Mobile Remote-sensing System For Atmospheric Monitoring

Edner, H; Fredrikson, K; Sunesson, A; Svanberg, Sune; Uneus, L; Wendt, W

Published in: Applied Optics

DOI: 10.1364/AO.26.004330

Published: 1987-01-01

Citation for published version (APA):
A mobile optical remote sensing system for environmental monitoring is described. The system, housed in a full-size truck with a laboratory floor surface of 6.0 × 2.3 m², is mainly intended for differential absorption lidar (DIAL) applications but can also be used for laser-induced fluorescence monitoring and for absorption measurements using classical light sources. The system has a 40-cm diam receiving telescope and a fully steerable flat mirror in a transmitting/receiving dome. A Nd:YAG-pumped dye laser with auxiliary nonlinear frequency conversion is the preferred transmitter in DIAL measurements. Measurement examples for atmospheric SO₂ and NO₂ monitoring with automatic concentration map drawings are given and further uses are discussed.

1. Introduction

Optical and laser remote-sensing techniques provide powerful tools for environmental monitoring. In particular, atmospheric pollution levels and meteorological parameters can be determined, with range resolution, by laser techniques employing lidar (light detection and ranging) and DIAL (differential absorption lidar) methods. Long-path absorption measurements can also be performed with classical light sources using the differential optical absorption spectroscopy (DOAS) technique. Powerful methods for pollution monitoring are obviously of considerable interest in view of health hazards, soil and lake acidification, and forest damage. A mobile system with advanced electrooptical and computer equipment makes air pollution monitoring in industrial and urban areas possible. Such a system is described in this paper and selected measurement examples illustrate the capabilities of the system and the techniques used.

Our group has been involved in atmospheric remote sensing using laser techniques for quite some time. Based on experience from early field tests a compact mobile lidar system was completed in 1979. This system has undergone extensive field testing, leading to a critical assessment of the capabilities and limitations in air pollution measurements using laser techniques. While this system was very convenient for SO₂, NO₂, and particle monitoring, the rather limited laboratory space restricted developmental work on various transmitter and detection combinations. The new system described in this paper has all the versatility needed for technique development, e.g., within the lidar, DIAL, gas correlation lidar, fluorescence lidar, and DOAS fields. It can also be very useful for different kinds of electrooptical measurement in an industrial environment (see, e.g., Ref. 13). A photograph of the system with its retractable transmission/reception dome in operational position is shown in Fig. 1, which also shows the 20-kVA motor generator unit providing power in the field. When the system is at its home base it is docked to the building and constitutes another fixed laboratory with advanced electrooptical and computer equipment.

While the new system is intended for all kinds of exploratory optical remote sensing work and has great flexibility, it is at present arranged for DIAL measurements. The system description given below focuses on this and the measurement examples given for the system in operation are DIAL measurements. The principle of DIAL has been discussed in detail, e.g., in Refs. 2 and 6. Rather than reviewing the mathematical framework for DIAL, we have chosen to demonstrate the operational principles in pictorial form (Fig. 2).

In Fig. 2 (a) a typical pollution measurement situation is depicted. Two industrial stacks produce plumes containing the gaseous pollutant, e.g., SO₂. The laser beam from the DIAL system is transmitted through the gas clouds that spread through the atmosphere. The laser pulse length is typically 5–10 ns, corresponding to a maximum range resolution of ~1 m. For simplicity, the atmosphere is assumed to contain a uniform distribution of scattering particles. In Fig.
2(b) the received backscattered intensity is shown as a function of distance (delay time) for the case where the laser is tuned to an absorption band of the molecule and when the laser is tuned to a neighboring wavelength where less or no absorption occurs. For pulses of equal energy and neighboring wavelengths the two curves will be identical with a $1/R^2$ fall-off for distances up to the first gas cloud. The smooth curves are due to collected laser light that has been elastically backscattered by the uniform particle and molecule distribution. However, when the laser pulse propagates through the gas clouds the situation differs. The non-absorbed wavelength is unaffected by the gas and the backscattered intensity (full line) continues its $1/R^2$ fall-off. The light at the absorption wavelength is attenuated through a cloud according to Beer-Lambert's law, and the backscattered light in and behind the cloud is again attenuated on its way back to the telescope (dashed line). The intensity behind the cloud continues its $1/R^2$ fall-off but at a reduced level. On passage through the last, dense gas cloud a substantial fall-off occurs. The two curves illustrate the outcome of an evaluation of the general lidar equation for the nonabsorbed and absorbed wavelengths, respectively. The difference between the curves can best be illustrated by dividing the latter curve by the former one for every distance (delay time). The result is shown in Fig. 2(c). The curve displays the result of the DIAL equation that is included at the bottom of the figure. The curve has an initial value of 1.0; decreases on its passage through the first cloud, continues horizontally between the clouds, finally to sharply decrease on its passage through the final, dense cloud. At this point we note that our initial pedagogical assumption of a uniform particle distribution was really not needed; localized particle clouds, e.g., those related to the gas emissions, would show up in the same way in the on- and off-resonance curves, and would thus disappear in the division leading to the DIAL equation. In this equation $P(\lambda_{\text{on,off}}, R)$ is the backscattered intensity from a distance R for the laser wavelength $\lambda_{\text{on,off}}$ at which the gas has the absorption cross section $\sigma(\lambda_{\text{on,off}})$. $N(R)$ is the density of absorbing gas molecules at a distance R. In Fig. 2(d) the gas concentration curve $N(R)$, obtainable through inversion of the DIAL equation, is shown. The simple form of the DIAL equation given in the figure can be derived using simplified, but frequently realistic assumptions, discussed in detail in Refs. 1 and 2.

