspect of
durability.

Application of fracture mechanics to concrete can be traced back to Kaplan (1961).
However, classic fracture mechanics, developed mainly from metals, yields quite
controversial results when applied to concrete. Because the fracture process zone in
front of crack tip developed in a labortary-size concrete specimen is too large. In 1976,
Hillerborg, Modeer and Petersson proposed the well-known Fictitious Crack Model
(FCM). The model proved to be very consistent with experiments and aroused world-
wide interests. Since then, intensive fracture mechanics studies have been producing
quite a few fruitful results.

Fracture mechanics studies indicate that structural behaviour depends not only on
strength, but also on fracture resistance, and dimension of structures as well. Observed
size effects of plain or lightly reinforced concrete structures under bending, shear and
torsion confirm theoretical predictions. Similar concepts may be applied to compressive



2 Chapter 1

fracture behaviour of high-strength concrete, as a pronounced strain softening has also
been observed (Hillerborg, 1989b).

What are the possible practical applications? On one hand, based on theoretical
results, it leads to more rational designs than those based on empirical rules. On the
other hand, fracture mechanics may serve as a good tool for choosing or improving
material to meet various practical needs.

Up to now, attention has mainly been focused on quasi-static fracture problems. In
practice, concrete structures might be imposed to both sustained and fatigue loading,
and simultaneously against wetting-drying, freezing-thawing etc. Thus time-dependent
crack models are necessary in order to lead to more accurate predictions.

1.2 Aim and Scope

The main objectives of this thesis are to study time-dependent fracture behaviour
in concrete. The present work includes an experimental study, constitutive modelling
and numerical analysis.

The experimental work aims at investigating time effects on the material properties
(the o-w relation and Gg) for the fracture zone and time-dependent fracture behaviour
of various concrete specimens subjected to sustained loading.

Based on the experimental observations on tensile relaxation tests, a crack model
is proposed for time-dependent fracture by applying the similar idea of the Fictitious
Crack Model. In this model, an incremental time-dependent stress-deformation law is
employed for describing the behaviour in the fracture zone.

The proposed model is implemented in a finite element program. The Numerical
analysis involves simulations of crack growth, creep deformation curve, stress-failure
lifetime relation etc. in sustained loading tests.

In the present work, only the time-dependency in the fracture zone is considered
while the material behaviour outside the zone is assumed to be time-independent.
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1.3 Outline of Contents

Chapter 2 gives a brief overview of fracture mechanics and its application to
concrete, especially the Fictitious Crack Model.

Chapter 3 presents a literature review of the influences of time on material
parameters and fracture behaviour of concrete. Applications of linear elastic fracture
mechanics to describe the time-dependent crack growth and fracture are also discussed.

Chapter 4 describes the experimental work conducted to determine time-dependency
of material parameters as well as to investigate creep crack growth and failure

behaviour where tensile fracture is relevant.

Chapter 5 presents a model for the analysis of creep crack growth and fracture of
concrete by extending the ideas of FCM.

Chapter 6 presents the theoretical predictions of time-dependent fracture. Compari-
sons with the test results in Chapter 4 are also made.

The concluding remarks are given in Chapter 7.






Chapter 2 _
Fracture Mechanics Applied to Concrete

2.1 Introduction

The theory of conventional fracture mechanics has mainly been established from
studies of metals. During the past two decades, fracture mechanics has been applied to
concrete. Thus some basic parameters will be introduced in the first two sections.

The Fictitious Crack Model (FCM) has been successfully used to describe tensile
stress-induced fracture behaviour in non-yielding materials like concrete, rock etc. The
principle and its applications of the model will be reviewed.

Fracture modes can be divided into mode I, II and III, which are referred to as
opening mode, sliding mode and tearing mode respectively. The present study in the
thesis mainly concerns fracture of mode I.
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2.2 Linear Elastic Fracture Mechanics (LEFM)

2.2.1 Stress intensity factor

In an infinitely large plate of linear elastic solid, Irwin (1958) showed that the stress
field at the tip of a crack is characterised by a singularity of the stresses. The stresses
are proportional to the inverse square root of the distance from the tip. The singular
stress field (Fig. 2.1) can be expressed as: :

K, e( . 0. 39)
= cos—| 1-sin—sin— |+...
V2nr 2 2
K
0= I cosg(1+sin2sin§9)+... 2.1
PRrr 2 2 2

K; 0.6 30
T..= COS—SIN—COS—— +...

Per 2 2 2

MAGNITUDE OF STRESS

ALONG X AXIS, Oy

o
NOMINAL
STRESS

Fig. 2.1 Stress field near crack tip
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K, in the equations above is the so-called stress intensity factor for mode I. K; can
be calculated from the following equation:

2.2)
K=Yo|/na
where o is usually taken to be the nominal stress if the crack does not exist, and Y is
geometry factor.

Since K, provides a measure of the severity of the crack tip environment, it is
logical to characterise the resistance of a material to fracture by the critical value, K,.
K, is called fracture toughness. If the fracture toughness K, of a material is know, the
critical stress o, or crack length a, can be obtained from the following relationship:

GCV aC=

K
L 2.3)
Y/n
2.2.2 Energy release rate
The original work was carried out by Griffith (1921). The basic idea is that crack

growth can occur if the energy required to form a crack increment da can be delivered
by the system. The criterion may be expressed as:

2.4

where G, is the energy release rate, or the crack extension force, U is potential energy,
B is thickness, a is crack length, and G, stands for the crack resistance.

The energy release rate can be related to the stress intensity by the following:

2
62 2.5)
E*

where E'=E for plane stress; =E/(1+v) for plane strain.
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2.3 Non-linear Fracture Mechanics

2.3.1 J-integral

In analyzing elastic-plastic failure, a widely used approach is the J-integral proposed
by Rice (1968). It can be formally expressed as follows:

J=f. (Wdy-Ti%ds) » 2.6)
29

where W is strain energy density, u; is the displacement vector, T, the vector traction
and ds an increment along the integral path (Fig. 2.2).

ds

CRACK

Fig. 2.2 J-integral evaluation path

Strictly speaking, the path independency of the J-integral holds only for linear and
non-linear elastic materials where unloading occurs along the same curve as the initial
loading. However, it can be approximately applied to elastic-plastic fracture problems
provided that no intensive unloading occurs. This may be the reason why the J-integral
has been successfully used in elastic-plastic materials.

It is found that when crack growth occurs, the J-integral approaches a critical value
which is a material parameter. Thus it is possible to define the initiation of crack
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growth as

J= 2.7

c

For linear and non-linear elastic materials, the J-integral can be shown to be equal
to G,, the strain energy release rate. It can be related to the stress intensity factor in
mode I by:

76~ | @.8)

2.3.2 Crack opening displacement (COD)
Another powerful parameter in elastic-plastic fracture mechanics is the crack tip
opening displacement (COD), §. Experimental observations have indicated that there

is a critical value §., which can serve as a criterion for crack growth. It can be shown
that, for ideal plastic materials, 8. can be related to J, by:

§ =—° 2.9
where o, is the yield strength.

2.3.3 Crack models including plastic zone
For an elastic-ideal plastic material, the stress cannot exceed the yield strength o,.

Thus a plastic zone must exist in front of the crack tip. Irwin estimated the size of the
plastic zone (Fig. 2.3) to be 2r, according to

2
2,y=i(§J 2.10)
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Local stress
normal to crack

plane, 0’),),

Imaginary
elastic crack

Real crack

Distance from crack tip, r

Fig. 2.3 Irwin’s imaginary elastic crack and assumed stress field

The analysis can only be applied to a highly localized plastic zone, when the
nominal stress o is much smaller than the yield strength o, in small-scale yielding
problems. The effective fracture toughness can be calculated from Eq. 2.2 by replacing
a with a+r,.

In studying crack problems in a thin sheet of milt steel, Dugdale (1960) set up a
model including a plastic zone in front of the crack tip (Fig 2.4). The stresses in this
zone should be equal to the yield strength for an elastic-ideal plastic material.

tttttttrttttg
o}

dy 1
Uﬂ %
EREL

Plastic zone

EEAREE R I IR IR IR AR

Fig. 2.4 The Dugdale model
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2.4 Fracture Mechanics of Concrete

Unlike steel, concrete does not exhibit significant plastic deformations. It seemed
that linear elastic fracture mechanics might be readily applicable. However, fracture
parameters such as K, and G, determined in accordance with LEFM seem to depend on
sizes and geometries. Some other approaches such as J,, critical COD etc. are also
found to be of limited use.

According to the stress-strain state, it is possible to define three different zones as
linear elastic zone, nonlinear hardening zone and fracture process zone around the crack
tip. In the fracture process zone, strain softening takes place. Fig 2.5 illustrates relative
sizes of those three zones in brittle materials, metals and concrete.

Brittle materials Metals Concrete

Fig. 2.5 Relative sizes of fracture process zone (F), nonlinear hardening zone (N) and
linear elastic zone (L) in different types of materials (Bazant & Oh, 1983)

The fracture process zone in concrete is relatively large so that LEFM cannot be
applied to fracture of laboratory-size specimens. Strain softening in the fracture zone
results in unloading around the tip. This may be the reason why the J-integral cannot
be used either.
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Based on tension fracture behaviour, Hillerborg, Modeer & Petersson (1976)
proposed the Fictitious Crack Model, which is similar to the Dugdale model. Bazant
& Oh (1983) proposed the Crack Band Model. Those models are sometimes referred
to as cohesive models, or fracture process models, in the literature.

Another approach to tackling fracture problems in concrete is to modify the linear
elastic fracture mechanics by using effective crack length (or equivalent crack length)
concept. The Two-Parameter Model (TPM) by Jeng and Shah (1985b) and the Effective
Crack Model (ECM) by Karihaloo & Nallathambi (1989a) belong to this category.

Many other models have been introduced to describe fracture of concrete. An
evaluation of various models can be found in the article by Elices and Planas (1989).
In the following section only the Fictitious Crack Model will be described.
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2.5 The Fictitious Crack Model
2.5.1 Principle

In the model, the concept of fictitious crack, introduced into the fracture zone in
front of crack tip, is based on the description of fracture behaviour in direct tension
tests. A typical tension test is illustrated in Fig 2.6. The complete stress-deformation
curve consists of an ascending and a descending part, if a deformation-controlled tensile
test is properly performed. Stresses and deformations are uniformly distributed along
the length of the specimen before the peak point in the curve. When the peak point is
passed, a localized fracture zone starts to develop. The load the specimen can bear will
decrease with increasing deformation in the zone. At last the specimen is broken into
two halves along the zone. Therefore, it is impossible to find a unified stress-strain
relation to describe the whole development in the tension test. In the fracture zone, a
softening (o-w) relation must be used while the rest part can be still described by a
stress-strain (o-€) relation.

