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Populärvetenskaplig sammanfattning 

Globalt drabbas årligen 1,6 miljoner människor av lungcancer och 1,3 miljoner dör 
i sin sjukdom, vilket gör lungcancer till den dödligaste formen av cancer. 
Sjukdomsorsaken tillskrivs till största del rökning (75–80% av fallen) men även 
andra miljö- och genetiska faktorer kan orsaka sjukdomen. Lungcancer delas in i 
två huvudgrupper baserat på tumörcellernas egenskaper: småcellig lungcancer 
(SCLC) och icke-småcellig lungcancer (NSCLC). De flesta tumörer är av typen 
NSCLC (75%) och denna grupp delas in i ytterligare undergrupper baserat på 
utseende och karaktäristika, så kallade histologier. Tidig upptäckt, dvs när tumören 
är liten till storlek och ej spridit sig, är den viktigaste faktorn för överlevnad. Då 
avlägsnas tumören med kirurgi och patienten behandlas därefter eventuellt med 
kemoterapi (cytostatika). Tyvärr upptäcks alltför många tumörer i sent stadium när 
tumören är för stor att avlägsna med kirurgi och/eller spridit sig (metastaserat) till 
andra delar av kroppen (avancerad sjukdom). Behandlingen ges då i så kallat 
palliativt syfte, dvs för symtomlindring, tumörkontroll och i bästa fall förlängning 
av överlevnaden. Det enda alternativet i dessa fall var tidigare behandling med 
exempelvis kemoterapi och strålbehandling för smärtlindring av tumörbörda och 
metastasering. Vid avancerad sjukdom är det idag även viktigt att utreda huruvida 
tumören besitter vissa genetiska förändringar, mutationer, i särskilda gener som 
visat sig vara tumördrivande. En specifik sådan gen, EGFR, är muterad i ca 10-
15% av alla lungtumörer. Dessutom inträffar relativt ofta så kallade genfusioner i 
lungcancer, där en del av en gen smälter ihop med en del av en annan gen. 
Produkten av denna nya gen (fusionsgen) kan vara starkt tumördrivande. Hos ca 1-
5% av lungcancerpatienterna detekteras fusionsgener som involverar ALK, RET 
eller ROS1. Både EGFR mutationer och fusionsgener är förändringar i tumören 
som denna är starkt beroende av för att kunna existera. Idag finns det riktade 
läkemedel utvecklade mot dessa, för tumören, livsuppehållande förändringar. För 
patienter med EGFR mutation eller genfusion innebär möjligheten att få målriktad 
behandling oftast högre livskvalité samt en längre sjukdomsfri överlevnad även 
om resistensutveckling ofta sker över tid. Metoder för att detektera dessa specifika 
förändringar kallas ofta behandlingsprediktiv mutationstestning. 

Detta avhandlingsarbete består av fem delarbeten. Det samlade målet för 
avhandlingen är att studera mönster av genuttryck och genförändringar i tumörer 



12 

från patienter diagnostiserade med NSCLC och att relatera dessa till 
patientöverlevnad och till nuvarande eller framtida behandlingsmöjligheter. 

Studie I i denna avhandling beskriver ett ramverk uppsatt på avdelningen för 
Onkologi och Patologi vid Lunds universitet där behandlingsprediktiva mutationer 
hos lungcancerpatienter diagnostiserade i Södra Sjukvårdsregionen analyserades. 
Studien beskriver den kliniska validering av den nya tekniken (s.k. targeted NGS) 
som utprövades parallellt med den vanliga rutinmässiga diagnostiken vid 
tidpunkten. Vid valideringstidens slut, när den nya tekniken ansågs lämplig för 
behandlingsprediktiv mutationstestning av lungcancerpatienter, infördes den i 
klinisk rutin. Med den nya tekniken kartlades även parallellt förändringar i andra 
gener som i dagsläget inte används som kliniskt beslutsunderlag av behandlande 
läkare. Studie I rapporterar frekvenser av samtliga förändringar som hittades, 
sammankopplat med histologiska undergrupper under det första året av klinisk 
drift vilket gav en mer komplett bild av den tumörgenetiska profilen av NSCLC i 
sjukvårdsregionen. Upptäckta mutationer rapporterades till avdelningen för klinisk 
patologi för vidare rapportering, bedömning och kliniskt svar till behandlande 
läkare. I Studie I utvecklades även en ny teknik för parallell analys av genfusioner 
baserat på analys av tumör RNA via NanoString teknik. NanoString är en snabb, 
enkel och robust teknik utvecklad för att med hög känslighet kunna analysera små 
mängder av nedbrutet RNA, vilket typiskt är fallet med RNA utvunnit ur fixerat 
kliniskt rutinmaterial. Den NanoString baserade fusionsgensdetektionen 
rapporterades inte till kliniken som en klinisk rutin, men samtliga fusioner som 
detekterades med rutindiagnostiken kunde även detekteras med NanoString. 

I Studie II gjordes en uppgradering av NanoString metoden från Studie I genom att 
inkludera fler gener (utöver fusionsgener), till exempel gener som används som 
markörer för att fastställa de histologiska undergrupperna av NSCLC. Målet med 
Studie II var att utveckla en formel som kan förutsäga vilken histologi en tumör 
besitter baserat på RNA uttrycket av gener associerade med lungcancerhistologi, 
en så kallad prediktor. Den utvecklade RNA prediktorn för histologi visade sig 
prestera mycket bra, dvs var i hög grad överensstämmande med den histologi som 
bestämts via patologiska undersökningar. Prediktorn kunde med hög säkerhet 
förutsäga histologi i patientkohorter där genuttrycket kartlagts med en annan 
teknik än den som prediktorn själv utvecklats på, dvs den var plattformsoberoende. 
Med NanoString tekniken är det alltså möjligt att via en enda analys samtidigt 
kunna fastställa både NSCLC histologi samt fusionsgens status: två kliniskt 
mycket relevanta frågeställningar i lungcancer. 

Två mindre vanligt förekommande NSCLC histologier är storcelliga tumörer 
(LCC) samt storcelliga neuroendokrina tumörer (LCNEC). Trots att relativt få 
patienter utvecklar LCC och LCNEC tumörer så representerar dessa två 
tumörtyper en viktig differentialdiagnos. I Studie III och IV karakteriseras dessa 



13 

tumörtyper på genomisk nivå dels ingående som en egen grupp (Studie IV) och 
dels i en kontext av andra NSCLC tumörer (Studie III). Studie IV påvisade att 
tumörer av LCNEC histologi är starkt skilda från LCC tumörer avseende 
genförändringar. LCC tumörerna visade sig även vara en heterogen grupp av 
tumörer vilka innehöll tumörer av andra subtyper när proteinmarkörer som idag 
används kliniskt för histologibestämning testades. Vid tidpunkten för Studie IV 
ändrade världshälsoorganisationen WHO sina riktlinjer för hur LCC tumörer ska 
klassas, där de dels separerar LCNEC från LCC gruppen vilket även vi noterade i 
studie IV. Dessutom infördes proteinmarkör baserad testning för att öka 
känsligheten i histologibestämningen. Det senare medför att många tidigare LCC 
tumörer nu blir omklassade till andra histologiska subtyper, vilket kraftigt 
reducerar den kvarvarande LCC gruppen. I Studie IV kunde vi införa dessa nya 
riktlinjer och rapportera genförändringar kontra de nya riktlinjerna för de i dag 
använda histologiklasserna. Resultatet av de nya riktlinjerna var även i enlighet 
med våra egna resultat i Studie III där genuttrycksmönster (RNA) av LCC/LCNEC 
tumörer analyserades i en kontext av alla histologiska undergrupper av lungcancer. 
LCNEC tumörer grupperades med SCLC tumörer baserat på genuttryck som en 
separat grupp med tydligt uttryck av neuroendokrina gener, medan LCC tumörer 
som uttryckte proteinmarkörer karakteristiska för andra NSCLC undergrupper 
grupperades med respektive tumörer. För kvarvarande LCC tumörer enligt de nya 
riktlinjerna (vilka inte ska uttrycka några proteinmarkörer karakteristiska för andra 
undergrupper) såg vi att de grupperade tillsammans som en separat molekylär 
undergrupp.  

Metylering är en biologisk process som celler i kroppen använder sig av 
framförallt under fosterutvecklingen för att styra genuttryck under korta perioder. 
Via specifik metylering av en del av genen kan uttrycket exempelvis stängas ner. 
Denna biologiska process är även vanlig i cancer där effekten av förändringar i 
metyleringsstatus dessvärre kan leda till olika fördelar för tumören. I Studie V 
undersöktes metyleringsmönster hos NSCLC tumörer av olika histologiska 
undergrupper, och det visade sig att NSCLC tumörer kan delas in i kategorier 
baserat på skillnader i metyleringsmönster (metyleringsdrivna undergrupper) vilka 
överlappade med histologiska undergrupper på en högre nivå. De 
metyleringsdrivna undergrupperna kunde även sammankopplas med överlevnad 
inom en specifik histologisk undergupp, adenocarcinom. Patienter med tumörer 
som uppvisade ett visst metyleringsmönster hade ökad överlevnad jämfört med 
patienter tillhörande en grupp av skilda metyleringsmönster. 

Sammantaget visar detta avhandlingsarbete på vikten av genomisk karakterisering 
av lungcancer, vilken redan har klinisk betydelse idag men som sannolikt kommer 
öka ännu mer i framtiden. Valmöjligheterna avseende behandling av lungcancer 
ökar ständigt i takt med ökad kunskap om lungcancerbiologin. Att korrekt 
undergruppera NSCLC tumörer kommer sannolikt innebära ökade 
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behandlingsmöjligheter för patienten i framtiden. Detta avhandlingsarbete visar 
olika exempel på hur kartläggning av olika tumörbiologiska processer och ökad 
genomisk förståelse av NSCLC kan ha en framtida klinisk betydelse för 
lungcancerpatienter.  
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SAM Significance of Microarray Analysis 
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Thesis at a glance 

STUDY QUESTION PATIENTS AND 
METHODS RESULTS 

I 

 

Is a clinical framework for 
treatment predictive 

mutation screening and 
gene fusion detection 
possible to establish? 

533 patients with 
advanced disease in 

clinic routine analysis for 
treatment predictive 
mutation testing and 

gene fusion status using 
NGS and the 

NanoString technology. 

Framework for treatment 
predictive mutation testing 

was successfully 
established. NanoString 

technology proved 
successful in fusion gene 

detection. 

II 

 

Is it possible to predict 
NSCLC histology using a 
single sample predictor 

and simultaneously 
retrieve gene fusion 

status? 

68 tumors of AC, SqCC 
and LCNEC histology 
using the NanoString 
technology and AIMS. 

A multicomponent assay for 
fusion gene detection and 

NSCLC histology prediction 
was successfully 

established. SSP was 
validated in three external 

cohorts. 

III 

 

Do the WHO2015 revised 
guidelines translate to the 
transcriptional landscape 

of lung cancer, with 
specific focus on LCC and 

LCNEC? 

Global gene expression 
analysis of 159 lung 

cancers using the HT-12 
Illumina microarray 

platform. 

Clustering of gene 
expression data revealed 

stable clusters closely 
correlated with 

histopathological features, 
validated in external data 
sets. The WHO revised 
guidelines with specific 

focus on LCC an LCNEC 
translated well to the 

transcriptional landscape of 
lung cancer. 

IV 

 

What mutations and gene 
fusions are frequent in 

LCC and LCNEC tumors? 

41 LCC and 32 LCNEC 
tumors were screened 
for mutations using the 
NGS-based TST panel 

from Illumina. Gene 
fusion status was 

assessed with targeted 
RNAseq using an 
ArchedDx panel. 

LCC could be further 
stratified based on mutation 

status. LCNEC showed 
similar mutational patterns 
as described in SCLC. No 

gene fusions were 
identified. 

V 

 

Do epitypes exist in lung 
cancer? 

Global methylation 
analysis of 124 lung 
cancers using the 

Illumina 450K 
methylation microarray 

platform. 

Five distinct epitypes were 
identified and validated in 

external datasets. Epitypes 
were correlated with 

histopathological features 
and (in AC tumors) with 

survival. 
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Aims 

Overall aim 

Molecular profiling of lung cancer to stratify tumors and improve clinical 
management of NSCLC by implementing new technologies in routine diagnostics. 

Specific aims 

Study I 
To build a framework and implement NGS in treatment predictive mutation testing 
of NSCLC patients diagnosed with advanced disease. Validation of the 
NanoString technology as a possible screening assay of fusion gene detection. 

Study II 
Simultaneous gene fusion detection and histology assessment using the 
NanoString technology. 

Study III 
Comprehensive global gene expression analysis of lung cancer to investigate 
whether the transcriptional landscape translate into the revised WHO guidelines 
regarding histological classification, with a special focus on LCC. 

Study IV 
Investigating mutations and gene fusion in LCC and LCNEC tumors. 

Study V 
Comprehensive global methylation analysis of lung cancer with the intent to 
classify tumors on the basis of differentiating methylation patterns. 
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Introduction and background 

The normal lung 

Lung function 

The primary organs of the respiratory system are the lungs, which are responsible 
for a variety of life sustaining functions. Foremost functions include delivering 
oxygen into the bloodstream and carbon dioxide exchange retrieved from 
deoxygenated blood from the heart. The lungs serve as a protective filter against 
pollutants, small blood clots and infections, and the lungs are involved in 
maintaining homeostasis1. The trachea is branched into two bronchi, forming the 
lower respiratory tract consisting of the right and left lung. The right lung, being 
larger in size than the left, consists of three lobes compared with only two lobes in 
the left lung. The bronchial tree continues intralobulart into bronchioles, ending in 
far distal alveoli where gas exchange takes place1, 2 (Figure 1). 

 

Figure 1. Anatomy of the human lungs. The human right and left human lung are part of the respiratory system, 
sectioned into lobes and are branched from the trachea to bronchi, bronchioles and alveoli3. 

Picture from Gray’s Anatomy is in the public domain following expiration of its patent. 
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Lung morphology and progenitor cells 

The entire lower respiratory tract is lined with respiratory epithelium. To facilitate 
gas exchange and host defense, lung epithelial cells in the distal lung are highly 
specialized and organized1, 4, 5 (Figure 2). The trachea and bronchi are lined by a 
pseudostratified epithelium, consisting of basal, ciliated and secretory (Clara) 
cells. More distal from the bronchi, a simple columnar epithelium with ciliated and 
Clara cells lines the intralobular bronchioles with interspersed mucus-producing 
goblet cells. The latter cells clear the lungs of inhaled microorganisms and 
particulates. The alveolar epithelium consists of type 1 and type 2 alveolar 
epithelial cells (AEC). AEC2 are cuboidal and are most often found in the most 
distal part of the alveolus being the primary source of pulmonary surfactants 
(which decreases surface tension to maximize gas exchange and contributes to 
host defense)5, 6. It has been postulated, but not verified through extensive genetic 
lineage in vivo5, 7 that AEC2 are progenitor cells for other alveolar epithelial cells. 
In contrast to AEC2 cells, AEC1 cells are squamous or flat, comprise the vast 
majority of the lung surface (~95%) and represent the major site for gas exchange 
and regulation of fluid homeostasis8. Importantly, even distal airways of the 
human lung are lined with pseudostratified epithelium where the basal cells, with 
their relatively undifferentiated nature are defined as a stem cell population 
capable of self-renewal and differentiation along the ciliated and secretory 
lineages9-12. 

 

Figure 2. Lung progenitor cells. Lung epithelial cells line the entire respiratory tract. The trachea and bronchi 
consist mostly of Clara cells, basal cells and ciliated cells with a sparse amount of neuroendocrine cells. Bronchioles 
have a higher frequency of neuroendocrine cells with mucus-producing goblet cells. The distal airways and alveoli 
consist mostly of AEC1/AEC2 cells. 
 
Reproduced from5 with permission from Annual review of cell and developmental biology and Copyright Clearance 
Center. 
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Lung cancer 

Epidemiology, etiology and risk factors 

Lung cancer accounts for 1.6 million deaths annually making it the deadliest form 
of cancer worldwide with an overall 5-year survival rate of 18.6%13, 14. Geographic 
and gender variations exist, and incidence rates are highest in Central and Eastern 
Europe for males and Northern America for females 15. Smoking is the most 
prominent cause, and it is estimated to initiate up to 75-80% of all lung cancer 
cases16. Smoking duration and dose are steeply related to the risk of developing 
lung cancer, and the risk between genders appears to be similar, given the same 
level of tobacco consumption17. Due to the fact that cigarette smoke contains 
chemicals, which have the potential to directly or indirectly damage the respiratory 
epithelium, accumulation of specific genomic alterations is observed in lung 
cancers arising in smokers as compared with never-smokers18. Besides smoking, 
several etiological factors have been suggested to promote the disease including 
environmental tobacco exposure, air pollution, previous lung disease, radon 
exposure, various occupational carcinogens (asbestos, silica, arsenic) and genetic 
susceptibility18-20. 

Clinical management 

Diagnosis 

High mortality rates in lung cancer are primarily due to late diagnosis and can to a 
great extent be ascribed to initial symptoms being relatively vague, including loss 
of breath, fatigue, coughing, weight loss and chest pain1, 21. If lung cancer is 
suspected from an initial chest x-ray, this is followed by Computed Tomography 
(CT) guidance and, in cases of potentially curable disease,  a Positron Emission 
Tomography (PET) scan21. Abnormalities detected with these methods are 
biopsied through bronchoscopy or thoracic puncture for histopathological 
diagnosis. 
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Staging 

Stage dictates treatment as well as prognosis. The TNM classification for staging 
(Table 1) includes primary tumor size, the extension of lymph node involvement 
and presence or absence of tumor spread (metastases)22-24. PET-CT can reveal 
nodal (N) or metastatic spread (M). Endobronchial ultrasound-guided 
transbronchial needle aspiration (EBUS-TBNA) is used to assess mediastinal 
lymph node involvement (N) cytologically. 

 
Table 1. TNM classification and staging in lung cancer. TNM classification of lung tumors are directly related to 
treatment and prognosis25. 

T/M Label N0 N1 N2 N3 

T1 

T1a ≤1 IA1 

IIB IIIA IIIB T1b ≤1-2 IA2 

T1c >2-3 IA3 

T2 
T2a >3-4 IB 

IIB IIIA IIIB 
T2b >4-5 IIA 

T3 T3 >5-7, Inv, Satell IIB IIIA IIIB IIIC 

T4 T4 >7, Inv, Ipsi Nod IIIA IIIA IIIB IIIC 

M1 
M1a-b Contr Nod, P1 

Dissem, Single IVA IVA IVA IVA 

M1c Multi IVB IVB IVB IVB 

Lung cancer histology subtypes 

Lung cancer is broadly divided into small cell lung cancer (SCLC) and non-small 
cell lung cancer (NSCLC) based on several morphological, histological and 
protein marker expression differences. NSCLC constitutes ~75% of all lung cancer 
cases and is further divided into refined subgroups, the three main being 
adenocarcinoma (AC), squamous cell carcinoma (SqCC) and large cell carcinoma 
(LCC). The different lung cancer subtypes arise from distinct cells of origin in the 
respiratory epithelium (Figure 3). Large cell neuroendocrine tumors (LCNEC) 
arise, like SCLC, from neuroendocrine cells and constitute a minor proportion of 
the lung cancer cases but represent an important differential diagnosis. SqCC 
tumors are often localized in the trachea or bronchi, SCLC in the bronchiole, while 
AC tumors often arise more distally, in the alveoli26. Classification of lung tumors 
are based on guidelines from the World Health Organization (WHO)27. Several 
features of the tumor are considered in the classification scheme, summarized in 
Figure 3. 
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Figure 3. Histological subtypes of lung cancer and cells of origin. Lung cancer is broadly divided into small cell 
lung cancer (SCLC) and non-small cell lung cancer (NSCLC) based on morphological differences. The distinct 
subtypes arise from different cells of origin in the lung epithelium. NSCLC is further divide into three main subgroups: 
adenocarcinoma (AC), squamous cell carcinoma (SqCC) and large cell carcinoma (LCC) based on protein marker 
expression differences. Large cell neuroendocrine carcinoma (LCNEC) constitutes a minority of the lung cancer cases 
but represent an important differential diagnosis. 

Reproduced and modified with permission from 26, Copyright Massachusetts Medical Society. Pictures of hematoxylin 
& eosin (H&E) stains kindly provided by Dr Hans Brunnström, department of Clinical Pathology, Lund. 

Genomic landscape of lung cancer 

Tumor development 
The transition of a normal cell into a cancer cell relies on acquisition of certain 
capabilities depicted as hallmarks by Hanahan and Weinberg28, 29. These 
capabilities include: 1) sustaining proliferative signaling, 2) evading growth 
suppressors, 3) avoiding immune destruction, 4) enabling replicative immortality, 
5) tumor-promoting inflammation, 6) activating invasion and metastasis, 7) 
inducing angiogenesis, 8) genome instability and mutation, 9) resisting cell death 
and 10) deregulation of cellular energetics. These hallmarks are crucial for tumor 
development and involve both cells of origin as well as the capability to create a 
tumor-promoting milieu, i.e. microenvironment. The most prominent cause of lung 
cancer development is smoking. Cigarette smoke is a complex mixture of 
carcinogenic compounds that causes inflammation, damage to the respiratory 
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epithelium and influences flow of air and blood30, 31. One particular effect of 
smoking and the different carcinogenic substances is the large number of somatic 
DNA mutations inferred through creation of DNA adducts in affected cells32. In 
fact, lung cancer represents, second to UV-induced melanoma the tumor type with 
the highest number of mutations, referred to as mutational load or tumor 
mutational burden33. In principle, the DNA mutations are a random process, and 
the DNA damages eventually lead to a tumorigenic process. However, smoking is 
not the sole cause of lung cancer, as a proportion of lung cancer patients (20-25%) 
are never smokers19. Several distinctions in mutational, transcriptional and 
methylation profiles have been noted through numerous studies comparing 
patients with a smoking history to never smokers. As to histological subtypes, 
SCLC, LCNEC, LCC, and SqCC typically affect smokers whereas never smokers´ 
tumors most often are of AC histology. Besides mutations, early events in NSCLC 
development include loss of heterozygosity (LOH) of chromosomal regions 
containing encoding sites for tumor suppressor genes such as Ras association 
domain family member 1 (RASSF1), nuclear fusion protein (FUS1), fragile 
histidine triad (FHIT), p16 and tumor protein p53 (TP53)34, 35. 

Profiling of lung cancer using high-dimensional data approaches 
As an effect of the evolution of high-dimensional and high-throughput 
technologies, mutational, transcriptional and epigenetic profiling of lung cancer, in 
numerous studies, have revealed distinct profiles. These profiles are associated 
with distinct histological subtypes, key oncogenic drivers, and etiology (e.g. 
smoking)18, 19, 36-52. Multiple studies have revealed a clear separation of AC, SqCC, 
and SCLC cases into gene expression subclusters, which are driven by specific 
transcriptional programs. Within both adenocarcinoma and SqCC, different gene 
expression phenotypes (GEPs) have been proposed, most widely adapted 
concerning tumors of AC histology being the terminal respiratory unit (TRU, 
formerly bronchioid), the proximal-inflammatory (PI, formerly squamoid), and the 
proximal-proliferative (PP, formerly magnoid) transcriptional subtypes41, 42, 47, 48, 53-

58. In spite of the tremendous number of studies with the intent to map the 
landscape of lung cancer, no GEPs have yet been established (in contrary to, e.g. 
breast cancer). Regarding the genomic landscape of the disease, pinpointing 
genetic drives of tumorigenesis and characterizing tumor heterogeneity26 has 
contributed to the development of targeted treatments. 

Oncogene addiction and therapeutic targets 
In total, about 50% of NSCLC cases are associated with mutations in specific 
proto-oncogenes (typically different tyrosine kinases) including the epidermal 
growth factor receptor (EGFR), Kirsten rat sarcoma viral oncogene homolog 
(KRAS), tyrosine-protein kinase Met (MET), proto-oncogene B-raf (BRAF) and 
human epidermal growth factor receptor 2 (HER2) as well as gene fusions 
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involving anaplastic lymphoma kinase (ALK), proto-oncogene tyrosine-protein 
kinase receptor Ret (RET), c-ros oncogene 1 (ROS1) and members of the 
neurotrophic tyrosine kinase (NTRK) and fibroblast growth factor receptor (FGFR) 
families. Alterations in these genes through activating mutations/gene 
rearrangements represent highly desirable therapeutic targets due to: 1) the 
concept of oncogene addiction, i.e. genetic alterations that governs the oncogenic 
potential of malignant cells that are crucial for tumor survival, and 2) that these 
alterations are mutually exclusive to other driver events. These potential targets for 
therapy are all associated with AC histology and the majority of mutations occur 
in the tyrosine kinases EGFR and KRAS. EGFR mutations are almost exclusively  

 

Figure 4. EGFR cell signalling pathways and receptor. In the presence of a ligand, such as a growth factor, 
dimerization of the EGF receptor trigges a cascade of intracelluar signalling through the Ras/Raf/Mek pathway and 
the PI3K/Akt/mTOR pathway. This leads to gene transcription and tumor promoting effects including proliferation, 
survival, invasiveness, metastatic spread, and tumor angiogenesis through pathways that are either dependent on or 
independent of the hypoxia inducible factor (HIF). These pathways also may be modulated by other receptor tyrosine 
kinases, such as insulin-like growth factor 1 receptor (IGF-1R) and cMET, and by the LKB1–amp-activated protein 
kinase (AMPK) pathway, which is involved in energy sensing and cellular stress. 

Reproduced with permission from 34, Copyright Massachusetts Medical Society. 



28 

associated with a non-smoking history, while KRAS mutations are more frequent 
in tumors from smokers34, 43, 44, 59-61. Serving as a prototypical example of a 
tyrosine kinase oncogene, the EGFR gene is activated by binding of growth factors 
to its ligand, triggering a cascade of intracellular processes that involves 
proliferation and DNA synthesis through the RAS/MAPK, PI3K/Akt and STAT 
pathways (Figure 4). In 2004, two independent research groups identified somatic 
mutations in the tyrosine kinase (TK) domain of EGFR 62, 63. Exons 18-24 of the 
EGFR gene encodes for the TK domain and somatic mutations verified to have an 
activating effect on the TK domain affects mainly exons 18-21. A majority of 
these mutations (80-90%) are of two variants: small deletions in exon 19 or point 
mutations (substitutions) in exon 21 (typically the L858R mutation). Activating 
mutations of the EGFR receptor leads to dimerization of the transmembrane 
receptor and activation of the ras-pathways even in the absence of a binding 
ligand, triggering a signaling cascade resulting in tumor promoting activities 
(Figure 4). Tyrosine kinase inhibitors (TKIs) are therapeutic agents that interacts 
with the TK domain of the receptor leading to inhibition of the tumor promoting 
activities34. Targeted therapy using TKIs have shown a remarkable prolonged 
survival in patients with mutations/gene rearrangement associated with oncogene 
addiction. Unfortunately, patients treated with TKIs eventually relapse due to 
development of resistance mutations either within the targeted gene itself (e.g. 
T790M or C797S mutations in EGFR) or other genes (amplification of another 
oncogene like MET)61. Those resistance mutations either alters, e.g. the 3D protein 
structure (hindering binding of a drug, e.g. T790M), or allows rewiring of the 
signal network of tumor promoting pathways. Although the vast majority of 
NSCLC mutations affect the KRAS gene, no effective targeted therapy has yet 
been developed. SCLC and LCNEC tumors are characterized by high genetic 
instability and inactivating mutations affecting the genes TP53 and RB1. No 
targetable drivers have yet been identified in SCLC and LCNEC tumors27, 64. 

Gene rearrangements as oncogene drivers 
Since the discovery65 of recurrent fusion events involving the Echinoderm 
Microtubule Associated Protein Like 4 (EML4) gene and the proto-oncogene ALK, 
which result in a highly oncogenic protein underlying tumor development in lung 
cancer of primarily AC histology, novel gene fusions and alternate splicing events 
are continuously discovered. The oncogenic potential of a fusion gene relies on the 
kinase domain of the proto-oncogene being conserved. For the fusion gene to have 
a favorable tumorigenic effect, protein synthesis must occur. As transcriptional 
direction moves from the 5’ end to the 3’ end of the transcribed gene, the 
oncogenic potential of the fusion gene is observed as elevated expression of the 3’ 
end of the proto-oncogene (containing the kinase domain) compared with the un-
transcribed 5’ end (Figure 5A)66, 67. Multiple recurrent fusion genes have been 
mapped and associated with oncogenic potential driving NSCLC tumor 
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development. In today’s clinical practice, fusion gene status of ALK and ROS1 are 
included in routine treatment predictive testing, with the potential option of 
targeted TKI treatment using crizotinib or more recent drugs if a gene fusion is 
detected68. Another emerging target is the MET exon 14 skipping alteration69. Due 
to mutation of the MET gene, aberrant splicing can occur causing intron retention 
or exon skipping that results in an oncogenic driver of tumorigenesis (Figure 
5B)70. Several ongoing clinical trials indicate the use of TKIs such as crizotinib or 
cabozantinib in patients with an established MET exon 14 skipping event due to 
MET mutation71-74. 

 

Figure 5. A) EML4-ALK fusion gene. Schematic representation of EML4-ALK gene fusions NSCLC. Multiple EML4-
ALK variants (V1 to V7) have been identified in NSCLCs. All involve the intracellular tyrosine kinase domain of ALK 
starting at a portion encoded by exon 20. EML4, however, is variably truncated. B) MET exon 14 skipping due to 
mutations of the MET gene. MET mutations (yellow) that disrupt the branch point and/or 3′ splice site of intron 13, 
and the 5′ splice site of intron 14 result in aberrant splicing and exon 14 skipping. MET exon 14 is thus excluded in 
mRNA that is later translated into a protein product lacking the Y1003 residue. Loss of this region leads to decreased 
MET receptor ubiquitination by CBL. Decreased degradation results in oncogenesis driven by increased levels of 
MET. 

Reproduced and modified with permission from66, American Society of Clinical Oncology and74, American Association 
for Cancer Research, Copyright Clearance Center. 

