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Large multiconfigurational Hartree-Fock calculations on the hyperfine-structure constants
of the Li 2s Sand 2@ P states
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Accurate hyperflne-structure parameters for the ground and first excited states of lithium are report-
ed. Hyperfine parameters are calculated from multiconfiguration Hartree-Fock (MCHF) wave functions
using a recently written hyperfine-structure program, being a part of the MCHF Atomic Structure Pack-
age. Convergence of the hyperfine-strucure parameters is studied as the active set of orbitals is in-
creased. The relativistic, finite-nuclear-size, and finite-nuclear-mass-corrected values of the magnetic
hyperfine-structure constants of the 2s'S, /, and 2p'P, /23/2 states of 'Li were determiend to be
A, /, =401.70 MHz and A &/2 =45.94 MHz, A3/2 3.098 MHz, respectively. The final values are corn-
pared with experiments and with the most reliable theoretical values obtained with other methods.

PACS number(s): 31.20.Tz, 31.30.6s

I. INTRODUCTION

The hyperfine structure of the atomic energy levels is
caused by the interaction between the electrons and the
electromagnetic multipole moments of the nucleus. The
contribution to the Hamiltonian can be represented by an
expansion in multipoles of order K,

and
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where T' ' and M' ' are spherical tensor operators of
rank I( in the electronic and nuclear space, respectively
[1]. The K =1 term represents the magnetic dipole in-
teraction and the K =2 term represents the electric quad-
rupole interaction. For the J=—', state of this study,
higher-order interactions can be neglected and for the
J=

—,
' states they are identically zero.

For Li the electronic tensor operators are, in atomic
units [1,2],

The hyperfine interaction couples the electronic (J)
and nuclear (I) angular momenta to a total angular
momentum F=I+J. In this representation the diagonal
and off-diagonal hyperfine energy corrections are given
by

WM((J, J)=
—,
' AJC,

Wt(t((J, J —1)=—,
' &JJ,[(K+1)(K—2F)

(6)

X (K —2I )(K —2J+ 1)]'i, (7)

by orbital motion of the electrons and is called the orbital
term. The second term represents the dipole field due to
the spin motions of the electron and is called the spin-
dipole term. The last term represents the contact interac-
tion between the nucleus and the electron spin and con-
tributes only for s electrons. The electric quadrupole
operator (3) represents the electric-field gradient at the
site of the nucleus.

The nuclear tensor operators M'" and M' ' are related
to the nuclear magnetic dipole moment pl and the elec-
tric quadrupole moment Q (assuming Mt =I)

(4)

3
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(3/4C(C+ 1)—I(I+ 1)J(J+ 1)
2I(2I —1)J(2J—1)

where gI=(1 —m, /7m )=0.99922 and g, =2.0023193
are the orbital and electron-spin g factors. 5(r) is the
three-dimensional 5 function.

The magnetic dipole operator (2) represents the mag-
netic field due to the electrons at the site of the nucleus.
The first term of the operator represents the field caused

where C =F(F+1)—J(J+ 1) I(I+ 1) and —K =I
+J+F.

The coupling constants are

[J(J+1)(2J+1)]'i
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Together with the nuclear magnetic dipole and electric
quadrupole moments, these coupling constants yield
separate values of the more theoretically interesting elec-
tronic hyperfine parameters a&, a,d, a„and b~ (assuming

Ml =L and Ms =S):

&, =(,yLSLS~ g),"'(i)r, 'lyLSLS&, (12)
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(14)

(15)

For the 2s S state of Li the coupling constant A &&2

has been determined very accurately with the atomic-
beam magnetic-resonance technique [3]. The experimen-
tal value A»2=401. 7520433(5) MHz gives, together
with the magnetic moment pl=3. 2564268(17) Iuz [4],
where p~ is the nuclear magneton, and a Fermi contact
term of a, =2.90602 a.u. However, Esquivel, Bunge, and
Nutiez [5] have argued that the value a, =2.90940 a.u.
should be used. The latter value has been calculated
from the experimental value using an electron-spin g fac-
tor of 2 instead of the QED corrected value.