L l Lk
A A A
P :,:E: P
., B . C 0
K TE 1/3 /3
0 ]
A A
i - fy -
/
/ C
/ A B,D
w w
/
// T
Al Al

Fig. 2.6 Deformation behaviour in tension (Hillerborg, 1986)
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The fracture zone is concentrated within a very thin band. Therefore it may well
be represented by a crack which is able to transfer stress. Of course such a crack is not
a real crack but a fictitious crack, and it will not develop into a real one until the
opening of the fictitious crack reaches a critical value.

The same idea may be applied to modelling the fracture zone in a general stress
state. The fictitious crack is assumed to initiate at the point where the maximum
principal stress reaches the tensile strength. The stress-deformation curve can be
assumed to be a material property provided that the minimum principal stresses are
much smaller than the compressive strength. No shear stress is assumed to occur in the
fracture zone, as only fracture in Mode I is involved.

2.5.2 Material parameters

The Fictitious Crack Model is described by means of a stress-strain (o-€) law and
a stress-deformation (o-w) law.

The stress-strain curve for ordinary concrete can well be approximated to be a
straight line. The curve can be determined solely by the tensile strength f, and modulus
of elasticity E. Of course a more realistic, non-linear relation might also be used in this
model.

The stress-deformation relation is usually simplified as a linear, bilinear or multi-
linear curve. Since the shape of this relation is well-known and quite similar for
concrete materials, the relation can be determined if tensile strength f, and fracture
energy G; are known.

Therefore material properties in the FCM model can be represented by tensile
strength f,, modulus of elasticity E and fracture energy G;. Another useful parameter
is characteristic length, a ratio between G¢/f, and f/E:

(2.11)

It may also be interpreted as the ratio between fracture energy per unit area G; and
strain energy density at failure f/E. 1, can be regarded as a measure of material
brittleness and is probably related to the size of the fracture zone.
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It should be pointed out that the shape of the o-w curve is also very important. As
already shown by Modeer (1979) and Petersson (1981), the initial slope of the curve
can greatly influence fracture behaviour, even if G; and f, are the same. Therefore, if
two materials with o-w curves of quite different shapes are involved, the slope must be
taken into account. However, no proper parameter used to measure the effect is
available.

The o-€ curve and the o-w curve may be determined directly from uniaxial tensile
tests. However, it usually requires very sophisticated testing machines and arrange-
ments. In addition, proper sizes of specimens must be chosen in order to obtain the real
material parameters. Therefore the two curves are often determined indirectly from f,,
E and G; as the shapes of the curves are known. f, can be determined from a simple
tension test. E can be determined from dynamic method. Fracture energy G; can be
determined from three-point bending tests on notched beams according to the RILEM
recommendation (1985) (Fig. 2.7). It can be evaluated using the following formula:

_A1+A2+A3 =A1+mg60 2.12)
F bh-a)  b(h-a)

where m is mass of beam and g gravity acceleration. A, and é, are shown in Fig. 2.7.
)
— |
h-a [ % ]h
s

Fig. 2.7 RILEM recommendation for G testing. A2=A3=mgé§ 2
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2.5.3 Numerical implementation

Except for very few simple cases, generally numerical methods are required in
applications of the Fictitious Crack Model. The finite element method, as the most
flexible and general numerical method, naturally becomes the first choice. Some other
methods, e.g. the boundary element method, have also been used.

The finite element implementation has been discussed extensively by Petersson
(1981), Gustafsson (1985). In the following, the basic techniques and calculation
procedures will be described.

In a finite element analysis, the crack propagation path is arranged to situate along
element boundaries and the fracture zone (fictitious crack) is modelled using negative
spring elements (Fig. 2.8). If the maximum principal stress at the node point in front
of the fictitious crack tip reaches the tensile strength, this node is split into two nodes
and a spring element is inserted. The fictitious crack moves to next node. The carrying
load of the spring is evaluated according to the o-w relation. When the deformation of
the spring is equal to w,, the two nodes are completely disconnected, a fictitious crack
transforms to a real crack. The real crack tip moves a step to next node. In this way
the formation and propagation of a crack can be simulated.

I

-
Y
i

Fig 2.8 Finite element representation of a fictitious crack (Petersson et al., 1980)
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Generally in solving nonlinear problems, iterations are necessary to maintain the
equilibrium. In FCM analysis, if linear elastic behaviour is assumed outside the fracture
zone and the o-w curve is assumed to be piecewise linear, then the analysis can be
performed in increments without iterations. The substructure technique is often used to
reduce the computational work.

2.5.4 Main features and applications

The model employs both a strength criterion as in strength theory, and an energy
criterion as in fracture mechanics. Therefore, it is able to solve fracture problems in a
more general, realistic way, irrespective of whether an initial crack exists or not. It
makes it easy to deal with initial stress and strain problems possibly caused by
shrinkage and thermal strains.

In principle, the model can be applied to any tensile fracture problem. The model
has been employed to predict fracture and strength in bending and shear problems by
Modeer (1979), Petersson (1981), Gustafsson (1985). Gylltoft (1983) has extended the
model to the analysis of fatigue fracture of concrete.






Chapter 3
Time Effects on Fracture of Concrete

3.1 Introduction

Mechanical behaviour of concrete is highly sensitive to loading rate. It might be
expected that the tensile fracture behaviour is also time-dependent. A brief review of
this subject will be presented in this chapter.

Firstly, the effects of loading rate on basic material properties used for cracking
models, e.g. tensile strength, fracture energy, modulus of elasticity etc. will be
reviewed. Secondly, different models to describe time-dependent crack growth and
fracture will be discussed.

19
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3.2 Experimental Findings

3.2.1 Effects of loading rate
The rate effect on tensile strength may be expressed as a power law (Reinhardt
1990):
. \b ,
(e G.1)
fo %
where 6, = 0.1 MPa/s and the material constant b depends on the composition of

concrete, humidity and temperature. According to Reinhardt (1990), b can be calculated
from

-1
bz(mlezJ (3.2)
2

where f_, is compressive strength in MPa. With concrete of normal quality, b changes
from 0.02 to 0.05.

Modulus of elasticity is less affected by loading rate and can be expressed as:

. \0.016
E (6 (3.3)
EO 60

where 60= 0.1 MPa/s.

Briihwiler and Wittmann (1990) determined the fracture energy by means of both
three-point bending and wedge splitting tests at various loading rates. They found that
fracture energy increases with increasing loading rate at high rates. Similar results can
be found in the works of Reinhardt (1990) and Wittmann et al. (1987). It seems the rate
effect on fracture energy might be attributed to the sensitivity of tensile strength to
loading rate. At low loading rates, however, the fracture energy seems to increase
slightly as loading rate decreases according to Wittmann et al. (1987).
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Assuming a similar shape of the stress-deformation curve, Reinhardt (1990)

suggests that fracture energy may be dependent on deformation rate in the same way

as tensile strength:
.\b
Cr (4
Gpy %,

where b is given in Eq. 3.2.
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3.4

Kormeling (1986) performed unuaxial tensile tests at three deformation rates. The
average stress-deformation curves are given in Fig. 3.1. The transferring stress in

fracture zone increases at high loading rates

o(N/mm?)
I'nl‘ ] ft 5peqk Gg
.,',":'1. (mm/s) (N/mm?) (108m) (N/m)
4 S — 125 0° 33 13 16
n A\ --—- 250 07 48 17 172
S\ N 55 17 313
meas. length: 100 mm
O >~ r ﬁ'-'-'—-:— ...........
50 100 150 200
5 (10°m)

1986)

Fig. 3.1 Average stress-deformation curves at different deformation rates (Kormeling,

Bazant et al. (1989) carried out a extensive series of notched bending tests at
various constant rates of crack mouth opening. It was found that the test result for very

slow rates is much close to LEFM in the size effect curve.
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3.2.2 Creep and creep rupture

The creep-time curve may include three ranges: primary creep, secondary creep and
tertiary creep (Fig. 3.2). In the secondary creep range, the creep rate is approximately
constant. Thus it is also called stationary creep or steady state creep. The tertiary creep
may arise under high applied stresses.

Primary creep Secondary creep | Tertiary creep,

!

X,

\ Failure

Strain

Strain at loading

Time

Fig. 3.2 Schematic creep-time curve

The creep-time curve is dependent on the stress-strength ratio. Below stress-strength
ratio of about 0.4, creep is proportional to the applied stress. It appears that the initial
rate of creep in tension is higher than that in compression under the same stress, at
longer time the reverse may be true according to Illston (1965). The effect of stress-
strength ratio seems similar to compressive creep, creep is proportional to the applied
stress up to 0.5, even higher.

Domone (1974) investigated the effect of humidity on tensile creep. Specimens were
cured by either immersed in water or sealed. Creep of specimens immersed in water
both during curing and testing is smaller than creep of sealed specimens. If drying is
allowed during loading, creep both for immersed and sealed curing specimens seems
to be greater than that if the humidity keeps constant. Cyclic drying and wetting results
in much higher creep.
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Stresses higher than a certain limit produces failure after a certain time, known as
static fatigue or creep rupture. It is believed this limit is probably about 75% of the
static strength (Domone 1974).

Al-Kubaisy and Young (1975) performed a series of tests under sustained tension
at high stress-strength ratio (from 0.6 to 0.95). The loading rate is 0.015 MPa/s and the
static strength is 2.5 MPa.

By means of ultrasonic-pulsevelocity equipment to monitor the process of
microcracking, they also observed three stages in the stress-strain curve:

(1). A few interfacial cracks are formed before loading, but the majority of
cracks of this type do not form until at an applied stress ratio of 0.2 - 0.38.

(2). Up to 0.68 - 0.78, the interfacial cracks stabilize and become dormant.

(3). Rupture range: cracks grow in cement matrix. They grow with time, and
eventually macroscopic cracks are formed which bridge the interfacial cracks
and produce failure.

They found that the failure strain is approximately constant for creep rupture. A
stress-failure lifetime relation is plotted in Fig. 3.3 and is expressed

10
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Fig. 3.3 Stress-failure lifetime relation (Al-Kubaisy et al. 1975).
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as

tc,=0.016'(—})'34'4 (3.5)

t

Reinhardt and Cornelissen (1985) recently performed intensive sustained tensile
tests. The relation between stress and failure lifetime is as follows (Fig. 3.4):

logz, =13.63-14.46 (3.6)
f;
ag/fct
1.0
\0\6 — run-out
08 “"M
06 . Gy
4\
0.4
02
0 T=21°C Thour|  1day 10cays 100d
o 1 2 3 4 5 6, 1
log t¢ (sec)

Fig. 3.4 Stress-failure lifetime relation (Reinhardt et al., 1985)

In tensile creep tests on sealed specimens, Cornelissen (1983) proposed a
relationship between the secondary creep strain and the failure lifetime as:

cp

€
logt  =-4.37-0.96log dst” 3.7
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He found that the secondary creep rate is a good predictor for the time to failure,
irrespective of whether this rate is caused by a constant or a varying stress
(Cornelissen, 1984).