DNA methylation and epigenetics 
Epigenetics is a wide term that includes DNA methylation, chromatin remodeling 
and microRNA (miRNA, short noncoding RNA) regulation. As a result of gene 
mutation, the DNA is altered, which gives rise to a modified or absent protein 
during translation. On the contrary, DNA methylation results in gene silencing but 
the structure of the DNA remains the same, which leads to the absence of a protein 
during translation that cannot be ascribed to a modification of the DNA. This is 
due to the fact that methylated cytosine (Cm) cannot be discriminated from an 
unmethylated cytosine (C) structurally75, 76. CpG sites (CpGs) are DNA regions 
where a C is followed by guanin (G). CpG islands are enriched for CpG sites (300-
3000 bp long) that often exists in the promoter region of genes. About 70% of 

 

 

A) B)
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human promoter regions contain CpG islands77, 78. Hypermethylation of key CpGs 
results in gene silencing, i.e. loss of expression, while hypomethylation can cause 
over-expression of the gene. In cancer, loss of expression due to hypermethylation 
has been estimated to be ten times more frequent than due to mutation79. Smoking 
induced methylation of p16 (CDKN2A gene) and FHIT are thought of as early 
events in certain lung cancers, observed in pre-malignant squamous-cell lesions of 
the lung (i.e. hyperplasia or metaplasia) whereas p16 methylation in AC is a rare 
event that occurs at a much later stage in tumor development34, 80-86. Integrative 
studies using genome-wide methylation and global gene expression have revealed 
phenotypes associated with mutations of oncogenic drivers51, histological 
subtypes40, smoking habits87 related to tumor aggressiveness and prognosis and 
identification of differentially methylated regions that were predictive of treatment 
efficacy52. The Cancer Genome Altas (TCGA)88 comprehensive mapping of lung 
cancers of AC histology identified subgroups labeled as CpG island methylator 
phenotypes (CIMPs)42. CIMPs refers to an exceptional high frequency of 
hypermethylated CpGs89 and TCGA categorized three CIMPs identified as CIMP-
high, CIMP-low and CIMP-intermediate where the CIMP-high phenotype could 
be further stratified on the basis of inflammatory processes, mutation rates and 
GEPs. An extended TCGA analysis of NSCLC tumors identified nine subtypes 
with two AC subtypes associated with CIMP stratified by activation of the 
immune checkpoint pathway (i.e. immunotherapy candidates)90. Overall, genome-
wide methylation studies add important information to pre-existing knowledge 
about the transcriptional and mutational landscape of lung cancer, and may 
contribute to a more enhanced tumor classification and potentially improved 
clinical management. 

Lung cancer treatment and therapy options 

Treatment options for lung cancer rely highly on tumor stage, histology and 
molecular markers (mutation status of EGFR and BRAF, fusion gene status of ALK 
and ROS1, and protein expression of PDL1). Patients with low stage tumors are 
treated with a curative intent. Primary choice is surgery with or without the 
addition of adjuvant chemotherapy. Unfortunately, due to frequent late stage 
diagnosis and/or (often smoking-related) co-morbidity, most patients are treated 
with a palliative intent. Figure 6 outlines treatment options for lung cancer 
patients21, 91. 
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Figure 6. Lung cancer treatment and therapy options. Therapy decisions are made based on several criteria 
including disease stage, tumor histology and molecular status, patient performance status, age and co-morbidities. 

Surgery 

Surgery is the primary curative option for lung cancer patients diagnosed with 
NSCLC stage I, II or possibly IIIA. The standard procedure in lung cancer 
resection is lobectomy, i.e. removal of the tumor-infested lobe. Bi-lobectomy can 
be performed if right-sided lung tumor growth has affected more than one lobe. In 
selected cases, a pulmectomy (resection of an entire lung) is required. During 
surgical resection, lymph node sampling or dissection is performed in order to 
assess pathological N-stage as part of TNM staging. Patients with resected tumor 
stage IB-III are offered adjuvant chemotherapy59, 91. 
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Chemotherapy 

Chemotherapy is used in lung cancer treatment with both a curative and palliative 
intent. Differences between strategies exist. The patient’s performance status 
(Table 2) is a prominent factor for therapy decisions. 

Table 2. WHO criteria for patient performance status92. 
 

GRADE EXPLANATION OF ACTIVITY 

0 Fully active, able to carry on all pre-disease performance without restriction 

1 Restricted in physically strenuous activity but ambulatory and able to carry out work of a light 
or sedentary nature, e.g., light house work, office work 

2 Ambulatory and capable of all selfcare but unable to carry out any work activities. Up and 
about more than 50% of waking hours 

3 Capable of only limited selfcare, confined to bed or chair more than 50% of waking hours 

4 Completely disabled. Cannot carry on any selfcare. Totally confined to bed or chair 

 

Adjuvant chemotherapy 
Several studies have shown a significant increase in survival rates associated with 
adjuvant platinum-based chemotherapy post-surgery - standard for NSCLC is 
cisplatin in combination with vinorelbin91, 93, 94. 

First-line chemotherapy with palliative intent 
In advanced disease, chemotherapy remains the only choice if the tumor is EGFR 
mutation negative or ALK/ROS1 fusion negative and has a low PDL1 expression. 
First-line chemotherapy is typically administered as a combination of one 
platinum substance (cisplatin or carboplatin) and one of the following: docetaxel, 
gemcitabine, paklitaxel, pemetrexed or vinorelbin. Studies have shown both a 
slightly higher efficacy and a slightly higher toxicity with cisplatin than with 
carboplatin91, 95, 96. Tumor histology affects choice of chemotherapy as tumors of 
AC and LCC histology have shown a higher sensitivity towards pemetrexed 
whereas SqCC have not97. For the rare LCNEC cases, the optimal platinum 
combination is still under debate, but, currently, LCNEC is often treated as SCLC 
(see below), rather than as NSCLC, in first line98. 

Tumor progression or relapse 
Few studies exist on which chemotherapy regimen is preferred in case of NSCLC 
progression or relapse. In case of relapse, it has been debated whether to use the 
primary chosen therapy strategy or not, but no guidelines exist. At tumor 
progression, immunotherapy (see below) has recently become the preferred 
alternative in second-line treatment, but if immunotherapy is contraindicated (due 
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to e.g. uncontrolled brain metastases or autoimmune diseases), chemotherapy 
(preferably a regimen new to the patient) is chosen.  

Small cell lung cancer treatment 

In stage I-III SCLC, chemotherapy (preferably cisplatin plus etoposide) is 
combined with curative radiotherapy, whereas patients with stage IV disease 
receive chemotherapy with palliative intent. 

Radiotherapy 

Radiotherapy for lung cancer is used in many different situations. After lung 
cancer surgery, in case of incomplete resection, curatively intended radiotherapy 
can be added to the treatment. In case of non-resectable, locally advanced tumors, 
radiotherapy with curative intent is typically given in combination with 
chemotherapy. For low stage tumors in medically inoperable patients, high-dose 
stereotactic body radiation therapy (SBRT) can be a curative option 99-103. 
Furthermore, radiotherapy is frequently given with a palliative intent, e.g. as pain 
relief (typically in cases with skeletal metastases) or to handle tumor burden at 
critical locations such as central airway/circulation or CNS91. 

Targeted therapies 

Targeted therapies in lung cancer include tyrosine kinase inhibitors (TKIs) of the 
EGFR-, BRAF-, ALK-, or ROS1-receptors, angiogenesis inhibitors (targeting the 
VEGF receptor), or immunotherapy using anti-PD1 or anti-PDL1 agents. 
Treatment predictive mutation testing is an important tool in clinical management 
because tumors positive for EGFR/BRAF mutation or ALK/ROS1 gene fusion 
events make the tumor sensitive to TKIs and are therefore used as first-line 
treatments in advanced stage disease. Thus, results from treatment predictive 
testing is needed before patients can start therapy, stressing the need of rapid, 
sensitive, and accurate molecular methods in clinical diagnostics. Tumors that are 
EGFR/ALK/ROS1 negative, are tested for PD1/PDL1 protein expression to guide 
the use of immunotherapy. 
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Tyrosine kinase inhibitors 
Randomized studies have shown a remarkable improvement in survival rates by 
the use of TKIs compared to chemotherapy104, 105. The importance of activating 
EGFR mutations in lung cancer patients was discovered in 200462, 63. Erlotinib, 
gefitinib (1st generation EGFR inhibitors) or afatinib (2nd generation) are now 
routinely used as first-line monotherapy in advanced disease for patients harboring 
these specific alterations. Despite rapid responses, treatment resistance generally 
occurs for these TKIs, often in the form of secondary mutations of EGFR (e.g. the 
T790M resistance mutation) within 9-14 months106 using 1st generation TKIs. In 
response to this, a 3rd generation TKI, osimertinib, has been developed. Gene 
fusions involving the ROS1 gene make the tumor sensitive towards crizotinib, with 
similar often dramatic responses as for EGFR mutated patients (and resistance 
development)107. ALK fusion positive tumors have previously been treated with 
crizotinib but recently alectinib is generally the first-line monotherapy choice due 
to increased overall survival (OS) rates but also less risk of CNS metastasis. 
Identification of BRAF V600 mutation indicates use of dabrafenib and/or 
trametinib TKI first-line monotherapy. Research on resistance mutations and TKIs 
are constantly evolving, paving way for an increased number of more efficacious 
targeted therapies, as well as a better understanding of how and when drugs should 
be used. 

Anti-angiogenesis  
Studies have shown that a proportion of patients with tumors of AC histology and 
non-eligible for TKI treatment have an increased therapy response and progression 
free survival (PFS) when treated with bevacizumab in addition to chemotherapy. 
Bevacizumab is a monoclonal antibody that blocks the VEGF receptor, but no 
treatment predictive test has yet been developed to indicate anti-angiogenesis 
therapy91, 108-113. 

Immunotherapy 
Immunotherapy using anti-PD1/anti-PDL1 (nivolumab, pembrolizumab/ 
atezolizumab) has emerged as a novel therapeutic option for NSCLC. Tumors that 
express PDL1 in >50% of tumor cells (using immunohistochemistry) can be 
treated with pembrolizumab in first-line. In second-line, all three approved drugs 
are used. The field of immunotherapy in lung cancer is evolving rapidly. Several 
clinical trials, which combine immunotherapy with chemotherapy compared with 
using only one of the mentioned immunotherapies, are ongoing114, 115. 
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Material 

Biobanks 

Several internal biobanks, evident from Figure 7, have been available for selection 
of tumor material, including both fresh frozen tissue from early-stage resected 
tumors as well as archived tumor tissue from patients with advanced disease. All 
patients included have been informed by a written consent. All studies have been 
reviewed and approved by the Regional Ethical Review Board in Lund, Sweden 
according to the Helsinki declaration. 

 

 

Figure 7. Internal biobanks constituting the basis of this thesis work. Three cohorts of fresh frozen tissue were 
available from patients diagnosed at an early stage and submitted to surgery. One cohort with patients diagnosed at 
an advanced stage was available. 
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Cell lines 

Cell lines with genetic alterations associated with lung cancer were cultivated and 
harvested prior to nucleic acids extraction. Specific cell lines include HCC78 
(SLC34A2-ROS1 fusion), LC-2/ad (CCDC6-RET fusion), NCI H228 (EML4-ALK 
fusion) and KARPAS 299 (ALK-NPM1 fusion). Extracted RNA was used as 
positive control for methods, which detect fusion genes associated with lung 
cancer. 
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Methods 

Extraction of nucleic acids 

Downstream data and results all rely on the quality of the input. No results can be 
better than the starting material. Therefore, the choice of extraction method for the 
very basis of research is essential116. Studies in this thesis have been based on 
different tissue origins: formalin-fixed paraffin embedded (FFPE) tissue (Studies I, 
II, IV), cytology specimens (Study I) and fresh frozen tumor tissue (Studies II, III-
V). Since protocols differ depending on tissue origin, several methods for 
extraction of nucleic acids have been used. For FFPE tissue, a column-based 
commercial method was used (Allprep DNA/RNA FFPE Kit, Qiagen) that has 
proven superior in multiple studies117-119. For cytology specimens, merely DNA 
was extracted from cytology slides at the regional clinical pathology department 
using a commercial kit (QIAamp DNA Micro Kit, Qiagen) prior to the 
downstream treatment predictive mutational screening performed in Study I. 
Studies II-V are entirely (Studies III and V) or partially (Studies II and IV) based 
on fresh frozen tumor tissue obtained from surgically dissected tumors of early 
stage lung cancer patients. Extraction of RNA and DNA was performed using a 
column-based modified commercial method (AllPrep DNA/RNA Mini Kit, 
Qiagen)120. 

Quality control of nucleic acids 

Prior to all downstream analyses, quantification and quality control of nucleic 
acids were performed. Quantification was performed either using the NanoDrop 
Fluorometer (ThermoFisher Scientific) or the Qubit system (ThermoFisher 
Scientific). Quality control of nucleic acids from fresh frozen tissue and FFPE 
varied due to the fact that FFPE DNA/RNA are of lower quality (more degraded). 
In Studies I and IV, DNA was subjected to a q-PCR assay using primers and 
reference supplied by Illumina that assess the amplifiability of the material. A 
delta Ct was calculated and quality of input DNA was based on the calculated 
value. Input amount to downstream analysis was based on the delta Ct value 
according to the manufacturer’s instructions. All RNA extracted from fresh frozen 
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tumor tissue was evaluated on the Agilent Bioanalyzer121, calculating a Ribosomal 
Integrity Number (RIN) value to assure intact RNA. RNA extracted from FFPE 
tissue was evaluated on the Agilent Bioanalyzer, calculating the DV200 to assure 
that the majority of the fragmented RNA was of a minimum length of 200 
nucleotides. 

Next-generation sequencing 

One of the most helpful and used tools within molecular biology and clinical 
molecular diagnostics is sequencing. The so-called Sanger sequencing technique 
has been used since the 1970s122 and in 2005 this first-generation method was 
revolutionarily evolved. The capability to sequence multiple samples at single-
nucleotide resolution revealed massive options for research and daily clinical 
diagnostics and the method is termed next-generation sequencing (NGS). There 
are multiple options when it comes to NGS and although whole genome 
sequencing (WGS) would supply all information necessary, this is merely an 
option for a variety of reasons including time, economical resources, data 
management, sample quality, data storage and clinical relevance. Anything that is, 
or can be transformed into, DNA can be subjected to NGS. Prior to sequencing, a 
library preparation is performed. Depending on your intentions with NGS data, the 
library preparation differs. If starting material is RNA, this needs to be converted 
into cDNA. If using targeted sequencing, i.e. selection of regions/genes of interest 
to be sequenced, these are tracked out from the sample DNA/cDNA by 
hybridization to a pre-designed probe pool (Studies I and IV) or by gene-specific 
primers (Study IV). During library preparation, sequencing adapters and index (for 
unique sample identification) are added and the library is amplified using PCR 
followed by purification of the PCR product. The purified, index tagged and 
adapter ligated PCR product is pooled with PCR products treated similarly prior to 
sequencing. Pooled samples are then sequenced in a parallel manner where the 
adapter sequences attach to the surface of the sequencing flow cell. Clusters are 
bridge amplified and generated clusters are subjected to fluorescently labeled 
nucleotides that are incorporated base by base. As each base is incorporated, 
fluorescence emission is recorded. This process is called sequencing by synthesis 
(SBS) by Illumina and the process is repeated for as many times (cycles) creating 
a length (read) as defined by the user and chemicals used. After sequencing, data 
is aligned i.e. mapped towards a reference genome (Figure 8). 
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Figure 8. Concept of Illumina NGS and data generation. Fragmented DNA is ligated with adapters that hybridize to 
the flow cell surface. The bound fragments are amplified to form clusters and fluorescently labeled nucleotides are 
incorporated. Through imaging, the emission from the incorporated fluorscently labeled nucleotides is recorded, and 
the wavelength is used to identify the base. This process is repeated for a given number of cycles to create a given 
read length. Reads are aligned to a reference genome to identify similarities or differences between the sequenced 
reads and the reference genome. 

Mutation detection using NGS 
The TruSight Tumor 26 library preparation kit from Illumina was used to detect 
mutations in Studies I and IV. This focused panel has been developed to identify 
low-frequency variations across 26 solid tumor related genes. The assay has been 
optimized to use FFPE derived DNA and it utilizes two pools with gene specific 
primers during library preparation. In fact, one sample is sequenced twice and data 
is merged from both probe pools. By this action, formalin induced nucleotide 
remodeling can be flagged as artifacts and not a true mutation as only nucleic acid 
changes present in both pools are considered true mutations. All libraries were 
sequenced on a MiSeq instrument and the data were aligned to the Human UCSC 
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hg19 reference genome. Mutation detection was performed in the Illumina 
supplied software VariantStudio where variants were called and labeled. 

Fusion gene detection using NGS 
Targeted RNA sequencing (RNAseq) using NGS was employed in Study IV to 
identify therapy targetable gene fusions frequently involved in lung cancer 
development (e.g. ALK, RET, ROS1) and in Study I to identify a novel fusion not 
detected with the method used initially. The commercially available Archer DX 
FusionPlex assay123 is based on a proprietary Anchored Multiplex PCR (AMP™) 
target enrichment chemistry to detect fusions of all genes in a single sequencing 
assay, even without prior knowledge of fusion partners or breakpoints. The kit also 
detects selected insertions and point mutations in ALK and RET, including those 
reported in cell-based assays to convey crizotinib resistance124. The kit has been 
developed to handle low amounts of highly degraded RNA (i.e. from archived 
material). After the initial cDNA conversion, which in some cases is not 
successful in low-quality RNA samples, library preparation is performed using 
AMP and library is sequenced as described previously. Data analysis to detect 
fusions is performed using a software provided by Archer DX, resulting in aligned 
and annotated fusion transcripts. 

Multicomponent analysis 

The NanoString technology 

The NanoString technology125 is based on the dual hybridization of a capture and a 
molecularly barcoded reporter probe complementary to a contiguous target 
sequence. A capture probe consists of a target-specific, biotinylated probe while a 
reporter probe consists of a target-specific probe linked to fluorescently-labeled 
tags that serves as a barcode in the multiplex assay. The capture probe and the 
reporter probe are referred to as a probe set (Figure 9). Probe sets are directly 
hybridized to RNA transcripts with no prior cDNA synthesis or enzymatic steps. 
On removal of excess probes, the hybridization complex is immobilized to a 
streptavidin-coated surface and aligned. The sequence-specific, fluorescently 
labeled reporter barcodes are digitally imaged and counted. The number of unique 
reporter barcodes specific to a target sequence is proportional to the number of 
transcripts present126-129. The technology was developed to overcome the 
challenges of highly degraded RNA used as input and is therefore ideal for FFPE 
samples used in Studies I and II. The NanoString technology is referred to as a 
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multicomponent assay as it simultaneously derives gene expression data and 
fusion gene status in one single assay for multiple user-defined targets (probe set). 

 

Figure 9. NanoString probe design. Probes span the entire gene of interest. 
 
Reproduced with permission from126, The Journal of Molecular Diagnostics, Elsevier and Copyright Clearance Center. 

Gene expression analysis 
In Study II, gene expression data generated with the NanoString technology was 
used. Gene expression is represented by number of counts registered from the 
target-specific probe representing a corresponding sequence of the human 
transcriptome. Probes span the entire gene of interest from 5’ end to 3’ end (Figure 
9). In contrary to global gene expression analysis, the NanoString technology is 
limited by the number of targets to be included in the probe set. In Study II, gene 
expression data were not normalized but a background correction using spiked-in 
references was performed. Gene expression data corresponding to 11 genes 
associated with NSCLC histology classification were extracted for further 
classification purposes. 

Fusion gene detection 
Fusion gene detection using the NanoString technology was performed in Studies I 
and II. Probe sets were designed with the intent to identify fusion genes frequently 
involved in lung cancer development and treatment and to simultaneously retrieve 
gene expression data on genes of significance in NSCLC. These genes correspond 
to protein markers that are used in routine histopathological diagnostic setting,  

 

Figure 10. NanoString probe set. A target specific biotinylated capture probe and a target specific reporter probe 
linked to a fluorescently labeled barcode adress is referred to as probe set. 
 
Reproduced with permission from130, Springer Nature and Copyright Clearance Center. 
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markers for prognosis and immunomarkers. Using the NanoString technology for 
fusion gene detection involves: 1) target-specific sequences that spans the gene of 
interest from 3’ end to the 5’ end (Figure 9) and 2) fusion specific probes that 
spans the junction of known fusion genes. A so-called protector probe assures 
hybridization specificity (Figure 10). Fusion is called on the basis of the two above 
mentioned criteria. An imbalance in counts registered from the probes representing 
the 3’ end of the affected gene (containing the kinase domain) compared to 5’ end 
indicates fusion involving the investigated gene. The fusion specific probe reveals 
the fusion partner as elevated counts corresponding to elevated expression of the 
fusion transcript126. 

Immunohistochemistry 

Immunohistochemistry (IHC) is a well-established and widely applied technique 
for documenting protein marker expression. Lung cancer subtypes are associated 
with differentiating protein marker expression (Figure 3). Morphology (derived 
from H&E stains) and scoring of immunomarkers is standard histological 
subtyping techniques used by pathologists worldwide. Guidelines for histology 
subtyping based on morphology and immunomarkers are administered through 
WHO and revised periodically27. All histopathological subtyping in this thesis 
work has been performed in line with the WHO guidelines. In addition, 
complimentary immunohistochemistry has been used to further discriminate 
subtypes or verify findings. In Studies III and IV, additional stainings to stratify 
LCC and LCNEC cases were performed including neuroendocrine markers 
(chromogranin A, synaptophysin, CD56), squamous cell markers (CK5, P40), 
adenocarcinoma markers (TTF-1, Napsin A) and RB1 (associated with SCLC)131-

133. In Study II, additional stainings for mucin markers, in an attempt to 
histologically classify tumors clinically diagnosed as NSCLC-NOS, were 
performed including CDX2 and Periodic acid–Schiff–diastase (PAS-D). 

Microarrays 

Methodological concept 

The overall concept of microarrays, regardless of the intention to study the 
transcriptome (RNA), genome (DNA) or epigenome (DNA methylation patterns), 
is to simultaneously derive information on thousands of genes of the human 
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transcriptome/genome/epigenome in a high throughput manner. Microarrays have 
shown to be a stable and trustworthy technique for investigating the 
transcriptional/genomic/epigenetic landscape since the first introduction of the 
technique in the late 1990s. Many commercial arrays are available such as the 
Illumina BeadArray technology134. Here, beads coated with probes corresponding 
to a sequence of the human transcriptome/genome/epigenome are scattered onto a 
silica surface. Pre-processed RNA/DNA is hybridized to the probe sequences, 
labeled (single or dual), washed and scanned. Emitted fluorescence is registered 
and calculated as overexpression/loss of expression (transcriptome), gain/loss 
(genome) or hypermethylation/hypomethylation (epigenome). Microarrays are 
used in Studies III and V to explore the transcriptional and epigenetic landscape of 
lung cancer (Figure 11). 

Figure 11. Microarray data analysis methods used in Study III and V. Microarrays were used to map the 
transcriptional and epigentic landscape of NSCLC. After an initial pre-processing of data, unsupervised clustering was 
performed. After defining clusters generated by clustering, gene expression centroids and epitypes were created and 
validated in external datasets. Functional analysis of differentially expressed genes, hypo- or hypermethylated genes 
was performed using pathway analysis.  

Global gene expression analysis using microarrays 

To explore the transcriptional landscape of lung cancer in Studies III and V, 
Illumina Human-HT-12v4.0 BeadChip arrays134 were used for single-channel 
detection (Figure 12). The HT-12 gene expression microarrays allow for 
investigation of 47 231 probes (oligonucleotides) corresponding to about 25 000 
annotated genes of the human genome. Genes are annotated based on the content  
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Figure 12. Illumina BeadArrays for gene expression profiling. Gene expression profiling using Illumina 
microarrays is initiated by linear amplification of total RNA resulting in biotin-labelled cDNA. The cDNA is hybridized to 
a BeadArray where oligo coated beads are randomly distributed onto a silica surface. The bead oligos contain 
information on which specific bead is placed on a particular spot on the array (address code) and a gene specific 
sequence (probe). Hybridized cDNA is stain with fluorescent Cy3 streptavidin and emitted fluorescence due to 
scanning is registered (probe), decoded (address) and further processed. 

of National Center for Biotechnology Information (NCBI) RefSeq Release 38 and 
each probe-bead pair is replicated about 30 times per array. To retain gene 
expression data, the first steps include in vitro transcription (IVT) linear 
amplification of total RNA that results in biotin-labeled cRNA. The cRNA is 
hybridized to the BeadArray, stained with Cy3 streptavidin (a green fluorescent 
dye), washed and scanned. Emitted fluorescence is registered as a representative 
measurement of gene expression and subjected to further data pre-processing. 

Methylation microarrays 

Study V describes the epigenetic landscape of lung cancer based on DNA 
methylation patterns. To be able to discriminate between a methylated C (Cm) and 
an unmethylated C, a bisulfite conversion was initially performed. In this process, 
C is converted to U while Cm remains intact. In Study V, the 450K Infinium HD 
Methylation Assay (Illumina134) was used to investigate if subgroups are present in 
lung cancer based on methylation patterns. The platform covers information on 
about 480 000 CpGs distributed over the genome, and its accuracy and 
reproducibility has been proven to be stable135, 136. The Infinium Assay consists of 
two different probe categories (I and II) that deploy different chemistries in the 
extension and staining process. Infinium I probes were developed to be used in the 
first methylation BeadArray (27K) supplied by Illumina and the assay is based on 
a one-channel approach, using allele-specific primer extension of the pre-
processed and hybridized DNA. Infinium II probes uses a single base extension 
dual fluorescence chemistry (Figure 13). The major difference between these two  
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Figure 13. Infinium I and II probe chemistry. Illumina 450K Methylation BeadArray is based on the Infinium HD 
technology. The platform deploys two types of chemistry during the extension and staining process. 
 
techniques is the fact that Infinium I probes indicates whether there is signal from 
bead 1 or bead 2, i.e. if the tumor CpG that these beads represents is methylated or 
unmethylated. With the Infinium II probes, information not only includes if the 
CpG is methylated or unmethylated but also if there is a no-change in methylation 
status (equal fluorescence from the two different dyes). Infinium I probes have 
been proven to produce more stable results, and when dealing with methylation 
data derived from this platform, the two different probe chemistries can be 
considered as two different data batches that must be corrected for137. Bisulfite 
conversion was performed in 96-well format (plates) balanced for biological and 
etiological sample properties. To exclude any potential batch effect, probes were 
adjusted between plates and principal component analysis (PCA) was performed 
to verify that no technical artifacts caused systematic bias in the final data138. The 
data generated were used to investigate multiple biological aspects including: 1) 
methylation patterns 2) copy number alterations and 3) gene expression profiles. 

High-dimensional data processing 

Pre-processing of data 
Reasons for gene expression/methylation data variation can be biological or 
technical. Pre-processing of data is essential to minimize gene expression 
variations that are due to technical issues such as staining efficiency, batch effects 
but also sample related issues such as RNA/DNA quality or input. All samples 
need to be adjusted to a common baseline to be compared to other samples within 
or between experiments. This process is referred to as normalization. A variety of 
normalization methods exist, and new methods are constantly being developed. To 
generalize the methods, two main categories exist: 1) methods assuming 
expression doesn’t change radically between samples and adjusts overall 
expression based on this assumption or 2) adjusts overall expression based on co-
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hybridized references or spiked-in housekeeping genes. Normalization of gene 
expression/methylation data in studies included in this thesis was performed using 
an algorithm for cubic spline quantile normalization139, proven to be robust for this 
microarray platform140, and it belongs to above described category 1. Technical 
varieties were handled through background correction based on emitted 
fluorescence from negative control probes available in the BeadArray probe set by 
Illumina. This technical background is subtracted from the remaining beads in 
order to be able to assume that the signal emitted from these probes is due to 
biological changes and not technical issues. Outlier beads were removed, average 
bead signals and detection p-values were calculated. Annotated, pre-processed 
data was exported and further processed using the R statistical programming 
language141. Data was log2 transformed and selected based on their detection p-
value. Detection p-value means the probability of a transcript being expressed 
above background. Probes with high confidence (detection p-value<0.01) were 
kept if present in more than 80% of the samples. Poorly annotated probes or 
signals due to cross-hybridizing were filtered out and the data were reannotated142. 
In order to deal with the biological fact, which can affect data interpretation and 
skewness, that some genes are highly expressed than others, data was scaled using 
standard deviations >0.3 across all samples. Further processing includes 
transformation of data using mean centering across all samples. After performing 
all above steps, the data set derived can be used to make biological interpretations. 
Methylation data is generated as beta-values for each CpG probe and range from 0 
to 1, where 0 represent unmethylated events and 1 represent methylated events. To 
establish aberrant methylation patterns in tumors, the included normal tissue was 
used as reference. Based on beta-values hyper- or hypomethylation in tumors was 
compared with normal tissue, and 4136 CpGs were selected as the most varying 
CpGs if comparing tumor and normal tissue methylation patterns. 

Clustering 
Clustering is a broad definition of a large number of different algorithms and is a 
useful approach for unsupervised analysis (where no prior information is 
traditionally used to guide the analysis) of high-dimensional data such as gene 
expression or genome-wide methylation data. Briefly, clustering aggregates 
samples that are most similar to each other into clusters, forming a hierarchical 
tree. Similarity between samples may be defined in many different ways, using 
different distance metrics and methods to link clusters (linkage methods). In Study 
III, a consensus clustering143 , with Pearson correlation was used as the distance 
metric and Ward linkage for linking clusters to each other. In this unsupervised 
analysis, gene expression patterns based on intrinsic features with no external 
information are used to investigate how many groups were present and with what 
confidence these groups were present. Samples are subgrouped and clustered in an 
iterative manner to investigate whether there is a consensus over iterations. The 
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consensus determines the number of clusters and assesses the stability of the 
observed clusters. Once clusters have been identified, differentially expressed 
genes between subgroups may be identified through supervised analysis. 
Supervised analysis, in contrast to unsupervised analysis, aims to identify 
differences between a priori defined groups of samples by using various statistical 
methods. Clusters produced in Study III were used as centroids for validation. In 
Study V, bootstrap clustering was used, a method similar to consensus clustering 
where resampling of the data is used to verify stable clusters. Bootstrap clustering 
identified five epitypes in Study V, which were used as centroids in the validation 
process (classification). 