For the 2p P state, the diagonal coupling constants
have been measured in an optical double-resonance ex-
periment, giving the values A&&z=45. 914(25) and
A 3&&

= —3.055(14) MHz [2]. These values, together
with data from earlier level crossing experiments, give an
off-diagonal parameter 23&2»2 =11.823(81) MHz [2].
The orbital, spin-dipole, and Fermi contact term can then
be determined to al =0.062 76(27), a,d

= —0.013 57(9),
and a, = —0.2135(10) a.u. , respectively. There exists no
accurate measurement of the 83/2 constant. Also, it has
not yet been possible to determine the quadrupole mo-
ment of Li directly with nuclear physics techniques. The
best value B3&2= —0.221(29) MHz [2] gives, together
with the nuclear quadrupole moment
Q= —0.04055(80)b obtained from molecular calcula-
tions on LiH [6] and LiF [7], a quadrupole term
b~

= —0.0232(30) a.u. , which is far too inaccurate to be
compared with the theoretical values. This is unfor-
tunate, since there is a rather large difference between the
quadrupole terms obtained from the different theoretical
calculations.

The excited-state lifetimes and hyperfine parameters in
lithium are a natural test case for theoretical calculations,
and thus they have been studied with many different
methods. For the excited-state lifetimes two accurate ex-
perimental determinations exist, giving the values

27.29(0.04) [8] and 27.22(0.20) ns [9], respectively, for the
lifetime of the 2p P states. All ab initio calculations give
lifetime values that are shorter, typically by 1%. This in-
cludes the most recent multiconfiguration Hartree-Fock
(MCHF) [10] and many-body perturbation theory
(MBPT) calculations [11,12].

Although it is possible, calculating the hyperfine pa-
rameters accurately has been shown to be difficult. In or-
der to reach an inaccuracy of less than 1% in a MBPT
calculation, three-particle effects have to be included [13].
In a Hylleraas (Hy) calculation the energy must approach
the nonrelativistic limit to give reliable values for the
hyperfine parameters. A rather extreme example of this
is the two Hy calculations by Ahlenius and Larsson
[14,15] where the electric quadrupole parameter changed
from —0.02016 to —0.02236 a.u. when the energy was
lowered from —7.40999 to —7.410078 a.u. The spin
dependence of the hyperfine structure makes it sensitive
to spin-dependent interactions between the valence elec-
tron and the core. These interactions lead to admixtures
of triplet-core configurations that are obtained directly in
MBPT, whereas in variational calculations they enter
through their effect on the total energy, which may be
very small. To describe the spin polarization correctly in
a MCHF calculation, large configuration expansions have
to be used where all orbitals are optimized simultaneous-
ly.

The purpose of the present work is to test the recently
written hyperfine-structure program and to see what ac-
curacy on the hyperfine parameters can be reached with
the MCHF method using large configuration expansions.
Also the convergence of the hyperfine parameters is stud-
ied as the active orbital space is increased.

II. METHOD OF CALCULATION

The wave functions were generated with the MCHF
code of Froese Fischer [16], where the wave function g
for a state labeled y JLSJ is expanded in terms of
configuration state functions (CSF's) with the same LS
term:

P(yJLSJ)= gcjgj(y~LSJ) .
J

(16)

In the numerical MCHF approach the CSF's are sums of
products of spin orbitals, where the radial part of the spin
orbital is represented by its numerical value in a number
of grid points. In the multiconfigurational self-consistent
field (MC SCF) procedure, both the orbital and the ex-
pansion coefficients are optimized to self-consistency.
The calculation of the parameters (12)—(15) from the
MCHF wave functions was done with a newly written
hyperfine-structure program [17], being a part of the
MCHF atomic structure package of Froese Fischer [16].

