Global investigation and meta-analysis of the C9orf72 (G4C2)n repeat in Parkinson disease

Published in: Neurology

DOI: 10.1212/wnl.0000000000001012

2014

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain.
• You may freely distribute the URL identifying the publication in the public portal.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Global investigation and meta-analysis of the C9orf72 (G₄C₂)ₙ repeat in Parkinson disease

ABSTRACT

Objectives: The objective of this study is to clarify the role of (G₄C₂)ₙ expansions in the etiology of Parkinson disease (PD) in the worldwide multicenter Genetic Epidemiology of Parkinson’s Disease (GEO-PD) cohort.

Methods: C9orf72 (G₄C₂)ₙ repeats were assessed in a GEO-PD cohort of 7,494 patients diagnosed with PD and 5,886 neurologically healthy control individuals ascertained in Europe, Asia, North America, and Australia.

Results: A pathogenic (G₄C₂)ₙ₆₀ expansion was detected in only 4 patients with PD (4/7,232; 0.055%), all with a positive family history of neurodegenerative dementia, amyotrophic lateral sclerosis, or atypical parkinsonism, while no carriers were detected with typical sporadic or familial PD. Meta-analysis revealed a small increase in risk of PD with an increasing number of (G₄C₂)ₙ repeats; however, we could not detect a robust association between the C9orf72 (G₄C₂)ₙ repeat and PD, and the population attributable risk was low.

Conclusions: Together, these findings indicate that expansions in C9orf72 do not have a major role in the pathogenesis of PD. Testing for C9orf72 repeat expansions should only be considered in patients with PD who have overt symptoms of frontotemporal lobar degeneration/amyotrophic lateral sclerosis or apparent family history of neurodegenerative dementia or motor neuron disease. Neurology® 2014;83:1906-1913

GLOSSARY

ALS = amyotrophic lateral sclerosis; FTLD = frontotemporal lobar degeneration; GEO-PD = Genetic Epidemiology of Parkinson’s Disease; PD = Parkinson disease; RP = repeat-primed; STR = short tandem repeat.

A substantial number of patients with frontotemporal lobar degeneration (FTLD)/amyotrophic lateral sclerosis (ALS) (14%–35%) carrying C9orf72 (G₄C₂)ₙ₆₀ expansions1–3 present with atypical parkinsonism in early disease stages and increased incidence of parkinsonism with or without features of the FTLD/ALS complex in their relatives.4–9 Ten research groups have reported on C9orf72 repeat expansions in Parkinson disease (PD) or atypical parkinsonism patients10–19 but none of these investigated the C9orf72 repeat in large-scale cohorts, and European and Australian populations were underrepresented in the published data. Apart from the pathogenicity of (G₄C₂)ₙ₆₀ expansions, we provided in vitro evidence that the (G₄C₂)₁₀₀ repeat size negatively correlated with the transcriptional activity of the C9orf72 promoter.20 Hence, it is conceivable that an increasing number of C9orf72 repeats may affect transcription gradually and increase susceptibility to disease.20 Three studies indicated a role of C9orf72 repeats in PD susceptibility but associations were found using different dichotomizations of repeat length, muddling biological interpretation. In one study, a marginal increased risk of PD was observed for carriers of (G₄C₂)₁₀ repeats.12 In the second, a significant increased frequency of (G₄C₂)ₙ>20 repeats was observed in patients clinically diagnosed with PD.13 In the third study, the authors

*These authors contributed equally to this work.

Authors’ affiliations are listed at the end of the article.

GEO-PD Consortium coinvestigators are listed on the Neurology® Web site at Neurology.org.

Go to Neurology.org for full disclosures. Funding information and disclosures deemed relevant by the authors, if any, are provided at the end of the article. The Article Processing Charge was paid by research funding obtained by the principal investigator.

This is an open access article distributed under the terms of the Creative Commons Attribution-NoCommercial No Derivative 3.0 License, which permits downloading and sharing the work provided it is properly cited. The work cannot be changed in any way or used commercially.
reported association of (G4C2)≥7 repeats with PD in the Chinese Han population. All of these studies, however, were executed in ethnically distinct and medium scaled cohorts. We set out to clarify the role of the C9orf72 (G4C2)n repeat in PD etiology in the first global multicenter study cohort of more than 7,000 patients with PD of 12 nationalities and 4 continents. First, we assess the global prevalence of pathogenic (G4C2)>60 expansions. Second, the size of the combined study populations enables a detailed investigation of the specific C9orf72 repeat allele or size threshold associated with increased risk of PD.