Copy number analysis retrieved from genome-wide methylation microarrays 
Matched normal lung tissue specimens were available for 12 patients and were 
included in the tumor sample set in Study V. After normalization (performed as 
described for gene expression analysis), intensities from these 12 normal samples 
were used to create log2 copy number estimates from unmethylated and methylated 
CpG probe signals. Calculated mean signals for each sample probe were correlated 
with mean signal from the corresponding probe in the normal samples. Genomic 
profiles were generated using Gain and Loss of Analysis of DNA (GLAD)144 and 
fixed thresholds were used to call copy number gain and loss. 

Classification and validation of gene expression and methylation data 
To reveal the underlying fact of why samples cluster together, and to assure the 
validity of the established clusters, gene expression clusters and epitypes were 
classified according to reported GEPs and scored according to metagene 
signatures. In Study III, 10 consensus clusters were identified and subgroups were 
used to classify an external dataset39 by measuring the nearest distance of each 
sample in relation to the clusters (transformed into gene expression centroids). 
This was done to assure the biological validity in the derived clusters. In Study V, 
NSCLC tumors of all histological subtypes were included. Merely AC and SqCC 
tumors were classified according to reported GEPs available and described47, 55 
since no GEPs for the remaining histological subtypes (i.e. LCC/LCNEC/SCLC) 
were available. Gene Ontology (GO)145 using PANTHER146 was used to perform 
pathway analysis of differentially expressed genes in Study V. To perform 
integrative analysis of methylation and gene expression, correlation analysis was 
made for the largest histological subgroup (AC) using Spearman correlation. 

Single Sample Prediction 
Centroid classification is widely used and adapted but has reproducibility 
limitations. Centroids derived from stable clusters are highly platform, and 
sometimes even dataset, dependent. To overcome these limitations of 
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classification, rank-based classifiers have developed. A single-sample predictor 
(SSP) is platform-independent, robust to data normalization and yields transparent 
decision rules147. The concept of SSPs is to define certain decision rules based on 
annotated gene expression data (training set) and apply those rules to gene 
expression data lacking annotation. One of the most widely used SSP approaches 
is k-Top Scoring Pairs (kTSP)148. Here, the decision rule is entirely determined by 
the ordering of two features (i.e. the relative expression of two genes). Decision 
rules, or prediction classes, are based on ranking of the genes. In Study II, 
however, we aimed to create an SSP of NSCLC histology using three prediction 
classes. Since kTSP is designed to only handle two prediction classes, Absolute 
Intrinsic Molecular Subtyping (AIMS)149 was chosen due to its capability to 
handle more than two classes of prediction. AIMS machine-learning method has 
performed well in other types of cancer (originally developed in breast cancer) and 
proven successful in prediction of multiple classes irrespective of normalization 
method and gene expression data generation platform. 

Statistical methods 

A variety of statistical methods have been used throughout this thesis work, 
depicted in Table 3.  

Table 3. Statistical methods. 
Various statistical methods used in respective study. 

STATISTICAL 
METHOD 

STUDY I  STUDY II STUDY III STUDY IV STUDY V 

Fishers’ exact test X     

SAM   X   

PCA     X 

Kruskal-Wallis     X 

ROC  X    

Kaplan-Meier   X X X 

 

Statistical significance is based on rejecting or retaining the null hypothesis, the 
null hypothesis being no difference between two comparisons. In this hypothesis 
testing, a probability value (p-value) with a pre-determined significance level, 
typically the two-tailed 5% of sampling distribution, indicates statistical difference 
between two observations. Various methods for group comparisons have been 
used in this thesis including Fisher’s exact test. 

Significance Analysis of Microarrays (SAM) is a method that uses multiple t-tests 
to identify differentially expressed genes by statistical significance. 
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Principle Component Analysis (PCA) performs dimension reduction by finding 
components that maximizes the variation. PCA has been used to assure 
consistency in pooling of gene expression data using replicates included in the 
gene expression data generation138. 

The Kruskal-Wallis test is a non-parametric rank-based test used to investigate 
whether two samples originates from the same distribution. Since it is a non-
parametric test, there is no assumption that the data set is normally distributed. 
Kruskal-Wallis was used to identify differentially expressed genes between 
epitypes in Study V. 

Receiver operating characteristics (ROC) was calculated using the predicted 
classification and histological classification made by a pathologist in a confusion 
matrix. ROC investigates the performance by comparing observed positive and 
negative prediction conditions and taking false event into account. Predictions are 
plotted in a ROC curve. Accuracy is measured by the area under the ROC curve 
(AUC). An area of 1.0 means perfect discriminating power and 0.5 is the 
performance by pure chance 150. Accuracy value is calculated as the sum of true 
positive predictions plus the sum of all true negative predictions divided by the 
sum of all predictions. A balanced accuracy value considers the false 
negative/positive predictions. 

Survival analysis was performed using Kaplan-Meier estimates, a method that 
censors observations and calculates the risk for the remaining population. To test if 
the observed differences between groups are likely to happen by chance, a log-
rank test is usually used. Kaplan-Meier curves were compared using the log rank 
test and Hazard ratios were calculated through univariate Cox regression. 
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Results and Discussion 

This thesis is based on five studies designed and executed with the intent to 
molecularly classify and stratify NSCLC tumors with focus on potential or direct 
clinical implications. The order of the studies is not presented in a chronological 
order. Instead, the studies are presented according to patient category size and 
clinical impact through three main sections: 1) High-dimensional data generation 
and processing, 2) Molecular implications, and 3) Clinical implications. Study I 
focuses on treatment predictive testing applicable to the largest groups of lung 
cancer patients, patients with late-stage, advanced disease. The study describes a 
direct application of novel technologies in clinical diagnostics to aid clinical 
management. Study II describes a new approach to simultaneously predict tumor 
histology and fusion gene status, by using a multicomponent RNA assay, 
applicable to clinical tissue. A multicomponent tool is highly desirable, especially 
in cases with advanced disease, since diagnosis is based mainly on biopsy or 
cytology specimens that usually provide very small amounts of tissue. Therefore, 
the approach in Study II has potential clinical value and the multicomponent tool 
was developed in early disease and subsequently validated in both early and 
advanced disease. Moreover, Study II represents an example of how an assay 
could be used for different applications, and also as a platform for future, 
additional, applications to be integrated. In Study III, the newly adopted 2015 
WHO guidelines on classification of a relatively small histological subgroup 
(LCC), representing an important differential diagnosis, was investigated to 
validate whether this update was also reflected in the transcriptional landscape. 
The results in Study III support the WHO guidelines, used in clinical management 
and therapy selection, to further stratify a specific NSCLC subgroup. This 
conclusion was further supported by Study IV, a study that was initiated before the 
2015 WHO guideline revision but finalized in time for the revised guidelines to be 
adopted. Findings in Study IV support the revised guidelines through an extensive 
genetic characterization of LCC and LCNEC tumors. Since LCC is a differential 
diagnosis made on the basis of resected tumor material, Studies III and IV are 
based on low-stage tumors from early disease patients. In Study V, resected 
NSCLC tumors were epigenetically profiled resulting in DNA methylation 
patterns that stratified tumors into epitypes correlated with histology, copy number 
alterations, gene expression patterns, and patient survival. Study V demonstrates 
that epigenetic characterization adds another genomic layer that contribute to a 
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deeper understanding of NSCLC tumor development. This deepened 
understanding, in combination with other genomic data, e.g. gene expression, may 
eventually be translated into clinical management in the future through refined 
patient stratification. Figure 14 visualizes the structure and implications of this 
thesis work. 

 

 

Figure 14. Visualization of thesis structure and implications of included studies. 

High-dimensional data generation and processing 

Technology development 

Microarrays and NGS are two high-dimensional techniques used with a variety of 
intents in research. These technologies share many similarities but also have many 
differences. The two techniques are able to both investigate a high number of 
targets within a sample and processing multiple samples simultaneously, i.e. high-
dimensional and high-throughput. With the introduction of microarrays to the field 
of cancer research in the late 1990s the possibility to study vast landscapes of copy 
number variation and transcriptional patterns opened up. This resulted in the 
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discovery of distinct phenotypes correlated with a variety of tumor properties, for 
instance, in breast cancer151. These phenotypes showed prognostic and therapeutic 
value and contributed to deeper biological understanding of the disease 
development. The early days of microarrays were technically challenging, though, 
and bioinformatic pipelines did not exist to handle the amount of data generated. 
The first generation of non-commercial (often in-house produced) microarrays 
required lots of hands-on time and a large amount of intact RNA/DNA. Due to 
these requirements, FFPE tumor tissue or scarce amounts of fresh frozen tumor 
tissue were almost never an option. Therefore, the lung cancer genomes 
investigated with early-days’ microarrays were biased to: 1) large size tumors to 
fulfill the requirement of input DNA/RNA, and 2) surgically resected tumors, i.e. 
only low stage tumors. The resolution of the non-commercial microarrays was, for 
the time being, high and foremost genome-wide in coverage. With the introduction 
of commercially produced microarrays, the former instabilities associated with the 
production and handling of microarrays were reduced, and stability and 
reproducibility were greatly improved. The resolution increased as well as the 
throughput, and the field of applicability expanded to study, for instance, miRNA 
expression and epigenetic alterations such as DNA methylation and chromatin 
immunoprecipitation (chIP). To some extent, microarrays were also adapted to 
handle degraded DNA/RNA. Instead, the microarrays were limited with respect to 
resolution, often associated with technical difficulties, and required large amounts 
of input DNA/RNA. In this thesis, microarrays were used as the primary data 
generation platform in Studies III and V using fresh frozen tumor tissue from low-
stage, surgically-treated patients, providing extracted nucleic acids of high quality 
suitable for microarrays (gene expression and DNA methylation). Today, the gene 
expression profiling in Studies III and V would likely have been performed 
through RNA sequencing, while the same type of DNA methylation analysis 
would have been performed with a greater number of features. In Studies I and II, 
due to the specific limitations of archival tissue, an alternative platform, 
NanoString, was used. While the NanoString method shares features with 
microarrays, e.g. hybridization and fluorescent detection, it represents a simpler 
platform applicable to the specific aims of Studies I and II. Currently, NanoString 
is a widely used platform for these types of analyses.  

Early-days’ of NGS also demanded high quality extracted nucleic acids, and 
protocols for library preparation were laboratory tedious, hands-on demanding, 
and very expensive. As technology developed, protocols for library preparation 
were simplified, sequencing instruments were adjusted to bench top versions, and 
costs dropped. Soon, even nucleic acids extracted from archival tissue could be 
used as template for library preparation. One of the original aims of Study IV was 
actually to evaluate a specific platform and protocol for mutation detection in 
archival NSCLC tumor tissue. At that time, an NGS-based platform for mutation 
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detection applicable to DNA extracted from archival, FFPE tissue had recently 
been developed by Illumina134. The Illumina TruSight Tumor 26 gene panel for 
targeted NGS was designed to overcome many of the issues when dealing with 
DNA extracted from FFPE. Particularly, the fixation process affects the DNA by 
crosslinking, which reduces PCR efficiency and fragments the DNA during the 
extraction. Also, fixation induces sequence alterations (most frequently C-T 
transversions) with as high rates as 1/500 bp152. To overcome these obstacles, 
design of probe sequences to be captured in the DNA of interest need to be 
adjusted to a length that is represented in FFPE DNA. A specific feature of the 
TruSight Tumor panel was that probe sequences corresponding to the target of 
interest were designed for both DNA strands, creating a bi-directional assay. DNA 
was separately prepared as two independent libraries for each patient, sequenced, 
and later pooled in the analysis. This allowed sequence alterations present in only 
both pools to be identified and considered true mutations, effectively removing 
artifacts caused by fixation. In Studies I and IV we found this feature to be a key 
component for the interpretation of the data, scientifically in Study IV, but more 
importantly in the clinical analyses described in Study I. Specifically, the bi-
directional nature of the panel greatly reduced the interpretation time (filtering and 
classification) of identified variants, and also provided greater confidence in the 
results. While NGS panels for diagnostic use are continuously expanding in size 
and likely also changing to be become hybridization based, the bi-directional 
feature still represents a powerful way for amplicon-based panels to reduce 
artifacts and thus potential false positive calls through a straightforward analysis 
pipeline, despite the requirement of more input DNA.  

 

 

Figure 15. Fusion gene detection using the NanoString technology. Fusion gene detection is employed by 
calculating the ratio of expression of the 3’ and 5’ end of the ALK gene as originally described by Lira et al.126. Specific 
fusion probes identify the fusion gene partner of ALK. 
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In parallel to treatment predictive mutation testing performed in Study I, the 
NanoString technology to detect gene fusions was evaluated (Figure 15). Probe 
sets were designed to detect specific fusions but also novel fusions by calculation 
of 3’/5’ gene expression ratio in genes frequently rearranged in NSCLC. The 
technology proved accurate in detecting gene fusions as all detected ALK and 
ROS1 fusions were confirmed by the routine diagnostics (IHC and FISH). Using 
the ratio calculation, with overexpression of probes corresponding to the 3’ end of 
the RET gene compared with low expression of the 5’ end of the RET gene, a 
novel TRIM24-RET fusion (validated with targeted RNAseq, Archer Dx) was 
detected. Since the NanoString technology proved accurate and applicable to 
scarce amounts of archival tissue (the typical situation in analysis of advanced 
disease), the probe set was expanded in Study II. The updated set included probes 
corresponding to genes used as protein markers in routine diagnostics to 
distinguish histological subgroups as well as immunomarkers. In Study II we 
sought to investigate whether the NanoString technology could be used as a 
multicomponent assay for solving two clinically relevant features: gene fusion 
status and histological subtyping. 

Molecular implications 

The molecular implications of the studies in this thesis work ranges from mapping 
treatment predictive mutations and gene fusions in NSCLC advanced disease to 
comprehensive descriptions of the transcriptional and epigenetic landscape of lung 
cancer. 

Mutations, gene fusions and implementing molecular tools 

Classification of lung cancer is crucial for therapy guidance. Whether it is by 
histology or mutation/rearrangement of targetable genes, stratifying lung cancer is 
beneficial for choice of treatment and as a prognostic factor. In Study I, clinically 
relevant mutations were reported and used to guide treatment. An entire 
framework for NGS-based analysis of treatment predictive mutations was built to 
handle everything included in clinical mutation testing of NSCLC. At the time of 
Study I only EGFR mutations were considered treatment predictive, although all 
findings were reported back to the diagnostic pathologist. However, building the 
framework for clinical treatment predictive mutation testing offered a splendid 
opportunity to map the mutation spectrum of 26 classical oncogenes and tumor 
suppressors in advanced NSCLC in a south Swedish clinical testing population. As 
depicted in Figure 16, the mutation spectrum was summarized for the entire cohort 
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as an entity but also stratified by histology. In the 533 samples included, 889 
variants were detected with predominantly 1-2 variants per sample reported 
reflecting the pan-cancer nature of the TruSight Tumor 26 panel. 

 

 

Figure 16. Detected variants in 533 consecutive lung cancers analyzed by the 26-gene Illumina TruSight 
Tumor panel. (A) Pie charts of number of called variants per sample for different sample groups. (B) Variant 
frequency for the analyzed 26 genes across different sample groups (bars). Genes are ordered according to 
decreasing frequency in the total cohort. In A and B, all detected non-synonymous variants by the vendor supplied 
analysis pipeline are included. 

In parallel, we aimed to develop an assay to investigate gene fusion status that was 
quick, reliable, applicable to archival tissue, and possible to include in the NGS 
framework from Study I. In the framework established, both DNA for gene 
mutation analysis as well as RNA were extracted. In order to evaluate the 
feasibility of an RNA-based approach to deliver gene fusion status based on 
archival tissue, we selected 169 patients screened negative for treatment predictive 
mutations in EGFR, KRAS or BRAF during 2015. The NanoString technology 
fulfilled our requirements in terms of the ability to robustly detect gene fusions in 
RNA derived from archival tissue quickly while still being economically 
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affordable. The probe set design was based on a reported approach by Lira et al.126 
including the possibility to detect known fusions as well as a possibility to find 
novel fusions in ALK, RET and ROS1. Today, gene fusions involving the ALK or 
ROS1 genes are targetable, and to a minor extent also RET. As a result of this, only 
ALK and ROS1 fusions detected by NanoString could be verified through clinical 
routine analyses. For the non-adenocarcinoma cases that were ALK positive by 
IHC in the triple-negative cohort, NanoString analysis suggested overexpression 
of the entire gene by some other mechanism than gene rearrangement. This more 
detailed view of gene fusion events supports the usage of multiplexed methods 
like NanoString as a complementary method, or even replacement, for IHC/FISH 
when possible. Due to the flexibility and capacity of the NanoString technology, 
additional gene fusions as well as MET exon 14 skipping events and genes 
corresponding to IHC markers used in daily routine pathological assessment of 
histology were included in an updated probe set used in Study II. 

In Study II we investigated the possibility of developing a multicomponent tool for 
simultaneous gene fusion detection and histological assessment based on RNA 
expression. The latter included developing a predictor of NSCLC histology from a 
mixed training cohort (n=68) of never-smokers and additional tumors from other 
histological subgroups analyzed by the updated NanoString probe set (SMIL in 
Figure 7). An SSP classifier was developed through machine learning in a 
NanoString-derived gene expression data set using 11 genes corresponding to 
protein markers used in routine diagnostics to assess NSCLC histology. 
Simultaneous gene fusion status was retrieved and the fact that five gene fusions 
and two MET exon 14 skipping events were detected can be ascribed to the 
composition of the SSP training cohort, as these rearrangements are associated 
with AC histology and a never-smoking history. After an initial feasibility test, a 
final SSP model was validated in three external cohorts. Two of the cohorts 
composed of NanoString derived gene expression data and the third composed of 
gene expression data generated by RNA sequencing (NGS). The SSP could 
successfully stratify tumors originally classified as LCC by WHO2004 guidelines 
into the revised WHO2015 guidelines as AC and SqCC. One of the validation 
cohorts was composed of tumors classified as NSCLC-NOS in Study I. These 
tumors were subjected to an in-depth pathological re-analysis including 
complementary IHC stains and morphology assessment.  
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Discrepancy between SSP prediction and pathology assessment for these NOS 
tumors included pathology classification performed on the basis of markers, such 
as mucin markers, not included in the probe set or metaplasia of cells of differing 
histology than the tumor (Figure 17). 

 

 

Figure 17. Discrepancy between SSP histology prediction and pathology assessment. Due to high KRT5 gene 
expression, the SSP classifies this sample as SqCC with high probability. Evident from H&E stains and IHC fort 
KRT5, a SqCC metaplasia of this AC tumor causes high expression of the SqCC marker KRT5. 

Despite the fact that the SSP was developed in NanoString gene expression data, 
the SSP could successfully predict NSCLC histology in a large (n=199) gene 
expression data set of early stage tumors generated using RNA sequencing, thus 
demonstrating platform independence. The requirements we set for the SSP are 
dramatically different from classification using centroids as described in Study III 
and V. Centroid classification is highly dependent on gene expression/methylation 
data to be pre-processed and centered across samples (i.e. relative expression 
instead of absolute). Study III and V instead provide comprehensive knowledge on 
global gene expression and methylation patterns based on unsupervised analysis, 
revealing underlying biological mechanisms in contrast to mapping specific 
mutations or gene fusions. 

Molecular subtypes in resected, low-stage lung cancer 

To comprehensively investigate the molecular characteristics of lung cancer 
(including all major histological groups), two genome-wide studies were 
performed in this thesis. Study III investigates the transcriptional landscape, while 
Study V describes the epigenetic landscape of lung cancer. In addition, Studies III 
and IV also analyze the genomic characteristics of a specific subset of lung cancer, 
LCC and LCNEC tumors, in more detail. 

Since histology is an important factor for both clinical management and prognosis, 
Studies III and IV focused on a group of tumors, LCC, that up until the revision of 
the WHO guidelines in 2015 had been used as a somewhat “trash can” group of 
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NSCLC tumors. In Study IV we aimed to characterize LCC and LCNEC tumors 
using the same platform for mutation detection as in Study I and also to investigate 
whether gene fusions occurred in these tumors through RNA sequencing. Gene 
mutation and fusion analyses are part of the routine diagnostic framework and we 
aimed for screening this small, but important, histological subgroup using 
techniques that could be implemented in clinical diagnostics. At the time that 
Study IV was finalized, WHO revised their guidelines in terms of histology 
subgrouping, putting more emphasis on IHC analyses to define histology. 
Importantly, Studies III and IV were both performed in the context of the revised 
guidelines, and the main findings supported the revised guidelines on both the 
genetic and transcriptional level.  

 

 

Figure 18: Detected mutations and copy number alterations in LCC and LCNEC. A) Detected gene variants and 
copy number alterations (CNAs) (rows) in 41 LCC cases (columns), ordered by immunomarker profile of 
adenocarcinoma-like (AC-like), squamous cell carcinoma like (SqCC-like), or marker null phenotype (TTF-1/Napsin A 
and CK5/P40 negative). Copy number status is shown as larger background rectangles and mutations as squares for 
each sample and gene. Right side bar plot summarizes the distribution of the different mutation types for each gene. 
B) Detected variants and copy number alterations in 32 LCNEC cases displayed as in A). Samples are ordered 
according to gene variant frequency. 

Specifically, in Studies III and IV we observed: 1) a similarity in mutational (e.g. 
TP53 and RB1 inactivating mutations) and transcriptional patterns in LCNEC and 
SCLC tumors, 2) general absence of prototypical AC and SqCC oncogenes 
alterations in LCC tumors defined according to WHO2015, and 3) a 
transcriptional pattern of LCC tumors separating them from the other histological 
subgroups (see below). In Study IV, lung cancer cases (n=33) classified as LCC 
according to the WHO 2004 guidelines were reclassified on the basis of the WHO 
2015 guidelines with 70% as variants of AC or SqCC. Specifically, 19 cases 
(58%) were reclassified as AC on the basis of positive expression of TTF1/Napsin 

Lund cohort
Seidel et al.

Male
Female

Amplification
Gain
Homozygous del
Loss
Missing value

Missense
Nonsense
Splice site
Frame shift InsDel
Other

AC-like
SqCC-like
Marker null

MAP2K1 (0%)
BRAF (0%)
GNAS (0%)
NRAS (0%)

MET (3%)

GNAQ (0%)

KRAS (6%)
PIK3CA (6%)

APC (6%)
KIT (9%)

PTEN (13%)
STK11 (16%)

TP53 (88%)
Cohort
CD56

Synaptophysin
Chromogranin A

Sex
Stage I
Stage II
Stage III

A) B)

Cohort

Sex CNAs MutationsIHC profile

Nbr mutations
0 5 10 15 20 25 30 Nbr mutations

0 5 10 15 20 25

Mutation distribution Mutation distribution

LCNECLCC

IHC data
missing

KIT (0%)
MAP2K1 (2%)

BRAF (2%)
PIK3CA (2%)

GNAQ (2%)
APC (2%)

GNAS (2%)
NRAS (2%)

STK11 (5%)
PTEN (7%)
MET (12%)

KRAS (22%)
TP53 (83%)

IHC profile
Basaloid

Sex
Stage I
Stage II
Stage III
Stage IV



60 

A, four (12%) were reclassified as SqCC on the basis of positive expression of 
CK5/ P40, and 10 (30%) did not express any of these IHC markers (“marker-
null”). These results in Study III are supported by the mutational and copy number 
variation differences seen in Study IV, distinguishing LCC from LCNEC and 
stratifying the LCC group into AC-like, SqCC-like and marker null phenotypes 
(Figure 18). To investigate whether the WHO 2015 guidelines translated into a 
better transcriptional subgrouping of LCC in Study III, we performed 
unsupervised consensus clustering of a discovery cohort comprising 159 lung 
cancers of all histological subtypes. We first performed iterative consensus 
clustering without respect to sample annotations by using variable number of 
genes to assess the optimum cluster solution. Next, we performed an in-depth 
comparison of unsupervised transcriptional subgroups with sample molecular and 
clinicopathological data. 

 

Figure 19. Unsupervised gene expression analysis stratifies large cell lung cancer (LCC) and large cell 
neuroendocrine carcinoma (LCNEC) into molecular subgroups. Gene expression heatmap of 2730 Illumina 
probes across 159 lung cancers stratified by 10 specified consensus clusters. The 2730 probes correspond to a 
log2ratio standard deviation cutoff of more than 0.5. Annotations for histological subtypes, clinicopathological 
variables, selected mutations, retinoblastoma 1 immunohistochemistry (RB1 IHC), classification according to reported 
gene expression phenotypes (GEPs) for adenocarcinoma (AC) and squamous cell carcinoma (SqCC), and 
expression of selected biological metagenes are provided. For annotations, black corresponds to a positive/presence 
call, gray to a negative call, and white to not applicable or not available. Gene cluster functional annotations are 
provided for some specific clusters in the heatmap. ECM, extracellular matrix; mut, mutation; RB1 mut, retinoblastoma 
1 gene mutation; TP53, tumor protein p53 gene; STK11, serine/threonine kinase 11 gene; TRU, terminal respiratory 
unit; PP, proximal proliferative; and PI, proximal inflammatory. 
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Acknowledging that the histological subtypes of lung cancer strongly influence the 
transcriptional landscape153 and that subgroups within the histological subtypes 
likely exist, we chose a 10-group consensus cluster solution to be able to also 
study characteristics for minor subgroups. Consistent with previous studies48, 153, 
we observed a clear separation of AC, SqCC, and SCLC cases into subclusters 
driven by specific transcriptional programs (Figure 19). In agreement with recent 
studies and in agreement with mutational patterns in Study IV, LCNEC tumors 
clustered strongly (79% of cases) with SCLC tumors, forming a neuroendocrine 
subcluster (Figure 19). For LCC, 84% of the WHO 2004 cases reclassified as 
adenocarcinoma-like clustered in an adenocarcinoma-dominated subcluster, 
whereas 50% of the LCC SqCC-like cases clustered in an SqCC-dominated 
subcluster (Figure 19). Notably, 90% of marker-null cases (nine of 10) aggregated 
in a separate transcriptional cluster (see Figure 19 [cluster 8]), referred to as the 
marker-null–enriched subtype. To investigate the reproducibility of our findings in 
Study III, we created gene expression centroids for each consensus cluster and 
classified an independent validation cohort of 199 tumors comprising all 
histological subtypes by a nearest centroid approach. Three of five LCNEC and 
four of six LCC marker-null cases were classified into the LCNEC and LCC 
marker-null clusters, respectively. The two LCNEC cases not in the 
neuroendocrine cluster did not express high mRNA levels of neuroendocrine 
marker genes. These two discrepant LCNEC cases were further investigated in 
Study II where it became evident that these cases were of mixed histology, 
containing tumors cells of both AC and LCNEC features. RNA extraction had 
been performed solely on the AC component, explaining the lack of expression of 
neuroendocrine markers associated with LCNEC histology. For the two outlier 
LCC marker-null cases, one case was found in predicted cluster 10, whereas the 
second was found in predicted cluster 3 (the neuroendocrine cluster) despite not 
showing increased prototypical neuroendocrine gene expression. 

On the basis of massive parallel sequencing studies, it is becoming evident that a 
subset of LCNEC tumors share mutational patterns with SCLC, whereas others 
carry mutations typically altered in non-neuroendocrine tumors153-156. Rekhtman et 
al.154 hypothesized a genetic division of LCNECs into SCLC-like and NSCLC-like 
subgroups based on TP53 and RB1 alterations, in which the SCLC-like group was 
defined by concomitant TP53 and RB1 alterations, reflecting their ubiquitous 
inactivation in SCLC64. In contrast, the NSCLC-like subset was characterized by 
the lack of concomitant TP53 and RB1 alterations and occurrence of other 
NSCLC-type mutations (e.g., KRAS and STK11 mutations). Interestingly, Study III 
indicates that this stratification may potentially be mimicked also on the 
transcriptional level, providing a speculative link between the mutational and 
transcriptional landscape of LCNEC. While our analyses in Studies III and IV 
provide some support for the hypothesis that LCNEC tumors may be refined into 
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NSCLC-like/SCLC-like tumors, larger studies are needed to confirm such 
subgroups, and importantly their clinical relevance.  

Within both AC and SqCC different gene expression phenotypes have been 
proposed47, 48, 55-58, although the consensus between phenotypes is not absolute in 
independent multicohort analysis157. In Study V, global methylation analysis of 
124 lung cancers revealed four distinct AC epitypes and one neuroendocrine 
epitype, supporting further stratification of lung cancer and lung cancer 
histological subtypes. Using genome-wide methylation microarrays, we identified 
4136 CpGs with aberrant methylation in >10% (n = 13) of tumors compared with 
normal lung tissue. Unsupervised bootstrap clustering identified five distinct 
clusters, referred to as epitypes (Figure 20).  

 

Figure 20. Identification of five DNA methylation subtypes. A) DNA methylation subtypes in 124 lung cancers 
based on bootstrap clustering of 4,136 variant CpGs. Heatmap displays beta values (rows) from unmethylated (blue) 
to methylated (yellow) for three sample groups (columns): 124 tumors divided into five subtypes by bootstrap 
clustering, 12 matched normal lung tissues, and blood leukocytes, with associated clinical characteristics and reported 
adenocarcinoma (AC) and SqCC gene expression phenotypes47, 55. Left hand CpG tracks, CpG island track; black, 
island; gray, shore/shelf; white, open sea, H1hESC track (ref.158; embryonic stem cell chromatin state): purple, poised 
promoter; red, active promoter; yellow, enhancer; green, transcribed; blue, insulator; white, heterochromatin. Sample 
annotations: black, yes; gray = no. B) global promoter hypermethylation (left) and global hypermethylation (right) 
score for methylation clusters (based on all filtered CpGs on the platform). C) box plots of DNA methylation for 629 
CpGs matching repetitive elements from the set of 4,136 for each tumor in the discovery cohort across epitypes. 
Tumors are colored according to epitype as in A, with exception for ES5 (gray). 