They also suggested a stress-strain criterion for fracture:

€=4.5*10‘5+% (3.8)

As shown in Fig. 3.5, this criterion seems to hold for concrete of different compositions
under both static and sustained tests. It seems that the effect of a temperature between
4 and 20 C is not significant.
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Fig. 3.5 Ultimate strain at failure in tensile creep rupture tests
(Reinhardt et al., 1985)
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Shkoukani (1989) has performed sustained tension tests on both concentric and
eccentric loaded specimens. The sustained load level and failure time curves are plotted
in Fig. 3.6. As the eccentricity (e/d) increases, the failure time is longer under the same
sustained load level. In other words, the decrease of long-term strength is much less.

.
a, /f, CONCENTRIC TENSION o, /1 ECCENTRIC TENSION
1.2 T T 1 — T T 1.2 T T T T T
o] g e/d=0.000  { o] e/d=0.167 1
) —_
T ° T |
A, 084 . e 4 0.8 4
— . o —
= ° e s
2 0.6+ 132 06 4
o K
] a
ﬁ 0.4+ g ?_—,’ 0.4 o .1, B
@
0.2+ - 0.24 4
o rectangular
o conb e/d=0 topered cylindrical a con7 e/d=0.167 log. scale
0.0 T T — T —T T 0.0 T T T T T
10 100 1000 1E+04 1E+05 1E+06 1E+07 1 10 100 1000 1E+04 1E+0S 1E+06
time to rupture [sec.] time to rupture [sec.]

Fig. 3.6 Stress level-failure time curves in concentric and eccentric tension tests
(Shkoukani, 1989)
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3.2.3 Creep crack growth tests

A few studies have been carried out to determine the relationship between crack
growth rate and stress intensity factor for cementitious materials (Mindess et al., 1974,
Evans et al., 1976, Tait & Garrett, 1986). Most have used large double torsion
specimens. The results are generally presented in a log V versus log K, curve. These
studies show that the slope of the curve, n, is in the order of 30, in the range of crack
growth rate from 10° to 107 m/s.

Crack growth rate is very sensitive to environment moisture. Tait & Garrett (1986)
found the rate in wet specimens is 4 orders higher than that in dry ones (Fig. 3.7) .

(@) CYCLIC FATIGUE TESTS (b) STATIC TESTS
102 L
L L
DORY
DRY
!O‘Jr / L
O WET . F
C /
> 107%- 7‘ +
o r 3 g r
> 105 }’. . -
5 - H -
b1 Y, -
[+
© 18- f y -
*
- .‘. -
A L]
1077 L
€:0.66 €077
L ¢=080 L
‘o‘e 1 1 i 1 i i 't e i
15 2 3 & S 2 3 4 5 6 1 8

STRESS INTENSITY K (MNm~2)

Fig 3.7 Crack velocity as function of stress intensity factor in cyclic and static fatigue
tests on wet and dry specimens of cement mortar (Tait & Garrett, 1986)

The mechanisms of time-dependent crack growth in cementitious materials are not
yet well understood. However, the presence of water has a significant influence on
crack growth, as it is observed that, in completely dry specimens, the rate of crack
propagation diminishes to zero (Ruetz, 1968).
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The stress corrosion mechanisms dependent on the presence of water, Ca(OH), have
most often been suggested to explain time-dependent crack growth (Shah & Chandra,
1970, Husak & Krokosky, 1971).

3.3 Modelling of Time-dependent Cracking and Failure

3.3.1 Stress approach

Failure lifetime may be related solely to sustained load level, irrespective of the
specimen geometry.

3.3.2 LEFM approach

The time-dependent crack growth is usually related to the stress intensity factor K,
by an empirical relationship:

da_skr 3.9)

dt

where A and n are material constants.

As shown by Nadeau, Bennett and Fuller (1982), the dependency of strength on
loading rate or rupture time can be derived from the equation above. The derivatives
will given in the following.

In sustained loading, the failure lifetime is related to the load level (a/0,) by

2K2"
t, =— L (Z)™ (3.10)
(2-n)AY*s’ 9

For constant loading rate, the strength depends on the rate as

2(n+DK"
0,,+1=_u<:_6 3.11)

(n-2)AY?a}”
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3.3.3 Non-linear fracture mechanics approach

Hillerborg (1991) suggested a method to estimate the long-term strength. The
structural strength is generally expressed as a function of d/l,. If the formal modulus
E(t) is evaluated as E/(1+¢(t)), where ¢(t) is the creep factor, the time-dependent
strength may be evaluated from the relation, provided that tensile strength and fracture
energy are not time-dependent.

Hansen (1990) recently proposed a visco-elastic model by extending the Fictitious
Crack Model (Fig. 3.8). He took into account the time-dependency of material
properties in the fracture zone by employing rheological elements instead of spring
elements. However, he used a negative dashpot which seems to lack solid physical
meanings.
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Fig. 3.8 Calculated sustained flexural strength as a function of time and redardation
time (Hansen, 1990)
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4.2 Research Program

The primary objective of the program was to investigate the time-dependency of
tensile softening behaviour (the o-w curve, Gg) and creep crack growth and fracture in
plain concrete structures. The experiments involved determining the basic material prop-
erties (f, E and Gy), time-dependency of G; and o-w curve, flexural and compact
tensile creep rupture. All the tests are given in Table 4.1

4.2.1 Basic material tests

The basic material parameters for FCM are tensile strength, f,, fracture energy, Gg,
and modulus of elasticity, E. Tensile strength was determined from direct tensile tests
on notched cylinders. Fracture energy was obtained according to the RILEM
recommendation (1985). The dimension of specimens was 100*100*840 mm and the
span was 800 mm. Beams (40*40*160 mm) were used to measure the dynamic modulus
E by the resonance frequency method (Vinkeloe, 1962). The 28-day compressive
strength of the concrete was determined from cubes with the dimensions 100*100*100
mm,

4.2.2 Rate effect on the o-w curve and Gy

To investigate the rate effect on the o-w curve, relaxation tests of notched cylinders
in tension were carried out. The tests were carried out by keeping the crack opening
constant and registering the relaxation load.

The rate effect on G; was studied by means of three-point bending tests of notched
beams (50*50*640 mm). The span was 600 mm and the notch length was 25 mm. The
deflection rates varied from 0.05 um to 50 um/s.

4.2.3 Creep rupture tests

In order to study time-dependent fracture behaviour, flexural and compact tensile
creep rupture tests were performed. Both notched beams (840*100*100 mm, span =
800 mm, notch depth = 50 mm) and unnotched beams (320*50*50 mm, span = 300
mm) were used in the flexural tests. The dimensions of specimens used in the compact
tensile tests are given in Table 4.1. The notch ratio a/W was 0.4 and 0.7.
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4.4 Experimental Methods and Set-ups

4.4.1 Testing machine

All the tests were carried out in an electro-hydraulic, closed-loop materials testing
machine (MTS-810). It is possible to perform tests in three different control modes:
stroke control, load control and deformation control. Under stroke control, the
displacement of the loading head is used as the feedback. Most of the flexural tests
were performed in this control mode. Under load control, the amount of load serves as
the primary feedback. Creep rupture tests were carried out in this mode. The
deformation control mode uses the crack opening measured from clipgauges. In direct
tension tests, the stress-deformation curves are obtained under deformation control.

4.4.2 Tension tests

In determining the stress-deformation curve from tension tests, two kinds of
stability problems might arise. The first one is to ensure a stable development of the
fracture zone and being able to follow the complete softening curve. With modern
closed-loop testing machines, it is no longer difficult to follow the softening part in
tension tests.

The second is to maintain an even distribution of stresses and deformations in the
fracture zone. Due to possible initial stresses, material defects in concrete and the
possible eccentricity of tests, the fracture zone is apt to start from one side of the
specimens. It is similar to a bending test rather than a tension one. Consequently the
curve measured does not represent the real material behaviour in tension. To counteract
the rotation effect, the testing arrangement must have a sufficient rotational stiffness.

Therefore a special arrangement (Fig. 4.1), which was designed by Hassanzadeh
(1987, 1990) and can reduce possible rotation, was used in order to obtain a real
material relation.
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Fig. 4.1 Experimental set-up for stable tension tests
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Fig. 4.2 Set-up for bending tests
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This arrangement was designed for mix mode I and II tests, although the tests
presented in this thesis involve only mode I fracture. The arrangement mainly consists
of two steel frames connected with a thin steel plate and specimens are glued to steel
plates which are attached to the arrangement (Fig 4.1 b). Two clip gauges are inserted
between notched surfaces on both sides. In order to prevent clip gauges from moving
or dropping out, clip gauge holders are used and thin bronze plates are glued to the
places where clip gauges are set.

The deformation for fracture zone is the average value of the deformations
measured by clip gauges. The stress is calculated from load divided by fracture section
area.

In tension tests, the ends of each specimen were ground and washed and allowed
to dry in about 4 hours while the rest part was wrapped with wet cloth. Then the
specimen was glued to steel plates using S-minute epoxy. Testing was performed
in at least 4 hours after gluing.

4.4.3 Bending tests

To measure deflections accurately, a stiff steel frame was fastened at both ends of
a beam. The deflection was measured between the upper edge and the frame (Fig. 4.2)
by means of clip gauges. CMOD was also measured using clip gauges. A number of
bending tests with beams (840*100*100) were carried out with this set-up.
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4.5 Test Results and Discussions

In all the tests, specimens were wrapped in plastic foil and notches were covered
with wet cloth to avoid drying-induced stresses and cracks.
4.5.1 Basic material parameters

The basic parameters, i.e tensile strength, f,, fracture energy, Gy, and modulus of

elasticity, E, are given in Table 4.3. All specimens used to obtain those parameters
were about 4 months old at testing. The 28-day compressive strength is 38 MPa.

Table 4.3 Material parameters

Tensile strength
f. (MPa)

Fracture energy
Gy (Nm/m?)

Modulus of elas-
ticity E (GPa)

Characteristic
length 1, (m)

2.8 (0.2)

82 9)

36 (2)

0.38

* Standard deviations are given in parentheses

The tensile strength was determined from notched cylinders. The effect of a notch
on the tensile strength and the o-w curve has been analyzed theoretically by the author
(Zhou, 1988).