METHODS Standard protocol approvals, registrations, and patient consents. Genetic studies applied in this research were approved by the ethics committees of the ZNA (Hospital Network Antwerp), the Antwerp University Hospital, and University of Antwerp. Clinical protocols were approved by the ethics committees of the ZNA, the Antwerp University Hospital, and local ethical review boards of the participating research centers. All human biological samples were collected, fulfilling ethical approvals, and used in accordance with the terms of subjects’ written informed consent.

Participants. The Genetic Epidemiology of Parkinson’s Disease (GEO-PD) Consortium includes investigators from 60 sites from 30 countries and 6 continents (http://www.GEO-PD.org/about/). All sites were invited to participate in this study. A total of 18 sites representing 12 countries and 4 continents contributed either DNA or genotypic data, and clinical data of in total 15,123 individuals (tables 1 and 2). After thorough quality control as described in the procedures section below, 13,669 samples were included in this study. We excluded all duplicate samples, sex mismatches, and samples that failed in the DNA fingerprint analysis because of low quantity or quality of DNA or because of contamination of the sample. Demographics and diagnostic criteria of each series included in this study and the sample size breakdown from each site are provided in table 2. Controls were collected at the local sites as demographically matched neurologically healthy individuals.

Procedures. Sample quality control. Concentration and purity were checked spectrophotometrically using the Trinean DropSense96 UVVIS droplet reader (Trinean, Genbrugge, Belgium) for all consortium genomic DNA samples. Sex and DNA fingerprint were determined for all samples using an in-house-developed multiplex PCR panel composed of 13 short tandem repeat (STR) markers distributed over multiple autosomal locations: D20S480, D22S1174, D3S1287, D3S1744, D3S1764, D7S872, D7S2426, D8S1746, D14S1995, D20S866, D10S1237, D20S912, and D6S1065. This panel also includes a marker specific for the Y chromosome (DXS1187) and one for the STR ‘gene on the Y chromosome, and enables fast and accurate sample identification and sex determination in a single assay. After selective amplification of 20 ng genomic DNA, amplification products were size separated on an ABI 3730 automatic sequencer (Applied Biosystems, Foster City, CA) using GeneScan-600 LIZ (Applied Biosystems) as internal size standard and genotypes were assigned using in-house-developed TracI genotyping software (http://www.vibgeneticsericfacilty.be).

Genetic analyses. To screen the GEO-PD cohorts for the pathogenic (G4C2)≥60 C9orf72 repeat expansion, we designed a 2-step procedure: an STR fragment length assay with flanking PCR primers optimized for alleles with high GC content (STR-PCR) followed by 2 repeat-primed PCR assays (forward and reverse RP-PCR) as described earlier.

Four participating research groups performed the genotyping in their local facilities according to previously published procedures. For consistent allele scoring of repeat lengths between GEO-PD groups and accurate interpretation of the repeat length, we designed a reference DNA set of 14 samples covering a range of normal repeat sizes that was genotyped by each of these facilities. Furthermore, for 2 of the cohorts, a random set of samples homozygous for the STR-PCR assay were included in the RP-PCR analysis at the Antwerp site for independent validation of the absence of a pathogenic repeat expansion.

Statistical analyses. To investigate the association between repeat units and PD susceptibility, 3 explorative approaches were followed, based on (1) allele counts of the distinct repeat sizes, to determine whether one or more specific repeat sizes were associated with PD, (2) the total number of repeat units (sum of both alleles) per individual, and (3) the size of the longest repeat per individual (maximum allele). Summary statistics were computed in a random-effects meta-analysis (DerSimonian-Laird) for each approach in the rmeta package implemented in the R environment version 2.15.3. Based on the results obtained in the above-mentioned analyses, we performed hypothesis-driven dichotomized genotypic meta-analyses. Details are provided in the e-Methods on the Neurology® Web site at Neurology.org.

To take into account the number of tests performed (n = 22), a Bonferroni-corrected 2-sided p value of ≤0.002 was considered statistically significant. Population attributable risk of (G4C2)10–(G4C2)20 and (G4C2)20–40 was estimated using the epip package in R. For the meta-analyses, only the cohorts including both the patients with PD and the controls that were different.