To validate the identified epitypes from the discovery cohort, we created DNA 
methylation centroids for each epitype based on the 4136 CpGs. Next, we 
classified two independent cohorts analyzed by the same methylation platform42, 50 
comprising 122 SqCC tumors and 695 adenocarcinomas. PCA performed in the 
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validation cohorts confirmed that the centroid classification explained most of the 
total variation in DNA methylation compared with available clinicopathological, 
technical (batch and beadchip data), and molecular factors, including clinical 
smoking history, sex, tumor stage, tumor size, histology (AC or SqCC), EGFR, 
KRAS, and TP53 mutations. Notably, most of these factors (e.g. smoking status) 
contributed little to the total variation in DNA methylation. Moreover, the 
classification of the validation cohorts was robust across different sets of CpGs, 
and overlapped extensively with independently derived unsupervised bootstrap 
groups in these cohorts. In both validation cohorts, 1% of the cases were classified 
as the neuroendocrine epitype (ES3), supporting the theory that this epitype is 
highly distinct for lung cancers expressing neuroendocrine marker genes. The 
derived and validated epitypes were correlated with global hyper/hypomethylation, 
specific gene expression patterns, histopathological features, smoking status and, 
for AC tumors, correlated with survival. Although resected stage I NSCLC 
patients have the most favorable prognosis, the 5-year survival rate is 52% to 
89%159. Thus, improved molecular subclassification and stratification of early-
stage NSCLC remains highly relevant. 

Clinical implications 

The clinical implications of this thesis work extend from establishment of an 
NGS-based framework for clinical treatment predictive mutation testing to 
potential selection of patient groups for personalized medicine based on refined 
stratification of tumor biology. 

Classification in advanced NSCLC disease 

In Study I, the established NGS-based framework had a direct impact on treatment 
guidance of NSCLC patients diagnosed with advanced disease in the south 
Swedish health care region during January 2015 to June 2016. During this time 
approximately 1200 patients with suspected lung cancer or malignant melanoma 
were analyzed. Analysis included nucleic acids extraction, library preparation, 
sequencing, data processing and clinical reporting (Figure 21). With a few 
exceptions, turnaround time (TAT) were seven calendar days (i.e. five working 
days). Of all originally referred suspected lung cancer cases, 4.7% could not be 
analyzed during the first pass through the centralized NGS laboratory due to 
insufficient DNA quality in the qPCR quality control step. The latter was caused 
by either degraded DNA, or more often by insufficient amounts of extracted DNA 
from the FFPE sections sent for analysis (mainly small biopsy specimens).  
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Figure 21. Clinical implementation of an NGS-based diagnostic framework. (A) Workflow for the NGS- based 
mutational screening of treatment predictive alterations in lung cancer. Key turnaround time (TAT) metrics are 
displayed. (B) GANNT scheme of the workflow for the NGS mutational assay, with two parallel analyses running each 
week. Inclusion of a NanoString RNA based gene fusion assay is added to the NGS GANNT scheme, together with 
information about human resources, cost and larger laboratory equipment needed for the implementation. Reports 
from the NanoString assay can be issued at two different time points depending on whether a combined or separate 
reports are desired. (C) TAT for the molecular NGS part in calendar days for lung cancers analyzed during 2015 in the 
NGS central laboratory. (D) Total TAT including both the preanalytic and molecular laboratory time in calendar days 
for lung cancers analyzed during 2015. 
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However, with a few exceptions, all of these cases were analyzed either by 
resampling followed by new NGS-analysis, or by a real-time PCR method. During 
the period of time of Study I, mutation status of EGFR and KRAS (as a negative 
indicator of ALK fusions) were initially the only genes of interest for therapy 
guidance (in lung cancer) in the healthcare region (ALK alterations were analyzed 
by other techniques). Today, multiple new targets for therapy are emerging in 
NSCLC treatment, e.g. BRAF V600 alterations, demonstrating the importance of 
multigene analysis in clinical diagnostics today and even more so tomorrow. To 
investigate the potential additional clinical benefit of a combined NGS-based 
mutation analysis and multiplexed gene fusion assay (NanoString) compared to 
the current targeted therapy options in the health care region (EGFR and ALK 
inhibitor treatment), we analyzed actionable alterations defined from the literature 
in the 533 patients screened during 2015. Firstly, we defined a set of both 
acknowledged and proposed actionable oncogene mutations in specific oncogenes 
(KRAS, EGFR, BRAF, PIK3CA, NRAS, ERBB2, MAP2K1, and AKT1) in addition 
to ALK, RET, and ROS1 gene fusions, using information from public sources160 
and reported studies161, 162. Next, we stratified the 533 samples based on existence 
of these actionable alterations in individual cases (Figure 22A). Of these 
actionable variants, alterations in KRAS dominated in all subgroups, followed by 
EGFR, BRAF and PIK3CA (Figure 22B). Gene fusions accounted for 7% of 
actionable alterations in adenocarcinomas. While the majority of detected 
actionable variants appeared mutually exclusive across samples (Figure 22C), a 
number of cases showed multiple actionable variants, e.g., concurrent KRAS and 
PIK3CA mutations, concurrent KRAS and BRAF mutations, and concurrent 
KRAS/EGFR/BRAF mutations and ALK fusions. While the two former 
observations may be explained by tumor subclonality, the high proportion of the 
latter observation is intriguing given the reported near to mutual exclusiveness of 
these alterations 162, 163. Possible explanations may be tumor subclonality, however 
technical/interpretation issues in the ALK diagnostic scheme cannot be excluded. 
Second, we sought to determine the subset of patients with different histological 
subtypes that could be eligible for potential emerging treatments based on the 
defined actionable alterations (Figure 22D). In adenocarcinoma, this analysis 
suggested that 10.6% (50.3% if including KRAS) of cases could be eligible for 
emerging targeted treatments, beyond the 15.3% of cases eligible for standard 
EGFR or ALK targeted therapy (Figure 22D). For SqCC, similar proportions were 
lower, 4.4% of cases (11.1% if including KRAS) could be eligible for emerging 
treatments, in addition to the 2.2% eligible for EGFR targeted therapy. Finally, for 
NSCLC- NOS 2.5% of cases (45% with KRAS) could be eligible for 
novel/emerging targeted treatments, in addition to the 11.2% of cases eligible for 
standard EGFR or ALK targeted therapy. 
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Figure 22. Integration of actionable mutations and gene fusions in the consecutive 533-sample cohort. (A) 
Proportion of cases with ≥1 actionable alteration in the total 533-sample cohort, adenocarcinomas (AC), SqCCs, and 
NSCLC-NOS. (B) Distribution of detected actionable variants according to the gene in which they fall for 
adenocarcinomas (AC, n=242 detected variants), SqCCs (n=12 variants) and NSCLC-NOS (n=47 variants). (C) 
Heatmap describing defined actionable and non-actionable non-synonymous variants and gene fusions in 
investigated genes identified in each case. Each column represents a sample; each row represents a gene. Numbers 
and proportions displayed on the right axis correspond to the total cohort (533 samples). (D) Proportion of cases with 
actionable mutations in adenocarcinoma (AC, n=348 samples), SqCC (n=90 samples), and NSCLC-NOS (n=80 
samples). In each pie chart, EGFR+ corresponds to the proportion of cases with an actionable EGFR mutation 
irrespective of other alterations, ALK+ corresponds to cases with an ALK gene fusion irrespective of other alterations, 
and KRAS+_only corresponds to cases with only an actionable KRAS mutation. Consequently, some BRAF mutated 
cases may for instance harbor also an actionable KRAS variant. In all panels, not all cases were analyzed for gene 
fusions by the NanoString assay; consequently these estimates (mainly ROS1 and RET) should be interpreted as low 
frequency proportions. 

As demonstrated in Figure 22, the gene mutation spectrum is strongly correlated 
with histological subtype. AC tumors appear more oncogene addictive with a 
wider spectrum and higher rates of actionable variants (n=242) compared with 
SqCC (n=12) and NOS (n=47). The wider spectrum of specific, targetable 
mutations in AC translates to an increase in potential therapy options compared 
with, e.g. SqCC and NOS. The two latter groups are characterized by a higher 
frequency of “no actionable” mutations or gene mutations (for instance KRAS) that 
are more difficult to target. However, it should be noted that the gene selection in 
the Illumina TruSight Tumor 26 panel (classical oncogenes and tumor 
suppressors) may represent a source of bias in these interpretations, as it has been 
shown, that for instance, that SqCC tumors harbor a different spectrum of 
mutations than AC tumors41, 42. Of importance, the high incidence of gene fusion 
in EGFR/KRAS/BRAF mutation-negative cases stresses the importance of 
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screening these “triple oncogene negative” cases more in depth. In Study I, we 
could show that NanoString based ALK fusion gene detection had a success rate 
equivalent to the then clinically used in situ methods (approximately 80%). ROS1 
gene fusions have been shown to be treatment predictive for ALK-inhibitor 
drugs164. In our investigated cohort of triple oncogene negative NSCLCs, the 
number of cases with either ROS1 or RET fusions were similar to that of ALK-
positive cases, supporting the need of multiplexed gene fusion diagnostics in 
NSCLC and AC specifically. Moreover, recent studies highlight the importance of 
knowing the specific type of fusion, as this might influence therapy response and 
resistance development165, 166 167, information that is not provided by routine IHC 
or FISH analysis. Clearly, to acquire information on multiple gene mutations and 
gene fusions in ideally a single assay is of great clinical value. The power and 
importance of a multigene assay was further demonstrated in Study II through the 
creation of a multicomponent NanoString assay targeting two relevant diagnostic 
questions in lung cancer. In Study II, we evolved the assay from Study I to not 
only include more targetable fusion genes, but also genes that could be used for 
other purposes, e.g. gene expression-based prediction of tumor histology, using a 
single extract of RNA. For histological prediction, we used a machine-learning 
algorithm, AIMS149, to develop an SSP based on a set of transparent gene rules for 
prediction of three histological subtypes, AC, SqCC, and LCNEC. The basis for 
the predictor was the RNA expression of 11 genes whose protein expression had 
been associated with specific subtypes. The developed SSP proved remarkably 
accurate for NSCLC histology prediction, irrespective of analysis platform, when 
validated in external data sets, suggesting that it can be provided to the clinic as a 
complement to existing techniques. In contrast to previously published 
predictors36-38, 168, the SSP derived in Study II is based on and applied to tumors 
histologically classified according to the WHO 2015 guidelines, representing the 
golden standard in clinical routine today. A combined tool for fusion gene 
detection and histology prediction would likely be highly useful in lung cancer 
diagnostics, especially in advanced disease, as tissue amounts are scarce due to 
small biopsies and cytologies. An advantage of the NanoString technology in this 
context is the flexibility of the probe design, allowing extension of the assay over 
time based on new knowledge. For instance, the NOS cases included in one of the 
validation cohorts in Study II had been identified as NOS in Study I, i.e. in a 
clinical setting. NOS tumors represent a likely obvious group of tumors where 
both an RNA-based histological predictor (Study II) and comprehensive mutation 
testing (like in Study I) may be of complementary value to routine diagnostics. 
Patients with NOS tumors are associated with poorer outcome, possibly due to the 
lack of therapy options that histological subgrouping provides coupled with a 
generally more aggressive undifferentiated disease. The challenging nature of 
NSCLC-NOS tumors is evident in the initially observed poor concordance rate 
between the SSP and the pathological re-review for AC cases in one of the 
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validation cohorts. However, discordant cases could be explained by either 
insufficient RNA quality (a challenge in archival tissue) or biological reasons such 
as SqCC dysplasia (Figure 17), or diagnosis based on markers (mucins) not 
included in the NanoString design. Importantly, these shortcomings can be 
addressed by: 1) an assay quality control step as in Study I, 2) appropriate 
micro/macro dissection considering the non-in situ type of analysis, and 3) update 
of the NanoString probe content, respectively. As depicted in Figure 22 many 
NOS cases presented with gene mutations often associated with certain NSCLC 
histology subgroups, e.g. EGFR mutations more frequently associated with AC 
and PIK3CA mutations associated with SqCC in Study I. Importantly, the NOS 
category in advanced disease included tumors that are “marker null” i.e. lack 
expression of markers associated with other NSCLC subtypes such as AC or 
SqCC and would hypothetically be classified as LCC if resected tissue had been 
available. Combining mutation status with, for instance, gene fusion status and 
RNA-based histology prediction in one assay would mean creating layers of 
information for a potentially better final classification that could impact patient 
treatment. 

Stratification and classification in resected tumors 

In advanced disease there are multiple genetic alterations crucial for first-line 
therapy choice – hence the emphasis is often on analysis of a small set of 
targetable genes (as in Studies I and II). While the latter fulfills the current clinical 
needs and provide some limited insight into the driver landscape of these tumors 
(Figure 22) the question of whether there exist other molecular subgroups of 
clinical value remains less clear. Two goals of comprehensive genomic analyses in 
lung cancer, e.g. whole genome transcriptional analyses, have been to try to refine 
the taxonomy of the disease through definition of molecular subgroups of tumors 
with clinical importance or to identify specific prognostic or treatment predictive 
signatures better than the current methods. However, comprehensive molecular 
studies in advanced disease are rare, likely due to tissue limitations (amount and 
type). Therefore, the aforementioned genomic studies have mainly used resected 
tumor material as this provides the necessary amounts and quality of nucleic acids. 
Naturally, this means that such studies are biased in terms of low stage disease 
and, to some extent, large tumors that must be considered when translating 
findings from molecular studies into clinical implications, especially concerning 
treatment. In this context, adjuvant therapy in early stage lung cancer does not 
generally include targeted therapy or immunotherapy. Thus, these types of studies 
are limited towards prognosis (risk of relapse) or treatment prediction of mainly 
adjuvant chemotherapy. It has been noted that “normal” tissue adjacent to a tumor 
infested area of the lung contains aberrant molecular/epigenetic changes associated 
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with higher risk of recurrence and secondary tumors. Therefore, greater surgical 
margins and further molecular analysis of surrounding tissue can be of both 
prognostic value as in identifying patients that would benefit from adjuvant 
chemotherapy34. 

This thesis contains two studies, III and V, aimed at refining the molecular 
landscape of early lung cancer to potentially unravel novel subgroups of clinical 
relevance. Study V was chronologically first in this thesis work and provided at 
the time comprehensive knowledge on the epigenetic landscape in lung cancer 
using a then state-of-the-art DNA methylation assay. In Study V, we derived five 
epitypes that were correlated with histology, gene expression subtypes and for 
adenocarcinomas also survival. Epigenetic subtypes associated with outcome in 
adenocarcinoma have been reported also in other studies50, 89, supporting that this 
type of analysis can identify early stage tumors with different prognosis.  

Although the findings in Studies III and V require extensive validation and are far 
from clinical implementation today, they together with several other reports serve 
as an example to illustrate that a likely subgrouping within histological subgroups 
associated with prognosis in at least early stage AC and SqCC appear highly 
possible36, 37, 41, 47, 48, 53, 55, 57, 88. If properly and successfully validated, such subtypes 
may ultimately become clinically relevant for patient management similar to the 
development and usage of molecular subtypes in breast cancer. Thus, molecular 
subtypes defined from extensive genomic characterization may contribute with 
information to personalize treatment for specific lung cancer patients. Besides 
prognosis, a better stratification of histological subgroups could also identify 
patients without targetable mutations that have similar epigenetic or transcriptional 
patterns as patient groups possessing a targetable mutation, potentially indicating a 
similar dependency of a specific signaling pathway (which may be targetable). 
One such speculative example is seen in Studies III and V, with a subset of 
adenocarcinomas without detectable EGFR mutations sharing similar 
transcriptional and epigenetic patterns as tumors harboring actionable EGFR 
mutations. Whether such tumors respond similarly or at least partially to EGFR 
inhibitors remains to be proven. There is also the possibility to identify a patient 
subset that would probably benefit from immunotherapy representing an immune 
hot subtype through such analyses. In summary, the type of stratification that 
genome-wide epigenetic and transcriptional profiling provide in early stage 
disease is valuable not only in the context of unraveling lung cancer biology, but 
hopefully also for those surgically treated patients that relapse. 

Today a plethora of studies exist in the literature about molecular subtypes and 
different prognostic/predictive gene expression, copy number, or epigenetic 
signatures in early stage lung cancer using high throughput techniques applied to 
fresh frozen tissue (including Studies III and V). However, fewer studies exist on 
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how to move such tools closer to actual clinical use, e.g. involving analysis of 
fixated tissue and dealing with single sample prediction. Here, assays such as the 
multicomponent tool in Study II, including the concept of SSP predictors, may 
represent one possible route forward to bring novel signatures closer to future 
clinical use. 

Therapy surveillance and tumorigenic adaption 

Studies included in this thesis report on molecular findings that add layers to 
tumor biology and stratification of patient groups as well as tools to perform/aid in 
daily molecular routine analysis as part of clinical management. Molecular 
characterization and classification of tumors is important to gain understanding of 
biological processes that promote tumor formation but also to understand the 
mechanisms of therapy resistance which may be intrinsic or acquired. 
Interestingly, many patients undergoing treatment relapse or progress. Therefore, 
longitudinal monitoring during treatment with chosen therapy would be preferable 
in order to: 1) assess treatment response and 2) monitor tumorigenic adaption the 
treatment (e.g. resistance development during TKI treatment). Such monitoring 
would enhance our understanding of changes in biological processes in the tumor 
when subjected to therapeutic agents (therapeutic pressure), as well as to serve as 
an early indicator of when these changes will cause progression due to, e.g. 
emergence of subclonal resistance mutations. Due to the fact that tumors leak 
fragments of DNA into the blood stream, great efforts to retrieve this cell-free, 
circulating tumor DNA (cfDNA/ctDNA) by extraction from plasma is ongoing 
(although not a focus of this thesis). Therapy surveillance and observing 
tumorigenic adaption to treatment using ctDNA or analysis of exhaled breath 
condensates169, 170 is an appealing approach as they represent non-invasive 
procedures compared to a conventional tissue biopsy, which may for various 
reasons be difficult to achieve for metastatic lesions. However, using ctDNA as a 
sample analyte requires highly sensitive detection techniques. Digital droplet PCR 
(ddPCR)171 performs massive sample partitioning and individual PCR on each 
partition (droplet) using TaqMan assays. The technique is highly sensitive and 
suitable for ctDNA (as ctDNA is fragmented to a great extent) but is a single-gene 
assay. In response to this, a variety of commercially available library preparation 
kits for NGS are available, providing the possibility of multi-gene screening also 
in this context. Demonstrated in Study I, the introduction of NGS in the clinical 
setting, represents a major leap forward but current commercial amplicon-based 
panels (e.g. the TruSight Tumor and Ion Torrent AmpliSeq Colon and Lung 
panels) are biased towards analyzing hotspot alterations in a limited set of 
oncogenes often selected through a pan-cancer approach. To some extent, these 
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panels offer the possibility to detect intrinsic or acquired resistance mechanisms to 
targeted treatment, mainly T790M and C797S mutations in EGFR and specific 
gatekeeper mutations in ALK (like L1196M and G1269A), in patients re-biopsied 
after treatment failure. However, most panels (including TruSight Tumor and 
frequently used Ion Torrent panels) are less well suited to detect EGFR/ALK 
resistance mechanisms caused by alterations in other genes. Here, panel design 
and size constraints, but also problems in calling copy number alterations (like 
MET amplification as a mechanism of resistance to EGFR inhibitors) reliably in 
tumors with considerable non-malignant infiltration represent limiting factors. 
Therefore, diagnostic platforms based on, e.g., hybrid capture methods of either 
DNA alone172, 173 or DNA and RNA combinations (e.g. the Illumina TruSight 
Tumor 170 panel and the AmpliSeq based Thermo Fisher OncomineTM 
Focus/Comprehensive panels) that allow considerably more sequence to be 
analyzed could be the next preferable step also outside large comprehensive cancer 
centers. These assays could allow simultaneous detection of mutations, gene 
fusions, and copy number alterations (like drug targetable MET and FGFR1 
amplifications) in a large number of genes. Non-invasive techniques for therapy 
surveillance and tumorigenic adaption observation are compelling as it spares 
patients from often challenging tissue biopsies. However, in case of contradictory 
results or low amounts of ctDNA (causing e.g. inclusive results), a biopsy of 
tumor tissue is still required. Whether the technique to retrieve tumor DNA is non-
invasive or more invasive to the patient, longitudinal observations of therapy 
response and tumorigenic adaption will likely be key factors in tomorrow’s 
clinical management and molecular understanding of lung cancer. 
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Conclusions 

Study I 
A framework for treatment predictive mutation testing using NGS is feasible and 
useful in routine diagnostics. In parallel, gene fusion detection can be performed 
using the NanoString technology. Both technologies used are applicable to 
archival tissue and provides with information on multiple targets in one assay. 

Study II 
A multicomponent tool for gene fusion detection and histology prediction provides 
with two clinically important aspects in one assay applicable to archival tissue. 

Study III 
Investigating the transcriptional landscape of lung cancer supports the revised 
WHO guidelines with specific focus on LCC and LCNEC tumors. 

Study IV 
Specific mutations are associated with LCC and LCNEC tumors. LCC tumors can 
be further stratified based on markers associated with other NSCLC subgroups. 

Study V 
Global methylation patterns reveal distinct epitypes correlated with 
histopathological features, gene expression patterns and survival. 
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Future perspectives 

As this thesis illustrates, lung cancer is a molecularly diverse and lethal disease. 
The options in lung cancer therapy are constantly expanding through molecular 
discoveries. Although much focus lie on development of novel molecular tools 
and therapies, one cannot disregard from the fact that smoking is the most 
prominent cause of lung cancer. With the overwhelming body of evidence of the 
detriment of tobacco to human health, many control policies have been 
implemented as health promotion actions. Such prevention methods include 
taxation of smoking, health warnings on tobacco products, marketing restrictions, 
and banning smoking in public places. Even so, smoking prevalence is still not 
expected to decrease globally. Therefore, screening of selected groups of the 
population with an increased risk of lung cancer (i.e. current or former smokers) 
would be the second-best option for decreasing mortality rates in lung cancer. 
Screening methods such as spirometry and chest x-ray could potentially alter the 
proportions of early versus advanced disease. Detection of low stage tumors 
increase survival rates through surgery. While smoking is a major health risk and 
undisputedly the major cause of lung cancer, about 20-25% of lung cancer patients 
are never-smokers. Irrespective of smoking status, proper clinical stratification of 
lung cancer patients is of great importance and would, in this context, be the third-
best tactics in improving survival rates in lung cancer. Tumor characteristics such 
as specific gene mutation/fusion status and histology impacts therapy choice. Still, 
a vast majority of patients diagnosed with advanced disease lack obvious therapy 
options, historically leaving the remaining options to be of higher toxicity and/or 
less efficacy. With the addition of immunotherapy to the list of therapy options for 
those not eligible for targeted therapy, a remarkably prolonged survival of a large 
patient group has been observed. This particular patient group could perhaps, with 
time, be considered diagnosed with chronic disease. In the future, genomics will 
likely play an even larger role in the clinical management of lung cancer. Further 
molecular characterization and stratification of lung cancer is needed to 
understand resistance mechanisms and to identify patients and patient groups that 
would benefit from specific therapies or be spared of ineffective and/or harsh 
therapies. This will likely take place through continuous monitoring and analysis 
of a patient’s tumor during the course of the disease to tailor treatment. Deepened 
understanding of lung cancer biology is essential for development of novel 
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therapeutics that, hopefully, will translate to better survival for patients diagnosed 
with lung cancer.  
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ABSTRACT

Precision medicine requires accurate multi-gene clinical diagnostics. We 
describe the implementation of an Illumina TruSight Tumor (TST) clinical NGS 
diagnostic framework and parallel validation of a NanoString RNA-based ALK, 
RET, and ROS1 gene fusion assay for combined analysis of treatment predictive 
alterations in non-small cell lung cancer (NSCLC) in a regional healthcare region 
of Sweden (Scandinavia). The TST panel was clinically validated in 81 tumors 
(99% hotspot mutation concordance), after which 533 consecutive NSCLCs were 
collected during one-year of routine clinical analysis in the healthcare region (~90% 
advanced stage patients). The NanoString assay was evaluated in 169 of 533 cases. 
In the 533-sample cohort 79% had 1-2 variants, 12% >2 variants and 9% no 
detected variants. Ten gene fusions (five ALK, three RET, two ROS1) were detected 
in 135 successfully analyzed cases (80% analysis success rate). No ALK or ROS1 
FISH fusion positive case was missed by the NanoString assay. Stratification of 
the 533-sample cohort based on actionable alterations in 11 oncogenes revealed 
that 66% of adenocarcinomas, 13% of squamous carcinoma (SqCC) and 56% of 
NSCLC not otherwise specified harbored ≥1 alteration. In adenocarcinoma, 10.6% 
of patients (50.3% if including KRAS) could potentially be eligible for emerging 
therapeutics, in addition to the 15.3% of patients eligible for standard EGFR or ALK 
inhibitors. For squamous carcinoma corresponding proportions were 4.4% (11.1% 
with KRAS) vs 2.2%. In conclusion, multiplexed NGS and gene fusion analyses are 
feasible in NSCLC for clinical diagnostics, identifying notable proportions of patients 
potentially eligible for emerging molecular therapeutics.

www.impactjournals.com/oncotarget/ Oncotarget, Advance Publications 2017
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INTRODUCTION

Discoveries of frequent and therapeutically 
targetable mutations and gene fusions in non-small cell 
lung cancer (NSCLC) have changed not only the clinical 
management of the disease, but also the procedures 
and techniques used in the diagnosis of the disease. In 
addition to the current cornerstones of targeted therapy 
in NSCLC, EGFR mutations and ALK gene fusions, a 
growing number of alterations, like ROS1 gene fusions, 
are emerging as treatment predictive in lung cancer 
broadening the cohort of patients eligible for targeted 
treatment [1].

Until recently, clinical analyses of treatment 
predictive alterations in EGFR and ALK have 
predominantly been performed by different single gene 
assays, e.g., real-time PCR or pyrosequencing, and 
immunohistochemistry (IHC) or fluorescence in situ 
hybridization (FISH), respectively. Given the continuous 
discovery of new, potentially treatment predictive 
alterations in lung cancer (see e.g. [1]) and a growing 
understanding of treatment resistance mechanisms, 
iterative single gene diagnostics is becoming problematic. 
Specifically, multiple analyses per sample increase the 
cost, require more input material and a longer time to 
generate results, in addition to the cumbersome nature of 
some methods (e.g. FISH). With the introduction of next 

generation sequencing (NGS) to the field of molecular 
genetics, and more recently also to the field of clinical 
diagnostics by allowing formalin-fixed paraffin embedded 
(FFPE) tissues to be screened, new possibilities exist 
for cost-, time- and sample efficient analysis of many 
different treatment predictive alterations in one analysis. 
Today, NGS-based diagnostics of treatment predictive 
mutations are running in large scale in large cancer 
centers worldwide and numerous reports of different 
implementations and techniques exist (see e.g., [2–8]). 
However, the technology is also increasingly introduced 
in smaller, often decentralized, healthcare regions at 
regional/local pathology departments with limitations in 
sample flow, budget, trained personnel, NGS equipment 
and bioinformatics structures, but still obliged to deliver 
accurate and timely results to guide patient therapy 
decisions.

The aim of the present study was to: i) implement a 
centralized NGS-based framework in the southern health 
care region of Sweden, Scandinavia, corresponding to one 
of the larger decentralized healthcare regions in Sweden, 
for clinical analysis of treatment predictive mutations in 
NSCLC, ii) determine the potential diagnostic yield of the 
NGS testing based on a complete year of clinical analysis, 
and iii) to investigate the clinical potential of multiplexed 
gene fusion analysis of ALK, RET, and ROS1 based on 
RNA expression (Figure 1).

Figure 1: Study scheme outlining analyses and cohorts. FFPE: formalin-fixed paraffin embedded tissue, TAT: turnaround time.
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RESULTS

Validation of an NGS-based assay compared to 
routine single gene diagnostics

To validate the Illumina TruSight Tumor (TST) 
NGS panel for clinical usage we analyzed 81 lung 
cancers, cutaneous malignant melanomas (CMMs) and 
colon cancers with existing clinical mutation data for 
hotspot mutations in EGFR, KRAS, NRAS, and BRAF 
(Table 1) (in addition to our previous validation of TST 
in a research setting, [9]). In total, the 81 cases harbored 
29 known hotspot mutation calls and 63 calls of no 
mutation present for the investigated genes and loci. Of 
the total 92 mutation calls, concordance between previous 
single gene clinical testing methods and the TST assay 
was observed for 88 calls (96%) (Additional file 1). 
Three of the four discordant calls were due to a variant 
detected by TST but not analyzed by the corresponding 
single gene assay. Excluding these variants implied a 
concordance of 99% between TST and prior clinical 
methods. In the remaining single discordant sample 
(a colon cancer), a NRAS c.182A>G variant (38% TST 
variant allele frequency, VAF) was detected by all 
methods, with an additional c.35G>C KRAS variant 
called by the prior clinical real-time PCR method. A 
reanalysis was performed using sections from the same 
tissue block with the prior clinical real-time PCR method, 
TST, pyrosequencing, and complementary real-time PCR 
(Qiagen Therascreen). Reanalysis with the clinical real-
time PCR method again identified the KRAS c.35G>C 
variant, while pyrosequencing identified a different KRAS 
variant (c.35G>T, 5% VAF). In contrast, TST analysis 
and Therascreen real-time PCR analysis agreed that no 
variants in KRAS were observed. The observation of both 
an activating KRAS and NRAS mutation in the same tumor 
is unlikely, suggesting that the discrepant KRAS variant 
might represent a false positive call (supported by the 
low VAF from pyrosequencing, and the different variants 
reported by pyrosequencing and the prior clinical real-time 
PCR method).

Using the Qiagen Therascreen EGFR, KRAS, and 
BRAF RGQ kits as reference methods in this study, we 
were able to validate detected hotspot variants down to 
4% VAF from the NGS analysis in both the validation 
cohort and the subsequent prospective cohort in all tested 
cases, thus representing the effectively used limit of 
detection in later clinical samples (notably, a strict 10% 
tumor percentage cut-off was used for decision to perform 
clinical mutation testing at all).