A uniaxial tension test on a double notched prisms (Fig. 4.3 a) was simulated by
means of the Fictitious Crack Model. The input o-w curve was assumed to be bilinear
with f,= 4 MPa, E = 35 GPa and G;=80 Nm/m’ (Fig 4.3 b). The net section stress
was calculated from the total load divided by the cross-section area along the notches.
The deformation was the average value of deformations measured on both sides in a 10-
mm length.

The stress distribution across the fracture cross-section is uneven up to the peak
point (Fig. 4.3 d). The measured strength is smaller than the input one (Fig. 4.3 c).
The difference between them depends on brittleness number (d/1,) (Fig. 4.4).
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For notched cylinders, the effect of a notch might be expected to be similar. d/l,
is about 0.2 and 2a/d is 0.3. According to Fig. 4.4 the error might be less than 3%.
With regard to the all-round notched cylinders used in the present study, the error might
be estimated to be double. In that case it is still less than 6% and acceptable.
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Fig. 4.4 Notch sensitivity of tensile strength
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4.5.2 Relaxation tests

In order to get some insight into rate effect on the o-w curve, a few direct tension
tests on notched cylinders were carried out. After maximum load points were reached,
the deformation was held constant for a certain period of time and the stress relaxation
were registered. One typical test is shown in Fig. 4.5. In this test, the holding period
of time was about 60, 30, 30 Min, when the net section stress (total load divided by
fracture area) was 2.65, 1.75, 0.90 MPa respectively.

The stress decreases quickly at first but then slows down at each holding period
(Fig 4.5 b). When the deformation increases again, the stress increases but does not
regain the initial value (Fig 4.5 a). It seems that some damage occurs in the fracture
zone during the holding time and results in a decrease in the load carrying capacity of
the zone. However, such a damage seems to impose only a local disturbance on the o-w
curve but does not seem to influence the latter part of the curve. It might imply that the
o-w curve could be unique for the same loading rate, irrespective of previous loading
history.

To check whether a holding period can influence the envelope of the o-w curve,
the stress-deformation relations evaluated from monotonic static tension tests and
relaxation tests are compared at w=35, 10, 20, 30 and 50 pm. The result is shown in
Table 4.4. There is no significant difference between the two types of tests.

Table 4.4 Stress ratio (6/f,) versus deformation relations evaluated from monotonic
static tension and relaxation tests. Coefficient of variation is given in

parenthesis.
w (um) 5 10 20 30 50
static 0.75 (6%) | 0.58 (13%) | 0.27 (18%) | 0.19 (26%) | 0.10 (30%)

Relaxation | 0.76 (6%) | 0.57 (10%) | 0.30 (21%) | 0.20 (19%) | 0.11 (24%)
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Fig. 4.5 A typical relaxation test on a notched cylinder. The deformation was held
constant at stress 6=2.65, 1.75 and 0.90 MPa in about 60, 30 and 30 minute

respectively.
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If the loading rate changes, the fracture zone may follow another o-w curve. But
if the rate changes back, the fracture zone may continue along the same o-w curve as
before the change occurs. A possible rate-dependency of the o-w curve is schematically
illustrated in Fig. 4.6.

— W

Fig. 4.6 Schematic illustration of rate-dependency of the o-w curve
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Great care was taken to reduce the drift of clip-gauges as small as 1 um/30 Min.
To check whether other factors such as clip-gauge drift and creep outside the fracture
zone can influence the tests, relaxation tests hade been also made before the load
reached the maximum value. The load-time curve of a test is shown in Fig. 4.7. The
load changes very little. Therefore the effect observed in Fig. 4.5 seems mainly to be
related to the sensitivity of the fracture zone to time effect, at least for the first 20
minutes of the holding period.

LOAD  (KN) RELAXATION, NOTCHED CYLINDER
3.50
3.00 :
. : W
2.00 :

1.50 o

1.00 4

-000 e e S S o B S e L
.000 2.00 4.00 6.00 8.00 0.0 12.0 14.0 6.0 18.0  20.0
LOAD-TIME CURVE TIME (Min)

Fig. 4.7 Relaxation test before load reaches the maximum value
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Since the stress seems to change very little after about 20 minutes, the load
decrease in the first 20 minutes may be used as an estimation of the ultimate stress
relaxation. The ratio between the relaxation stress o, at t=20 minutes and the stress
o, at the beginning of the holding period is plotted for all the tests in Fig.4.8 (see also
Table A.1, Appendix A). The ratio may be taken to be 0.7. However, there are large
scatters in load decrease rates in relaxation curves. Therefore accurate relaxation
relations cannot be established on the basis of the tests.
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Fig. 4.8 Ultimate relaxation stress related to initial stress
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4.5.3 Rate effect on fracture energy

The time-dependency of the o-w curve can be investigated indirectly by studying
the effect of the loading rate on fracture energy, as fracture energy is equal to the area
below the o-w curve. Fracture energy is usually determined from bending tests of
notched beams, which are much easier to carry out than tension tests.

A series of tests has been carried out with varying deflection rates from 0.05 to 50
um/s. The corresponding time to reach the maximum load ranged from about 5 to 5000
seconds. The mean curves of four deflection rates are depicted in Fig. 4.9. The CMOD
rate is about 0.1 of the deflection rate for the specimens.
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Fig. 4.9 Load-deflection curves of various deflection rates
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Fracture energy is evaluated according to the RILEM recommendation for different
rates and is given in Table A.2, Appendix A. The result is also plotted in a double
logarithm in Fig. 4.10.
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Fig. 4.10 Rate effect on Gg

In the present tests, fracture energy seems to decrease as loading rate decreases.
Fracture energy may be related to deflection rate in a power law as

_G_F =(Tu.)0~04 4.1)
Gp Yy

where 1 = deflection rate and u'0= 2 um/s.
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At loading rates higher than the static one, fracture energy seems to decrease with
loading rates (Reinhardt 1990, Briihwiler et al. 1990). Nevertheless, few tests have
been done on the influence of very slow rate on fracture energy. Wittmann et al. have
carried out three-point bending tests at varying deflection rates (from 0.001 mm/Min
to 10 mm/Min) to determine rate effect on fracture energy. The result is shown in Fig.
4.11. At higher loading rates, fracture energy decreases as the rate gets slower. For
much slower loading than static loading (0.1 mm/Min), however, fracture energy seems
to increase as the rate decreases.

: (g) GF = OS(FT W‘ + S~| W;) .
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Fig. 4.11 Rate effect on Gy according to Wittmann et al. (1987)

Bazant et al. (1989) have investigated the rate effect on G, indirectly derived from
Bazant’s size effect law. They found that fracture energy decreases as the loading rate
decreases.
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By data-fitting load-deflection curves in different loading rates, Wittmann et al.
(1987) have derived the corresponding rate effect on the o-w curve, as illustrated in
Fig. 4.12. On the other hand, it is quite difficult to determine to what extent non-elastic
energy due to creep outside the fracture zone may contribute to fracture energy in a
very slow loading. It may be reasonable to assume that fracture energy decrease with
loading as Eq. 4.1.

W

Fig. 4.12 Illustrated rate effect on a-w curve according to
the results of Wittmann et al. (1987)
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4.5.4 Flexural creep rupture

Unnotched beams

All the tests were performed under load control, and the load rate was 50 N/s. Four
specimens were loaded to failure in about 40 seconds, the ultimate load P, and f; (=
3P...S/2bh? were determined. Then 8 beams were tested under sustained load levels
o/f;=P/P,,, from 0.67 to 0.95, and failure times (measured from beginning of sustained
loading) were registered. The experimental results (Table A.3, Appendix A) are plotted
in Fig. 4.13.
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Fig. 4.13 Flexural creep rupture
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The regression relationship between stress and failure time can be given in a power
law:

1,=7.2(—~)2 4.2)
f

The exponent is 24 and is comparable to 20-30 for flexural rupture tests (Mindess,
1984).
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Notched beams

The ultimate load P,,, was determined by means of deflection control (5 um/s). It
took about 60 seconds to reach the maximum load. The net flexural strength, f,,, was
calculated from the ultimate load by 3P,,S/2b(h-a)’. Then 11 rupture tests were carried
out under various load ratios (o,./f,.). Failure times were measured from the beginning
of sustained loading. In addition to deflection and load, the crack mouth opening
displacement (CMOD) was also registered by a pair of clipgauges.

The stress-failure time curve is shown in Fig. 4.14. A regression relation can be
expressed as:

o
t, =6(—"5)2 4.3)
Jre

Oret / fret P

“ ' 100
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T T T T — T fcr (S)
1 10 100 1000 10000

Fig. 4.14 Stress-failure time curve from flexural rupture tests
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Figs. 4.15-18 show CMOD-time curves at load ratios of 0.92, 0.85 0.8 and 0.76
respectively. CMOD grows in three stages as usually observed in a creep rupture test.
CMOD increases rapidly in the primary stage, but the growth rate gradually slows
down. In the secondary stage, the rate of CMOD is constant. In the last stage, CMOD
grows increasingly rapidly.

The secondary stage dominates the whole course of creep failure life and CMOD
grows considerably in the last stage. The degree of CMOD growth in the primary stage
seems to diminish under higher stress level, as observed in a creep.test in low loading
(less than 40% ultimate load).
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Creep rupture curve under sustained load
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Fig. 4.15 CMOD-time curve under sustained load level o,,/f,.,=0.92

Creep curve under sustained load
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Fig. 4.16 CMOD-time curve under sustained load level o,,/f,,,=0.85
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CMOD-time curve under suatained load
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Fig. 4.17 CMOD-time curve under sustained load level o,,/f,.,=0.80
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Fig. 4.18 CMOD-time curve under sustained load level o,,,/f,,,=0.76
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Experiments (Cornelissen, 1984) show that the relationship between the creep strain
rate in the secondary stage and failure time is more consistent and less scattered than
the stress-failure time relation in tensile tests, both under cyclic and sustained loading.
The secondary creep strain can be used to predict rupture and fatigue life.