Table 1 Synopsis of this global GEO-PD study

<table>
<thead>
<tr>
<th>Patients</th>
<th>Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>(G4C2)≥60</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>4/7,232</td>
</tr>
<tr>
<td>Europe</td>
<td>4/4,252</td>
</tr>
<tr>
<td>US + CA</td>
<td>0/1,261</td>
</tr>
<tr>
<td>Asia</td>
<td>0/1,364</td>
</tr>
<tr>
<td>Australia</td>
<td>0/355</td>
</tr>
</tbody>
</table>

Abbreviations: CA = Canada; GEO-PD = Genetic Epidemiology of Parkinson’s Disease.

*For the meta-analyses, only the cohorts including both patients with Parkinson disease and geographically matched controls that were size-corrected using the reference panel were included.
Table 2 Characteristics of the GEO-PD cohorts included in the study

<table>
<thead>
<tr>
<th>Site PI</th>
<th>Country</th>
<th>Ethnicity</th>
<th>Controls</th>
<th>Patients</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>In</td>
<td>QC OK</td>
</tr>
<tr>
<td>C. Van Broeckhoven</td>
<td>Belgium</td>
<td>Caucasian</td>
<td>1,119</td>
<td>1,118</td>
</tr>
<tr>
<td>G. Garraux</td>
<td>Belgium</td>
<td>Caucasian</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>C. Klein</td>
<td>Germany</td>
<td>Caucasian</td>
<td>706</td>
<td>697</td>
</tr>
<tr>
<td>A. Deutschländer</td>
<td>Germany</td>
<td>Caucasian</td>
<td>87</td>
<td>81</td>
</tr>
<tr>
<td>C. Ferraresi</td>
<td>Italy</td>
<td>Caucasian</td>
<td>92</td>
<td>89</td>
</tr>
<tr>
<td>E.M. Valente</td>
<td>Italy</td>
<td>Caucasian</td>
<td>92</td>
<td>83</td>
</tr>
<tr>
<td>G. Annesi</td>
<td>Italy</td>
<td>Caucasian</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>G.M. Hadjigeorgiou</td>
<td>Greece</td>
<td>Caucasian</td>
<td>300</td>
<td>232</td>
</tr>
<tr>
<td>A. Puschmann</td>
<td>Sweden</td>
<td>Caucasian</td>
<td>43</td>
<td>43</td>
</tr>
<tr>
<td>G.D. Mellick</td>
<td>Australia</td>
<td>Caucasian</td>
<td>920</td>
<td>571</td>
</tr>
<tr>
<td>M.S. LeDoux</td>
<td>US</td>
<td>Caucasian</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>S.J. Chung</td>
<td>Korea</td>
<td>Asian</td>
<td>650</td>
<td>568</td>
</tr>
<tr>
<td>E.-K. Tan</td>
<td>Singapore</td>
<td>Asian</td>
<td>200</td>
<td>100</td>
</tr>
<tr>
<td>N. Hattori</td>
<td>Japan</td>
<td>Asian</td>
<td>69</td>
<td>0</td>
</tr>
<tr>
<td>R. Krüger/M. Sharma</td>
<td>Germany</td>
<td>Caucasian</td>
<td>647</td>
<td>625</td>
</tr>
<tr>
<td>S. Lesage</td>
<td>France</td>
<td>Caucasian</td>
<td>442</td>
<td>442</td>
</tr>
<tr>
<td>Z.K. Wszolek</td>
<td>US</td>
<td>Caucasian</td>
<td>712</td>
<td>712</td>
</tr>
<tr>
<td>E. Rogaeva</td>
<td>Canada</td>
<td>Mixed</td>
<td>601</td>
<td>601</td>
</tr>
</tbody>
</table>

Abbreviations: AAO = age at onset; GEO-PD = Genetic Epidemiology of Parkinson’s Disease; NA = not available; PD = Parkinson disease; PI = principal investigator; QC = quality control; STR = short tandem repeat; UKPDBB = UK Parkinson’s Disease Brain Bank.