Clinical implementation of an NGS-based 
diagnostic framework

The clinical implementation, including personnel 
and budget, of the NGS-based framework is described in 

Additional file 2. Following the clinical implementation 
(January 7, 2015), NGS analysis was the primary assay for 
routine clinical analysis of treatment predictive mutations 
in NSCLC and results were used to guide patient 
treatment. All identified mutations were reported to the 
diagnostic pathologist through a NGS report. During the 
prospective time period, only EGFR and KRAS mutation 
status were included in the pathological report returned to 
the treating clinician to guide treatment. For ALK fusions, 
the main method during the investigated time period was 
IHC and/or FISH. NanoString evaluation of RNA-based 
fusion detection was performed in parallel, but was not 
used to guide treatment. During the investigated time 
period (January 7 to December 31 2015), on average 12 
suspected lung cancers were analyzed per week, of which 
74.5% were FFPE sections and 25.5% cytology material. 
The turnaround time (TAT) for the molecular testing 
(DNA extraction, NGS analysis, and mutation report) was 
seven calendar days (i.e. five work days) in 94% of all 
cases analyzed during 2015, eight calendar days in 4%, 
and 9-10 days in 2% of cases (Additional file 2). The 
median TAT for the entire molecular process (from clinical 
referral, pathological evaluations, molecular analysis, to 
the final clinical report) was 14 calendar days (mean=15±6 
calendar days) (Additional file 2). Of all originally 
referred suspected lung cancer cases, 4.7% could not 
be analyzed during the first pass through the centralized 
NGS laboratory due to insufficient DNA quality in the 
qPCR quality control step. The latter was caused by 
either degraded DNA, or more often by insufficient 
amounts of extracted DNA from the FFPE sections sent 
for analysis (mainly small biopsy specimens). With a 
few exceptions, all of these cases were however analyzed 
either by resampling followed by new NGS-analysis, or 
by a real-time PCR method (case then excluded from the 
prospective cohort analyzed in this study, see Figure 1). 
Based on this diagnostic framework, we collected 533 
consecutively tested lung cancers by the TST NGS panel 
during 2015 to determine the diagnostic yield (Table 1). 
Notably, the proportions of the histological subtypes in 
the consecutive clinical testing cohort differ slightly from 
what might be expected from a Swedish population-based 
cohort (especially a lower proportion of squamous cell 
carcinomas, SqCC, 17% versus 21% based on data from 
the Swedish lung cancer registry). This suggests a potential 
selection bias between histological subtypes in the offered 
reflex-testing scheme. The bias could originate from the 
decentralized clinical management of patients in different 
regional hospitals within the healthcare region, coupled 
with a previous history of testing only adenocarcinomas.

NGS-based clinical analysis of a consecutive lung 
cancer cohort

Among the 533 cases, 889 variants were called 
by the standard vendor supplied data analysis pipeline. 
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In general, analyzed cases showed few alterations in the 
investigated genes across different sample groups (total 
cohort, adenocarcinoma, SqCC, and NSCLC not otherwise 
specified, NSCLC-NOS), with ~80% of cases having 1-2 
called variants and 7-9% no detected variants (Figure 2A). 
In all major sample groups (adenocarcinoma, SqCC, and 
NSCLC-NOS) TP53 was the most frequently mutated 
gene, while the mutational pattern for KRAS and EGFR 
(second and third most frequently mutated genes in total) 
differed between sample/histological groups (Figure 2B). 
For 14 genes in the 26-gene panel, mutation frequencies in 
the total cohort were ~2% or less, suggesting that genetic 
alterations in these genes represent more rare driver 
events in NSCLC. Associations between mutation status 
for individual genes and clinicopathological variables 
(age, gender, and tumor histology) were scarce, with 
exception for BRAF (adenocarcinoma histology), EGFR 

(adenocarcinoma histology), KRAS (younger age, gender, 
adenocarcinoma histology), CTNNB1 (gender), PTEN 
(adenocarcinoma histology), STK11 (adenocarcinoma 
histology), and TP53 (adenocarcinoma histology) 
(Additional file 3). In contrast with the literature there was 
no association between presence of EGFR mutation and 
gender in the total prospective clinical testing cohort (with 
53/47% females/males), or in adenocarcinoma specifically 
(p=0.66 and 0.87, respectively, Fisher’s exact test). In 
lack of complete patient smoking status (not consistently 
available in pathological referrals) this insignificant 
association is difficult to assess.

KRAS and EGFR (first and second most mutated 
oncogenes) showed a striking enrichment of specific, well-
established, activating variants. In KRAS, variants in codons 
12 and 13 constituted ~91% of all detected variants, while 
exon 19 deletions and p.L858R point mutations constituted 

Table 1: Clinicopathological characteristics of the validation and prospective cohorts

Validation cohort

 Lung cancer CMMA Colon cancer

Number of patients 40 22 19

FFPE / Cytology (%) 70/30 100/0 100/0

Number of hot spot mutation 
calls (mut / no mutation) 8/32 9/13 12/18

KRAS - - 10/8

NRAS - 0/1 1/5

BRAF - 9/12 1/5

EGFR 8/32 - -

Prospective cohort of lung cancer cases (n=533)

 ACB SqCCB NSCLC-NOSB OtherB

Number of patients (%) 348 (65%) 90 (17%) 80 (15%) 15 (3%)

FFPE / Cytology (%) 79/21 84/16 47/53 60/40

Median age (years±sd) 69±9 72±8.3 70±8.5 68±7.6

Sex (female/male %) 53/47 38/62 51/49 60/40

Early stage cancer (%) 12.5% 7.8% 0% 20%

Clinical ALK analysis 
(ntot=491) 324 86 68 13

ALK FISH-positive (n) 10 0 4 0

ALK IHC-positive (n) 2 2 1 1

NanoString analyzed 
casesC (%) 68 (50%) 54 (40%) 8 (6%) 5 (4%)

A: CMM: cutaneous malignant melanoma.
B: AC: adenocarcinoma, SqCC: squamous cell carcinoma, NSCLC-NOS: non-small cell lung cancer not otherwise 
specified, Other: including adenosquamous, large cell carcinoma, large cell neuroendocrine carcinoma, sarcomatoids.
C: Only cases that were KRAS/EGFR/BRAF mutation negative, from FFPE tissue, and with successful NanoString 
hybridizations are listed.
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~75% of all detected variants in EGFR (see Additional file 
4 for complete protein localization of variants in EGFR, 
KRAS, BRAF and TP53). For EGFR, mutations beside 
exon 19 deletions and p.L858R (c.2573T>G) variants, such 
as p.G719X (c.2155G>A, c.2156G>C, and c.2156G>T), 
p.L861Q (c.2582T>A, n=3), and exon 20 insertions (n=2), 
each represented ≤5% of the total EGFR mutation spectrum. 

EGFR p.T790M resistance mutations (n=4) were only 
observed in cases re-biopsied after progression on targeted 
EGFR treatment. In these cases, the originally detected 
activating EGFR mutation (e.g. p.L858R) was always 
present, while the p.T790M alterations always showed lower 
VAFs in each case suggesting tumor heterogeneity (5.4-
12.2% VAF versus 8.1-88% VAF for activating mutations).

Figure 2: Detected variants in 533 consecutive lung cancers analyzed by the 26-gene TST panel. (A) Pie charts of number 
of called variants per sample for different sample groups. (B) Variant frequency for the analyzed 26 genes across different sample groups 
(bars). Genes are ordered according to decreasing frequency in the total cohort. In A and B, all detected non-synonymous variants by the 
vendor supplied analysis pipeline are included.
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For BRAF (the third most mutated oncogene), 
a slightly higher variability in detected variants was 
observed compared to EGFR and KRAS. This included 
both codon 600 (38% of BRAF variants, 3.7% of 
adenocarcinomas, and 1.1% of SqCCs specifically) and 
codon 601 (5.4% of BRAF variants) variants known 
or suggested to be treatment predictive in malignant 
melanoma, but also variants in codons 466 (11%), 469 
(5.4%), and 594 (22% of BRAF variants) for which the 
treatment predictive value to BRAF inhibitors are not fully 
elucidated (Additional file 4). BRAF variants were more 
often found in older patients (>60 years), with only 13.5% 
of all detected variants in patients younger than 60 years.

NanoString ALK, RET, and ROS1 gene 
fusion analysis

The ability of the NanoString assay to identify gene 
fusions in ALK, RET and ROS1 was first successfully 
validated in four cell lines with known fusion gene 
rearrangements, HCC78 (ROS1-SLC34A2), KARPAS-299 
(ALK-NPM1), LC-2/ad (CCDC6-RET), and H2228 
(EML4-ALK). Next, gene fusion analysis was performed 
on RNA from FFPE tissue from 169 lung cancers in the 
prospective 533-sample cohort, which did not harbor 
mutations in EGFR, KRAS or BRAF (referred to as triple-
negative cases hereon) (Figure 1). NanoString analysis 
was restricted to cases with FFPE tissue, as the clinical 
handling of cytology specimens at local pathology 
departments did not include combined RNA and DNA 
extraction. Of the 169 analyzed cases (representing 87% of 
all triple-negative FFPE cases in the 533-sample cohort), 
34 hybridizations (20%) were deemed as failures based on 
too low signals from included housekeeping genes. The 
failure of these FFPE cases is likely due to extensive RNA 
degradation in the tissue blocks caused by the fixation 
process. During 2015, there was no standardization of the 
time for formalin fixation between different pathology 
departments in the healthcare region.

Interestingly, the proportion of inclusive NanoString 
cases was equivalent to the 17% of cases with an 
inconclusive ALK status by IHC and/or FISH in the 
total clinical cohort. However, there was no significant 
association between an inconclusive ALK IHC/FISH call 
with an inconclusive NanoString call (p=0.78, Fisher’s 
exact test), suggesting that: i) different degradation 
processes and/or technical issues are in action, and ii) that 
the methods may complement each other in detecting gene 
fusion events.

Among the 135 triple-negative cases successfully 
analyzed by the NanoString assay, gene fusions were 
detected in ten cases (7.4%); five (3.7%) ALK gene 
fusions (four EML4-ALK_E13:A20 and one EML4-
ALK_E6ab:A20 fusion), three (2.2%) RET fusions (two 
CCDC6-RET_C1:R12 and one novel fusion), and two 
(1.5%) ROS1 fusions (SLC34A2-ROS1_S4:R32 and SDC4-

ROS1_S2:R32) (Figures 3A-3C). All cases harboring 
gene fusions were adenocarcinomas, corresponding to 
15% of the 67 analyzed triple-negative adenocarcinomas, 
consistent with the literature [10]. All NanoString called 
ALK and ROS1 fusions were confirmed by clinical IHC 
and/or FISH data, and no ALK fusion positive case 
identified by FISH was missed by the NanoString assay. 
Three non-adenocarcinoma cases (two SqCC and one 
large cell neuroendocrine tumor) with positive ALK 
IHC staining, but inconclusive FISH calls, did not show 
gene fusions in the NanoString analysis (Figure 3A, 
pink labeled cases, lower left quadrant, all with tumor 
cell content >70%). Notably, all three cases showed high 
expression of both 3’ and 5’ probes of the ALK tyrosine 
kinase domain in the NanoString data (indicating lack of 
gene rearrangement, Figure 3D), suggesting that these 
ALK IHC stainings could represent false positive gene 
fusion calls (although treatment data is required to fully 
confirm such a hypothesis). Interestingly, despite their 
ALK IHC positive staining none of these three patients 
have so far received anti ALK therapy in the clinic.

In one sample we detected a probable RET fusion 
through the 3’/5’ NanoString ratio not targeted by a 
fusion specific NanoString probe (Figure 3C, ML00682). 
Complementary experimental RNA-based NGS analysis 
(ArcherDX, Boulder, CO, US), performed as previously 
described [9], identified the suspected fusion to be a 
TRIM24-RET fusion, confirming the NanoString assay’s 
ability to detect also novel fusions.

Co-occurrence of actionable mutations and gene 
fusions in a consecutive cohort of lung cancers 
referred to mutation and gene fusion screening

Integration of TST mutation data, ALK IHC/FISH, 
and NanoString ALK, RET, and ROS1 gene fusion analysis 
for the complete 533-sample prospective cohort is shown 
in Additional file 5.

To investigate the potential additional clinical 
yield of a combined TST and multiplexed gene fusion 
assay (NanoString) compared to the current targeted 
therapy options in the health care region (EGFR and ALK 
inhibitor treatment), we analyzed actionable alterations 
defined from the literature in the 533-sample cohort. First, 
we defined a set of both acknowledged and proposed 
actionable oncogene mutations in specific oncogenes 
(KRAS, EGFR, BRAF, PIK3CA, NRAS, ERBB2, MAP2K1, 
and AKT1) in addition to ALK, RET, and ROS1 gene 
fusions, using information from public sources [11] and 
reported studies [2, 12]. Next, we stratified the 533-sample 
cohort based on existence of these actionable alterations 
in individual cases, finding that 54% of all cases, 66% of 
adenocarcinomas, 13% of SqCCs and 56% of NSCLC-
NOS harbored ≥1 alteration (Figure 4A). Of these 
actionable variants, alterations in KRAS dominated in 
all subgroups, followed by EGFR, BRAF and PIK3CA 
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Figure 3: NanoString gene fusion analysis of 135 EGFR/KRAS/BRAF mutation negative tumors from a consecutive 
533 NSCLC cohort. (A) NanoString ALK gene fusion analysis of 135 tumors from the consecutive prospective cohort, and four cancer 
cell line controls included for reference. (B) NanoString ROS1 gene fusion analysis of the 135 tumors and four cell lines. (C) NanoString 
RET gene fusion analysis of the 135 tumors and four cell lines. One sample, ML00682 (lower right quadrant), displays a high 3’/5’ ratio 
but no elevated fusion specific signal, suggesting a fusion not included in the fusion specific probe set. In A to C, analyses were performed 
as described in Lira et al. [15], using the same thresholds (dotted horizontal and vertical lines). Briefly, based on the dual plotting of a gene 
fusion specific signal and the 3’/5’ expression ratio of probes located around the tyrosine kinase exon, a gene fusion positive case with a 
known fusion should be located in the upper right quadrant, while a gene fusion positive case without an included fusion specific probe 
should be located in the lower right quadrant. Negative cases should be located in the lower left quadrant. (D) Top panel shows an example 
of an ALK gene fusion positive adenocarcinoma identified by both FISH and NanoString analysis. Bottom panel shows a LCNEC case with 
a positive ALK IHC call, but inconclusive FISH, that do not display any fusion event based on NanoString analysis. The latter is based on 
the simultaneously high 3’ and 5’ expression of probes around the tyrosine kinase exon in the ALK gene (case corresponds to a pink labeled 
sample in panel A).
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(Figure 4B). Gene fusions accounted for 7% of actionable 
alterations in adenocarcinomas. While the majority of 
detected actionable variants appeared mutually exclusive 
across samples (Figure 4C), a number of cases showed 
multiple actionable variants, e.g., concurrent KRAS 
and PIK3CA mutations, concurrent KRAS and BRAF 
mutations, and concurrent KRAS/EGFR/BRAF mutations 
and ALK fusions. While the two former observations may 
be explained by tumor subclonality, the high proportion 

of the latter observation is intriguing given the reported 
near to mutual exclusiveness of these alterations [10, 13]. 
Possible explanations may be tumor subclonality, however 
technical/interpretation issues in the ALK diagnostic 
scheme cannot be excluded.

Second, we sought to determine the subset of 
patients with different histological subtypes that could 
be eligible for potential emerging treatments based 
on the defined actionable alterations (Figure 4D). In 

Figure 4: Integration of actionable mutations and gene fusions in the consecutive 533-sample cohort. (A) Proportion of 
cases with ≥1 actionable alteration in the total 533-sample cohort, adenocarcinomas (AC), SqCCs, and NSCLC-NOS. (B) Distribution of 
detected actionable variants according to the gene in which they fall for adenocarcinomas (AC, n=242 detected variants), SqCCs (n=12 
variants) and NSCLC-NOS (n=47 variants). (C) Heatmap describing defined actionable and non-actionable non-synonymous variants and 
gene fusions in investigated genes identified in each case. Each column represents a sample; each row represents a gene. Numbers and 
proportions displayed on the right axis correspond to the total cohort (533 samples). (D) Proportion of cases with actionable mutations in 
adenocarcinoma (AC, n=348 samples), SqCC (n=90 samples), and NSCLC-NOS (n=80 samples). In each pie chart, EGFR+ corresponds to 
the proportion of cases with an actionable EGFR mutation irrespective of other alterations, ALK+ corresponds to cases with an ALK gene 
fusion irrespective of other alterations, and KRAS+_only corresponds to cases with only an actionable KRAS mutation. Consequently, some 
BRAF mutated cases may for instance harbor also an actionable KRAS variant. In all panels, not all cases were analyzed for gene fusions by 
the NanoString assay; consequently these estimates (mainly ROS1 and RET) should be interpreted as low frequency proportions.
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adenocarcinoma, this analysis suggested that 10.6% 
(50.3% if including KRAS) of cases could be eligible 
for emerging targeted treatments, beyond the 15.3% 
of cases eligible for standard EGFR or ALK targeted 
therapy (Figure 4D). For SqCC, similar proportions were 
lower, 4.4% of cases (11.1% if including KRAS) could be 
eligible for emerging treatments, in addition to the 2.2% 
eligible for EGFR targeted therapy. Finally, for NSCLC-
NOS 2.5% of cases (45% with KRAS) could be eligible 
for novel/emerging targeted treatments, in addition to 
the 11.2% of cases eligible for standard EGFR or ALK 
targeted therapy.

DISCUSSION

In the era of personalized medicine accurate multi-
gene diagnostics is crucial. In the present study, we 
describe the clinical implementation of an NGS-based 
diagnostic framework and a parallel validation of a 
RNA based gene fusion assay for analysis of treatment 
predictive alterations in a prospective and consecutive 
clinical testing cohort of mainly advanced NSCLC patients 
analyzed during a single year within a regional health care 
region in a Nordic country (Sweden).

Together with several recent reports [2-8, 14-
16], our clinical validation and implementation of a 
commercial DNA amplicon-based NGS assay support the 
usage of this technique in routine clinical diagnostics of 
NSCLC  compared to previous single gene diagnostics 
also in smaller regional healthcare regions, based on 
concordance between techniques (99% in this study), 
turnaround time, sample success rate over time, accuracy, 
limit of detection, and cost. In agreement with both 
Fisher et al. [5] and Hagemann et al. [2], the success rate 
and clinical feasibility of our NGS framework is highly 
dependent on central pathological review by experienced 
diagnostic pathologists together with standardized and 
quality controlled tissue handling, to ensure sufficiently 
high proportions of malignant cells in specimens with 
adequate nucleic acid quality. A challenge for regional/
county hospitals may be the bioinformatics aspect of NGS. 
Using the TST vendor-supplied bioinformatics pipeline we 
were able to detect and validate by orthogonal methods 
known activating driver mutations in EGFR, KRAS 
and BRAF below 5% VAF in cases with ≥10% tumor 
cell content by routine pathological assessment. This 
sensitivity was especially important for analysis of EGFR 
p.T790M mutations in patients undergone re-biopsy after 
progression on first generation EGFR inhibitors. For all 
such patients, we observed tumor subclonality (inferred 
based on differences in VAF) between p.T790M mutations 
and original activating mutations (p.T790M always with 
a lower VAF). In agreement with Fisher et al. [5], we did 
observe cases where the vendor-supplied bioinformatics 
pipeline failed to adequately annotate complicated 
insertions and deletions in, e.g., EGFR (exon 19 

deletions and exon 20 insertions), calling for continuous 
development of these pipelines and/or usage or orthogonal 
data analysis protocols. Detection of larger insertions and 
deletions is challenging using amplicon-based techniques, 
especially in cases with low tumor cell content or tumor 
subclonality. In our consecutive 533-sample cohort we 
identified EGFR exon 19 deletions down to 8% VAF, and 
participation in the ESP Lung Quality Assessment Scheme 
[17] and analysis of samples referred to testing after 
December 2015 also confirmed detection of EGFR exon 
20 insertions down to 7% VAF. We believe these findings 
show that while additional work is needed for challenging 
indels, vendor supplied analysis pipelines to us appear 
adequately robust and sensitive for routine clinical use in 
regional healthcare units lacking strong bioinformatical 
infrastructure.

The low number of detected variants per sample in 
this study is consistent with similar targeted NGS-based 
reports [5, 16] and the gene driver selection process and 
pan-cancer approach of TST and similar gene panels 
(like the Ion Torrent AmpliSeq Colon and Lung panel). 
Ethnicity plays a role in the prevalence of certain genetic 
markers in NSCLC [18]. For several of the investigated 
genes (e.g. TP53, PTEN, EGFR, KRAS, ERBB2) the 
observed mutation patterns and frequencies in our 
Swedish cohort agree with previous reports on clinical 
patient cohorts (predominantly comprising of advanced 
cancers) of similar ethnicity and/or geographic origin 
(Scandinavia) [19–25], but also with cohorts consisting of 
selected non-consecutive patients with operable disease 
[26, 27]. Alteration frequencies in the NSCLC-NOS 
subgroup are difficult to interpret and compare, as this 
subgroup comprises of a mixture of different histological 
subtypes (a majority is expected to be adenocarcinoma) 
due to mainly insufficient tissue material (>50% of 
NSCLC-NOS cases were cytology specimens) that 
precluded comprehensive histological subtyping by IHC. 
A few notable discrepancies in our cohort are apparent. 
For PIK3CA, we observe a considerably lower mutation 
rate (only 2%) in SqCC cases compared with literature 
reports of 7-16% [16, 19, 26]. The cause of this difference 
is difficult to determine without extensive comparison of 
the tested clinical SqCC cohort versus a more population-
based cohort from our region. For BRAF, we observe a 
high general mutation frequency in adenocarcinomas 
(9%), with a 3.7% V600 mutation rate. While the overall 
mutation frequency is clearly higher compared to some 
recent studies [19, 28, 29], it is in line with others using 
e.g. the Ion Torrent AmpliSeq Colon and Lung panel [16]. 
Consistently, the proportion of specific V600 alterations 
was slightly higher in our clinical testing cohort than 
previous literature reports [19, 28, 29] (3.7% versus ~2%).

The main purpose of NGS (and multiplexed gene 
fusion assays in general) in the clinic is to increase the 
list of actionable variants for a patient, without increasing 
the cost, time and tissue requirement compared to serial 
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single gene testing. In addition, occurrence and/or co-
occurrence of mutations in tumor suppressor genes like 
TP53 and STK11 with typical oncogene driver mutations 
in lung cancer have been suggested to have implications 
for prognosis and treatment response [30–32], which 
may be of complimentary clinical value. Our analysis of 
533 consecutive NSCLCs screened during a single year 
showed considerable differences between histological 
subgroups in the proportion of cases harboring a known 
or suggested actionable variant, with adenocarcinomas 
having the greatest potential benefit from this type of 
analyses (Figure 4). We acknowledge that inclusion of 
KRAS as an actionable gene in this type of analysis is not 
unproblematic (and hence we report frequencies with and 
without KRAS). For SqCC, results must be interpreted with 
great care given the small number of cases and individual 
mutations. Irrespectively, despite the individually low 
frequency of many potentially actionable variants defined 
in the current study (e.g. ERBB2, BRAF, RET, ROS1, 
PIK3CA), the high incidence of lung cancer implies that 
a large population worldwide is affected, supporting 
clinical trials or routine molecular screening programs in 
the disease [19].

ROS1 gene fusions have been shown to be 
treatment predictive for ALK-inhibitor drugs [33]. In our 
investigated cohort of triple-negative NSCLCs (EGFR, 
KRAS, and BRAF mutation negative) the number of cases 
with either ROS1 or RET fusions were similar to that of 
ALK-positive cases, supporting the need of multiplexed 
gene fusion diagnostics in NSCLC and adenocarcinoma 
specifically. For the non-adenocarcinoma cases that 
were ALK positive by IHC in the triple-negative cohort, 
NanoString analysis suggested overexpression of the entire 
gene by some other mechanism than gene rearrangement 
(see, e.g., Figure 3D). This more detailed view of gene 
fusion events supports the usage of multiplexed methods 
like NanoString as a complementary orthogonal method, 
or even replacement, for IHC/FISH when possible. 
Moreover, due to the flexibility and capacity of the 
NanoString technology, additional gene fusions as well 
as MET exon 14 skipping events can easily be added in 
a design update (see e.g. [34]). Finally, the experimental 
TAT for the NanoString assay may be very short, 
potentially down to three working days including nucleic 
acid extraction (Additional file 2).

While the introduction of NGS in the clinical setting 
represents a major leap forward; current commercial 
amplicon-based panels (e.g. the TST and Ion Torrent 
Ampliseq Colon and Lung panels) are biased towards 
analyzing hotspot alterations in a limited set of oncogenes 
often selected through a pan-cancer approach. To some 
extent, these panels offer the possibility to detect intrinsic 
or acquired resistance mechanisms to targeted treatment, 
mainly p.T790M (as shown in this study) and p.C797S 
mutations in EGFR (first to third generation inhibitors) 
and specific gatekeeper mutations in ALK (like p.L1196M 

and p.G1269A), in patients re-biopsied after treatment 
failure. However, most panels (including TST and 
frequently used Ion Torrent panels) are less well suited 
to detect EGFR/ALK resistance mechanisms caused by 
alterations in other genes. Here, panel design and size 
constraints, but also problems in calling copy number 
alterations (like MET amplification as a mechanism 
of resistance to EGFR inhibitors) reliably in tumors 
with considerable non-malignant infiltration represent 
limiting factors. Therefore, diagnostic platforms based 
on, e.g., hybrid capture methods of either DNA alone (see 
e.g. [35, 36]) or DNA and RNA combinations (e.g. the 
Illumina TruSight Tumor 170 panel and the AmpliSeq 
based Thermo Fisher Oncomine™ Focus/Comprehensive 
panels) that allow considerably more sequence to be 
analyzed could be the next preferable step also outside 
large comprehensive cancer centers. These assays could 
allow simultaneous detection of mutations, gene fusions, 
and copy number alterations (like drug targetable MET 
and FGFR1 amplifications) in a large number of genes. 
However, considering the observed failure rate of 20% for 
the NanoString RNA gene fusion assay in our prospective 
clinical samples, it remains to be shown that RNAseq 
approaches can do better in daily clinical practice. Finally, 
while tissue-based diagnostics is the cornerstone of 
diagnostic tumor pathology today, less invasive sampling 
methods like blood-based assays targeting e.g. circulating 
tumor DNA, or analysis of exhaled breath condensates 
[37, 38] are increasingly gaining interest as they could 
facilitate a more active and less invasive treatment 
monitoring. However, these applications may require 
more sensitive sequencing techniques, different logistics, 
and optimized sample preparations than presently used in 
most local diagnostic pathology departments.

MATERIALS AND METHODS

Ethics statement

The study was approved by the Regional Ethical 
Review Board in Lund, Sweden (Registration no. 
2014/748 and 2015/575). By decision of the Ethical 
Review Board, specific written informed consent from 
patients were not required. No personal data was used for 
this study. In accordance with the decision of the Ethical 
Review Board, patients were informed about the study 
through local advertisement in news media in the region.

Tumor validation cohort

A tumor cohort comprising of 40 NSCLCs, 22 
CMMs, and 19 colon cancers with available BRAF, KRAS, 
NRAS, and/or EGFR mutational data from routine clinical 
analysis within the southern health care region of Sweden 
using single gene assays (see below) were collected 
(Table 1). Tissue types from included patient tumors 
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included routine FFPE sections from resected material 
or needle biopsies (typically 6x5um sections), sections 
from cytology cellblocks (typically 10x5um or 10x10um 
sections), or DNA extracted from cytology slides (see 
below).

Consecutive prospective tumor cohort

In the southern Swedish health care region 
(comprising close to 1.8 million inhabitants), ~800 
new lung cancer cases (of any stage and histology) are 
identified annually. A consecutive prospective clinical 
testing cohort of 533 lung cancers, representing 526 unique 
patients, subjected to routine NGS-based mutational 
analysis within the southern health care region of Sweden, 
including two university-affiliated and four regional 
pathology departments, with additional samples from a 
third university-affiliated pathology department outside 
the healthcare region were collected between January 7 to 
December 31 2015 (Table 1, Figure 1). During this period 
a reflex testing procedure was allowed in the health care 
region, meaning that all lung cancers that were not SCLC 
or carcinoids could be sent for clinical mutation testing, 
including also some early stage tumors. All cases were 
analyzed at an established central NGS laboratory within 
the Division of Oncology and Pathology, Department 
of Clinical Sciences Lund, Lund University through 
the Center for Molecular Diagnostics (www.skane.se/
cmd). All identified mutations were reported back to the 
diagnostic pathologists in a molecular report by the central 
NGS laboratory. During the time period, only actionable 
mutations in EGFR and hotspot mutations in KRAS were 
included in the final clinical report (signed by a diagnostic 
pathologist) returned to the treating clinician. Data on 
lung cancer histology and tumor stage was obtained from 
patient charts and in accordance with the classification 
scheme used at the time of diagnosis. Tissue sources 
included primary lung tumors, lymph node metastases, or 
extranodal distant metastases. Sample types from included 
patient tumors were either tissue blocks or cytology 
specimens.

Tissue selection for routine clinical 
mutation analysis

Tumor morphology was determined by the 
clinical pathologist. In cases with apparent keratinizing 
SqCC, IHC was normally not performed. In case of 
morphologically apparent adenocarcinoma, the standard 
immunohistochemical panel included at least TTF-1, 
while in case of NSCLC without clear morphology the 
panel included at least TTF-1 and either CK5 or p40. 
If these markers were negative, further stains including 
CK7 or a broad cytokeratin were performed. Also, the 
morphological appearance, patient history and clinical 
and radiological findings guided the initial selection of 

stainings. Neuroendocrine markers were added in cases 
with neuroendocrine morphology. If a diagnosis of primary 
lung cancer was uncertain, or if the DNA content and/or 
quality was to low for NGS-analysis (requiring real-time 
PCR analysis), the case was excluded from this study 
(Figure 1). During the study period, encountered cases 
of pulmonary adenocarcinoma, SqCC, adenosquamous 
carcinoma, sarcomatoid carcinoma, NSCLC-NOS, large 
cell carcinoma and LCNEC based on biopsy or cytology 
were unselectively tested for predictive molecular 
alterations.