After this discussion of a typical mode of operation for the new system we will give a detailed description below, presenting the different subsystems of the new facility. A few measurement examples are then given to illustrate the system performance and the computer data representation routines. Finally, a number of further system applications are discussed.

II. System Description

A. Mobile Platform

The mobile laboratory is based on a Volvo F610 truck with a specially designed cargo compartment. An overview of the system is given in Fig. 3. The truck, which weighs almost 10 tons, carries three persons in the driver's cabin. The truck is equipped with four sturdy supporting legs that can be hydraulically lowered to achieve high stability during measurements requiring high directional accuracy in the optical system. The cargo compartment, constituting the optical laboratory, measures 6.0 X 2.3 X 2.1 m3 (length X width X height). The walls are insulated and two windows and two skylights provide light and ventilation. An air conditioner and heater system are installed to control the laboratory milieu in a Nordic environment with an outside temperature varying from -20°C in winter to $+30^\circ$C during the summer. The mobile laboratory houses two vibrationally isolated benches measuring 4.0 X 0.7 and 1.3 X 0.6 m2. The longer one is intended for the laser equipment, while the other one can be used for different types of
detection equipment. Two electronic racks and the frame for the vertically mounted telescope are also vibrationally damped. The rest of the equipment is securely mounted on the walls and on the floor of the compartment. Two operators can work in the front main computer/electronics region. A collapsible table/chair arrangement is attached to the one free side-wall. A further convenient work station is available at the smaller, rear vibrationally isolated bench which is not occupied in normal lidar work. Beneath the floor of the laboratory there are several storage compartments, accessible from the outside.

To provide electric power to the laboratory in the field a 20-kVA motor generator is employed. The diesel engine and generator are installed in a sound-proof covered trailer. In the mobile laboratory the power is split up into three lines, each capable of providing 220-V, 25-A ac. When at its home base, the mobile laboratory is docked to a laboratory building employing the vehicle rear door and a matched building door surrounded by a cushioned sealing frame. The system is then hooked up to the normal mains line.

B. Telescope and Dome Mechanical Arrangements

A vertically mounted telescope looking up into a retractable transmitting/receiving dome is used in the present system. A layout of these units is given in Fig. 4. Such a configuration with optical exit/entry at the top of the laboratory provides 360° horizontal access and excellent close-range laser safety. Further, the vertical stacking of the units is very favorable in saving valuable laboratory space. However, the substantial total height (4.2 m) of the operating system requires that the dome be retractable into the laboratory interior. This also provides additional protection during transport of the otherwise weatherproof dome and also yields service advantages. In Fig. 4 the dome is shown in a retracted position.

For the dome and telescope installation a self-supporting frame was built extending from the sidewalls across the roof of the vehicle. Two U-frames were used, one in front of and the other behind the telescope to reinforce the laboratory construction.