The rates of CMOD in the secondary stage are given in Table A.4, Appendix A.
Fig. 4.19 represents the CMOD rate-failure time curve. It yields a much more
consistent curve, compared to the stress-failure lifetime curve in Fig 4.14. A regression
relation can be given as:

logé=1.22-0.95logt,, 4.4

¢,umls

1.0+

0.1+ "\

0.01-

T T T fcr (s)
1 10 100 1000 10000

Fig. 4.19 Secondary CMOD rate-failure time curve
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In compressive tests, the descending branch of a stress-strain curve from monotonic
loading seems to serve as a failure criterion for cyclic loading tests (Karsan et al.,
1969). To check if such an assumption can also be made for sustained loading, values
of CMOD at initial and failure points for all tests are given in Table A.4. Although
there is some uncertainty in determining the failure values of CMOD, CMOD at failure
under sustained loading seems to approach the corresponding value in the static load-
CMOD curve. Therefore the descending part of the static load-CMOD curve may serve
as a criterion for failure in sustained loading (Fig. 4.20)

—

Static loading
Sustained loading

Possible rupture point

» CMOD

Fig. 4.20 Illustrated relation between the load-CMOD curves
in static and sustained loading
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4.5.5 Compact tensile creep rupture

In order to investigate the creep fracture behaviour of different geometries, compact
tensile tests with notch ratios a/W as 0.4 and 0.7 were performed. The number of
specimens subjected to sustained loading was 6 for a/W=0.4 and 4 for a/W=0.7. The
ultimate loads (P,,) were determined in deformation control and it took about 1 Min
to reach the peak-point in tests. Net strength, f,, was calculated from P, /b(W-a).
Rupture tests under various o,/f,, were performed to determine stress-failure time
relations. The results are depicted in Fig. 4.21.

Regression relations can be derived from curves for a/W=0.7 and 0.4 as:

o
£, =3(—e) 2 4.5)
fnet

and

t, = 10(_%) -29 (4.6)

net
respectively.
Compared to flexural rupture tests, the failure time becomes longer under the same

stress level (o,./f.,) and the long-time strength may be higher in compact tension. The
exponent in the stress-failure time relation may vary for different geometries.
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Fig. 4.21 Creep rupture in compact tension tests

Fig. 4.22 shows pictures of specimen and fracture surfaces. Since only fine
aggregate was used in the cast specimen, the fracture surface looks quite smooth.

IR T n_wu‘

Fig. 4.22 Specimen and fracture surfaces
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CMOD-failure time curves under stress levels o,./f,,=0.9, 0.8 are depicted in Figs.
4.23 and 4.24 for notch ratio /W = 0.4 and Figs. 4.25 and 4.26 for a/W = 0.7.
Three stages can be observed in the CMOD-time curves, similar to the flexural rupture
tests. The secondary stage constitutes a large part of the failure life, and the rate of
CMOD in this stage may be expected to determine failure time.

Under the same stress level, a specimen with a high notch ratio can withstand a
shorter time. This may partly be due to the decrease in fracture cross-section and partly
to notch sensitivity.
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Fig. 4.24 CMOD-failure lifetime curve (a/W=0.4, o,,/f,..=0.8)
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Fig. 4.25 CMOD-failure lifetime curve (a/W=0.7, &,,/f,..=0.9)
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Fig. 4.26 CMOD-failure lifetime curve (a/W=0.7, 0,,/f,.,=0.8)
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4.6 Summary and Conclusions

A series of experimental tests has been carried out to gain information about the
influence of time on the fracture parameters and to investigate the time-dependent
fracture behaviour of various concrete structures subjected to high sustained loading.

According to direct tensile tests, the o-w curve seems sensitive to the deforma-
tion rate. When the deformation is held constant (zero deformation rate) for a period
of time, a loss in load-carrying capacity will result. However, the damage does not
seem to have a significant influence on the latter part of the o-w curve. It seems that
the o-w curve may be unique for the same loading rate.

The influence of time on fracture energy is studied by means of bending tests on
notched beams with various loading rates. Fracture energy tends to decrease with
loading rates even at slower rates than static one.

Flexural rupture tests of both notched and unnotched beams with the same height
display no significant differences in stress-failure time curves. This may be true only
for small specimens. For compact tensile tests it seems that failure time is longer
than that for flexural tests at the same stress level.

In rupture tests, deformations gradually develop in three stages. In the primary
stage, the deformation rate decreases, and becomes constant in the secondary stage.
The rate increases rapidly until failure in the tertiary stage. The deformation rate in
the secondary stage seems to be a very good predictor for rupture life. It seems that
the descending branch of the load-deformation curve in static loading might serve as
a failure criterion for rupture tests.






Chapter S
A Model for Creep Fracture

5.1 Introduction

The Fictitious Crack Model has been successfully applied to simulating tensile
fracture under static loading conditions. Similar models have also been incorporated in
creep and shrinkage analyses (de Borst and van den Berg 1986, Dahlblom 1987).
However, no time effect has been considered within the fracture zone in those crack
models.

It might be expected that the Fictitious Crack Model can be applied to creep crack
growth as well. Surely proper modifications must be made with regard to time effects
on softening behaviour. In the following sections, a crack model with regard to time
effects on the fracture zone will be presented. Creep outside the fracture zone has not
been included in the model. The static tensile strength serves as a criterion for crack
initiation and is considered to be time-independent. The Necessary numerical implemen-
tation will be presented in the last section.

65
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5.2 Visco-elasticity theory

Time-dependent behaviour is usually investigated by creep or relaxation tests. In a
uniaxial creep test, the stress history o(t) is prescribed by

o(t)=0,H() .1

where o, is constant stress applied at time t=0, H(t) is the Heavyside unit step function
defined as

H@®H=0 <0 (5.2)
=1 =0
The creep strain e(t)
e®=J@)o, (5.3)

where J(t) is creep compliance.

On the contrary, a uniaxial relaxation test is characterized by a prescribed strain
history e(t)

e(t)=€,H(?) (5.4

In the equations above, and €, are constant stress and strain values applied at time
t=0. The corresponding relaxation stress o(t) is given by

a())=G(ve, 5.5)

where G(t) is called relaxation modulus.
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A simple way to describe viscoelastic behaviour is to use rheological models. Those
model are assemblages of linear (Hookean) springs and linear (Newtonian) dashpots.
A spring element can be described by Hooken’s law as

o=Ee (5.6)
and a dashpot is an ideal viscous element and can be described by

é= 6.7

g
n
where 7 is the coefficient of viscosity of the dashpot.

The Maxwell element consists of a spring and a dashpot in series, while the Kelvin
element is a parallel coupling of a spring and a dashpot (Fig. 5.1). The compliance for
a Maxwell element is given by

JO=JHO)+L (@>0) (5.8)
1

The relaxation modulus is

G(t)=Eexp(-t/t) (t>0) 5.9
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T
(a) Maxwell (b) Kelvin

Fig. 5.1 Simple rheological elements

Fig 5.2 Generalized Maxwell model
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The simple Maxwell and Kelvin models generally do not predict accurately the
behaviour of most materials. Therefore a number of Maxwell or Kelvin elements are
usually coupled in series or parallel to fit experimental data. A generalized Kelvin
model is well suited to fit creep tests whereas a generalized Maxwell model is more
convenient when relaxation data are available.

For the generalized Maxwell model (Fig. 5.2), the relaxation modulus is given by
N ¢ '
G(®=) E,exp(-—) (5.10)
n=1 Tn

where 7, =n/E, is relaxation time of element n.

For a prescribed strain history e(t), the corresponding stress can be evaluated from
the following integral:

N *
o@=["Gt-t)de)=Y Enexp(——f-) f_:exp(:—)de(t 5 61D
n=1 n n

According to the trapezoidal rule, the stress increment do for a small time step dt can
be approximately evaluated as

do=o(t+dt)-o(t)
N N
=E o/{exp(_ﬂ)—l)+d€'z %(exp(_£)+1] (5.12)
T T

n=1 n n=1 n

where
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0,=E,exp(-—) [ exp(-)de(t") (5.13)
Tn - Tn

Eq. 5.12 gives the linear viscoelastic constitutive equation on incremental form, which
is convenient in numerical analysis.
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5.3 The Proposed Time-dependent Crack Model

5.3.1 General considerations

Under long-time loading, time-dependent behaviour may include the time effect
both in the fracture zone and outside the zone.

In the part far from the fictitious crack tip, stresses are low and linear visco-
elasticity theory can be used. In the high stress zone around the tip, a non-linear creep
law should be utilized.

In the Fictitious Crack Model, the static tensile strength serves as criterion for
initiation of fictitious crack. Under long-term loading, creep in the high stress zone
around the fictitious crack tip may be great enough to reach the tensile strain capacity,
so that crack formation can occur below static tensile strength. Therefore the criterion
should be adjusted to account for time effect. The time effect on crack criterion may
be taken into account by assuming a time-dependent strength criterion for crack
initiation. The stress-failure lifetime relation has been used to guide against creep
rupture, it seems natural to use such a criterion. Another alternative way may be to use
a stress-strain criterion. Reinhardt et al. (1985) has suggested a combined stress-strain
criterion both for static and sustained loading. Nevertheless, if a fracture zone already
exists, such a time-dependent criterion for crack initiation may not be very important.
Therefore in all the theoretical analyses, the static tensile strength is used as criterion.

As far as creep rupture during a short period of a few minutes to a couple of days
is concerned, the creep effect outside the fracture zone may be small and neglected.
Hence the time effect on softening behaviour in the fracture zone is probably the main
source of creep crack growth under creep rupture where tensile fracture behaviour
dominates. One possible mechanism may be that stresses transmitted in the fracture
zone decrease with time. As a result, the region at the rim of the fracture zone unloads,
and the released load drives the fracture zone to progress further.

Time-dependent problems are often solved in increments by dividing time into small
steps. Under sustained loading it is usual to evaluate incremental creep strains from
stresses at the beginning of the time step and structural responses in the time increment
can be obtained by imposing a pseudo load from the creep strains. Obviously this
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approach cannot be used in the fracture zone, as the fracture zone should be deforma-
tion-controlled. Therefore, an alternative way is chosen in the present modelling . At
the beginning of each time step, stress relaxations are computed instead, and
consequently a pseudo load can be evaluated from the relaxation stresses. In the next
section, a time-dependent constitutive relation for the fracture zone will be proposed
based on relaxation tests in uniaxial tension.

5.3.2 Constitutive modelling

The time-dependent o-w relation may be expressed in the following incremental
form:

do=do®+do! (5.14)

where do® and do' are stress changes due to relaxation and deformation increment dw
respectively during time increment dt.

Since it is quite difficult to perform relaxation tests during-a long period of time,
accurate stress-time function in relaxation cannot be obtained from the tests. Therefore
simple functions based on experimental evidences are proposed in the model to illustrate
the main features of time effect in the fracture zone.

Fig 5.3 illustrates the proposed model. During the time increment dt=t,,,-t, the
deformation is first held at w; and the stress decrease do® due to relaxation is 0,-0;;
Then, when the deformation increases from w; to w;,,, the stress can increase until it
reaches the envelop of the static o-w curve at Point B along the path A-B and follow
the curve until Point i+1. The stress change do'is o,,,-0,. Of course, if the deformat-
ion increment dw is small, then Point i+1 may not reach Point B and will instead
locate at a point somewhere between A and B.
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Fig. 5.3 Hllustration of the proposed model
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The relaxation function of a modified Maxwell model is chosen. Since this is a
preliminary study, it is attempted to use a simple rheological element to illustrate the
main features of the problems concerned.