The suitability of a material for mutational analysis 
was assessed by a pathologist based on hematoxylin and 
eosin (H&E) stains of archived FFPE tissue blocks and 
/ or cytology specimens. A representative area with high 
frequency of malignant cells was identified, from which 
sections for mutational analysis was taken followed by 
new H&E sections to ensure that a representative material 
had been taken. An estimate of tumor cell content was 
made by a diagnostic pathologist, with a requirement of 
≥10% for the mutational analysis. In addition to FFPE 
tissue blocks, tissue material for mutation analysis could 
also originate from cytology slides, or sections from 
centrifuged and paraffin embedded cytology material (cell 
blocks). Sections were stored at -20°C until nucleic acid 
extraction, due to logistical batching with frozen DNA 
aliquots from cytology specimens.

In case of preparation of cell lysate from cytology 
slides, a representative tumor cell rich area of a cytology 
slide was identified, the slide was scanned (to enable 
future clinical review), and the glass cover slip was 
removed using xylene followed by a rehydration step in 
ethanol. Thereafter, the cells were lysed using 180ul ATL 
Buffer from Qiagen (Qiagen, Hilden, Germany). DNA was 
extracted from the lysate within 24h and stored at -20°C.

DNA and RNA extraction

DNA and RNA for NGS-based mutation analysis 
and NanoString (Seattle, WA, US) gene fusion analysis 
were extracted using the Qiagen AllPrep kit for FFPE 
tissue and automated on the QIAcube instrument (Qiagen). 
The protocol was modified with an extended proteinase 
K digestion (overnight) for the DNA extraction to obtain 
higher DNA yields. DNA from cytology slides was 
extracted using the QiaAmp DNA Micro kit (Qiagen). 
RNA was not extracted from cytology specimens, as 
these extractions were not performed at the central NGS 
laboratory in contrast to FFPE extractions.

Mutational validation techniques

Mutational status for hotspot mutations in NRAS, 
KRAS, BRAF, and EGFR were obtained for the validation 
cohort using pyrosequencing for EGFR or real-time PCR 
for KRAS and NRAS (Entrogen, Woodland Hills, CA, 
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US) and BRAF (Qiagen RGQ Therascreen®) performed 
and validated for routine clinical diagnostics within the 
health care region (Region Skåne, Sweden). Independent 
validation analysis of NGS results for: i) samples with 
very low variant allele frequencies (VAFs) in EGFR, 
KRAS, or BRAF (VAF <5%) or ii) randomly selected 
EGFR and KRAS mutation negative cases on a regular 
basis was performed using Qiagen Therascreen® RGQ 
PCR Kits for EGFR, KRAS, and BRAF according to the 
manufacturer's protocol.

NGS-based mutational analysis

NGS-based mutation analysis was performed using 
the Illumina TST panel on a MiSeq instrument according 
to manufacturer’s instructions (Illumina, San Diego, CA, 
US). The TST panel is an exon-focused panel, allowing 
theoretical identification of all variants in screened exons, 
opposed to a specific hotspot mutation panel. Analyzed 
regions included a selected set of complete exons in 26 
genes: AKT1 (exon 2), ALK (exon 23), APC (exon 15), 
BRAF (exons 11, 15), CDH1 (exons 8, 9, 12), CTNNB1 
(exon 2), EGFR (exons 18, 19, 20, 21), ERBB2 (exon 
20), FBXW7 (exons 7, 8, 9, 10, 11), FGFR2 (exon 6), 
FOXL2 (exon 1), GNAQ (exons 4, 5, 6), GNAS (exons 
6, 8), KIT (exons 9, 11, 13, 17, 18), KRAS (exons 1, 2, 
3, 4), MAP2K1 (exon 2), MET (exons 1, 4, 13, 15, 16, 
17, 18, 20), MSH6 (exons 5), NRAS (exons 1, 2, 3, 4), 
PDGFRA (exons 11, 13, 17), PIK3CA (exons 1, 2, 
7, 9, 20), PTEN (exons 1, 2, 3, 4, 5, 6, 7, 9), SMAD4 
(exons 8, 11), SRC (exon 10), STK11 (exons 1, 4, 6, 8), 
and TP53 (exons 2, 3, 4, 5, 6, 7, 8, 9, 10, 11). Prior to 
library preparation a quality control qPCR assay was 
performed as described in the TST instructions. In the 
TST assay, sample DNA amount is not fixed. Instead, 
the quality control assay determines a sample volume 
used as assay input (maximum of 2x10ul) based on a 
calculated delta Ct value (higher values implies poorer 
DNA). Thus, actual DNA input in the NGS assay may 
vary dramatically between samples of high quality (e.g. 
16x dilution) to samples with low quality (no dilution). 
Routinely, samples with a quality score of 7-8 could be 
analyzed by NGS (recommended Illumina upper threshold 
was 6). Samples with higher delta Ct scores were directly 
assayed by the Qiagen EGFR Therascreen assay to reduce 
the number of inconclusive NGS runs. Four to six samples 
were multiplexed using the Illumina V2 sequencing 
chemistry, while 7-12 samples were multiplexed if 
using the V3 sequencing chemistry. Alignment, quality 
filtering, variant calling, and variant annotation were 
performed as described [9], using the vendor supplied 
data analysis pipeline. Base coverage >1000X were used 
as a sequencing quality control threshold for variant 
calling. Limit of detection for variants were not fixed in 
percentage, as the main variant filtering step in the variant 
calling was the requirement of occurrence of a variant in 

both TST library pools for a sample (see www.illumina.
com for explanation of the bidirectional design of the TST 
assay). Effectively, a limit of detection of 4% were set in 
the clinical context, as all such hotspot variants in EGFR, 
BRAF, and KRAS could be validated by a real-time PCR 
assay. Detected TP53 variants were screened against the 
IARC database [39], with no variants being annotated as 
a known polymorphism, and 95% of annotated variants 
being considered as deleterious by both the AVGVD and 
SIFT prediction tools.

Actionable mutations (defined in [2, 11, 12]) in 
KRAS (codon 12, 13, and 61 variants), EGFR (exon 19 
deletion, exon 20 insertion, T790M, codon 719 (exon 
18), 858, and 861 variants), BRAF (codon 600 variants), 
PIK3CA (codon 542, 545, 1047, and 1047 variants), NRAS 
(codon 12, 13, and 61), ERBB2 (exon 20 insertions), 
MAP2K1 (codon 56 and 57 variants), and AKT1 (L52R 
variant) and gene fusions in ALK, RET, and ROS1 were 
summarized for each sample.

NanoString gene fusion analysis

Analysis of ALK, RET, and ROS1 gene fusions 
in FFPE tissue were performed using a RNA-based 
NanoString nCounter Elements assay. For each gene, a 
probe set was designed using the approach reported in 
Lira et al. [15] using two sequence-specific probe cocktails 
consisting of a mixture of 5’ capture and 3’ reporter 
probes with a target specific sequence. In addition to the 
3’ 5’ approach, fusion specific target probes spanning 
the known exon-exon junction of fusion transcripts in 
the ALK, RET and ROS1 genes were added based on the 
toehold approach established by NanoString and reported 
by Zhang et al. [40] (see this study for exact listing of 
specific fusions analyzed). This dual design allows gene 
fusions to be detected by the 3’/5’ ratio difference alone 
(if the specific gene fusions is not included among the 
toehold designed probes), or by both the 3’ 5’ probes 
and expression of a specific toehold probe (see Lira 
et al. [15] for details). All probes where synthesized 
by Integrated DNA Technology (IDT Inc., Coralville, 
USA). A RNA pool of the HCC78 (ROS1-SLC34A2), 
KARPAS-299 (ALK-NPM1), LC-2/ad (CCDC6-RET), 
and H2228 (EML4-ALK) cell lines were used as controls 
on all NanoString Elements cartridges, and prepared as 
described [9]. 100-250 ng of total RNA was hybridized 
for each sample for 24h at 67°C. Data analysis, including 
background correction, scaling based on positive controls, 
calculation of 3’/5’ fusion ratios, and thresholds for calling 
gene fusions were performed/used as described by Lira et 
al. [15] using the R statistical language [41]. An analysis 
was called as failure if its H/Hi ratio as described by Lira 
et al. [42] was >8. In a series of dilution experiments 
using clinical tumors with different gene fusions and 
pathologically estimated tumor percentages, we estimated 
the limit of detection to be at least 5% for the NanoString 
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assay, i.e., the assay may detect a fusion in a sample with 
≥5% tumor cells mainly due to the order of expression of 
a gene fusion on the RNA level.

ALK and ROS1 IHC and/or FISH analyses

ALK IHC and/or ALK FISH data was available for 
98.2% of all NanoString analyzed cases as part of the 
routine clinical diagnostic scheme in lung cancer within 
the health care region. ALK IHC was performed using 
the D5F3 antibody (Ventana Medical Systems, Tucson, 
AZ, US), and ALK FISH analysis using the Vysis 
ALK break apart FISH probe (Vysis, Abbot molecular, 
Des Plaines, IL, US) according to manufacturers’ 
instructions. ROS1 gene fusions were validated using 
the Vysis ROS1 break apart FISH probe according to 
manufacturers’ instructions. RET fusions were not 
validated by FISH, as no validated assay was available 
in collaborating pathology departments.

CONCLUSIONS

The present study describes a clinical 
implementation of NGS-based diagnostics for 
analysis of treatment predictive mutations in NSCLC, 
demonstrating that such methods can be incorporated 
into daily clinical practice in regional healthcare regions 
with constraints in budget, personnel and infrastructure. 
Although mutation profiles in our prospective Swedish 
cohort, comprising mainly of advanced stage patients, 
does not differ considerably from other Western patients 
some differences exist. Importantly, multiplexed gene 
diagnostics provide information for both current and 
emerging treatments, as well as insights into mechanisms 
of treatment resistance to targeted therapy. In order to 
allow a more personalized cancer care for lung cancer 
patients, innovative clinical trials and programs should 
take advantage of improvements in clinical diagnostics 
through these multigene assays to determine their actual 
clinical benefit.
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ABSTRACT

Introduction: Large cell lung cancer (LCLC) and large cell
neuroendocrine carcinoma (LCNEC) constitute a small
proportion of NSCLC. The WHO 2015 classification guide-
lines changed the definition of the debated histological
subtype LCLC to be based on immunomarkers for adeno-
carcinoma and squamous cancer. We sought to determine
whether these new guidelines also translate into the tran-
scriptional landscape of lung cancer, and LCLC specifically.

Methods: Gene expression profiling was performed by
using Illumina V4 HT12 microarrays (Illumina, San Diego,
CA) on samples from 159 cases (comprising all histological
subtypes, including 10 classified as LCLC WHO 2015 and 14
classified as LCNEC according to the WHO 2015 guidelines),
with complimentary mutational and immunohistochemical
data. Derived transcriptional phenotypes were validated in
199 independent tumors, including six WHO 2015 LCLCs
and five LCNECs.

Results: Unsupervised analysis of gene expression data
identified a phenotype comprising 90% of WHO 2015
LCLC tumors, with characteristics of poorly differentiated
proliferative cancer, a 90% tumor protein p53 gene
(TP53) mutation rate, and lack of well-known NSCLC
oncogene driver alterations. Validation in independent
data confirmed aggregation of WHO 2015 LCLCs in the
specific phenotype. For LCNEC tumors, the unsupervised
gene expression analysis suggested two different tran-
scriptional patterns corresponding to a proposed genetic
division of LCNEC tumors into SCLC-like and NSCLC-like
cancer on the basis of TP53 and retinoblastoma 1 gene
(RB1) alteration patterns.

Conclusions: Refined classification of LCLC has implica-
tions for diagnosis, prognostics, and therapy decisions. Our
molecular analyses support the WHO 2015 classification of
LCLC and LCNEC tumors, which herein follow different
tumorigenic paths and can accordingly be stratified into
different transcriptional subgroups, thus linking diagnostic
immunohistochemical staining–driven classification with
the transcriptional landscape of lung cancer.

� 2017 International Association for the Study of Lung
Cancer. Published by Elsevier Inc. This is an open access
article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: Lung cancer; Large cell lung carcinoma; LCNEC;
Mutation; Gene expression; WHO classification

Introduction
NSCLC accounts for most lung cancers and is

dominated by the histological subtypes adenocarci-
noma, squamous cell carcinoma (SqCC), and large cell
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carcinoma with or without neuroendocrine features
(LCNEC and LCLC, respectively) LCLC and LCNEC
together account for 2% to 3% of all cases depending
on cohort demographics and classification scheme.1 In
the WHO 2004 classification of lung cancer, LCLC was
defined as an undifferentiated NSCLC lacking archi-
tectural and cytologic features of SCLC without glan-
dular or squamous differentiation, whereas LCNEC
was defined as an LCLC with neuroendocrine
morphological features and at least one positive result
of immunohistochemical (IHC) staining for a neuro-
endocrine marker.2

Controversy has existed as to whether LCLCs actually
represent a truly distinct biological entity or are merely a
group of very poorly differentiated tumors of other
NSCLC histological subtypes (adenocarcinoma and/or
SqCC).3,4 The 2015 WHO classification scheme regrouped
previously histologically defined LCLCs that express
pneumocyte markers (thyroid transcription factor 1
[TTF1] and napsin A) as adenocarcinoma and those that
test positive for a squamous marker (p40, CK5/6, or p63)
as nonkeratinizing or basaloid SqCC, leaving surgically
resected tumors lacking expression of these markers
(referred to as marker null) as LCLCs.5 Furthermore,
LCNECs were separated from LCLCs because they instead
share many similarities with neuroendocrine SCLC on the
morphological, protein, mutational, DNA methylation,
and transcriptional levels, albeit with some heterogeneity
(see Rossi et al.,6 Clinical Lung Cancer Genome Project
and Network Genomic Medicine,7 and Simbolo et al.12 and
the references therein).6–12 Consistently, in the WHO
2015 update, LCNEC tumors have now been labeled
neuroendocrine together with SCLC.5

Accurate distinction of the histological subtypes is
of major clinical relevance. For SqCC, adenocarcinoma,
and neuroendocrine tumors (LCNEC or SCLC),
subtype-directed diagnostics and therapeutics are
widely established. By the refined WHO 2015 classi-
fication, a minimization of the remaining marker-null
LCLC group has been achieved. Recent studies have
suggested poorer outcome for marker-null LCLC
cases,3,8 whereas others have not found this associa-
tion.13,14 Notably, all studies are still based on limited
retrospective patient cohorts, which may explain the
discrepancies. In advanced disease, the LCLC marker-
null counterpart, NSCLC not otherwise specified, has
been reported to have a worse patient outcome.15

LCLC tumors remain fairly uncharacterized at the
molecular level by high-dimensional genomic tech-
niques, especially considering the otherwise strong
molecular efforts made in the WHO 2015 classification
scheme. Recent sequencing studies have demonstrated
differences in oncogene mutation frequencies between
WHO 2004 LCLC tumors expressing adenocarcinoma

or SqCC markers and marker-null cases.3,8,14,16 On the
transcriptional level, no studies have thus far resolved
the heterogeneity previously suggested for the LCLC
group. Importantly, only with an improved molecular
understanding can patients with marker-null LCLC
benefit from the growing number of targeted treat-
ments adopted in lung cancer.

In this study, we therefore aimed to investigate the
transcriptional landscape of LCLC and LCNEC tumors
in relation to other histological subgroups of lung
cancer. On the basis of unsupervised analysis of global
gene expression patterns in 159 surgically resected
tumors we demonstrate a WHO 2015 LCLC tran-
scriptional phenotype. Our results link the recent lung
cancer classification scheme with the transcriptional
landscape of the disease, now defining the poorly
differentiated marker-null LCLC group as an entity
with a specific gene expression phenotype (GEP).

Materials and Methods
Patient Material Discovery Cohort

A total of 159 patients with early-stage lung cancer
surgically treated at the Skåne University Hospital in
Lund, Sweden, were collected. A total of 116 cases have
been described in previous studies8,10,17 (Table 1,
Supplementary Table 1, and Supplementary Methods).
Classification of LCLC and LCNEC was originally
performed according to the WHO 2004 scheme2 and
later updated to the WHO 2015 scheme.5

Ethics Statement
The study was approved by the Regional Ethical

Review Board in Lund, Sweden (registration nos. 2004/
762, 2008/702, and 2014/748).

Reclassification of LCLC by IHC Staining
Lung cancer cases with neuroendocrine morpholog-

ical features that were classified as LCLC according to
the WHO 2004 guidelines were evaluated for IHC
staining of the neuroendocrine markers chromogranin A,
synaptophysin, and CD56 (see Karlsson et al.8 and
Supplementary Methods). WHO 2004–classified LCLC
cases without neuroendocrine features were analyzed
for IHC staining of CK5/P40 (squamous cell markers)
and TTF1/napsin A (adenocarcinoma markers) as
described in the Supplementary Methods and in
Karlsson et al.,8 Micke et al.,18 and Brunnström et al.19 to
classify them according to the WHO 2015 guidelines. No
LCLC case was classified as the WHO 2015
uncertain phenotype thanks to successful stains of all
cases. In addition, LCNEC cases were also analyzed by
retinoblastoma 1 (RB1) immunohistochemistry (see
Supplementary Methods).
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Global Gene Expression Analysis Discovery
Cohort

RNA and DNA from fresh frozen tissue were extrac-
ted with the Qiagen Allprep extraction kit (Qiagen,
Hilden, Germany). Gene expression data for 43 of the
cases were generated by using the Illumina HT12 V4
microarrays (Illumina, San Diego, CA) at the Swegene
Center for Integrative Biology at Lund University. Gene
expression data were pooled with previously reported
data for 116 cases analyzed by the same expression
platform10 as described (see Supplementary Methods)
and is available as Gene Expression Omnibus series
GSE94601. Consistency in pooling of the two cohorts
was confirmed by principal component analysis20 and
analysis of 16 overlapping technical replicate samples
between the two cohorts (see Supplementary Fig. 1).
Consensus clustering21 was performed as previously
described22 on mean-centered data (centering across
samples) by using probe sets with different log2 SD
cutoffs (see Supplementary Table 1). Differentially
expressed probe sets between subgroups were identified

by significance analysis of microarrays with a false
discovery rate threshold of 1%. For independent vali-
dation of identified transcriptional subgroups, gene
expression centroids were created as mean averages for
each gene across all samples in the respective subgroup,
as described.23

In addition, tumors were also scored according to six
expression metagenes in lung cancer representing
different biological processes and reported GEPs.10,24,25

Functional classification was performed as described in
Supplementary Methods.

Gene Expression Analysis Validation Cohort
Validation of gene expression subgroups was per-

formed in data provided by Djureinovic et al.26 (see
Supplementary Methods). Histological classification of
the samples was updated according to the WHO 2015
guidelines as previously described.18

Mutational Analysis
All cases were analyzed by the Illumina TruSight Tumor

26-genenext-generation sequencing (NGS)panel (Illumina),
as described.8 In addition, LCNEC cases were screened for
retinoblastoma 1 gene (RB1) mutations by using a custom-
designed bidirectional NGS panel (Illumina).

Results
IHC Reclassification of WHO 2004 LCLC

Thirty-three lung cancer cases classified as LCLC ac-
cording to the WHO 2004 guidelines were included in
the discovery cohort, of which 70% were reclassified as
variants of adenocarcinoma or SqCC on the basis of the
WHO 2015 guidelines. Specifically, 19 cases (58%) were
reclassified as adenocarcinoma on the basis of positive
expression of TTF1/napsin A, four (12%) were reclas-
sified as SqCC on the basis of positive expression of CK5/
P40, and 10 (30%) did not express any of these IHC
markers (hereon referred to as marker-null cases) (see
Table 1).

Unsupervised Gene Expression Analysis Stratifies
LCLC in Accordance with Immunomarker
Expression

To investigate whether the WHO 2015 guidelines
translated into a better transcriptional subgrouping of
LCLC, we performed unsupervised consensus clustering
of a discovery cohort comprising 159 lung cancers of all
histological subtypes, including 33 lung cancer cases that
were classified as LCLCs and 14 classified as LCNECs
according to the WHO 2004 guidelines. We first per-
formed iterative consensus clustering without respect to
sample annotations by using variable number of genes
(Illumina probes displaying large variation in expression

Table 1. Patient Characteristics and Clinicopathological
Data

Variable Total Cohort LCLC

No. of patients 159 47
Histological subtype
Adenocarcinoma 83 —

Squamous cell carcinoma 26 —

SCLC 3 —

LCLCa 33 33
LCNEC 14 14

LCLC immunomarker profile
(excluding LCNEC)

Adenocarcinoma-like — 19 (58%)
Squamous cell carcinoma–like — 4 (12%)
Marker null — 10 (30%)

Tumor stage
I 120 (76%) 24 (51%)
II 27 (17%) 16 (34%)
III 8 (5%) 6 (13%)
IV 2 (1%) 1 (2%)

Smoking history
Never-smokers 19 0
Smokers 114 23
Not available 26 24

Sex
Female 85 24
Male 73 23

Median age (range), y 67 (34–84) 63 (34–77)
Patients evaluable for
Gene expression 159 47
Mutations

Note: LCLC refers to the WHO 2004 classification.
aBasaloid (n ¼ 6) and lymphoepithelioma-like (n ¼ 1) cases are included in
the LCLC sample numbers.
LCLC, lung cell lung cancer; LCNEC, large cell neuroendocrine carcinoma.
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across tumors [range 300–12581]) and evaluated cluster
solutions (k ¼ 5–11) to investigate sample cluster sta-
bility versus gene selection. Stable sample clusters
formed across a wide range of different gene sets for
different cluster solutions, indicating that gene selection
has less influence on sample grouping in this cohort
(Supplementary Fig. 2A). A similar stability was also
observed when clustering only WHO 2004 LCLC and
LCNEC cases separately (Supplementary Fig. 2B).

Next, we performed an in-depth comparison of
unsupervised transcriptional subgroups with sample
molecular and clinicopathological data. Acknowledging
that the histological subtypes of lung cancer strongly
influence the transcriptional landscape7 and that sub-
groups within the histological subtypes likely exist, we
chose a 10-group consensus cluster solution (k ¼ 10
with 2730 Illumina probes, corresponding to a log2ratio
standard deviation cutoff of 0.5) to be able to also study
characteristics for minor subgroups. Consistent with
previous studies,7,27 we observed a clear separation of
adenocarcinoma, SqCC, and SCLC cases into subclusters
driven by specific transcriptional programs (Fig. 1). In
agreement with recent studies,7 LCNEC tumors clustered
strongly (79% of cases) with SCLC tumors, forming a
neuroendocrine subcluster (see Fig. 1). For LCLC, 84% of
the WHO 2004 cases reclassified as adenocarcinoma-like
clustered in an adenocarcinoma-dominated subcluster,
whereas 50% of the LCLC SqCC-like cases clustered in an
SqCC-dominated subcluster (see Fig. 1). Notably, 90% of
marker-null cases (nine of 10) aggregated in a separate
transcriptional cluster (see Fig. 1 [cluster 8]), hereon
referred to as the marker-null–enriched subtype.

To investigate the robustness of the marker-null–
enriched subtype in the selected consensus clustering
solution, we applied histological annotations to the
previously performed iterative consensus clustering
(varying number of genes and cluster solutions). Reas-
suringly, the marker-null subtype was present in all
analyses when six consensus clusters or more were
used (Supplementary Fig. 3A). Similarly, performing
consensus clustering in only the LCLC (WHO 2004) and
LCNEC tumors also identified the marker-null cases as a
separate distinct cluster (Supplementary Fig. 3B).
Together, these results indicate that we identified, within
a general lung cancer population, stable transcriptional
subgroups describing LCLC and LCNEC in accordance
with the WHO 2015 classification.

Molecular and Clinicopathological
Characteristics of LCNEC Tumors

The LCNEC/SCLC-dominated tumor cluster (cluster 3
in Fig. 1) was on the transcriptional level characterized
by high expression of neuroendocrine genes,
proliferation-related genes, and gene clusters 11 and 8

metagene/Metacore (potentially representing an SRY-
box 2 transcription factor–driven gene cluster based on
Metacore analysis) and by lower expression of the
napsin A/surfactant metagene and gene clusters 2 and 9
metagene/Metacore (potentially representing a MYC
transcription factor driven gene cluster based on Meta-
core analysis) (Figs. 1 and 2 and Supplementary Fig. 4).
In tumor cluster 3, tumor protein p53 gene (TP53) and
RB1 mutations were found in 91% and 82% of LCNEC
tumors, respectively, with RB1 mutations always
concurrently with TP53 mutations, and 91% of cases
showed absent RB1 protein expression.

Only three LCNEC tumors were not present in the
neuroendocrine cluster despite IHC expression of one or
more tested neuroendocrine markers. Interestingly, two
of three outlier cases showed distinct napsin A immu-
nostaining, with the third case showing some focal
positive cells (all three cases were TTF1 positive but
without any clear histological adenocarcinoma compo-
nent). All three outlier cases showed TP53 mutations but
positive RB1 protein expression, although one case
(located in cluster 7) had a concurrent c.841C>A
RB1 mutation (COSM5658729) together with a serine/
threonine kinase 11 gene (STK11) frameshift mutation
(c.164_165insG). Notably, cluster 7 was strongly
enriched for STK11-mutated adenocarcinomas (see
Fig. 1). Consistently, the average expression of a 16-gene
STK11 gene loss signature,28 indicating serine/threonine
kinase 11 inactivation, was higher in both LCNEC cases
located in cluster 7 (see Fig. 2B). Finally, the three non–
cluster 3 cases showed lower expression of the prolif-
eration metagene and generally lower expression of the
neuroendocrine metagene compared to the 11 LCNEC
cases in tumor cluster 3 (see Fig. 2C and D).

Molecular and Clinicopathological
Characteristics of LCLCs Reclassified as
Adenocarcinoma and SqCC

As evident from Figure 1, adenocarcinoma-like or
SqCC-like cases classified as LCLC according to the
WHO 2004 guidelines did not form separate clusters.
This finding indicates that despite their undiffer-
entiated morphological features, these tumors
retain transcriptional similarities with different re-
ported adenocarcinoma or SqCC gene expression
subtypes.24,25

Of the four LCLCs reclassified as SqCC (see Fig. 1), two
grouped in a cluster dominated by secretory GEP–classified
SqCCs24 (cluster 4 in Fig. 1) whereas the remaining two
cases fell in the neuroendocrine cluster (n ¼ 1 [cluster 3])
and in the marker-null LCLC cluster (n ¼ 1 [cluster 8]).
Although our transcriptional analysis suggests that gene
expression profiling might add to current SqCC IHC classi-
fication, the numbers are too low to allow any definite
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conclusions to be drawnabout the heterogeneity of SqCC- or
SqCC-reclassified LCLC in this cohort.

For adenocarcinoma-like WHO 2004 LCLCs
(n ¼ 19), these clustered primarily in adenocarcinoma-
dominated clusters (84% of cases [clusters 1, 6, 7, and
9 in Fig. 1]). Importantly, these clusters showed

distinct clinicopathological, mutational, and GEP sub-
type characteristics shared by both the original ade-
nocarcinomas and the reclassified WHO 2004 LCLCs.
Three adenocarcinoma-like LCLCs fell in the LCLC
marker-null–dominated gene expression cluster (clus-
ter 8 in Fig. 1). However, in-depth analysis of

Figure 1. Unsupervised gene expression analysis stratifies large cell lung cancer (LCLC) and large cell neuroendocrine car-
cinoma (LCNEC) into molecular subgroups. Gene expression heatmap of 2730 Illumina probes across 159 lung cancers
stratified by 10 specified consensus clusters. The 2730 probes correspond to a log2ratio standard deviation cutoff of more
than 0.5 Annotations for histological subtypes, clinicopathological variables, selected mutations, retinoblastoma 1 immu-
nohistochemistry (RB1 IHC), classification according to reported gene expression phenotypes (GEPs) for adenocarcinoma (AC)
and squamous cell carcinoma (SqCC), and expression of selected biological metagenes are provided. For annotations, black
corresponds to a positive/presence call, gray to a negative call, and white to not applicable or not available. Gene cluster
functional annotations are provided for some specific clusters in the heatmap. ECM, extracellular matrix; mut, mutation; RB1
mut, retinoblastoma 1 gene mutation; TP53, tumor protein p53 gene; STK11, serine/threonine kinase 11 gene; TRU, terminal
respiratory unit; PP, proximal proliferative; and PI, proximal inflammatory.
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mutational and gene expression patterns (expression
of biological metagenes and gene cluster metagenes) in
these few samples compared with adenocarcinoma-
like LCLCs in other expression clusters failed to
demonstrate any specific or clear differences.

Molecular and Clinicopathological
Characteristics of Marker-Null LCLC

Nine out of 10 marker-null–classified LCLCs aggre-
gated in a specific gene expression cluster, accounting for

60% of all tumors in this cluster (cluster 8 in Fig. 1). On the
transcriptional level, this cluster was characterized mainly
by high expression of proliferation-related genes (see
Fig. 1 and Supplementary Fig. 4 for extensive comparison
of metagenes and gene clusters). On the genomic level,
besides TP53 mutations in 90% of cases, only one BRAF
mutation (p.Q456K), one phosphatase and tensin homolog
gene (PTEN) mutation (p.F257L), and one APC, adeno-
matous polyposis coli gene (APC) mutation (p.E1080Ter)
were found (Fig. 3A). A total of 445 genes were identified
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Figure 2. Mutations and gene expression characteristics of large cell neuroendocrine carcinoma (LCNEC) tumors with respect
to consensus clusters. (A) Mutational map of detected mutations in 26 tumor suppressor and oncogenes for 14 LCNEC tumors
stratified by consensus cluster assignment. Only genes with one or more mutations are shown. (B) Average log2ratio
expression of a 16-gene serine/threonine kinase 11 gene (STK11) loss gene signature28 for LCNEC tumors. Tumors are colored
by their consensus cluster as in (A). Asterisk indicates a case with STK11 mutation (C) Expression of the proliferation met-
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by significance analysis of microarray to be differentially
expressed between tumors in cluster 8 versus all other
tumors (false discovery rate <1%). Consistent with our
observations from biological metagenes and gene clusters,
79% of genes were down-regulated in cluster 8 tumors,
whereas the 95 up-regulated genes (21%) were enriched
for biological gene ontology processes such as nucleosome
assembly, mitotic cell cycle, DNA replication, cell division,
and cellular response to stress and oxidation-reduction
processes (Panther overrepresentation test29 [Bonfer-
roni p < 0.05]).