At the initial quality control step (QC), we excluded all duplicate samples, sex mismatches, and samples that failed in the DNA fingerprint analysis because of low quantity or quality of DNA or because of contamination of the sample. Additional samples did not pass the 2-step genetic analysis because of DNA shortage or limited concentration of the DNA sample.
Previously, 17 briefly, the first patient developed left and a detailed clinical description has been reported PD without cognitive dysfunction at disease onset, dementia. All 3 French patients were diagnosed with fling gait but also short-term memory disturbances, instability, mild bilateral rigidity, and slowed shuffling gait, resting tremor of the right arm, minor postural clinical examination revealed hypomimia, hypokinesic PD at the age of 57 years. One year after onset, the consortium cohort of 0.06%.

Pathogenic C9orf72

None in the other GEO-PD patient cohorts (table 1). French (SL cohort) (3/1,182; 0.25%) patients but German (MS_RK cohort) (1/1,304; 0.08%) and 3 from 0 to 32 in the Caucasian and from 7 to 14 in the German patient was diagnosed with idiopathic PD at the age of 57 years. One year after onset, clinical examination revealed hypomimia, hypokinesia, resting tremor of the right arm, minor postural instability, mild bilateral rigidity, and slowed shuffling gait but also short-term memory disturbances, social withdrawal, and minor apathy. The patient had a positive family history of neurodegenerative dementia. All 3 French patients were diagnosed with PD without cognitive dysfunction at disease onset, and a detailed clinical description has been reported previously. Briefly, the first patient developed left hemiparkinsonism at age 29 years and symptoms worsened progressively while dopamine agonists were only partially effective. In the second patient, parkinsonism began at age 48 years and a cognitive decline was noted at age 56 years. The third patient developed parkinsonism at age 64 years and developed a mild cognitive deficit at age 69. Although these 3 patients were clinically diagnosed with PD, they all had family histories of atypical parkinsonism, degenerative dementias, or ALS. No expansions were detected in patients with sporadic PD or patients with a familial history of PD. Moreover, mutations in known PD genes had previously been excluded in these 4 pathogenic expansion carriers.

We identified one Asian control of Chinese origin with an age at inclusion of 52 years carrying a pathogenic (G\textsubscript{4}C\textsubscript{2})\textsubscript{60} expansion (table 1). Currently, there is no record of any symptoms related to PD, FTLD, or ALS in this individual. This brings the estimated prevalence of pathogenic repeat expansions in controls to 0.02% (1/5,478). Apart from the expansion mutations, the distribution of repeat lengths ranged from 0 to 32 in the Caucasian and from 7 to 14 in the Asian control persons.

RESULTS

Definite pathogenic C9orf72 repeat expansions in PD. A total of 12,710 samples, including 7,232 patients with PD and 5,478 control individuals, were successfully genotyped with the 2-step (G\textsubscript{4}C\textsubscript{2})\textsubscript{n} repeat genotyping assay. RP-PCR analysis revealed the typical sawtooth pattern indicative of a pathogenic repeat expansion (G\textsubscript{4}C\textsubscript{2})\textsubscript{60} in one German (MS_RK cohort) (1/1,304; 0.08%) and 3 French (SL cohort) (3/1,182; 0.25%) patients but none in the other GEO-PD patient cohorts (table 1). Based on these results, we calculated a prevalence of pathogenic C9orf72 repeat expansions in this global consortium cohort of 0.06%.

The German patient was diagnosed with idiopathic PD at the age of 57 years. One year after onset, clinical examination revealed hypomimia, hypokinesia, resting tremor of the right arm, minor postural instability, mild bilateral rigidity, and slowed shuffling gait but also short-term memory disturbances, social withdrawal, and minor apathy. The patient had a positive family history of neurodegenerative dementia. All 3 French patients were diagnosed with PD without cognitive dysfunction at disease onset, and a detailed clinical description has been reported previously. Briefly, the first patient developed left hemiparkinsonism at age 29 years and symptoms worsened progressively while dopamine agonists were only partially effective. In the second patient, parkinsonism began at age 48 years and a cognitive decline was noted at age 56 years. The third patient developed parkinsonism at age 64 years and developed a mild cognitive deficit at age 69. Although these 3 patients were clinically diagnosed with PD, they all had family histories of atypical parkinsonism, degenerative dementias, or ALS. No expansions were detected in patients with sporadic PD or patients with a familial history of PD. Moreover, mutations in known PD genes had previously been excluded in these 4 pathogenic expansion carriers.