The stress relaxation within time increment dt is assumed to be given by

doR=(0,-a oo)(exp(—g;)‘l) °i>°‘°Ao (5.15)

da®=0 0,<00,

where a is a constant, o, is the stress corresponding to w; in the static o-w relation and
7 is relaxation time. The relaxation tests in tension show that stress relaxation seems
to reach a limit value which is proposed to equal ac,. Therefore in the equation above
the term ao, has been introduced as a relaxation limit. Stress relaxation below the limit
is assumed to be zero.

The stress change do' is proposed as:

do'=Fx(w,,,-w) Win<Wp (5.16)
doI=F*(wB—wl.)+F°*(W,-+1—WB) Wi1”Wp
where
F =F,g(exp(-dijt)+1)/2
P o, 0i+doR
B W, (S.17)
0
FO = 90 (WB)

and o°%(w) represents the static o-w curve.
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The experimental loading-reloading curve is complicated (see Fig. 4.5). Thus in the
model a linear stiffness is proposed in the model to make a simple and proper
description of the curve possible.

In Fig. 5.4 the model is applied to simulate stress-deformation curves in different
deformation rates. If the rate is high (close to static loading rate), the stress-deformation
curve is near the static one. Meanwhile, the curve deviates more from the static one for
slow rate, and the transmitting stress in fracture zone becomes lower than the static one
for the same deformation.
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Fig. 5.4 Simulated tensile o-w curves at different rates according to the model
a=0.7, 7=25 second
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5.4 Finite Element Implementation

Generally numerical methods are necessary in the application of the Fictitious Crack
Model. The finite element method has been used in this thesis. In modelling of the
fracture zone, the discrete approach is chosen. No special singular crack elements or
very fine meshes are necessary in FCM analysis. A small special program was
developed and used in all the calculations.

5.4.1 Finite element formulation

In analyses, the fracture zone is usually modelled by means of springs whose
stiffness are calculated according to o-w curve. The crack propagation path is assumed
to be known in advance and is chosen to coincide with the inter-element boundary.
Material outside the fracture zone is modelled as linear elastic by using 4-node
isoparametric elements or rectangular elements of the Turner and Clough types.

The creep effect is incorporated simply by adding the pseudo load caused by creep
to the load vector in the equilibrium equation as:

K,du=dP=dP **+dP ® (5.18)

where K; is the tangential stiffness matrix, dP, dP=* and dP*® represent the total load,
external load and pseudo load increments respectively. Under sustained loading, the
external load increment dP= is zero.
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The incremental pseudo load vector dP® includes equivalent nodal forces due to
stress relaxation in the fracture process zone for the time increment dt. For element e
in fracture process zone, the nodal forces due to stress relaxation can be calculated from
the following relationship:

dPeR=—A2*dof*( '11 ) (5.19)

where A, is fracture area represented by the element and do ? is evaluated according to

Eq. 5.15.
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5.4.2 Numerical solution algorithm

In solving nonlinear problems, an iterative solution procedure is often required.
In the standard Newton-Raphson procedure, the stiffness matrix is updated in every
single iteration step. Although this procedure needs less iteration, updating of stiffness
matrix in each iteration is more expensive. Therefore a modified procedure is used to
reduce computational work. In the modified Newton-Raphson method, the stiffness
matrix is only updated at the beginning of an increment and then keep constant in all
iterations.

In FCM analysis the nonlinear behaviour is caused mainly by the softening of
material in FPZ. If the stress-deformation curve is approximated into step-wise linear
segments, the global response is able to reproduce by changing material properties in
FPZ step-wisely. This approach is simple and able to properly reproduce nonlinear
response caused by tensile fracturing in static cases.

In the present analysis of creep fracture, however, the standard Newton-Raphson
iteration has been used. At the end of each increment, the residual forces, the
differences between external loads and nodal forces from element stresses, are used as
a pseudo load to carry out computation. Iterations are carried out until the residual
forces are acceptably small according to a given criterion.
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5.4.3 Computational procedure
In numerical analysis of creep rupture, the following steps are performed:

Step 1. Perform a static analysis up to the onset of sustained loading, evaluate
stresses and deformations and update stiffness matrix K;.

Step 2. Compute relaxation stresses in the fracture zone for time increment dt
according to Eq. 5.15 and evaluate the incremental pseudo load vector dP* according
to Eq. 5.19. Set dP* =0 and dP=dP*.

Step 3. Solve the system equations and determine displacement increments from

du=Ky'dP (5.20)

Step 4. Check deformations at certain points to determine if creep rupture of the
loading structure has been achieved, for instance if CMOD increment becomes
negative. If so, go to Step 8.

Step 5. Find the minimum stress increment do,;, for crack initiation at the fictitious
crack tip node and calculate the load reduction factor f=do,,/do, where do is stress
increment at the crack tip node corresponding to dP. If f<1, set f*du—du.

Step 6. Evaluate incremental and total deformations and stresses in the fracture
zone, incremental and total element strains and stresses outside the fracture zone, and
average stresses at nodes which are located on the crack propagation path. Update
stiffness matrix. If f<1, set (1-f)*dP—dP and go to Step 3.

Step 7. Find residual forces dP~ from difference between nodal forces calculated
from element stresses and total external loads. If the following criterion
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2 @PY s (5.21)

Y P

is not fulfilled, set dP=dP~, go back to Step 3 and perform iteration until the
equilibrium is fulfilled.

Step 8. If creep rupture occurs, perform static computation with deformation-
controlled loading until the carrying load of the structure is about zero and then stop.
Otherwise return to Step 2 for next new time increment until total loading time is
finished.
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5.4.4 Program structure

In the present study, a special finite element program was developed to perform the
numerical analysis. This program can be used for fracture analysis under both static and
sustained loadings. The computational flow chart for the program is shown in Fig. 5.5.

In numerical analysis, the element mesh and topology are created after data input.
Then stiffness matrix is established and equivalent loads from gravity loadings are
evaluated. According to prescribed loading factor, a time increment and an external
load increment are determined. The pseudo load vector due to stress relaxation in the
fracture process zone can be calculated for the time increment. The total incremental
load vector in turn can be determined. The equation system is solved by the Gauss
elimination method.

Check deformations at certain points to see if ultimate load-carrying capacity or
creep rupture is reached. For example, if CMOD increment becomes negative, reverse
loading directions under static loading if the whole deformation process will be
simulated. Under sustained loading creep rupture is achieved when CMOD increment
changes sign. The calculation can stop or a static FCM analysis is followed.

Evaluate the stress increment do and the minimum stress increment do_,, to make
the maximum principal stress at the fictitious crack tip node reaches the tensile strength,
the criterion for crack initiation. Find the load reduction factor f=do . /do. If f<1, the
incremental deformations should be multiplied by the factor f and evaluate the
incremental and total strains and stresses, and update stiffness matrix and apply the rest
load increments (1-f)dP to perform calculations until the total increment load vector has
been applied for the time increment. If f>1, evaluate incremental and total strains and
stresses. At the end of each increment the residual forces are calculated from the
differences between the nodal forces contributed from the external forces and the nodal
forces evaluated from element stresses. If the residual forces exceed the given criterion
(Eq. 5.21), an iterative loop starts. Otherwise a new step is followed until loading is
finished.
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5.5 Summary

A crack model for creep fracture has been proposed. The numerical solution algorithm,
computational procedure and program have also been presented.






Chapter 6
Theoretical Analyses and Comparisons

6.1 Introduction

In this chapter, theoretical analyses of creep failure by means of stress-strength
approach, linear elastic fracture mechanics and the proposed model will be presented.
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6.2 Stress Approach
If creep behaviour of notched structures is essentially ductile, it is possible to use

net section stress to predict the failure lifetime. Rupture lifetime is solely related to net
section stress as

tC(i"i] 6.1)

net
where C and n are constants, and do not depend on size and geometry of specimens.

For norm concrete, the stress-strength approach may be expected to be true only
for structures of very small size.

6.3 LEFM Approach

According to LEFM-based theory of creep fracture (see Appendix B), failure time
t, under creep rupture can be related to stress o by

2-n
tcr= 2K1c > (_0_) -n (6 . 2)
A(n-2)Y?a;, %

where o, is nominal strength in static fracture.

In three-point bending of notched beams, o and o, are given in the expressions:

PL P h-a h-a,
o=2PL_ 3L Ty, oy ©6.3)
2Bh* 2B(h-a)* h h
and
3p L 3P_L h-a h-a
Op=—T= A= () (6.4)
2Bh* 2B(h-a)® h h
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In accordance with LEFM, the net flexural strength can be related to the tensile
strength (Hillerborg, 1986) by:
1 1
L b p a3 By 6.5)
TGO

Jue

Combining the equations above, we can obtain the following formula:

y h‘ao, om)_n (6.6)

2-n
2K, a, h-a,
\

\
A(n—2)j‘;2 h-a,  h ly  foa

tcr

or

2- n
;- 2Kk" ( a, "g(h_ao)4_2n(h_a0)l-§(h)-n (6.7)
T Am-2f h-ay  h o =

From the above equations, the failure lifetime is proportional to the dimension for
geometrically similar specimens if the stress level (o,./f,.) is the same:

t, =<h-ay<h 6.8)
However, under the same stress, o,,, the failure time decreases as the dimension
increases as follows:

L

w L 270 1y2 6.9)
Gt )

For the same lifetime, strength (o,.) depends on dimension h by
A1, 1
O ()" (=) (=) 2 (6.10)
h-a, h-a, h

1/n-1/2 is approximated as 1/2 since the exponent n for concrete materials is somewhere
between 15 and 30 according to Mindess (1984).
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The conclusions above can be shown to be also valid for other geometries.
It is known that LEFM is not applicable to fracture behaviour in a concrete structure
of laboratory size. It may be expected that there is a similar limit to the application of
LEFM-based theories to creep crack growth and fracture in concrete.