The marker-null LCLC case that did not cluster in the
marker-null expression cluster (instead located in clus-
ter 10 in Fig. 1) was further analyzed for transcriptional
characteristics by using biological metagene and gene
cluster metagene expression patterns. One specific
feature was observed, namely, higher expression of the
napsin A/surfactant biological metagene than in the
remaining cases in cluster 8 (Fig. 3B). This finding sug-
gests that this case has some adenocarcinoma-like
characteristics consistent with its clustering.

Validation of Transcriptional LCLC Subgroups
To validate our findings we analyzed a reported 199-

sample NSCLC cohort profiled by RNA sequencing,26

including 19 WHO 2004 LCLC cases and five LCNECs.
WHO 2015 reclassification identified a similar propor-
tion of LCLC marker-null cases in this cohort as in our
discovery set (32% [n ¼ 6]). The remaining cases (68%)
were reclassified as adenocarcinoma (37%), SqCC (5%),
adenosquamous (16%), or sarcomatoid (10%). To
investigate the reproducibility of our discovery cohort
findings, we created gene expression centroids for each
consensus cluster in the discovery cohort (see Fig. 1) and
classified the 199 tumors by a nearest centroid approach
(Fig. 4 and Supplementary Table 1). Three of five LCNEC
and four of six LCLC marker-null cases were classified

into the LCNEC and LCLC marker-null clusters, respec-
tively. The two LCNEC cases not in the neuroendocrine
cluster did not express high mRNA levels of neuroen-
docrine marker genes. For the two outlier LCLC marker-
null cases, one case was found in predicted cluster 10
(i.e., similar to the outlier in the discovery set), whereas
the second was found in predicted cluster 3 (the
neuroendocrine cluster) despite not showing increased
neuroendocrine metagene expression (see Fig. 4).

To compare our supervised classification with unsu-
pervised analysis of the validation cohort we performed
an independent broad consensus clustering (similar to
the discovery cohort). For higher standard deviations
(using w1000 to 2000 genes in the clustering), we did
observe aggregation of marker-null LCLC tumors in
specific clusters that was comparable to our classifica-
tion results (�67% of marker-null tumors in a single
cluster). In these instances, marker-null cases comprised
approximately one-third of cases in these clusters (see
Supplementary Fig. 5). This finding is again similar to
our results of classification of this cohort (LCLCs
comprise 36% of tumors in predicted cluster 8). In
contrast, in the unsupervised analysis of the validation
cohort we did not find a similar enrichment of LCNEC
tumors (<50% aggregation in a cluster by consensus
clustering versus 60% for supervised classification) (see
Supplementary Fig. 5).

Discussion
Previous extensive gene expression analyses have not

discriminated LCLC as a distinct expression phenotype in
NSCLC. Instead, LCLC tumors have often been dispersed
in various adenocarcinoma, SqCC, or LCNEC subgroups
(for example, see Clinical Lung Cancer Genome Project
et al.,7 Djureinovic et al.,26 and Botling et al.30). In the
current study, we explored the transcriptional and
genomic spectrum of LCLC and LCNEC in the context of
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recent molecular findings, refined pathological classifi-
cation schemes, and other histological subgroups of lung
cancer. Through gene expression profiling of 159 pri-
mary lung tumors of all histological subtypes and
subsequent independent validation in 199 additional
cases, we found that the WHO 2015 guidelines trans-
lated into a better transcriptional subgrouping of LCLC.

Our results endorse the recently refined definition of
LCLC on a transcriptional level, demonstrating the
presence of a GEP highly enriched for poorly differenti-
ated highly proliferative tumors that do not express
diagnostic immunomarkers for adenocarcinoma or SqCC.

An important conclusion from this study is that the
updated WHO 2015 classification translates to the

Figure 4. Validation of the large cell neuroendocrine carcinoma (LCNEC) and large cell lung cancer (LCLC) marker-null gene
expression phenotypes (GEPs). Gene expression heatmap of 2196 genes across 199 lung cancers from Djureinovic et al.26

classified by a nearest centroid predictor into 10 consensus clusters. Six cases were set as unclassified and are excluded
from the heatmap (n ¼ 193 cases in the heatmap). Annotations for histological subtypes, clinicopathological variables,
classification according to reported GEPs, for adenocarcinoma (AC) and squamous cell carcinoma (SqCC), and expression of
selected biological metagenes are provided. For annotations, black corresponds to a positive/presence call, gray to a
negative call, and white to not applicable or not available. SARC, sarcomatoid, TRU, terminal respiratory unit; PP, proximal
proliferative; PI, proximal inflammatory.
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transcriptional landscape, as the transcriptional pheno-
types mimic the WHO classification on a general level.
On a detailed level, transcriptional phenotypes likely
provide additional stratification within histological
subtypes that may be associated with prognosis and
therapeutic options. Within both adenocarcinoma
and SqCC different GEPs have been proposed (e.g., by
Wilkerson et al.,24 Wilkerson et al.,25 Bhattacharjee et al.,27

Takeuchi et al.,31 Garber et al.,32 and Raponi et al.33),
although the consensus between phenotypes is not
absolute in independent multicohort analysis.34 Our data
suggest that additional subgroup stratification appears
possible in at least lung adenocarcinoma compared with
the most used gene expression-based classification.25,35

The new WHO 2015 classification system has sub-
stantially reduced the proportion of LCLC (marker-null)
NSCLC cases. The reclassification frequencies observed in
the discovery and validation cohorts (70% and 68%,
respectively) are consistent with previous studies (59%–
90%).3,14,16,36–40 Our transcriptional analysis of reclassi-
fiedWHO 2004 LCLC cases demonstrates that these cases
have heterogeneous profilesmatching differentmolecular
subsets/GEPs of adenocarcinoma and SqCC, providing
additional biological information compared to current
diagnostic immunomarkers. Generally, reclassified WHO
2004 LCLCs followed the more aggressive transcriptional
phenotypes, such as proximal proliferative or proximal
inflammatory in adenocarcinoma.35 Specifically, no LCLC
according to the WHO 2004 guidelines that has been
reclassified as adenocarcinoma fell in the cluster
characterized by EGFR mutations, never-smokers, and
low-proliferative terminal respiratory unit–like tumors35

(cluster 5). These observations appear consistent with the
generally undifferentiated morphological state of WHO
2004 LCLC tumors and the well-known association of
LCLC with smoking.

In this study, marker-null LCLC cases formed a
specific, reproducible, transcriptional cluster linking the
immunomarker classification with a transcriptional
phenotype featuring characteristics of poorly differenti-
ated proliferative cancer (see Figs. 1 and 4), which typi-
cally is linked to poorer patient outcome. In the validation
cohort, the enrichment of marker-null tumors in the
proposed phenotype was lower than in the discovery
cohort (67% versus 90%, respectively). This might be
due to low sample numbers in the former cohort causing
strong proportional shifts by individual samples (16%
and 20% shifts per sample for marker-null and LCNEC
comparisons, respectively). The clearer identification of
the marker-null phenotype in the discovery cohort may
thus be due to a higher enrichment of marker-null tumors
than in the validation cohort (6% versus 3%, respec-
tively). Considering the overall low sample numbers, we
acknowledge that additional validation is warranted.

Three main differentiation lineages (bronchioid/
glandular, epidermoid/squamoid/squamous/keratinizing,
and neuroendocrine) are generally recognized in lung
cancer (for example, see the references in Pelosi et al.14).
Recent mutational analyses of marker-null LCLC cases
have suggested that genetic profiling could further reduce
the marker-null group beyond IHC scoring by detection of
typical adenocarcinoma or SqCC mutations, often favoring
an adenocarcinoma lineage.3,8,14,16 Although recent NGS-
based studies14,16 have reported a notably higher fre-
quency of (especially) adenocarcinoma-linked mutations
in marker-null cases than in our cohort, it may be noted
that 83% of non–marker-null cases in our marker-null–
enriched gene expression cluster (cluster 8) were adeno-
carcinoma or LCLCs according to theWHO 2004 guidelines
that have been reclassified as adenocarcinoma. This
observation may lend some support to a hypothesis that
marker-null LCLCs represent a variant of undifferenti-
ated TTF1-negative adenocarcinoma.14,41 Clearly, deeper
molecular/genetic characterization of marker-null LCLC
may further reduce the WHO 2015 marker-null group,
benefitting both clinical patient management and
basic understanding of differentiation lineages in lung
cancer.

On the basis of massive parallel sequencing
studies, it is becoming evident that a subset of LCNEC
tumors share mutational patterns with SCLC, whereas
others carry mutations typically altered in non-
neuroendocrine tumors.7,9,11,12 Rekhtman et al.9

recently hypothesized a genetic division of LCNECs
into SCLC-like and NSCLC-like subgroups. The SCLC-
like group was defined by concomitant TP53 and
RB1 alterations, reflecting their ubiquitous inactiva-
tion in SCLC.42 In contrast, the NSCLC-like subset was
characterized by the lack of concomitant TP53 and
RB1 alterations and occurrence of other NSCLC-type
mutations (e.g., KRAS and STK11 mutations). Inter-
estingly, our data indicate that this stratification may
potentially be mimicked also on the transcriptional
level, providing a speculative link between the muta-
tional and transcriptional landscape of LCNEC. An
earlier gene expression study has suggested the
presence of a good and poor outcome group in
neuroendocrine tumors independent of LCNEC and
SCLC status.43 However, how these subgroups relate
to the division of LCNEC by Rekhtman et al. is not
clear,9 as genetic data from the former study are not
available. Acknowledging the limited number of
LCNEC cases in the current study, consensus cluster 3
and non–cluster 3 cases still share intriguingly many
features of the proposed SCLC-like and NSCLC-like
LCNEC groups, respectively. These features include
(1) frequent co-occurrence of TP53 mutations and
RB1 mutations/protein loss in cluster 3, (2) higher
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expression of proliferation-related genes and SCLC
marker genes in cluster 3, (3) more pronounced
expression of a potential SRY-box 2 (a suggested
lineage survival oncogene in SCLC) transcription
factor–driven gene cluster in cluster 3 (see Rudin
et al.44), (4) indication of frequent STK11 inactivation
in non–cluster 3 cases, (5) distinct napsin A staining
in two of three non–cluster 3 cases with few addi-
tional focal positive cells in the third case (all cases
TTF1-positive), and (6) a trend of worse patient
outcome in cluster 3 (with 55% of patients dead
within 5 years versus 33% of non–cluster 3 patients).
Notably, LCNEC has hitherto been consistently re-
ported with negative napsin A expression,4,45 and how
this relates to the proposed NSCLC-like subgroup and
whether the speculative association with transcrip-
tional patterns indicated in the current study stands
in larger validation studies remain to be determined.

In summary, the current study provides a novel
link between the recent WHO 2015 diagnostic clas-
sification scheme and the transcriptional landscape
of lung cancer. Our study confirms that WHO 2004–
classified LCLCs may be refined by genomic patterns
into clinically relevant subgroups that may have
implications for diagnosis, predictive testing, and
therapy decisions. Specifically, we demonstrate a
gene expression profile that further defines a
phenotype associated with poor patient outcome
and comprises undifferentiated LCLC cases not
expressing adenocarcinoma or SqCC markers. A
continued search for molecular targets for thera-
peutic inhibition in WHO 2015 LCLC cases is highly
warranted.
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ABSTRACT
Large cell carcinoma with or without neuroendocrine features (LCNEC and LC, 

respectively) constitutes 3–9% of non-small cell lung cancer but is poorly characterized 
at the molecular level. Herein we analyzed 41 LC and 32 LCNEC (including 15 previously 
reported cases) tumors using massive parallel sequencing for mutations in 26 cancer-
related genes and gene fusions in ALK, RET, and ROS1. LC patients were additionally 
subdivided into three immunohistochemistry groups based on positive expression 
of TTF-1/Napsin A (adenocarcinoma-like, n = 24; 59%), CK5/P40 (squamous-like, 
n = 5; 12%), or no marker expression (marker-negative, n = 12; 29%). Most common 
alterations were TP53 (83%), KRAS (22%), MET (12%) mutations in LCs, and TP53 
(88%), STK11 (16%), and PTEN (13%) mutations in LCNECs. In general, LCs showed 
more oncogene mutations compared to LCNECs. Immunomarker stratification of 
LC revealed oncogene mutations in 63% of adenocarcinoma-like cases, but only in 
17% of marker-negative cases. Moreover, marker-negative LCs were associated with 
inferior overall survival compared with adenocarcinoma-like tumors (p = 0.007). No 
ALK, RET or ROS1 fusions were detected in LCs or LCNECs. Together, our molecular 
analyses support that LC and LCNEC tumors follow different tumorigenic paths and 
that LC may be stratified into molecular subgroups with potential implications for 
diagnosis, prognostics, and therapy decisions.

INTRODUCTION

Non-small cell lung cancer (NSCLC) accounts for 
the majority of diagnosed lung cancers and is dominated by 
the adenocarcinoma, squamous cell carcinoma (SqCC) and 
large cell carcinoma with or without neuroendocrine features 
(LCNEC and LC, respectively) histological subtypes. In 
NSCLC, LC and LCNEC together account for 3–9% of all 
cases depending on cohort demographics and classification 
scheme, with a generally poor prognosis compared to other 

NSCLC subgroups [1, 2]. In the 2004 WHO classification 
of lung cancer LC is defined as an undifferentiated NSCLC 
lacking architectural and cytologic features of small-
cell carcinoma, glandular or squamous differentiation, 
whereas LCNEC is defined as an LC with neuroendocrine 
morphological features and at least one positive 
neuroendocrine immunohistochemical (IHC) marker [3]. 
LCNEC tumors share many similarities with small-cell lung 
cancer (SCLC) on the morphological, IHC and molecular 
level [4] (and references therein). Based on advances in 
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immunomarkers for classification of adenocarcinoma and 
SqCC there is today significant controversy on whether 
LC actually represent a truly distinct biological entity, or 
merely a group of very poorly differentiated tumors of other 
NSCLC groups (adenocarcinoma and/or SqCC) [5, 6]. In 
fact, in the most recent 2015 WHO classification of lung 
cancer LCs that are mucin-positive or expresses pneumocyte 
markers should now be classified as adenocarcinoma, and 
the squamous marker-positive cases as nonkeratinizing 
squamous cell carcinoma [7].

In comparison to other NSCLC subgroups, LC 
and LCNEC tumors remain fairly uncharacterized at the 
molecular level by modern genomic techniques. Recent 
studies have investigated copy number alterations (CNAs) 
in LC and LCNEC [8, 9], highlighted the transcriptional 
similarity between LCNEC and SCLC [8], and identified a 
neuroendocrine DNA methylation subgroup in lung cancer 
[10]. In contrast, studies of the genome-wide mutational 
landscape in LC and LCNEC using massive parallel 
sequencing methods (NGS) are scarce. A recent analysis of 15 
LCNEC tumors using whole-exome sequencing associated 
mainly mutations in TP53, RB1, and EP300 with LCNEC 
(and SCLC) tumor histology, with additional mutations in 
LCNEC also found in adenocarcinomas and SqCCs [8]. 
Studies of smaller gene sets have identified abnormal TP53 
expression in both LC and LCNEC tumors and KRAS 
mutations predominantly in LCs [6, 11]. Mutations in EGFR 
and ALK gene fusions represent current molecular treatment 
predictive alterations for targeted therapy in lung cancer 
[12], but rarely appear in LC or LCNEC tumors with only 
a few reported cases in the literature [5, 6, 13–16]. Clearly, 
better characterization of the mutational landscape in LC and 
LCNEC is needed to take advantage of the growing number 
of targeted treatments and our emerging understanding of 
treatment resistance factors in lung cancer.

In this study, we aimed to investigate the 
mutational landscape of LC and LCNEC tumors using 
a panel of 26 well-established oncogenes and tumor 
suppressor genes in combination with ALK, RET, and 
ROS1 gene fusion analysis and copy number analysis 
of targeted genes. To this end, we analyzed 41 LC and 
17 LCNEC cases by massive parallel sequencing and 
combined our results with 15 whole-exome sequenced 
LCNEC cases [8] and previously reported copy number 
data [8, 10].

MATERIALS AND METHODS

Patient material

DNA and total RNA were extracted from 57 early 
stage lung cancer patients surgically treated at the Skåne 
University Hospital in Lund, Sweden (Table 1 and 
Supplementary Table S1). Patients in this retrospective 
study had not received any neoadjuvant treatment before 
surgery. One patient harbored a mixed cancer, with one 

LC and one LCNEC tumor component, treated as two 
individual tumors in the analysis. In total, 41 LC and 
17 LCNEC samples were included from this patient 
cohort. For all cases, relevant pathological slides were 
re-evaluated and clinicopathological characteristics were 
updated to be in line with recent international criteria and 
guidelines [3, 17]. Thirteen cases have been described 
in previous studies [10, 18]. From Seidel et al. [8], we 
included whole-exome sequencing and copy number data 
on genes investigated in the experimental Lund cohort 
from 15 additional LCNEC cases (Table 1).

Ethics statement

The study was approved by the Regional Ethical 
Review Board in Lund, Sweden (Registration no. 
2004/762, 2008/702, 2007/445, and 2014/748).

Immunohistochemistry

Cases with neuroendocrine morphological features 
were evaluated for IHC staining of the neuroendocrine 
markers chromogranin A, synaptophysin and CD56 
(Supplementary Methods). At least 10% positive tumor 
cells were required for positive staining for these markers. 
In addition, LC cases were analyzed for IHC staining of 
CK5/P40 (squamous cell markers) and TTF-1/Napsin A 
(adenocarcinoma markers). Staining intensities for these 
markers were categorized as 0 (<1% positive tumor 
cells), 1 (1–10%), 2 (11–25%), 3 (26–50%), and 4 (>50% 
positive tumor cells). Similar to the recent 2015 WHO 
update on lung cancer [7], we classified a categorized 
intensity of ≥1 as positive for TTF-1 or Napsin A, and 
≥ 2 as positive for CK5 or P40. A LC sample was 
classified as adenocarcinoma-like if a positive TTF-1 
and/or Napsin A staining was observed. A LC case was 
classified as squamous-like if a positive CK5 and/or P40 
staining was observed. IHC analyses are further described 
in Brunnström et al. [19] and Supplementary Methods.

Mutational analysis

All Lund cases were analyzed by the NGS-
based Illumina TruSight Tumor gene panel on a MiSeq 
instrument according to manufacturer’s instructions 
(Illumina, San Diego, CA, US). Analyzed regions 
included a selected set of complete exons in 26 genes: 
AKT1 (exon 2), ALK (exon 23), APC (exon 15), BRAF 
(exons 11, 15), CDH1 (exons 8, 9, 12), CTNNB1 (exon 2), 
EGFR (exons 18, 19, 20, 21), ERBB2 (exon 20), FBXW7 
(exons 7, 8, 9, 10, 11), FGFR2 (exon 6), FOXL2 (exon 
1), GNAQ (exons 4, 5, 6), GNAS (exons 6, 8), KIT (exons 
9, 11, 13, 17, 18), KRAS (exons 1, 2, 3, 4), MAP2K1 
(exon 2), MET (exons 1, 4, 13, 15, 16, 17, 18, 20), MSH6 
(exons 5), NRAS (exons 1, 2, 3, 4), PDGFRA (exons 11, 
13, 17), PIK3CA (exons 1, 2, 7, 9, 20), PTEN (exons 
1, 2, 3, 4, 5, 6, 7, 9), SMAD4 (exons 8, 11), SRC (exon 
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10), STK11 (exons 1, 4, 6, 8), and TP53 (exons 2, 3, 4, 
5, 6, 7, 8, 9, 10, 11). DNA extraction was performed 
using the Qiagen GeneRead (Qiagen, Hilden, Germany) 
kit for formalin-fixed paraffin embedded tissue (FFPE), 
or by the Qiagen AllPrep kit for fresh frozen tissue 
(Supplementary Methods). Macrodissection of FFPE cases 
were performed when possible prior to DNA extraction. 
Alignment, quality filtering, variant calling, and variant 
annotation were performed using the standard MiSeq 
Reporter and VariantStudio analysis pipeline (Illumina). 
Only nonsynonymous variants with a quality score equal 
to 100 that passed the bi-directional sequencing quality 
filter in TruSight Tumor were considered. Read depths 

(X) for genes with detected variants varied between 3024–
143140X (median 18624X, interquartile range 28450X).

Gene fusion analysis

Analysis of ALK, RET, and ROS1 gene fusions 
were performed using the RNA-based Archer FusionPlex 
ARR v2 kit (ArcherDX, Boulder, CO, US) and the MiSeq 
instrument (Illumina) (Supplementary Methods). The 
HCC78 (ROS1-SLC34A2), KARPAS-299 (ALK-NPM1), 
LC-2/ad (CCDC6-RET), and H2228 (EML4-ALK) cell lines 
were used as controls (Supplementary Methods). RNA 
from FFPE tissues (n = 11 samples) were extracted using 
the Qiagen Allprep FFPE extraction kit (Qiagen), while 

Table 1: Patient characteristics and clinicopathological data
Lund CLCGP [8] All cases

Histology

LC (basaloid) 41 (6) *, ** - 41 (6)

LCNEC 17* 15 32

LC immunomarker profile

Adenocarcinoma-like 24 (59%) - 24 (59%)

Squamous cell carcinoma-
like 5 (12%) - 5 (12%)

Marker null 12 (29%) - 12 (29%)

Tumor stage

I 29 7 36

II 19 6 25

III 8 2 10

IV 2 0 2

Smoking history

Never-smokers 0 0 0

Smokers 34 11 45

Not available 24 4 28

Gender

Female 31 6 37

Male 27 9 36

Age (median & range) 66 (47–82) 67 (47–80) 66 (47–82)

Patients evaluable for

Mutations 58 15 73

ALK, RET, ROS1 fusions 46 1*** 47

Copy number alterations 46 10 56

*One patient had a mixed tumor with both an LC and LCNEC component.
** Basaloid (n = 6) and lymphoepithelioma-like (n = 1) cases are included in the LC sample numbers.
*** Evaluated for ALK/RET/ROS1 fusions by FISH.
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RNA from cell lines or fresh frozen tissue were extracted 
using the non-FFPE Qiagen Allprep extraction kit. Data 
analysis was performed using software tools provided 
with the Archer kit (ArcherDX). Confirmatory ALK 
immunohistochemistry was performed using the D5F3 
antibody (Ventana Medical Systems), and confirmatory 
ALK FISH analysis using the Vysis ALK break apart FISH 
probe (Vysis) according to manufacturers’ instructions.

Copy number analysis

Calls of copy number gain, loss, amplification 
and focused copy number loss for genes included in the 
TruSight Tumor panel were made for 46 tumors in the Lund 
cohort based on data from ongoing or published studies on 
the same tumor cohort [10], and for ten cases from Seidel et 
al. [8] as described by [10, 20] and Supplementary Methods.

NGS validation analyses

Ten mutations in KRAS detected by the TruSight 
Tumor panel were selected for validation by the 
Therascreen® KRAS RGQ PCR Kit (Qiagen, Hilden, 
Germany) according to the manufacturer’s protocol. 
In addition, seven unrelated tumor FFPE specimens, 
including two melanomas, two lung adenocarcinomas, and 
three colon cancers were also used to validate the NGS 
platform. These samples had verified mutations in BRAF 
(the two melanomas and one colon cancer: V600E), KRAS 
(two colon cancers: G13D and G12S), and EGFR (the 
two lung adenocarcinomas: L858R and E746_A750del). 
Mutations in these cases were obtained from routine clinical 
diagnostics based on pyrosequencing or Q-PCR performed 
at the Skåne University Hospital in Lund, Sweden.

RESULTS

Tumor and patient characteristics

A cohort of 41 LC and 17 LCNEC cases (Lund 
cohort) were pooled with 15 reported LCNEC cases [8], 
thus rendering a total of 73 cases (Table 1). All patients 
with available chart data were (current or former) 
smokers. There were no statistical differences in the 
distribution of tumor stage, gender, or age of diagnosis 
between LC and LCNEC cases (p > 0.05, Fisher’s exact 
test or Wilcoxon’s test). Among the LC cases, six tumors 
were histopathologically subclassified as basaloid, and 
one as lymphoepithelioma-like. Protein expression 
of adenocarcinoma markers TTF-1 and Napsin A and 
squamous markers CK5 and P40 were investigated in the 
Lund cohort and the public LCNEC cohort (TTF-1 only). 
77% of all analyzed LCNEC cases showed positive TTF-
1 expression. 59% of LC cases in the Lund cohort were 
IHC positive for TTF-1, while 44% were IHC positive 
for Napsin A. 75% of the TTF-1 positive LC cases also 
showed positive Napsin A expression, while no case was 

Napsin A positive but TTF-1 negative. For the squamous 
markers CK5 and P40, 5% and 10% of LC cases showed 
positive staining, respectively.

The mutational spectrum of LC and LCNEC

The 73 LC and LCNEC cases were analyzed for 
mutations in 26 cancer-related genes through NGS-
based analysis of fresh frozen or FFPE tumor tissues. 
In total, 117 nonsynonymous variants, with alternate 
variant frequencies (the fraction of all reads with the 
detected variant) between 3–91% (Lund cohort only), 
were identified in 13 genes, for which gene copy number 
status were also extracted (Figure 1 and Supplementary 
Figure S1 and Supplementary Tables S2–S3 listing explicit 
variant data). Median number of variants per sample was 
one and maximum was three. 72 out of 73 cases, including 
all Lund cases, showed variants in at least one gene.

TP53 mutations were the most dominant alteration 
in both LC and LCNEC tumors (83% and 88% of cases, 
respectively). TP53 mutations typically manifested 
as missense mutations in active protein domains and 
nonsense mutations in between active domains (Figures 1 
and Supplementary Figure S1). Remaining alterations 
were found in considerably lower numbers in both 
subgroups. In LC, KRAS and MET were the second and 
third most frequently mutated genes (22% and 12%, 
respectively), while corresponding genes in LCNEC were 
STK11 and PTEN (16% and 13%, respectively) (Figure 1, 
Supplementary Table S3). These alterations highlight a more 
general difference between the two subgroups, regarding 
alterations in oncogenes versus tumor suppressors. Here, 
LC cases typically showed more alterations in oncogenes 
compared to LCNECs. Specifically, 20 oncogene alterations 
in BRAF, GNAQ, GNAS, KRAS, KIT, MET, NRAS, MAP2K1/
MEK1, and PIK3CA were found in 44% of the LC cases 
as compared to eight alterations affecting 22% of LCNEC 
cases (Supplementary Table S3). Notably, for the two KRAS 
alterations observed in LCNEC cases, one was not in the 
active RAS protein domain (a KRAS M1I mutation). The 
second, a G12C mutation, was found in both the LCNEC 
and the LC component of the included multicomponent 
tumor, with different alternate allele frequencies (40.3% 
in the LCNEC and 7.9% and in the LC component of 
the tumor). Together, this suggests that activating KRAS 
mutations are in fact rare in LCNEC. Consistent with a 
general idea of a limited number of oncogene hits required 
to activate a tumorigenic pathway, we observed only one 
case in each histological subgroup with >1 mutation in any 
of the eight oncogenes.

Two additional differences regarding oncogene 
mutations may be noted. Firstly, KIT mutations were 
exclusively found in LCNEC cases (n = 3, 9%). Secondly, 
all TP53 wild type LC cases (17% of all LC cases) 
harbored oncogene mutations in KRAS, MET or PIK3CA 
(Figure 1A). This observation suggests that these TP53 
wild type tumors may be more dependent on oncogene 
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Figure 1: Detected mutations and copy number alterations in LC and LCNEC. A. Detected gene variants and copy number 
alterations (CNAs) (rows) in 41 LC cases (columns), ordered by immunomarker profile of adenocarcinoma-like (AC-like), squamous cell 
carcinoma like (SqCC-like), or marker null phenotype (TTF-1/Napsin A and CK5/P40 negative). Copy number status is shown as larger 
background rectangles and mutations as squares for each sample and gene. Right side bar plot summarizes the distribution of the different 
mutation types for each gene. B. Detected variants and copy number alterations in 32 LCNEC cases displayed as in A. Samples are ordered 
according to gene variant frequency.
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activation alone for sustained tumor development. 
However, in this relatively small retrospective cohort we 
did not find support for differences related to tumor stage 
or gender (p = 0.69 and p = 0.42, respectively, Fisher’s 
exact test), or patient outcome (overall survival, log-rank 
p > 0.05) between these tumors and TP53-mutated LCs.

Finally, high-level copy number gain (amplifications), 
or low copy deletions (putative homo zygous deletions) were 
very scarce in analyzed cases (only single cases with NRAS, 
KRAS, GNAQ, MET, KIT, or PIK3CA amplifications, 
Figure 1), and no distinct cases of monoallelic amplification 
of mutated oncogene alleles were observed. For several 
tumor suppressors (TP53, STK11, PTEN, and APC), in 
especially LCNEC cases, we observed apparent support of 
Knudson’s multiple-hit hypothesis [21], with DNA mutation 
and associated copy number loss (Figure 1).

DNA mutations in histopathological and 
immunohistological subgroups of LC and LCNEC

Basaloid tumors represent a rare histopathological 
subgroup of LC characterized by specific cytological and 
tissue architectural characteristics [3]. In our LC cohort, six 
cases were subclassified as basaloid cancer. When viewed 
as two subgroups, i.e., basaloid versus non-basaloid LC, 
there were no differences in mutation frequencies between 
the groups for two of the most commonly mutated genes, 

TP53 and MET. In contrast, no KRAS mutations were 
observed in basaloid cases, consistent with Rossi et al. [6].