The telescope and the dome carriage are guided sideways by ball bushings sliding along four rods attached to the framework and extending from floor to ceiling. These rods do not carry any weight but are instrumental in defining the position of the optical components. The telescope frame is supported from below by vibrational isolators/shock absorbers. The primary telescope mirror is mounted at the rear of the telescope tube on an adjustable plate. The folding mirror deflecting the collected light into the detection unit is mounted on a fixed tripod in the telescope tube. The primary detection unit is bolted to the telescope frame to make it an integrated part of the telescope which is carefully enclosed to protect the optical components from damage and dust.

The dome construction is fixed to the inner ring of a 40-cm diam ball bearing. The outer ring of this bearing is mounted in the dome carriage, which is guided by ball bushings sliding on the four rods. A stepping motor acting on a worm gear is used to turn the dome horizontally. One step from the stepping motor re-
The dye laser wavelength coincides with a line of the vanadyl effect can be observed on an oscilloscope when the cathode of a hollow cathode lamp. The optogalvanic calibration. This mode can be used, for example, for the dye laser wavelength is scanned, an absorption spectrum or optogalvanic calibration. In the absorption mode a fraction of the dye laser beam intensity is split-off and divided into two beams by a 50% beam splitter. Two photodiodes record the beam intensities. When the dye laser wavelength is scanned, an absorption spectrum is recorded from which the dye laser can be calibrated. This mode can be used, for example, for NO2 where a blue beam is used. In the optogalvanic method, the beam split-off for calibration is directed to the cathode of a hollow cathode lamp. The optogalvanic effect can be observed on an oscilloscope when the dye laser wavelength coincides with a line of the spectrum of the filling gas or of the cathode material. By recording the effect for a number of known lines together with the dye laser setting a calibration can be made by applying a linear regression fit to the data. The absorption cells, the photodiodes, and the hollow cathode lamp are all placed in a special calibration unit. The absorption measurements and the linear regression fitting are fully computerized.

The dye laser beam can be frequency-doubled with KD*P crystals, Raman shifted with a Raman-shifting cell, or mixed with the fundamental Nd:YAG wavelength to produce sum or difference frequencies. All these devices can be incorporated into the optical system. The dye laser beam is directed into the telescope by a right-angle quartz prism. Another right-angle prism, mounted at the center of the tripod in the telescope, transmits the beam into the atmosphere. This prism controls the direction of the laser beam, which is normally coaxial with the telescope axis. Servo motors and micrometer screws offer remote control of the prism, through which the overlap between the laser transmission lobe and the telescope field of view is controlled. A tube shelters the beam in the telescope and minimizes the effect of stray light. A mechanical chopper, built into the tripod, can block the beam if desired. The computer-controlled chopper is automatically used during a lidar measurement to obtain the signal due to the background light only. Before the beam is sent out from the telescope it passes a 6X beam expander. This is done both to improve the beam quality and to protect the output mirror coating—the peak power density of a high-power pulsed laser is, in some cases, sufficient to burn a mirror coating, especially if ultraviolet radiation is employed. A large flat mirror placed in the dome is used both for transmission and optical reception. It directs the laser beam and collects backscattered light and directs it down into the telescope. The dimensions of the mirror are 400 × 700 × 60 mm with a triangular segment with short sides 100- and 150-mm cut off at each corner. It is 60-mm thick to avoid any distortion of the beam. To protect the dome and to allow operation of the system during cold or rainy weather, a 450- × 600-mm quartz window seals off the dome. A Newtonian telescope with a focal length of 1 m receives backscattered light through the dome and the free opening is 400 mm. The folding mirror, mounted on a tripod, is flat and is elliptical with axes of 120 and 170 mm. Spherical aberration creates a minimum telescope field of view of 2 mrad, to be compared with the laser beam divergence of ~1 mrad. All mirrors are coated with aluminum and SiO2, a standard coating that exhibits reasonably high reflectance throughout the spectrum. It is considerably more resistant than a MgF2 coating, an alternative that was discarded since it is easily scratched and therefore not suitable for the very rough environment associated with field campaigns with a lidar/DIAL system.