6.4 The Proposed Model

6.4.1 Flexural creep rupture

The Fictitious Crack Model has proven to be able to predict tensile fracture
behaviour very well. To check if the material properties obtained from the experiments
(see Chapter 4) can be used in the model to describe structural behaviour, numerical
simulations of three-point bending tests are made. The specimen dimension is
840*100*100 mm, and the span is 800 mm. The notch ratio is 0.5. The element mesh
and material data are given in Fig. 6.1. The bilinear o-w relation proposed by Petersson

(1981) is used, and material properties are taken from Table 4.3 in Chapter 4.
P2

a)
o
fi
10 f, = 2.8 MPa
E = 36 GPa
ml__ G, = 82 Nm/m’
| - h
b) 0.8 36 Gr

Fig. 6.1 The element mesh and material data for FCM analysis
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In determining fracture energy according to RILEM recommendation (1985), the
effect of self-weight of beam has been taken into account. To simulate more accurate
flexural tests, self-weight has been included in the numerical calculations as an initial
load. Fig. 6.2 shows the simulated load-deflection curves with and without self-weight.
If the self-weight is not accounted for, the net flexural strength is about 10% lower than
the real one and fracture energy G is 56 Nm/m’ and is about 31% less than the input
value (82 Nm/m?). Note that if the self-weight is considered, the calculated fracture
energy is about 78 Nm/m’, which is still less than the input value (82 Nm/m?). This is
because that the last node in the compressive zone is not broken at failure.

lwo .

)

Load (KN)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Deflection (mm)

Fig. 6.2 Static load-deflection curves in three-point bending of a notched beam
with and without regard to the self-weight
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In Fig. 6.2, the simulated curves are not very smooth, which is due to the small
number of FCM elements in the fracture zone. To check if a coarse mesh such as the
one in Fig. 6.1 can give a fair result, a simulation is made with a fine mesh (the
number of elements in the fracture zone is double), as in Fig. 6.3 a. The material law
is same as in Fig. 6.1. The comparison is shown in Fig. 6.3 b. The difference is small,
and indeed the coarse mesh is able to give a proper result. Therefore the coarse mesh
is used in most of the calculations.
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Fig. 6.3 Effect of mesh on simulation of bending
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Fig. 6.4 shows the comparison between the static bending tests and the theoretical

results. The load-CMOD curves from tests can be simulated quite well.
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CMOD ¢, deflection u (mm)

Fig. 6.4 The experimental and theoretical load-deflection and
load-CMOD curves in three-point bending
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Influence of model parameters

In the proposed model for creep fracture, two material parameters are required in
addition to the basic material parameters in FCM. One is limit constant «, and the other
is relaxation time 7. According to the relaxation tests (see Fig. 4.8), « is chosen to be
0.7.

If « increases, failure life predicted will be longer. If 7 increases, the failure life
will increase proportionally since a linear relaxation function is chosen in the model.
Table 6.1 shows the influence of « and 7 on failure time for bending rupture of a
notched beam (Fig. 6.1) is shown.

In order to obtain good correlations with both the tensile relaxation tests and

flexural creep rupture tests (Figs. 6.7 and 6.8), 7 is chosen to be 25 second in all the
remaining calculations.

Table 6.1 Influence of a and T on failure time

Stress level Constant Relaxation time Failure time

O fs a 7(S) t(S)
0.76 0.70 50 3328
0.76 0.65 50 1610
0.76 0.60 50 1150
0.76 0.60 100 2230
0.76 0.60 200 4470
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Load-CMOD curves in static and sustained loadings

Fig. 6.5 shows the theoretical load-deflection and load-CMOD curves both in static
loading and sustained loading. The specimen dimension, element mesh and material law
are the same as shown in Fig. 6.1. Four different sustained tests at load levels
P/P...=0.92, 0.85, 0.8 and 0.76 are simulated. P_, is the maximum load from the
theoretical simulation of a three-point bending test under static loading.

P/Pmax=0.92

P/Pmox=0.85
P/Pmax=0.80
P/Pmax=0.76

0.6+

g Jjoo
E 2
% ®
S o4 1
0.2H
0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Deflection (mm)
1
0.8l P/Pmax=0.92
i P/Pmax=0.85
P/Pmax=0.80
P/Pmax=0.76
Z 0.6 q
¢ imo
3 J
3 $
S 04 —
0.2
o N
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.43 0.5

CMOD (mm)

Fig. 6.5 Theoretical load-deflection and load-CMOD curves
under static and sustained loading

For each load level, the following computation procedure is carried out. First a
static calculation is performed, until the prescribed sustained load is reached. Then the
creep fracture analysis starts in time increments which are small enough to allow stable
and accurate numerical calculations. In each time step, relaxation stresses are evaluated
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according to the relation given in the preceding chapter. At the end of the time step,
a pseudo load evaluated from the relaxation stresses is imposed and a static calculation
is made to determine displacements and deformations. The calculation continues in this
way up to the failure point where the equilibrium cannot be maintained under the pre-
scribed sustained load. Subsequently a static calculation without creep is performed
again with a decreasing load till the load is about zero.

Under each sustained load, CMOD increases until failure occurs when it almost
reach the descending branch of the static load-CMOD curve. It is consistent with
experimental results of flexural rupture tests which seem to indicate such a trend.

It is interesting that the static load-CMOD curve is followed after sustained loading
if a deformation control test is made possible. This is similar phenomenon observed in
fatigue tests. In deformation-controlled fatigue tests, failure will occur when the
deformation reaches the descending part of the static load-deformation curve and then
follow the rest of the curve. It is believed that a similar effect will occur in creep
rupture tests if tests can be performed by deformation control.

Table 6.2 gives fracture energy as evaluated from the area under load-deflection
curves for both static and sustained loadings. Fracture energy decreases to just 95.4%
when the sustained loading P/P,_,, is as low as 0.76. Hence sustained loading at a high
load level does not seem to have a significant effect on fracture energy according to the
model. Hansen (1991) performed three-bending tests subjected to constant loads by
regulating deflections. It was found that sustained tests at high load levels does not
influence so much fracture energy, compared to fracture energy determined from static
bending tests.

Table 6.2 Calculated fracture energy under sustained loading

Load level Fracture energy Percentage
(Nm/m?) (%)
1.00 77.9 100.0
0.92 77.3 99.2
0.85 76.2 97.8
0.80 75.2 96.5
0.76 74.3 95.4
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Creep curves

Figs. 6.6 to 6.9 show the simulated CMOD-time curves for stress levels o,./f., =
0.92, 0.85, 0.8 and 0.76 respectively. The experimental creep curves are also plotted
to facilitate comparisons.

The theoretical creep curves seem to be quite similar to the experimental ones. The
creep curves display three stages. CMOD grows rapidly at the beginning and then slows
down to keep increasing at a constant rate. At the third stage CMOD increases very
rapidly to failure.

The third stage seems to start somewhere when CMOD becomes greater than the
value (44 um; see Fig. 6.4) at the peak point in the static load-CMOD curve. In fatigue
pull-out tests (Balazs, 1986), the deformation at the peak point in the static load-
deformation curve is proposed as a criterion for fatigue failure. If a similar criterion is
used for creep rupture, it may lead to a safer criterion since the time to reach this
criterion is about 70-80% of the total failure life from both the theoretical and experi-
mental results.

It may be observe that the CMOD values are higher than the experimental ones.
This is due to the difference in the static load-CMOD curves, as the simulated load-
CMOD curve differs a bit from the experimental one.
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Fig. 6.6

Creep curve under sustained load
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Fig. 6.7 Sustained load level o,,/f,,, = 0.85.
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Creep curve under sustained load
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Fig. 6.8 Sustained load level o,,/f,,, = 0.80.
(a) Theoretical CMOD-time curve;
(b) Experimental CMOD-time curve.
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Stress distributions and creep crack growth

The stress distributions within the fracture zone at different stages are plotted in
Fig. 6.10. The stress level o, /f,, is 0.80. the fine mesh (Fig. 6.3 a) is used.
Fig. 6.11 shows the growth of fictitious crack with time. a, is the total crack length
measured from crack mouth to fictitious crack tip. The fictitious crack tip moves
quickly in the beginning and then smoothly and very rapidly in the last stage.
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Fig. 6.10 Stress distributions In fracture zone, sustained load o,,/f,,, = 0.80
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Fig 6.11 Propagation of the fictitious crack tip. a is the total crack length measured
Jrom crack mouth to fictitious crack tip.
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Stress-failure lifetime curve

The theoretical stress-failure lifetime curve is depicted in a double logarithm in Fig.
6.12. Compared with the experiments (Fig. 4.14), it has a steep slope and predicts a
longer failure time at higher stress levels. This is because a simple relaxation relation
is used, and relaxation rate is proportional to stress. In fact, a non-linear relaxation
function may predict the creep behaviour in the fracture zone much better since the
stress-deformation o-w curve seems more sensitive to time effect in the initial, high-
stress stage. Nevertheless the model seems to predict the stress-failure time reasonably
well with regard to a simple relaxation function employed in the analysis.
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Fig. 6.12 Theoretical stress-failure lifetime curve
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Size effect

In static loading, fracture behaviour exhibits size-dependency. As the size of a
geometry similar specimen increases, the fracture behaviour changes from ductile to
brittle, the structural strength become lower. It might be expect size effect exists in
creep fracture.

Fig. 6.13 shows the theoretical size effects on rupture life of sustained bending
beams at two stress levels o,/f,, = 0.9 and 0.85. Both length and height of beams
increases or decreases proportionally and the same mesh as in Fig 6.1 a is used in each
calculation. No self-wight has been accounted. The rupture life does not seems to
change very much for small beams and increases more for larger ones. It is more
remarkable for lower sustained loading (o,./f,,=0.85) than higher one. From LEFM
the failure life seems to increase proportional with increasing size. The size effect may
be explained as follows. For small beams fracture zone is large compared to dimension
of specimen, and fracture behaviour is more ductile, the failure lifetime is determined
solely by stress level. While for a large size specimen fracture behaviour is still
dominated by the stress intensity factor K, thus LEFM should be applicable, failure
lifetime depends not only on stress level, but also on specimen size.

Size effect on rupture life
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Fig. 6.13 Size effect on failure lifetime in sustained bending of notched beams
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Influence of shrinkage

Experiments available in the literature (Mindess et al., 1974) suggest that the failure
time for dry specimens is S-order higher than that for wet ones. One factor may be
initial stresses induced by dry shrinkage. Therefore sustained bending of unnotched
beams with initial stresses is simulated. The initial shrinkage stress distribution is
assumed to be parabolic within the fracture cross-section at the beginning (Fig. 6.14).
Such an assumption has been used in analysis of bending tests on dry beams and
produces best agreement with tests (Petersson, 1981).

The net flexural strength of the dry specimen decreases to 0.84 of the wet one. At
the same sustained load level (sustained stress/static flexural strength), the rupture life
for the dry one does show an increase over the wet one, but only about 1.5 times that
of the wet one. It seems that the initial stress caused by shrinkage can only partly
explain the difference in failure lifetime. Probably the properties of a fracture zone in
dry concrete differ quite a lot from those in a wet specimen, especially as far as the
time-dependent behaviour is concerned.