For the generation of wave functions, sequences of ac-
tive spaces were used. In this approach all possible
configuration states of a particular parity are generated
from an active set of orbitals. The active set was in-
creased stepwise by adding orbitals with the same princi-
pal quantum number n, but with different angular quan-
tum number l. In each step the principal quantum num-
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ber was increased by one. This approach was applied by
Sundholm and Olsen in a hyperfine-structure calculation
of Li [18] and by Froese Fischer in a variational predic-
tion of transition energies and electron affinities [19].
The size of the configuration space grows rapidly with
the increasing active set. Orbitals with high I values have
very small inAuence on the hyperfine structure, and
therefore only orbitals with I (5 were included in the ex-
pansion. To further reduce the size of the space, only sin-
gle and double excitations from the reference
configuration 1s 2s and 1s 2p, respectively, were allowed
for orbitals with n ) 5.

Any orthogonal transformation of orbitals with the
same angular momenta transforms the expansion
coe%cients of the total wave function, but does not
change the energy. Hence the variational procedure for
determining the radial function does not have a unique
solution. One way to solve this problem is to perform a
rotational analysis and select the particular solution for
which the off-diagonal Lagrange parameters are zero
[20]. Another is to delete from the configuration space
those CSF's that differ from a major component of the
wave function by one electron without a change in the
spin angular coupling, so that an orthogonal transforma-
tion will not generate the same configuration set. This is
referred to as applying the generalized Brillouin theorem,
and it is known that this leads to faster convergence and
more stable solutions [19]. The deleted configurations are
then introduced in a final configuration-interaction (CI)
calculation for the full space.

III. RESULTS AND DISCUSSION

A. 2s S

In the Hartree-Fock approximation the closed s shell
does not contribute to the Fermi contact term. However,
spin polarization of the shell induces very large contribu-
tions. The admixture of spin-polarizing states is deter-
mined through the effect on the total energy and as many
as 13 energy-optimized s orbitals where needed to get a
converged value of the Fermi contact term. For the
higher angular momenta, consecutively fewer orbitals

2s 2.094 43 2.093 23
2sp 2.074 36 2.073 10
3spd 2.828 89 2.827 40

1.000 58
1.000 61
1.000 53

0.001 67
0.001 76
0.001 53
0.001 65'

'Correction from Ref. [24].

TABLE III. The Fermi contact term (in a.u. ) of the 2s'S
term.

HF
Extrapolated NR value
Corrected value'
Finite-element MCHF
MBPT
MBPT
Relativistic MBPT
CI
CI-spin-density convergence
Hylleraas
Experiment

Value

2.0932
2.9047
2.9057
2.9049
2.9188
2.8999
2.9112
3.014
2.909 53
2.9074
2.906 02

Reference

This work
This work
This work
Ref. [18]
Ref. [24]
Ref. [11)
Ref. [12]b
Ref. [27]
Ref. [5]
Ref. [29]'
Ref. [3]'

Corrected for relativistic, finite-nuclear-size and finite-nuclear-
mass effects.
Calculated from published values of the magnetic dipole con-

stant.
'The relativistic and finite-nuclear-size correction 0.00165 a.u.
from Ref. [24] has been added.
Calculated from experiment with g, =2.002 319 3 and

pg =3.256426 8 p~.

TABLE II. The Fermi contact term (in a.u. ) of the 2s S term
for equivalent MCDF and MCHF calculations. The relativistic
and finite-nuclear-size correction, obtained by multiplying the
extrapolated nonrelativistic Fermi contact term a, =2.9047
with (MCDF)/(MCHF) —1, is compared with the correction es-
timated by Lindgren (Ref. [24]).

MCDF MCHF (MCDF)/(MCHF) Correction

TABLE IV. Total energy (in a.u. ) of the 2s 'S term.