The light enters the detection unit from the folding mirror. An adjustable field stop is placed in the focus, by means of which the field of view of the telescope can
be varied from 2 to 5 mrad. After the focus the light is made parallel by a small quartz lens and the appropriate wavelength region is selected with an interference filter. Up to four filters can be placed in a wheel in the detection unit, thus making rapid changes of wavelength region possible. The laboratory is equipped with filters ranging from 227 to 2.3 \(\mu \text{m} \) to enable the detection of a large number of species. A detector (normally a PMT) is used to transform the optical signal into an electrical one. An EMI 9558 QB or an EMI 9816 QA PMT is commonly used. The latter unit is the principal detector for our DIAL work. It has an S20 cathode, a high gain (10^7), and a fast rise time (2 ns). To compress the dynamic range of the signal to prevent detector overload the PMT is gain modulated. The gain is very low when signals from close ranges are detected and then rises to the maximum value after 2-10 \(\mu \text{s} \) (the rise time is variable). The modulation circuitry resembles the one described by Allen and Evans.15 A TV system has been installed to facilitate setting and checking the direction of the laser beam. In the focal plane of the telescope, just in front of the adjustable field stop, a mirror directs the light into a TV camera. The mirror has a hole where the light passes onto the aperture and thus the TV picture will show the direction of the lidar. The position of the TV camera is adjusted with a stepping motor connected to a worm gear that rotates it so that the picture horizon is always horizontal regardless of dome horizontal orientation. The stepping motor is driven by an angular caption device coupled to the horizontal dome rotation.

D. Electronics and Computer System

A schematic diagram of the system electronics is shown in Fig. 5. The signal from the light detector is preamplified and captured with a 100-MHz transient digitizer (LeCroy) that is capable of converting two independent analog signals with 8-bit resolution into a 32-kb multichannel memory. (LeCroy units 6102, 2 \(\times \) TR8818, 2 \(\times \) NM 8103A, 8013). Normally 2048 channels, each 10 ns wide, are recorded, corresponding to a lidar measuring range of 3 km. After the recording, the data are transferred via a GPIB interface to the main computer where they are added into a 32-bit data array. The computer is capable of transferring and adding two independent lidar signals at a 10-Hz repetition rate. The digitized signal is displayed on a 100-MHz oscilloscope (Leader model LEO 518) through an output on the transient digitizer. The main computer (ITT XTRA) is an IBM-compatible personal computer with a floating point processor and 512 kb of primary memory. For the large amount of data involved in a lidar measurement a 20-Mb hard disk is used. After the measurement, the raw data are stored on a floppy disk as a backup. A graphical terminal with 720 \(\times \) 350 pixels is used for operator interaction and data representation through a software package. Hard copies of data in various representations are obtained through a printer and a plotter.

E. System Steering

A plug-in card with a Z-80 CPU and some I/O lines performs the necessary real-time system steering. On request from the main computer the dome stepping motors, the dye laser wavelength wheel, the light chopper, the laser trigger, etc. are activated. During a DIAL measurement the plug-in card takes care of the wavelength setting and the synchronization between the wavelength wheel, the laser trigger pulses, and the light chopper, while the main computer is transferring and adding lidar curves. Besides system steering through the computer, it is possible to direct the dome using manual switches both at the telescope and the operator position. Many other controls and switches (main power, dome cover, dome defroster, PMT high voltage, etc.) are also conveniently placed in the main rack. A display showing the horizontal and vertical angular positions of the dome is placed in front of the operator. These values are automatically compared
with manually set upper and lower limits to prevent accidental dome movements outside shooting boundaries. Should a boundary be passed the dome movement stops and blinking LEDs alert the operator. This procedure provides additional eye safety when operating in urban areas.

F. Software Description

For a description of the organization of the system software we refer the reader to Fig. 6. The computer software, which is written in Pascal, consists of several library procedures for system steering, data transfer, disk I/O operations, and graphical presentation. Such library procedures are then combined into several menu-oriented main procedures, each with a specific task. In preparation for a DIAL measurement several horizontal or vertical scans can be defined with a specific starting point and given angular separations between the directions in the scan. Three different scans with up to fifteen directions each can be defined. The phase angles of the eccentric wheel at laser firings and the total number of measurement cycles in each direction are also given. A DIAL measurement cycle consists of eight shots on each wavelength, fired alternately, and finally two shots with the chopper closed. Several cycles are then averaged and stored on the hard disk after background subtraction, before the next direction is set. After completion of the measurement the operator is asked if a backup of the recorded data is required. Otherwise the data are erased when the next measurement takes place.

In the DIAL evaluation part of the software, it is possible to visualize all stages in the evaluation. This makes it easier to optimize the parameter settings. Both linear and Gaussian smoothing functions can be used on the raw on- and off wavelength curves and also on the ratio curve. The width of the smoothing function can be chosen. A running average function of adjustable width is used to evaluate the concentration as a function of distance. Routines for evaluation of particle measurements (normal lidar measurements) are included separately. When the parameter settings are satisfactory a concentration map is automatically made from the measurements, presented on the graphical screen and hard-copied if requested. This program feature turns the normally complicated DIAL evaluation and result representation work into an easy routine and the result of the measurements is almost immediately available in a compact and user-oriented form.