We identified one Asian control of Chinese origin with an age at inclusion of 52 years carrying a pathogenic (G\textsubscript{4}C\textsubscript{2})\textsubscript{60} expansion (table 1). Currently, there is no record of any symptoms related to PD, FTLD, or ALS in this individual. This brings the estimated prevalence of pathogenic repeat expansions in controls to 0.02% (1/5,478). Apart from the expansion mutations, the distribution of repeat lengths ranged from 0 to 32 in the Caucasian and from 7 to 14 in the Asian control persons.

C9orf72 repeat and PD susceptibility. We investigated the role of (G\textsubscript{4}C\textsubscript{2})\textsubscript{n} repeats in risk of PD. First, we assessed the distribution of the alleles in patients with PD vs controls in the GEO-PD cohort (figure 1). The frequencies of the (G\textsubscript{4}C\textsubscript{2})\textsubscript{10} allele and of (G\textsubscript{4}C\textsubscript{2})\textsubscript{17} were nominally increased in PD vs the controls but the differences were not statistically significant after Bonferroni correction (figure 1, table 3, figure e-1, A and B). Genotypic frequencies for (G\textsubscript{4}C\textsubscript{2})\textsubscript{10} (table 3, figure e-1, C) and (G\textsubscript{4}C\textsubscript{2})\textsubscript{17} (table 3, figure e-1, D) were not significantly different between patients and controls after correction for multiple testing. The estimated attributable fractions in the population are very low (table 3). When considering the sum of the alleles and the size of the maximum allele as a quantitative variable, we observed a small but significant increase of disease risk with a rising number of repeat units (sum of alleles $p = 0.0012$, summary effect $[B] = 0.0128 [0.00504–0.0205]$, figure e-2, A; maximum allele $p = 0.0010$, summary effect $[B] = 0.0181 [0.00731–0.029]$, figure e-2, B). Together, these results suggested that the risk effect may not only be linked to the (G\textsubscript{4}C\textsubscript{2})\textsubscript{10} repeat but may be increasing with length while the effect in the larger alleles is probably masked by the small number of carriers. Therefore, we decided to analyze the risk effect of C9orf72 repeat expansions as a binary categorical value with a cutoff between 9 and 10. However, neither allelic nor genotypic meta-analysis of the GEO-PD cohorts revealed significant association with PD for (G\textsubscript{4}C\textsubscript{2})\textsubscript{n} repeat alleles after Bonferroni correction (table 3, figure e-3, A and B). Furthermore, the estimated population attributable risk is low (table 3).

DISCUSSION

Molecular reclassification of complex brain diseases based on genetic etiology is of utmost importance to improve differential diagnosis and to rationalize drug development. Assessment of the contribution of novel disease genes to clinically and pathologically overlapping diseases is instrumental in this reclassification. In this global study, we assessed the prevalence of (G\textsubscript{4}C\textsubscript{2})\textsubscript{n} repeat alleles and expansions in an extended PD cohort ascertained within the GEO-PD Consortium and excluded a major role for pathogenic (G\textsubscript{4}C\textsubscript{2})\textsubscript{60} repeat expansions in the causation of PD. The low frequency of these expansions (0.06%) in the GEO-PD cohort is in agreement with earlier findings in distinct patient groups and falls in the range of frequencies observed in controls by us (0.02%) and others (0–0.6%). Furthermore, 75% of the pathogenic expansion carriers in this global study showed a decline in cognitive functions within 1 to 8 years after onset. In the absence of autopsy diagnoses, we therefore cannot exclude that some if not all of these expansion carriers are primarily FTLD/ALS patients with pronounced early parkinsonian symptoms or comorbidity of PD and FTLD/ALS. This hypothesis is supported by the identification of only one pathogenic mutation carrier.
in 826 (0.1%) autopsy-confirmed PD cases. Of note, this carrier presented, in addition to Lewy body pathology, with frontotemporal degeneration and C9orf72-ALS/FTLD pathology with numerous p62-positive inclusions. Furthermore, although substantia nigra involvement is common in C9orf72-positive ALS, it can be clearly distinguished from PD-related mechanisms by the presence of p62-positive inclusion and absence of Lewy body pathology.