TABLE I. The Fermi contact term (in a.u. ) of the 2s S term.
Active set Energy

Active set

2$p

3$pd
4spdf
Sspdfg
6spd fg
7spdfg
8spdf
9spdf
10spd
11spd
12sp
13sp
Extrapolated

a,

2.0731
2.8274
2.8269
2.9071
2.8884
2.9051
2.9039
2.9046
2.9043
2.9049
2.9046
2.9048
2.9047

2$p

3spd
4spdf
5spdfg
6spdfg
7spdfg
8spdf
9spdf
10spd
11spd
12sp
13sp
Nonrelativistic limit

'Reference [30].

—7.454 565
—7.473 184
—7.476 210
—7.477 160
—7.477 512
—7.477 648
—7.477 698
—7.477 714
—7.477 721
—7.477 725
—7.477 726
—7.477 726
—7.478 060 34(20)a
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TABLE V. The Fermi contact, spin-dipolar, orbital, and electric quadrupole terms (in a.u. ) of the

2p P term.

Active set

2$p
3$pd
4spdf
5spdfg
6spdfg
7spdfg
8spdf
9spdf
10spd
11spd
Extrapolated

a,
—0.2143
—0.1450
—0.2575
—0.2119
—0.2226
—0.2131
—0.2179
—0.2154
—0.2156
—0.2155
—0.2155

asd

—0.011 76
—0.013 53
—0.012 26
—0.013 75
—0.013 30
—0.013 56
—0.01341
—0.01347
—0.01345
—0.01348
—0.01346

a

0.058 78
0.06044
0.062 29
0.062 83
0.062 95
0.062 99
0.063 00
0.063 01
0.063 02
0.063 03
0.063 05

—0.023 51
—0.01907
—0.020 94
—0.024 67
—0.020 93
—0.021 66
—0.021 79
—0.023 01
—0.022 33
—0.022 77
—0.022 55

p(y JJ)= g c&pj(yJLJSJJ),
J

(17)

had to be included. As shown by Sundholm and Olsen
[18], the effect of adding further f and g orbitals should
be to increase the value of the Fermi contact term toward
the experimental value. In Table I the Fermi contact
term is reported as a function of the increasing active set
of orbitals. For the four largest spaces the MCHF varia-
tional procedure exhibited convergence problems, and it
was not possible to vary all the orbitals simultaneously.
One way to overcome this is to freeze the orbitals from
the previous active set and vary the new ones. Another is
to vary as many of the outer orbitals as possible and
freeze only the innermost orbitals. Of the two ways, the
latter was chosen, since it reduces the oscillatory behav-
ior of the Fermi contact term and converges faster to the
nonrelativistic limit as the size of the space increases.

The extrapolated nonrelativistic value of 2.9047 a.u.
must be corrected for relativistic, finite-nuclear-size and
finite-nuclear-mass effects, before being compared with
experiment. The finite nuclear mass M7 leads to a scal-

Li

ing of the Schrodinger equation that changes the Fermi
contact term with a factor (I+m, /M7 ) =0.999765.
Relativistic corrections can be included in the MCHF
atomic structure package through the Breit-Pauli ap-
proximation [21]. In this approach the total wave func-
tion for a state y JJ is expanded in terms of CSF's with
different LS terms:

where the radial part of the spin orbitals is taken from
the preceding MCHF calculations. The expansion
coefficients are then obtained by diagonalizing the Breit-
Pauli interaction matrix. The most significant effect of
the relativistic correction is the contraction of the
valence orbital, leading to an increasing value of the Fer-
mi contact parameter. This is in part counterbalanced by
the effects of the finite nuclear size, which decreases the
Fermi contact term. In an accurate calculation the latter
must also be included by adding the level field shift
operator to the Breit-Pauli Hamiltonian [22]. Work to
include this operator in the CI program of the MCHF
package and to evaluate its effect on the hyperfine struc-
ture is in progress [23]. In this study, however, relativis-
tic and finite-nuclear-size corrections to the hyperfine pa-
rameters are taken from Lindgren [24]. To estimate the
uncertainty in the corrections, contact terms obtained
from MCHF and equivalent multiconfiguration Dirac-
Fock (MCDF) calculations [25] are compared in Table II.
In the MCDF calculations a Fermi nuclear charge densi-
ty and pointlike nuclear moments have been used [26].