III. Examples of Measurements

Some field measurements have been performed with the mobile lidar system during a one-year period and a few examples will be given here to illustrate the system performance and the different data representation forms available.

Figure 7 shows an example from a DIAL measurement on a plume containing SO\textsubscript{2} where the data are displayed according to Fig. 2. The curves in Fig. 7(a) show the detected signal intensity due to backscattered laser light for the on- and off-resonance wavelengths, which in this case are 300.03 and 299.33 nm, respectively. The curves display the sum of 50 cycles corresponding to 400 shots at each wavelength with the background light level subtracted. The gain modula-
tion is set to reach the maximum value at a distance of \(\sim 600 \) m, and this value is retained until 40 \(\mu s \) after the laser firing, corresponding to a distance of 6 km. As can be seen from Fig. 7(a), the plume located between 900 and 1000 m from the lidar system site also contains aerosols, evidenced by the increased backscattering and a part of the attenuation through the plume. The aerosol dependence is eliminated by taking the ratio of the on-and-off signal, which is shown in Fig. 7(b), where the slope in the plume is determined by the difference in absorption cross section for the two wavelengths. Thus, by using known values for the \(\text{SO}_2 \) cross section,\(^{16} \) the concentration \(N(R) \) can be evaluated by inverting the equation shown in the lower part of Fig. 2. Figure 7(c) shows the concentration profile along the laser beam, evaluated for a 70-m interval continuously swept with the distance, i.e., the value at distance \(R \) is the mean concentration for the path \(R \pm 35 \) m. The resulting noise can also be inferred from Fig. 7(c), showing the increased noise level at greater distances due to the \(1/R^2 \) fall-off and plume attenuation of the signal. If range resolution is not so critical, a lower noise level and thus a lower detectable concentration can be achieved if a longer evaluation interval is employed. For ranges up to 1 km the detection limit of the integrated concentration is typically 5 mg/m\(^3\) \(\times \) m\(^{10}\).

It is often interesting to chart the gas concentration in a horizontal or vertical section. This can be achieved by performing several sequential measurements such as the one displayed in Fig. 7, for different directions. Figure 8 shows an example of such a measurement, where the \(\text{SO}_2 \) concentration is mapped in a vertical section downwind from a paper mill. Fifteen different vertical directions were used, each consisting of fifty measurement cycles. Thus the time for the complete scan was \(\sim 20 \) min. The map with an eight-level grey scale can be presented by the computer only a few minutes after the measurements. If a more representative charting over a longer time period is required or to get better statistics, several scans can be averaged and a mean picture presented. The possibility of making concentration maps is a unique and very useful application of the DIAL technique. A vertical scan like the one displayed in Fig. 8 can also be used to measure the flux of \(\text{SO}_2 \) passing through the vertical section. The concentrations are then integrated over the area of the plume cross section, and the integrated content is multiplied by the wind velocity normal to the vertical section. In this way, diffuse emissions from a plant can also be captured and the total flow of a particular gas from the industry can be measured. In the example given in Fig. 8 the total flow was found to be 220 kg/h of \(\text{SO}_2 \).

Figure 9 shows an example of another way of presenting data from a vertical scan. Besides the charting, a horizontal projection of the plume is displayed. Here the distribution of both the \(\text{SO}_2 \) plume and the partly overlapping particle plume is shown. The particle concentration is given in relative units and is evaluated from the off-resonance wavelength in the \(\text{SO}_2 \) DIAL measurement. The measurement curves have been divided by the curve resulting from a measurement in a particle-free direction—normally one of the upper directions in the sweep. This compensates for system factors, gain modulation, \(1/R^2 \) dependence, and clean-air attenuation. When dense particle plumes are monitored, the beam will suffer severe attenuation when it propagates through the cloud, and this should also be corrected for. In this case, however, the correction was not needed. A horizontal projection is, in many cases, a more useful presentation mode and can, for example, be copied directly onto a map of the industrial area to localize different sources. Vertical and horizontal projections are also well suited in studies of plume dispersion.