Altogether, it is not advisable to include C9orf72 repeat expansion testing in a medical genetic diagnostic setting for typical PD patients. Exceptions can be made for patients with PD who have cognitive and/or behavioral deficits early in the disease process or in patients with a personal or familial history of FTLD/ALS. Given differences in the existing literature on C9orf72 repeat length as risk factor for PD, we used the size of this global cohort to estimate a PD-related threshold of C9orf72 repeats. Calculation of the risk for each of the observed C9orf72 alleles in the GEO-PD cohorts suggested a role for the 10-units repeat and for the pooled alleles of 17 units or more in PD susceptibility. Genotypic meta-analysis supported a possible link between (G4C2)10 and increased risk of PD but the association did not reach significance after correction for multiple testing. In addition, the number of carriers of these intermediate alleles is small and one should be cautious with the interpretation of these results. Furthermore, it is difficult to envisage the biological relevance of risk associated with a single

Figure 1 Overall distribution of C9orf72 repeat alleles in the GEO-PD cohorts

Only cohorts including both patients with PD and controls that were size-corrected based on the reference panel were included in the study. When the highest count for a specific allele was 5 or less across cohorts, the allele was clumped with the next allele for each cohort. (A) Allele frequencies. The p values for individual alleles were calculated using a Dersimonian-Laird random-effect meta-analysis. (B) Allele counts. *Nominally significant p values. Con = controls; GEO-PD = Genetic Epidemiology of Parkinson’s Disease; PD = Parkinson disease.
allele. Of note, we observed a small but significant increase in risk with an accumulating number of repeats suggesting the idea of a threshold size rather than a single allele as the culprit of increased risk. We therefore decided to study the combined effect of \((G_4C_2)\) alleles of 10 units and larger in the global GEO-PD cohort. Although meta-analyses implicated a potential role for these intermediate-sized repeats in PD risk, none of the associations survived Bonferroni correction suggesting that if \(C9orf72\) repeats of 10 units or larger have a role in PD susceptibility, the effect is small. This is supported by the fact that none of the published genome-wide association studies revealed the \(C9orf72\) locus as a risk factor for PD. A limitation of this study is that we did not yet include all published association studies of \(C9orf72\) in PD; however, we chose to include only those studies that were corrected for allele scoring bias based on a reference panel.

Altogether, these data support the current hypothesis that pathogenic \((G_4C_2)_n\) repeat expansions in \(C9orf72\) appear to be specific for the FTLD/ALS spectrum with little or no contribution to the wider spectrum of movement disorders. It will be of interest to study the role of intermediate repeats \(\geq 10\) units in other neurodegenerative disorders, however, to obtain a more profound knowledge on their role in neurodegenerative diseases and a better understanding of the underlying mechanism.

AUTHOR AFFILIATIONS

From the Neurodegenerative Brain Diseases Group (J.T., A.V., K.S., E.W., I.G., S.S., D.C., E.C., E.E., M.C., C.V.B.), Department of Molecular Genetics, VIB, Antwerp; Institute Born-Bange (J.T., A.V., K.S., E.W., I.G., S.S., D.C., E.C., E.E., G.M.H., E.D.), Neuroscience Institute, Singapore; Duke NUS Graduate Medical School (E.-K.T., Y.Z.), Singapore General Hospital, National Neuroscience Institute, Singapore; Duke NUS Graduate Medical School (E.-K.T., Y.Z.); Singapore; Department of Neurology (E.-K.T., Y.Z.); Singapore; Department of Neurology (J.A.), St. Olave’s Hospital, Tondern, Denmark; Department of Neuroscience (J.A.), Norwegian University of Science and Technology (NTNU), Trondheim, Norway; IRCCS Casa Sollievo della Sofferenza Hospital (E.M.V., S.P.), Mendel Laboratory, San Giovanni Rotondo; Institute of Molecular Imaging and Physiology (G.A., A.Q.), National Research Council, Section of Gemanturo (C2); Institute of Neurology (A.G.), Department of Medical Sciences, University Magna Graecia, Catanzaro; Department of Neuroscience (C.F., L.B.), Section of Neurology, University of Milano-Bicocca, San Gerardo Hospital, Monza, Italy; Department of Neurology (A.D.), Max Planck Institute of Psychiatry, Munich, Germany; Department of Clinical Sciences (A.P.), Section of Neurology, Lund University; Department of Neurology (A.P.), Lund, Skane University Hospital; Department of Clinical Sciences (C.N.), Clinical Memory Research Unit, Lund University, Sweden; Human Genetic Centre (G.G.), University Hospital of Liége, Belgium; Department of Neurology (M.S., R.F.), University of Tennessee Health Science Center, Memphis; Department of Neurology (M.B.-J., G.O.), Medical University of Silesia, Katowice, Poland; and Department of Neurology (D.M.M.), North Shore University HealthSystem, Evanston, IL.