The relativistic finite-nuclear-size and finite-nuclear-
mass-corrected value of the Fermi contact term is 2.9057
a.u. , which is very close to the experimental value
2.90602 a.u. Our values are in very good agreement with
the finite element MCHF calculations of Sundholm and
Olsen [18]. The difference between their value of 2.9049
a.u. and the present could be explained by the fact that
our calculation included more f and g orbitals, the effect

TABLE VI. The Fermi contact, spin-dipolar, orbital, and electric quadrupole terms (in a.u. ) of the 2p P term.

Method

HF
Extrapolated NR value
Corrected values'
Finite-element MCHF
Semitheoretical
MBPT
CI
Hylleraas
Experiment

a,

0.0000
—0.2155
—0.2156
—0.2159
—0.2148
—0.2210
—0.2129
—0.2162
—0.2135(10)

asd

—0.011 71
—0.01346
—0.01346
—0.01346
—0.01346
—0.01348
—0.0138
—0.01342
—0.013 57(9)

aI

0.058 57
0.063 05
0.063 04
0.063 03
0.063 07
0.063 08
0.0625
0.0634
0.062 76(27

bq

—0.023 43
—0.022 55
—0.022 55
—0.022 53

—0.022 66
—0.0247
—0.020 16
—0.0232(30)

Reference

This work
This work
This work
Ref. [18]
Ref. [18]
Ref. [24]
Ref. [28]
Ref. [14]
Ref. [2]

Corrected for relativistic, finite-nuclear-size, and finite-nuclear-mass effects.
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TABLE VII ~ Total energy (in a.u. ) of the 2p P term.

Active set

2$p

3$pd
4spdf
5spdfg
6spdfg
7spdfg
gspdf
9spdf
10spd
11spd

Nonrelativistic limit

Energy

—7.380 123
—7.404 588
—7.407 851
—7.409 167
—7.409 578
—7.409 730
—7.409 786
—7.409 803
—7.409 811
—7.409 814
—7.410 16'

'Reference [31].

of which is to increase the value of the contact term. In
Table III the present value is compared with other calcu-
lations and in Table IV the total energy is reported as a
function of the active set.

B. 2p P

All three magnetic dipole as well as the electric quad-
rupole hyperfine parameters are present in the 2p P
term. In Table V the hyperfine parameters are reported
as a function of the active set of orbitals. Of the magnetic
hyperfine parameters the Fermi contact has drawn most
of the attention. In the Hartree-Fock approximation the
Fermi contact term vanishes, but the spin polarization of
the s shell induces a large contact term. Eleven energy-
optimized s orbitals were needed to describe the spin po-
larization. As for the 2s state, fewer and fewer orbitals
were needed for the higher symmetries. The contact
term has a highly oscillatory behavior in the beginning,
but after n = 8 the convergence is fast and the extrapola-
tion to the nonrelativistic value —0.2155 a.u. is obvious.
The convergence of the spin-dipole term is slow and os-
cillatory. The nonrelativistic value was determined to
—0.013 46 a.u. The orbital term is the only hyperfine pa-
rameter that shows monotonic convergence. The conver-

gence is slow and it is difficult to do an extrapolation.
0.063 05 a.u. is a lower limit, since the addition of orbit-
als with high orbital quantum numbers will increase the
orbital term. Of all the hyperfine parameters the
electric-field gradient b is the only one that is not prop-
erly converged. The final nonrelativistic value is taken as
the mean value of the two last values in the sequence.
This gives a value of —0.022 55 a.u.