\(\text{NO}_2 \) is another pollutant of great interest, especially in urban areas. \(\text{NO}_2 \) can be measured with DIAL techniques in the blue spectral region near 450 nm.
IV. Discussion

The measurement examples discussed above illustrate the power of the system in performing DIAL measurements. The new evaluation and representation routines eliminate hours of manual evaluation effort and transform an exclusive research system into a realistic method for practical near-real-time pollution assessment. Apart from \(\text{SO}_2 \), \(\text{NO}_2 \), and \(\text{O}_3 \) monitoring, readily performed with the system as it is described above, many other gases can be studied with modified equipment. Since ample space for laser transmitter and detection equipment is provided, various other lasers apart from a Nd:YAG-based system can be employed, and even quite large spectrometer systems can be utilized for the signal analysis. A high spectral resolution on the detection side is of particular importance in many DOAS applications. Techniques for the monitoring of previously little-studied constituents can be investigated at a level of increased hardware complexity. Besides pollution studies, atmospheric gas anomalies might be used for ore and geothermal energy exploration, e.g., using atomic mercury as a tracer gas.\(^{18-20}\) For remote studies of laser-induced fluorescence a powerful UV source could be combined with array detector techniques. In this way possible environmental fluorescence anomalies, e.g., due to vegetational stress, may be investigated.\(^ {21} \) We also foresee that the present system can have important applications with regard to bringing out advanced electrooptical and computer equipment into industrial milieu while at the same time being in the locally protected and dust-free environment provided by the mobile laboratory. In such applications open laser beams may be employed but fiber-optic transmission lines, utilizing advanced spectroscopic sensor techniques, will probably be used more frequently. In this way new techniques for technical combustion studies,\(^ {13} \) surface monitoring,\(^ {22} \) chemical process steering, etc. may be developed.

This work was supported by the Swedish National Environment Protection Board (SNV) and the Swedish Space Corporation (SSC). Support and encouragement from Göran Persson, SNV, and Claes-Göran Borg, SSC, are gratefully acknowledged. The skillful work of J. Bergin, A. Bergquist, B. Hermansson, R. Olofsson, and G. Werner of the Physics Department workshops and the assistance of K. Stridh in the design work were critical to the successful completion of the project. The contributions by Bo Galle of the Swedish Environmental Research Institute to the software development are much appreciated.

References

This work was supported by the Swedish National Environment Protection Board (SNV) and the Swedish Space Corporation (SSC). Support and encouragement from Göran Persson, SNV, and Claes-Göran Borg, SSC, are gratefully acknowledged. The skillful work of J. Bergin, A. Bergquist, B. Hermansson, R. Olofsson, and G. Werner of the Physics Department workshops and the assistance of K. Stridh in the design work were critical to the successful completion of the project. The contributions by Bo Galle of the Swedish Environmental Research Institute to the software development are much appreciated.

Meetings Calendar continued from page 4322

1989

February
26–3 Mar. 1989 Santa Clara Symp. on Microlithography, Santa Clara SPIE, P.O. Box 10, Bellingham, WA 98227

March
27–31 1989 Technical Symp. Southeast on Optics, Electro-Optics, & Sensors SPIE, P.O. Box 10, Bellingham, WA 98227

April
24–28 2nd Int. Congr. on Optical Sci. & Eng., Paris SPIE, P.O. Box 10, Bellingham, WA 98227

September
17–22 1989 Cambridge Symp. on Optics & Optical Eng., Cambridge SPIE, P.O. Box 10, Bellingham, WA 98227

October

November
5–10 1989 Advances in Intelligent Robotics Systems course, Cambridge SPIE, P.O. Box 10, Bellingham, WA 98227
7–10 36th AVS Natl. Vacuum Symp., Phoenix AVS, 335 E. 45th St., New York, NY 10017
9–11 Optical Storage for Small Systems Mtg., Los Angeles TOC, P.O. Box 14817, San Francisco, CA 94114

1989

January
21–26 O-E/LASE '90 Optoelectronics & Laser Applications in Sci. & Eng. course, Los Angeles SPIE, P.O. Box 10, Bellingham, WA 98227

February
11–17 Medical Imaging IV Mtg., Newport Beach SPIE, P.O. Box 10, Bellingham, WA 98227

April
16–20 1990 Tech. Symp. Southeast on Optics, Electro-Optics, & Sensors, SPIE, P.O. Box 10, Bellingham, WA 98227

August

4338 APPLIED OPTICS / Vol. 26, No. 19 / 1 October 1987