AUTHOR CONTRIBUTIONS

Josie Theuns: drafting and revising the manuscript for content, study concept and design, analysis and interpretation of data, acquisition of data, statistical analysis, study supervision and coordination, obtaining funding. Alain Verspreet: revising the manuscript for content, study design, analysis and interpretation of data, acquisition of data, statistical analysis, study coordination. Kristel Sleegers: drafting and revising the manuscript for content, study concept, analysis and interpretation of data, statistical analysis, obtaining funding. Eline Wauters: revising the manuscript for content, analysis and interpretation of data, acquisition of data. Stefanie Smolders: revising...
the manuscript for content, analysis and interpretation of data, acquisition of data. Reijo Krüger: revising the manuscript for content, analysis and interpretation of clinical data, acquisition of clinical data, contribution of vital reagents. Ellen Elinck: revising the manuscript for content, analysis and interpretation of data, acquisition of data. Manu Sharma: revising the manuscript for content, analysis and interpretation of data, acquisition of data. Reijo Krüger: revising the manuscript for content, analysis and interpretation of data, acquisition of data. Suzanne Lesage: revising the manuscript for content, acquisition of data, analysis and interpretation of data, contribution of vital reagents, local study coordination. Alexis Brice: revising the manuscript for content, acquisition of clinical data, contribution of vital reagents, local study supervision. Sun Ju Chung: revising the manuscript for content, acquisition of clinical data, analysis and interpretation of data, contribution of vital reagents, local study supervision. Mi-Jung Kim: revising the manuscript for content, acquisition of clinical data, contribution of vital reagents. Young Jin Kim: revising the manuscript for content, acquisition of clinical data, contribution of vital reagents, local study supervision. Mi-Jung Kim: revising the manuscript for content, acquisition of clinical data, contribution of vital reagents. Owen A. Ross: revising the manuscript for content, analysis and interpretation of data, acquisition of data, contribution of vital reagents. Zhiguo W. Wu: revising the manuscript for content, analysis and interpretation of clinical data, acquisition of clinical data, contribution of vital reagents. Ekatrina Rogovaya: revising the manuscript for content, analysis and interpretation of data, acquisition of data, contribution of vital reagents. Zhengui Xu: revising the manuscript for content, analysis and interpretation of data, acquisition of data. Anthony E. Lang: revising the manuscript for content, acquisition of clinical data, analysis and interpretation of clinical data, contribution of vital reagents. Christine Klein: revising the manuscript for content, acquisition of clinical data, analysis and interpretation of clinical data, contribution of vital reagents. Anne Weihsbach: revising the manuscript for content, acquisition of clinical data, analysis and interpretation of clinical data, contribution of vital reagents. Stéphane Delbeke: revising the manuscript for content, acquisition of clinical data, analysis and interpretation of clinical data, contribution of vital reagents. Matthias Hadjigeorgiou: revising the manuscript for content, acquisition of clinical data, analysis and interpretation of clinical data, contribution of vital reagents. Eng-King Tan: revising the manuscript for content, acquisition of clinical data, analysis and interpretation of clinical data, contribution of vital reagents. George D. Mellick: revising the manuscript for content, acquisition of clinical data, analysis and interpretation of clinical data, contribution of vital reagents. Yi Zhao: revising the manuscript for content, acquisition of clinical data, analysis and interpretation of clinical data, contribution of vital reagents. Michel Verhegpuen: revising the manuscript for content, contribution of clinical data, analysis and interpretation of clinical data, contribution of vital reagents. Ronald P. Feffer: revising the manuscript for content, acquisition of clinical data, contribution of vital reagents. Magdalena Bozcuka-Jedynak: revising the manuscript for content, acquisition of clinical data, contribution of clinical data, analysis and interpretation of clinical data, contribution of vital reagents. Gegróga Opala: revising the manuscript for content, acquisition of clinical data, contribution of vital reagents.