As in the 2s calculation the MCHF variational pro-
cedure exhibited convergence problems for the largest
spaces, and the innermost orbitals had to be frozen while
as many as possible of the outer orbitals were simultane-
ously optimized. All calculations in this work were car-
ried out on a DEC 3100 workstation. Due to limited
internal memory, 24 Mbyte, only about 1500 CSF's could
be optimized in the MC SCF procedure. When more
than 1500 CSF's were present in the optimization, swap-
ping to the external disk slowed down the program
operation, making the calculations unfeasible. For the
two largest configuration spaces only CSF's with weights
larger than 0.000001 were allowed in the optimization
procedure. The full configuration space was then includ-
ed in a final CI calculation. The largest CI expansion for
the 2p states consisted of 2030 CSF's.

The final results, collected in Table VI and corrected
for relativistic, finite-nuclear-size and finite-nuclear-mass
effects, are compared with experimental values and values
from other calculations. Our values are almost identical
to the values of Sundholm and Olsen [18]. The values of
the spin-dipolar and orbital terms are also in very good
agreement with values obtained from a MBPT calcula-
tion [24]. The Fermi contact term, however, differs sub-
stantially from the MBPT value. This is not surprising
considering the fact that the deviation from the Hartree-
Fock value is very large for the Fermi contact term.

The calculated spin-dipole value is most likely more ac-
curate than the experimental value. Combined with the
two accurate experimental diagonal magnetic hyperfine
coupling constants A, &2 and A2/3 the calculated spin-
dipole value yields accurate semitheoretical values of the
Fermi contact term and the orbital term [18]. The sem-

TABLE VIII. Magnetic dipole constants (in MHz) for the 2s 'S]/2 and 2p -'P]/2 3/p states and electric quadrupole constant (in

MHz) for the 2p P3/2 state.

Method 2$ &/7 2p]/z 2p 3/2 2p 3/2 Reference

HF
MCHF
Finite-element MCHF
MBPT
MBPT
Relativistic MBPT
Hylleraas
CI —spin-density convergence
Experiment

289.55
401.71
401.60
403.53
400.903
402.47
401.94
402.24
401.752 043

32.32
45.94
45.95
46.24
45.789
45.96
46.01

45.914(25)

6.463
—3.098
—3.113
—3.344
—2.879
—3.070
—3.05

—3.055(14)

—0.2232
—0.2148
—0.2146
—0.2159
—0.2160
—0.2162
—0.1921

—0.219(29)

This
This
Ref.
Ref.
Ref.
Ref.
Refs.
Ref.
Refs.

work
work
[1g]"
[24]b

[11]
[12]
[29,14] "

[5]'
[3,2]

'Electric quadrupole constants have been calculated using the semiexperimental value Q = —0.040 55 b of Refs. [6] and [7].
Calculated from published values of the hyperfine-structure parameters with I, =2.002 319 3 and pl =3.256426 8 p~.

'Magnetic dipole constant of the 2s, /2 state has been calculated from the relativistic and finite-nuclear-size-corrected value from

Table III.
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itheoretical values are shown in Table VI. In Table VII
the total energy is reported.

In the relativistic formalism the hyperfine interaction
has the simple form [2]

(18)

In order to compare our results with the relativistic cal-
culations the hyperfine coupling constants A &&& and A3/2
are calculated from the hyperfine parameters. In Table
VIII our values are compared with experiment and other
theoretical values.

IV. SUMMARY AND CONCLUSIONS

We report large-scale MCHF calculations where sys-
tematic sequences of active orbitals sets were used to gen-

crate the configuration space. This allows for extrapola-
tion of the hyperfine parameters to the nonrelativistic
limit. It also gives an internal check on the accuracy of
the calculations. Although the energies obtained in the
calculations are higher than energies obtained with
Hylleraas methods, the hyperfine parameters compare
favorably. Since the MCHF method is very general,
large-scale calculations should be able to predict
hyperfine parameters accurately for more complicated
systems where relativistic effects are small.
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