Og=f, Og05t,

Fig. 6.14 Assumed parabolic distribution of shrinkage stresses across fracture cross-
section (Petersson, 1981)
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6.4.2 Compact tensile creep rupture

Compact tension tests have been simulated numerically. The sizes of the specimens
are given in Table 4.1, and material properties are the same as those used for
simulations of bending tests (Fig. 6.1 b). The element meshes are showed in Fig. 6.15.
Four-node isoparametric elements are used.

a)

E (=]
"
(=l
=~

b)
=07

£|0

Fig. 6.15 Element meshes for simulation of compact tension tests
(@) a/W = 0.4,
(b) a/W = 0.7.
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Load-CMOD curve in static loading

Numerical simulations of load-CMOD curves in static loading are plotted in Fig.
6.16. Compared to experimental results, the numerical results agree fairly well both for
notch ratios a/W = 0.4 and 0.7. The differences become greater in the descending parts
of the load-CMOD curves. Probably because fracture energy determined from three-
point bending tests is slightly greater than that from compact tension tests, since
fracture energy from bending of notched beams was used in numerical modelling.
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Fig. 6.16 Comparison between the simulated and experimental Load-CMOD curves
in static compact tension
(a) a/W = 0.4;
(b) a/W = 0.7.
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Load-CMOD curves in sustained loading

Load-CMOD curves at sustained load levels (P/P,..=0.80 and 0.90) are depicted
in Fig. 6.17. According to the model, failure occurs when the total CMOD (=elastic
+ creep CMOD) is equal to the deformation in the descending part of static load-
CMOD curve corresponding to the sustained load P.

Load (KN)
N
T

[’} L " s L s L L s R
[ 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

CMOD (mm)

Load (KN)

CMOD (mm)

Fig. 6.17 Load-CMOD curves in compact tension subjected to sustained loading
(@) a/W = 0.4,
(b) a/W = 0.7.
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Creep curves

Creep CMOD-time curves for /W = 0.4 and 0.7 are shown in Figs. 6.18 and 6.19
respectively. Sustained load levels (P/P,,,) are 0.80 and 0.90.
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Fig. 6.18 Creep CMOD-time curves in compact tension subjected to sustained load

(@) a/W = 0.4, P/P, . = 0.90;
(b) a/W = 0.4, P/P,. = 0.80.
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Fig. 6.19 Creep CMOD-time curves in compact tension subjected to sustained load
(a) a/W = 0.7, P/P,,,. = 0.90;
() a/W = 0.7, P/P, .. = 0.80.
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Stress-failure lifetime relation

Fig. 6.20 shows the theoretical prediction of stress-failure lifetime for compact
tension creep rupture for both a/W = 0.4 and 0.7.
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Fig. 6.20 Theoretical stress-failure lifetime relations
in compact tension creep rupture
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6.5 Discussions and Conclusions

Application analyses of LEFM and the proposed model for creep fracture have been
made. For normal sized laboratory specimens, LEFM-based approaches might not be
directly applicable for creep fracture. To predict real fracture behaviour, the proposed
model has taken creep effect in the fracture zone into account.

The model has been employed to predict the creep curves, load-deformation
relations, stress-rupture life curves and size effect etc. Although simple assumptions are
made for the creep effect in a fracture zone, the model seems to predict creep fracture
behaviour fairly well, when compared with the experimental results.



Chapter 7
Concluding Remarks

7.1 Summary

The thesis aims at developing a crack model for time-dependent fracture behaviour
in concrete by applying the Fictitious Crack Model (FCM). Both experimental (see
Chapter 4) and theoretical (Chapters 5 and 6) studies have been carried out.

Time effects on material properties (the o-w curve, G;) in the fracture zone are
necessary to construct a time-dependent crack model in concrete. Thus tensile relaxation
tests on notched cylinders were performed to investigate the sensitivity of properties in
the fracture zone to loading time. Rate effect on fracture energy has been investigate
by determining fracture energy from bending tests on notched beams at varying defor-
mation rates.

Another type of test is rupture test. It is attempted to investigate time-dependent
crack growth and fracture under sustained loading. In addition, the results provided a
comparison basis for the theoretical model. Flexural and compact tensile rupture tests
were carried out on specimens of various notch ratios.

By applying the basic idea of FCM, a time-dependent crack model is proposed. The

descending stress-deformation (o-w) relation is used to describe the softening behaviour
of the fracture process zone, while linear elastic behaviour is assumed outside the zone.
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Time-dependency of the o-w relation in the fracture zone has been taken into account
by introducing a relaxation function of modified Maxwell type.

The model has been applied to analyze crack growth and failure life both for
flexural rupture and compac tension rupture of plain concrete specimens subjected to
sustained loads.

In the present studies creep outside the fracture zone has not been considered, since
the main attention is focused on the time effect in the fracture zone. On the other hand,
as rupture tests with wet specimens last only several hours, creep outside fracture zone
is probably quite small. Static tensile strength is used as the criterion for crack
initiation.

7.2 Conclusions
From the present work, the following main conclusions may be drawn.

The stress-deformation relation seems sensitive to loading rate. In relaxation tests
when the deformation is held constant for a period and then continue to increase, the
stress does not regain the value at the beginning of the holding time. However, such
damage seems to have no significant effect on the later part of the o-w curve. It seems
a stress-deformation relation may be unique for a loading rate.

Fracture energy seems to decrease as loading rates become slower.

Under rupture tests of both flexure and compact tension, deformations (LPD or
CMOD) increase with time in three stages. In the primary stage the deformation rate
decreases and become constant in the secondary stage. In the tertiary stage the
deformation rate increases rapidly until failure. The secondary stage dominates the
entire failure lifetime, and the secondary deformation rate appears to have a good
correlation with the failure life.

The proposed model seems to be able to properly predict time-dependent fracture
behaviour in concrete, when compared with the experimental results presented in
Chapter 4.
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7.3 Further developments

Some further development may be suggested as in the following.
* To include creep effect outside the fracture zone.

* To include the time-dependent criterion for crack initiation, i.e. tensile
strength is function of time.

* To investigate the time-dependent softening behaviour for varying concrete
materials.

* To study the influence of moisture on time-dependency of stress-
deformation relations.






Appendix A
EXPERIMENTAL DATA

Table A.1 Tensile relaxation

Test No. o /f, o, /o, Holding time
t (minute)
0.97 0.63 60
TSRBI1 0.63 0.75 30
0.33 0.73 30
0.92 0.60 50
TRRB2 0.62 0.70 40
0.13 0.72 30
TSRB3 0.92 0.80 60
TSRLA 0.91 0.68 25
0.23 0.65 25
0.97 0.62 40
TSRLB 0.63 0.63 35
0.33 0.71 25
0.95 0.69 40
TSRLC 0.71 0.63 40
0.24 0.71 30

Note: (1) o /f, is the initial stress level at the beginning of holding period;
(2) o, /0, is the stress relaxation level at time t=20 minute.
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Table A.2 Rate effect on fracture energy

Deflection rate

No. of specimen

Fracture energy

(um/s) (Nm/m’)
0.05 3 68
0.2 4 71
2 4 76

50 3 90

Table A.3 Flexural rupture tests of unnotched beams

Test No. Stress level Failure time
olf; t. (s)
BULCS 0.95 15
BULC4 0.90 105
BULC7 0.90 210
BULD4 0.85 540
BULDS 0.85 600
BULD7 0.80 960
BULB4 0.80 1200
BULD6 0.76 7200
BULC6 0.70 > 10000
BULD3 0.67 > 10000

Appendix A
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Table A.4 Flexural rupture tests of notched beams

Test No. | o/f,. t., dr/dt Rupture Static
(s) (um/s) CMOD,, | CMOD,,
(um) (um)
92A 0.92 20 50 50
92B 0.92 70 0.2233 46 50
85A 0.85 190 0.1102 55 62
85B 0.85 530 0.0474 58 62
80A 0.80 550 0.0380 65 70
80B 0.80 580 0.0427 72 70
80C 0.80 360 0.0747 73 70
80D 0.80 980 0.0202 69 70
76A 0.76 930 0.0262 73 77
76B 0.76 3200 | 0.0071 81 77
76C 0.76 2400
Notes: (1) d7/dt is the rate of CMOD in the secondary stage in creep curves.
(2) CMOD in Column 5 is the value at rupture failure while CMOD in
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Column 6 is the value taken from the descending part of static curves
at the same stress level.
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Table A.5 Compact tensile rupture tests

Test No. | Notch ratio | Stress level | Failure time
a/W olf,, t. (8)
CTC4B1 0.4 0.90 240
CTC4B2 0.4 0.90 220
CTC4C3 0.4 0.86 360
CTCFB1 0.4 0.86 520
CTCFB4 0.4 0.84 2100
CTCFC2 0.4 0.80 7200
CTC7B1 0.7 0.90 60
CTC7C1 0.7 0.85 330
CTC7C3 0.7 0.85 250
CTC7C2 0.7 0.80 2580

Appendix A



Appendix B
LEFM Theory for Creep Fracture

The time-dependent crack growth in brittle materials is usually related to the stress
intensity factor K; by an empirical relationship:

9a_yk; B.D

dt

where A and n are material constants.

As shown by Nadeau, Bennett and Fuller (1982), the dependency of strength on
loading rate or rupture time can be derived from the equation above. The derivatives
will given in the following.

B.1 Constant load

The stress intensity factor K; is usually expressed as

K=Yo/a (B.2)

where Y is geometry factor, o is nominal stress and a is crack length.

Inserting K, into Eq. B.1 and integrating it, assuming that Y is not dependent on
actual crack length a, we can obtain:
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o ¥ rdamter s ®.3)

L)

where a, is the initial crack length, a, the crack length at failure under constant load o,
t, is failure time under stress o, and can be assumed to be zero, t., is failure time under
stress o (less than o). :

Suppose that fracture toughness K, is the same both in static and creep fracture:

K, =Yoy/a)=Yo,/a, (B.4)
Eq. B.3 becomes:
2K2—n
"_to:_k_( ﬂ)n—z_l) (B.5)
(2-n)AY?*6?\ ©

Since n is large enough, the equation can be simplified as

2K3"
fe I yn (B.6)

[,=
(2-m)AY?s} %

C

Thus a logarithmic plot of applied stress o versus rupture time will give a slope of
-1/n.



LEFM Theory for Creep Fracture

B.2 Constant loading rate

For a constant loading rate &, we can similarly obtain:

2-n
el 2(n+1)K;; ((—9—)"‘2—1]6

(n-2)AY*a3 2\ %

If n is large, the equation can be simplified as:

2n+1)KE"
_0
(n-2)AY20)7

on+1_
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B.7)

(B.8)

If failure stress o is plotted versus loading rate 6 in a double logarithm, the slope

of the curve will be 1/(n+1).
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