ACKNOWLEDGMENT

Belgium: The authors thank the VIB DMG Generic Service Facility (http://www.vibgenservicefacility.be/) for technical assistance. Italy-Cosenza: The authors thank: Patrizia Tarantini, Institute of Molecular Bioimaging and Physiology, National Research Council, Section of Cosenza (CZ), Italy and Monica Gagliardi, Institute of Molecular Bioimaging and Physiology, National Research Council, Section of Cosenza (CZ), Italy and Institute of Neurology, Department of Medical Sciences, University Magna Graecia, Catanzaro, Italy.

STUDY FUNDING

Belgium-Antwerp: The research is in part funded by the Belgian Science Policy Office Interuniversity Attraction Poles (IAP) program; the European Initiative on Centers of Excellence in Neurodegeneration (CoEdEN); the Flemish Government initiated Methusalem Excellence Program; the Alzheimer Research Foundation (SAO/FRA); the Queen Elizabeth Medical Foundation (QEMF); the Research Foundation Flanders (FWO); the Agency for Innovation by Science and Technology Flanders (IWT); the University of Antwerp Research Fund, Belgium; and the MerlLife Foundation for Medical Research Award to C.V.B. The IWT provided a PhD fellowship to A.V. and E.W. and the FWO a post-doctoral fellowship to I.G. The authors acknowledge the personnel of the Genetic Service Facility of VIB (http://www.vibgenservicefacility.be/) and the Antwerp Biobank of the Institute Born-Bunge for their expert support. France: The authors thank the French Parkinson’s Disease Genetics Study Group. Y. Agid, M. Anheim, A.-M. Bonnet, M. Borg, A. Brice, E. Broussolle, J.-C. Corvol, P. Damier, A. Destée, A. Dierr, F. Dauré, S. Kiblé, P. Kraak, E. Lubmanmann, M. Martinez, P. Pollak, O. Rascol, F. Tison, C. Tranchant, M. Vérin, F. Viallet, and M. Vidalhiet; Franco-Parkinson Association and the French program “Investissements d’avenir” funding (ANR-10-IAIHU-06). USA-Florida: Mayo Clinic Florida is a Morris K. Udall Center of Excellence in PD Research funded by NIH/NINDS P50 NS072187, and is supported by NINDS R01 NS078806, the Michael J. Fox Foundation, Mayo Clinic Center for Regenerative Medicine, and a gift from Carl Edward Bolsh, Jr., and Susan Bas Bolsh. Canada: W. Garfield Weston Foundation and Ontario Research Fund (E.R.C.). Germany-Luebeck: C. S. is supported by a career development award from the Hermann and Lilly Schilling Foundation. Germany-Tuebingen: The KORA (Cooperative Research in the Region of Augsburg) research platform was started and financed by the Forschungszentrum für Umwelt und Gesundheit, which is funded by the German Federal Ministry of Education, Science, Research, and Technology and by the State of Bavaria. This work has also been made possible by the kind support of the Michael J. Fox Foundation (MJFF) for Parkinson’s Research (to Manu Sharma). This study was also funded by the German National Genome Network.

© 2014 American Academy of Neurology. Unauthorized reproduction of this article is prohibited.
REFERENCES

Global investigation and meta-analysis of the C9orf72 (G4C2)n repeat in Parkinson disease
Jessie Theuns, Aline Verstraeten, Kristel Sleegers, et al.
Neurology 2014;83;1906-1913 Published Online before print October 17, 2014
DOI 10.1212/WNL.0000000000001012

This information is current as of October 17, 2014

Updated Information & Services
including high resolution figures, can be found at:
http://www.neurology.org/content/83/21/1906.full.html

Supplementary Material
Supplementary material can be found at:
http://www.neurology.org/content/suppl/2014/10/17/WNL.0000000000001012.DC1.html
http://www.neurology.org/content/suppl/2014/10/17/WNL.0000000000001012.DC2.html

References
This article cites 30 articles, 6 of which you can access for free at:
http://www.neurology.org/content/83/21/1906.full.html##ref-list-1

Subspecialty Collections
This article, along with others on similar topics, appears in the following collection(s):
All Genetics
http://www.neurology.org/cgi/collection/all_genetics
Parkinson's disease/Parkinsonism
http://www.neurology.org/cgi/collection/parkinsons_disease_parkinsonism

Permissions & Licensing
Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
http://www.neurology.org/misc/about.xhtml#permissions

Reprints
Information about ordering reprints can be found online:
http://www.neurology.org/misc/addir.xhtml#reprintsus