Recently, patient outcome and specific oncogene 
mutations in LC tumors have been associated with tumor 
subgroups defined by positive expression of adenocarcinoma 
(TTF-1/Napsin A) or squamous cell carcinoma (CK5/
P40) immunohistochemistry markers [5]. In our LC cohort, 
24 tumors (59%) were positive by immunohistochemistry 
for TTF-1/Napsin A (referred to as adenocarcinoma-like), 5 
tumors (12%) were CK5/P40 positive (squamous-like), 
whereas 12 tumors (29%) did not express any of these IHC 
markers (marker null cases). Stratification of identified 
mutations by IHC subgroup revealed a striking enrichment 
of oncogene mutations in adenocarcinoma-like LC tumors 
(85% of all oncogene mutations, affecting 63% of these 
cases), including all nine KRAS mutations and the single 
NRAS (G12D) and MAP2K1/MEK1 (K57N) mutations 
(Figure 1A, Supplementary Tables S2 and S3). These KRAS 
mutations were all typical driver mutations located in codon 
12 (one G12S, two G12C, three G12V mutations), 13 (one 
G13C and one G13D mutation), and 61 (one Q61K mutation), 
suggesting that these represent likely driver events in the 
affected tumors. In contrast, 92% of marker null cases carried 
a TP53 mutation, but only 17% of cases had an oncogene 
mutation (one BRAF Q456K and one MET T1010I mutation). 
Moreover, marker null cases showed a poorer overall survival 
compared to adenocarcinoma-like cases (p = 0.007, log-rank 

Figure 2: Kaplan-Meier analysis of the association with overall survival for immunomarker-defined subgroups of 
LC. P-value calculated using the log-rank test.
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test, Figure 2). The poorer outcome of marker null LC cases 
compared to adenocarcinoma-like cases was significant also in 
multivariate analysis including immunomarker stratification, 
tumor stage, and gender as covariates and overall survival as 
clinical endpoint (Hazard ratio = 4.4, 95% Confidence interval 
= 1.5–12.5, p = 0.006 for marker null stratification).

For LCNEC cases, we observed no association between 
DNA mutations and IHC expression of the chromogranin A, 
synaptophysin or CD56 neuroendocrine markers.

Validation analyses of NGS DNA 
mutation results

To validate the NGS platform we first analyzed seven 
independent tumor FFPE samples from lung, colon and 
melanoma with known mutations in BRAF (V600E), KRAS 
(G12S, G13D), and EGFR (L858R and E746_A750del). 
The variant allele frequency for these alterations by 
pyrosequencing ranged between 27.7–41.8%. All mutations 
could successfully be identified by the NGS platform.

Secondly, we selected the ten LC and LCNEC cases 
from the Lund cohort harboring KRAS mutations (variant 
allele frequencies between 3.1–41%), and validated them 
using quantitative PCR (Qiagen Therascreen). Eight KRAS 
mutations were correctly identified, while the remaining two, 
Q61K and G13C, were not covered by the Therascreen assay.

ALK, RET, and ROS1 gene fusion analysis in 
LC and LCNEC

The ability of the Archer FusionPlex assay to 
identify gene fusions in ALK, RET and ROS1 was 
successfully validated in four cell lines with known 
fusion gene rearrangements, HCC78 (ROS1-SLC34A2), 
KARPAS-299 (ALK-NPM1), LC-2/ad (CCDC6-RET), and 
H2228 (EML4-ALK).

Fusion gene analysis was performed on all 58 Lund 
cases using RNA from fresh frozen (n = 47) or FFPE (n = 11)  
tumor tissues. However, only 46 fresh frozen tumors 
passed the initial Archer data quality analysis steps after 
sequencing (35 LC, 11 LCNEC). The failure of the FFPE 
cases is likely due to extensive RNA degradation in the 
tissue blocks caused by the fixation process and subsequent 
storage. In the 46 analyzable cases, we identified no RET 
or ROS1 fusions. Only one analyzed tumor, a LCNEC 
case, showed a candidate ALK gene fusion event (DNBL-
ALK) based on NGS data, however just with the minimum 
number of reads required for reporting (Supplementary 
Methods). However, confirmatory ALK IHC and FISH 
analysis could not confirm protein overexpression or an 
actual gene fusion event in this case.

DISCUSSION

In the current study, we have explored the mutational 
spectrum of 26 well-established cancer-related genes and 

ALK, RET, and ROS1 gene fusions by massive parallel 
sequencing in a large panel of thoroughly histopathologically 
classified primary LC and LCNEC lung cancers. In 
comparison to existing methods, NGS-based methods for 
DNA variant detection generally offer higher sensitivity in 
detecting low-frequency variants. Together with the specific 
feature of bi-directional sequencing in the Illumina TruSight 
Tumor assay this allows for sensitive variant detection 
also in FFPE samples. Besides the presented molecular 
characterization of LC and LCNEC tumors, the current study 
also supports the feasibility of using NGS-based methods for 
analysis of treatment predictive DNA alterations in routine 
clinical lung FFPE tumor tissues.

In LC as a whole, our findings of frequent KRAS 
mutations and less frequent alterations in BRAF, MAP2K1, 
and PIK3CA are in agreement with previous studies [5, 6]. 
Similarly, in LCNEC the high mutation rate of TP53 and 
the scarcity of KRAS mutations have also been reported 
before (see, e.g., Rossi et al. [4]). The similar frequency 
of TP53 mutations between the LC and LCNEC group 
mimics findings of similar p53 protein expression by 
Iyoda et al. [11]. Due to a paucity of studies, the roles 
of PTEN, STK11 and MET mutations in LC and LCNEC 
are largely unknown. In our study, alterations in the tumor 
suppressors PTEN and STK11 were mainly observed 
together with TP53 mutations in both LC and LCNEC, 
while MET mutations were more often found in TP53 
wild type LC cases. Although LCNEC tumors have been 
shown to strongly express receptor tyrosine kinases such 
as KIT, PDGFRA, PDGFRB and MET, compared to other 
NSCLC groups, there is less support of mutations being 
the underlying cause for the elevated expression [4, 18]. 
Supporting these results, we identified no PDGFRA 
mutations in any of the tumors, only one MET mutation 
in the LCNEC group, whereas three KIT mutations were 
found exclusively in LCNEC cases. However, the impact 
of some of these mutations is difficult to assess without 
functional characterization, as all do not occur in active 
protein domains (see Supplementary Figure S1).

In this study, alterations in oncogenes, with 
exception of KIT alterations, are generally more 
frequent in LCs when considered a single entity 
compared to LCNEC. However, it is becoming apparent 
that the mutational spectrums in LC and LCNEC are 
different based on recent whole-exome sequencing 
studies. Specifically, LCNEC has been suggested 
to be more similar to SCLC [8], in line with the 
similarity of LCNEC and SCLC on the morphological, 
immunohistochemical, transcriptional, copy number, 
and epigenetic levels [4, 8–10]. Consistently, SCLC 
have recently been reported to harbor high frequencies 
of TP53 mutations and similar frequencies of KIT, 
PIK3CA and KRAS alterations as for the LCNEC cases 
in the current study [22]. Together, our observations 
further support that LC and LCNEC follow different 
evolutionary paths.
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Stratification of LC cases based on immunomarkers 
for adenocarcinoma (TTF-1/Napsin A) and squamous cell 
carcinoma (CK5/P40) revealed that 71% of the cases could 
be classified as variants of adenocarcinoma or SqCC. This 
observation is in line with previous reports (59–90%) 
[5, 23–27], although the observation of 29% of LC as 
marker null is on the higher end compared to the literature. 
One reason for this could be that we in this retrospective 
cohort used the TTF-1 8G7G3/1 clone that compared to 
the SPT24 clone is slightly less sensitive, whereas the 
SPT24 clone yields more cases positive for both CK5/P40 
and TTF-1. Likewise, we used CK5 and P40 as markers 
of squamous cell carcinoma, while P63 may be more 
sensitive (but also less specific). Irrespectively, our data 
demonstrates the value of using multiple immunomarkers 
for undifferentiated lung cancers. While no apparent 
differences in oncogene amplification frequency could 
be observed between immunomarker-defined subgroups, 
the subgroups showed a distinctively different spectrum 
of especially oncogene mutations. Adenocarcinoma-
like LCs (59% of all analyzed LC cases) harbored the 
overwhelming majority of detected oncogene mutations 
(85%), affecting 63% of these tumors. By comparison, 
only 17% of marker null LC cases showed oncogene 
mutations. Thus, adenocarcinoma-like LC appears to 
represent a more oncogene driven subgroup compared 
to CK5/P40 positive tumors and marker null LCs. These 
findings are in excellent agreement with Rekhtman et 
al. [5], including the observation of the single PIK3CA 
mutation in a CK5/P40 positive case, and a poorer overall 
survival for marker null patients compared to TTF-1/
Napsin A positive LC patients. Despite the retrospective 
nature of the patient material, our results in combination 
with other recent molecular studies clearly challenge LC 
as an independent tumor entity on the molecular level, 
supporting that the current LC definition rather includes 
a heterogeneous collection of poorly differentiated 
tumors from other NSCLC subgroups [5, 6, 8]. In fact, 
supported by both clinicopathological and molecular 
studies the recent 2015 WHO classification of lung cancer 
now stress that the term LC should now only be used for 
undifferentiated tumors not expressing pneumocyte or 
squamous markers [7]. Importantly, in the 2004 WHO 
classification the LC definition provides little molecular 
information for a predictive molecular testing strategy 
to guide individualized treatment for this patient cohort 
[5]. A refined stratification of LC based on molecular 
characteristics may therefore have considerable impact 
on diagnosis, predictive molecular testing and in the end, 
therapy selection [5, 6, 8].

In contrast to the immunomarker-defined LC sub-
groups, less is known whether LCNEC tumors may be 
divided into similar subgroups. In the current study we 
found no associations of the neuroendocrine markers used 
to identify LCNEC tumors with specific mutations. This 

lack of association may be because these markers do not 
represent putative subgroups at all, and/or, as indicated 
by our analyses, that the mutational landscape in LCNEC 
is different in respect to, especially, oncogene drivers 
compared to non-neuroendocrine NSCLC. Clearly, further 
genomic studies of both marker null LC (undifferentiated 
LC) and LCNEC tumors including large scale sequencing 
approaches, gene expression profiling, and DNA 
methylation profiling are needed to further characterize 
these tumor groups.

EGFR mutations and ALK gene fusions are the key 
molecular treatment predictive alterations for targeted 
therapy in lung cancer today [12]. However, both alterations 
are scarce in LC and LCNEC tumors [5, 6, 14–16], 
consistent with our findings of no EGFR mutations or 
validated ALK gene fusions in either LC or LCNEC tumors. 
Specifically, the absence of ALK rearrangements in our 
LC cohort compared to the few ALK rearranged cases 
reported by Rekhtman et al. [5] is consistent with that 
our cohort comprises only of known smokers, while ALK 
rearrangements in the former study were found in never or 
light smokers. In recent studies, lung cancer patients with 
tumors harboring ROS1 or RET gene fusions have shown 
notable responses to ALK or other multi-target kinase 
inhibitors [28, 29]. Similar to ALK fusions, the frequency of 
these alterations in LC and LCNEC is largely unknown, but 
may be expected to be very low. Consistently, we found no 
RET or ROS1 gene fusions in LC or LCNEC tumors based 
on targeted RNA sequencing.

In summary, the current study adds further insights 
into the mutational landscape of LC and LCNEC, 
supporting that these tumor subgroups follow different 
tumorigenic paths. Moreover, our study supports that LC 
may be refined by molecular and immunomarkers into 
clinically relevant subgroups that may have implications 
for diagnosis, and therapy decisions. Despite the 
identification of adenocarcinoma-like LC as a subset of 
tumors with a potentially high frequency of forthcoming 
therapeutically relevant driver mutations, a continued 
search for additional molecular targets for therapeutic 
inhibition in non-adenocarcinoma NSCLC is warranted.
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Genome-wide DNA Methylation Analysis of Lung Carcinoma
Reveals One Neuroendocrine and Four Adenocarcinoma
Epitypes Associated with Patient Outcome

Anna Karlsson1, Mats J€onsson1, Martin Lauss1, Hans Brunnstr€om1, Per J€onsson2, Åke Borg1,3,
G€oran J€onsson1,3, Markus Ringn�er1,3, Maria Planck1, and Johan Staaf1,3

Abstract
Purpose: Lung cancer is the worldwide leading cause of death from cancer. DNA methylation in gene

promoter regions is a major mechanism of gene expression regulation that may promote tumorigenesis.

However, whether clinically relevant subgroups based on DNA methylation patterns exist in lung cancer

remains unclear.

Experimental Design:Whole-genome DNA methylation analysis using 450K Illumina BeadArrays was

performed on 12 normal lung tissues and 124 tumors, including 83 adenocarcinomas, 23 squamous cell

carcinomas (SqCC), 1 adenosquamous cancer, 5 large cell carcinomas, 9 large cell neuroendocrine

carcinomas (LCNEC), and 3 small-cell carcinomas (SCLC). Unsupervised bootstrap clustering was per-

formed to identify DNA methylation subgroups, which were validated in 695 adenocarcinomas and 122

SqCCs. Subgroupswere characterized by clinicopathologic factors, whole-exome sequencing data, and gene

expression profiles.

Results: Unsupervised analysis identified five DNAmethylation subgroups (epitypes). One epitype was

distinctly associated with neuroendocrine tumors (LCNEC and SCLC). For adenocarcinoma, remaining

four epitypes were associated with unsupervised and supervised gene expression phenotypes, and differ-

ences in molecular features, including global hypomethylation, promoter hypermethylation, genomic

instability, expression of proliferation-associated genes, and mutations in KRAS, TP53, KEAP1, SMARCA4,

and STK11. Furthermore, these epitypes were associated with clinicopathologic features such as smoking

history and patient outcome.

Conclusions:Our findings highlight one neuroendocrine and four adenocarcinoma epitypes associated

with molecular and clinicopathologic characteristics, including patient outcome. This study demonstrates

the possibility to further subgroup lung cancer, and more specifically adenocarcinomas, based on

epigenetic/molecular classification that could lead to more accurate tumor classification, prognostication,

and tailored patient therapy. Clin Cancer Res; 20(23); 6127–40. �2014 AACR.

Introduction
Lung cancer is currently the leading cause of death from

cancer worldwide (1). The disease is broadly divided into
small-cell lung cancer (SCLC; �15% of all cases) and
non–small cell lung cancer (NSCLC). NSCLC is further

divided into adenocarcinoma, squamous cell carcinoma
(SqCC), and large-cell carcinoma with or without neu-
roendocrine features (LCNEC and LC, respectively). Lung
cancer is a molecularly heterogeneous disease involving
different alterations that drive tumorigenesis, including
DNA sequence alterations, copy number alterations
(CNAs), and epigenetic modifications, such as DNA
methylation and histone/chromatin modifications. DNA
methylation at CpG dinucleotides in gene promoter
regions is a major mechanism of gene expression regu-
lation, and aberrant promoter hypermethylation may
lead to inactivation of tumor suppressor genes, thereby
promoting tumorigenesis (2).

Genome-wide DNA methylation profiling of NSCLC
have identified epigenetic subgroups (epitypes) of tumors
associated with characteristic molecular alterations and
prognosis (3–7). NSCLC/adenocarcinomas with increased
promoter methylation levels have been highlighted, and
termed CpG island methylator phenotype (CIMP),
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stratifying tumors into CIMP-high, CIMP-low/negative,
and CIMP-intermediate subgroups, in analogy to findings
from other cancer forms (3, 4, 8). In addition, gene expres-
sion phenotypes like the bronchioid, magnoid, and squa-
moid subtypes in adenocarcinoma (9, 10) have also been
associated with specific DNA methylation patterns (9).
However, the proposed NSCLC epitypes have not been
independently replicated. Moreover, genome-wide epige-
netic patterns across multiple lung cancer histotypes have
not yet been reported.

Herein, we investigated the landscape of DNA meth-
ylation in different histologic subgroups of lung cancer
with the intention to derive methylation-based sub-
groups of clinical and molecular relevance. On the basis
of a discovery cohort of 124 primary lung cancers,
including all major histologic subgroups, we found a
specific DNA methylation pattern of neuroendocrine
tumors and identified four epitypes of adenocarcinoma
that were subsequently validated in 817 independent
NSCLC cases. Epitypes were associated with molecular
and clinicopathologic differences, and linked to gene
expression phenotypes based on integration with DNA
sequencing and gene expression data. Together, our
findings highlight the possibility to further subgroup
lung cancer based on epigenetic/molecular classifica-
tion, providing a clear refinement of previously sug-
gested models and a more accurate tumor classifica-
tion, which could lead to new targets for diagnostics,
therapeutic intervention, and prognostication of the
disease.

Materials and Methods
Patient material

DNA and total RNA were extracted from the same tissue
piece for 124 tumors and 12 matched normal lung tissue
specimens from patients with early-stage lung cancer oper-

ated at the Ska
�
ne University Hospital (Lund, Sweden; Table

1, discovery cohort). The studywas approved by theRegion-
al Ethical Review Board in Lund, Sweden (Registration no.
2004/762 and 2008/702). The 12 normal specimens orig-
inated from patients with adenocarcinoma and were mixed
in gender (3 males, 9 females), smoking status (6 never-
smokers, 6 smokers), and patient age (57–82 years). Three-
hundred and seventy three adenocarcinomas from The
Cancer Genome Atlas (TCGA) project (11) and 444NSCLC
cases from Sandoval and colleagues (ref. 5; Sandoval
cohort) were used as validation cohorts (Table 1).

Global methylation analysis
All cases were analyzed by the Illumina Human Methyl-

ation 450K v1.0 platform (Illumina) according to manu-
facturer’s instructions (Supplementary Materials and Meth-
ods). Signal intensities were obtained from GenomeStudio
(Illumina), converted to b-values, filtered, and normalized
to remove biases between Infinium I and II probes (Sup-
plementary Materials and Methods). CpG probes with
aberrant methylation in tumors compared with normal
lung tissue in the discovery set were identified as described
in Supplementary Materials and Methods (Supplementary
Fig. S1A), and annotated through the human embryonic
stem cell (H1hESC) chromatin state track (12) and the
Illumina CpG island track. CpGs in repetitive elements
were identified through the "repeats_rmsk_hg19" table
from the UCSC Genome Browser. Unsupervised class-dis-
covery was performed using bootstrap clustering (ref. 13;
Supplementary Materials and Methods). Principal compo-
nent analysis (14), including clinicopathologic and techni-
cal factors, and comparisonof bisulfite conversionplate and
beadchip id against unsupervised bootstrap clusters were
performed to assess that no technical artifacts influenced
methylation data, or bootstrap groups, for the 124-sample
discovery cohort (Supplementary Fig. S1B–S1D). DNA
methylation centroids representing bootstrap clusters were
created from the average b-value for each CpG probe in
respective cluster. Samples in validation cohorts were
assigned to the centroid with the smallest Euclidean dis-
tance for matching CpGs. Methylation data for the discov-
ery cohort is available as GSE60645 (15).

Copy number analysis
Log2 copynumber estimates andCNAs forCpGprobes in

the discovery and Sandoval cohorts were generated and
identified as described in Supplementary Materials and
Methods from 450K methylation beadchip data. For the
TCGA cohort, copy number estimates and CNAs were
obtained from level 3 Affymetrix SNP6 data as described
(16, 17). Complex arm-wise aberration index (CAAI) scores
were calculated similar to Russnes and colleagues (ref. 18;
Supplementary Materials and Methods).

Translational Relevance
DNAmethylation in gene promoters is a major mech-

anism of gene expression regulation that may promote
tumorigenesis. DNAmethylation of specific genes, and/
or patterns of DNA methylation in lung cancers have
been associated with patient outcome. However, hith-
erto, neither the existence of reproducible DNA meth-
ylation-based subgroups of potential clinical relevance
nor the DNA methylation pattern across multiple his-
tologic subgroups has been carefully investigated in lung
cancer. On the basis of a multicohort approach, we
conducted a comprehensive survey of genome-wide
DNA methylation patterns in lung cancer identifying
one neuroendocrine and four reproducible adenocarci-
noma epitypes. Importantly, epitypes were associated
with specific clinicopathologic and molecular character-
istics, gene expressionphenotypes, andpatient outcome.
These findings shed light on the epigenetic characteris-
tics and molecular diversity underlying lung cancer.
Moreover, they highlight the possibility to further sub-
group the disease based on epigenetic/molecular classi-
fication, which could lead to improvements in tumor
classification, prognostication, and tailored patient
therapy.
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Global gene expression analysis
Gene expression analysis was performed on 117 tumors

from the discovery cohort using Illumina Human HT-12
V4 microarrays, available as GSE60645 (15). TCGA ade-
nocarcinoma expression data were obtained as RNASeq
V2 data. Six correlated gene expression modules in lung
cancer, representing different tumor and/or tumor envi-
ronment associated processes, were derived as originally
described by Fredlund and colleagues in GSE29016
(refs. 19, 20; Supplementary Materials and Methods;
Supplementary Table S1). These expression modules
included an immune response, a neuroendocrine, and
a stroma/extra cellular matrix module. Data processing
steps, including adenocarcinoma and SqCC molecular
subtype classification (9, 21), correlation of methylation
and expression data, and calculation of different expres-
sion metagenes are further described in Supplementary
Materials and Methods.

Functional classification
Gene Ontology enrichment were performed using the

DAVID Functional Annotation Tool (22) with the default
human population background and a Bonferroni-adjusted
P < 0.05 as significance threshold.

Results
Genome-wideDNAmethylationpatterns in lung cancer

We analyzed 124 lung tumors from five histologic sub-
groups for global DNAmethylation patterns using Illumina
450K methylation arrays (Table 1, discovery cohort). Over-
all, DNA methylation in the tumors followed a distinct
pattern along the gene coding sequence, with low methyl-
ation levels near the transcription start site and high meth-
ylation levels at gene bodies, 30UTRs, and intergenic regions
(Fig. 1A). Correlation analyses of DNA methylation and
gene expression revealed a pattern of negative correlations
at transcription start sites and more positive correlations in

Table 1. Patient characteristics and clinicopathologic data for included cohorts

Lund cohort Sandoval et al. (5) TCGA (11)

Usage Discovery Validation Validation
Total number of patients 124 444 373
Histology
Adenocarcinoma 83 322 373
SqCC 23 122 —

LC 5 — —

LCNEC 9 — —

SCLC 3 — —

Other 1 (Adenosquamous) — —

Tumor stage
I 110 237 206
II 10 94 87
III 1 102 63
IV — 11 16
Not available 3 — 1

Smoking history
Never-smokers 20 47 57
Smokers 104 334 304

Gender
Male 53 254 173
Female 71 190 200

Mutation status
EGFR-mutated 12 — 49a

KRAS-mutated 24 — 100a

Patient outcome
Outcome typeb OS (121/83) RFS (198/155) —

Evaluable for
CNAs X Xc X
Gene expression X — X
Mutation spectrum — — X

NOTE: X, data available for analysis.
aNonsilent mutations from Mutation Annotation Format (MAF) file.
bOS, overall survival; RFS: relapse-free survival. Number of patients with outcome data (NSCLC/adenocarcinoma).
cOnly CN-FGA.

Epitypes of Lung Carcinoma
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Figure 1. DNA methylation patterns in lung cancer. A, distribution of average b-values for 473864 CpGs stratified by Illumina gene location across the 124
tumors in the discovery cohort. TSS, transcription start site. B, Spearman correlation of DNAmethylation and gene expression for 9,334 genematching CpGs
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open sea/heterochromatin regions and gene bodies (Fig. 1B
and C; Supplementary Table S2). We identified 4136 CpGs
with aberrant methylation in >10% (n ¼ 13) of tumors
comparedwith normal lung tissue, includingmultipleHOX
genes, Wnt signaling pathway genes, APC, CDH13, GATA4,
GATA5, and RASSF1 consistent with previous studies (3, 6)
(Supplementary Fig. S1A; Supplementary Table S2). Hypo-
methylated CpGs in tumors were enriched in open sea/
heterochromatin regions, whereas hypermethylated CpGs
were typically located in transcription start sites, CpG
islands, and poised promoters in human embryonic stem
cells, H1hESC cells, consistent with previous reports
(refs. 6, 23; Fig. 1D and E). Hypomethylated CpGs were
enriched in repetitive regions (LINE, SINE, LTR elements)
compared with hypermethylated CpGs (21% vs. 4%,
respectively, Fisher exact P ¼ 9e�54). Importantly, chang-
ing the number of CpGs with aberrant methylation by
lowering or increasing the number of required tumors with
aberrant methylation (n ¼ 2–20 tumors equaling CpG sets
between �1,000 and 44,000 CpGs; Supplementary Fig.
S1A) yielded the same enrichment pattern of hypomethy-
lated and hypermethylated CpGs.
Functional annotation analysis of genes with hyper-

methylated CpGs in the 4136 CpG set showed enrichment
of biologic processes such as regulation of transcription,
neural development, and cellmorphogenesis corroborating
previous studies (24, 25), whereas hypomethylated genes
showed a much less clear functional enrichment (Supple-
mentary Table S2).

Unsupervised class discovery based on genome-wide
DNA methylation patterns identifies five epitypes
Unsupervised bootstrap analysis based on the 4136CpGs

highlighted five tumor clusters in the discovery cohort,
hereafter referred to as epitypes (ES1, ES2, ES3, ES4, and
ES5; Fig. 2A and Supplementary Fig. S1E). Importantly,
epitype association for individual sampleswas robust across
different CpG sets (numbers between 1,282–17,710 CpGs)
in exploratory bootstrap analysis (Supplementary Fig. S1F).
ES1 showed a global hypomethylation pattern, ES4 a pro-
moter methylation pattern, ES5 a methylation pattern
resembling normal lung tissue, whereas ES2 had a pattern
in between ES1 and ES4 (Fig. 2). Consistent with the global
DNA hypomethylation pattern, ES1 tumors also showed
more hypomethylation of CpGs in repetitive elements (Fig.
2CandSupplementary Fig. S1G).Notably, 89%ofES3 cases
were either SCLC (n ¼ 2) or LCNEC (n ¼ 6) tumors.
Consistent with the dominance of neuroendocrine cases
in ES3, we found distinct overexpression of a neuroendo-
crine gene expression metagene compared with the other
epitypes (P ¼ 5e�05, Kruskal–Wallis test). Hence, we refer
to ES3 as a neuroendocrine epitype. On the other hand,
SqCC tumors clustered in ES1 (17%), ES2 (57%), and ES5

(22%) (Fig. 2A). A distinct association of SqCC cases in ES2
with the reported classical SqCC gene expression subtype
(21) was found, with >86% of classical subtype classified
SqCC cases present in this epitype. Adenocarcinomas (n ¼
83) were divided into ES1 (12%), ES2 (14%), ES4 (36%),
and ES5 (37%; Fig. 3A).

Validation of lung cancer epitypes
To validate the identified epitypes from the discovery

cohort, we created DNA methylation centroids for each
epitype based on the 4136 CpGs. Next, we classified two
independent cohorts analyzed by the same methylation
platform (Sandoval and TCGA) comprising 122 SqCC
tumors and 695 adenocarcinomas (Table 1). Principal
component analysis performed in the validation cohorts
confirmed that the centroid classification explainedmost of
the total variation in DNA methylation compared with
available clinicopathologic, technical (batch and beadchip
data), and molecular factors, including clinical smoking
history, sex, tumor stage, tumor size, histology (adenocar-
cinoma or SqCC), EGFR, KRAS, and TP53mutations (Sup-
plementary Figs. S2A and S3A–S3C).Notably,most of these
factors (e.g., smoking status) contributed little to the total
variation in DNA methylation. Moreover, the classification
of the validation cohorts was robust across different sets of
CpGs, and overlapped extensively with independently
derived unsupervised bootstrap groups in these cohorts
(Supplementary Figs. S2B–S2D and S3D–S3F).

In both validation cohorts, �1% of cases were classified
as ES3, supporting that this epitype is highly distinct for
lung cancers expressing neuroendocrinemarker genes. Sim-
ilar to the discovery cohort, SqCC tumors in the Sandoval
cohort were primarily classified as ES2 (49%of SqCC cases)
or ES5 (33%).AlthoughLC, LCNEC, andSqCC tumorswere
present in different clusters in the discovery set, this cohort
is underpowered to robustly claim existence of different
epitypes within these histologic subgroups.Moreover, there
currently exist no comparable LC, LCNEC, or SCLC cohorts
suitable for validation of novel epitypes within these sub-
groups. Consequently, we hereafter focus the characteriza-
tion and validation of the epitypes only on lung adenocar-
cinomas in the three cohorts (excluding ES3), using clini-
copathologic factors, gene expression data, CNAs, and
mutational data. Fig. 3A shows the distribution of adeno-
carcinomas between epitypes in all investigated cohorts.

Adenocarcinoma epitypes are associated with
reproducible clinicopathologic characteristics
including smoking history, EGFR, and KRASmutations

The epitypes showed differences in the composition of
never-smokers and smokers. ES5 was enriched for never-
smokers in both the discovery and Sandoval cohorts (63–
68% of all never-smokers), while less in the TCGA cohort

(Continued.) Digits correspond to track state id. The number of CpGs per group is indicated on top of the panel. D, 4,136 CpGs were selected on the basis of
variation in at least 13 of 124 tumor cases compared with 12 normal lung tissues and grouped according to Illumina CpG island annotations. Orange
bars correspond to CpGs hypermethylated in tumors, blue bars correspond to CpGs hypomethylated in tumors, and black bars correspond to distribution of
all CpGs on the Illumina platform. E, the 4,136 CpGs were grouped according to the human embryonic stem cell (H1hESC) chromatin state track.
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(35%; Fig. 3B). In contrast, never-smokers were rarely
classified as ES1 in any cohort (0%–5% of all never-smo-
kers). However, in exploratory analysis, we identified only
513 CpGs (1.1% of analyzed CpGs) to be statistically
associated with clinical smoking status in adenocarcinomas
across all three cohorts (false discovery rate adjusted Wil-
coxon P < 0.05 and >0.05 difference in average b-value
between groups). Notably, only 21 of these CpGs showed a
more stringent difference in DNA methylation (>0.1 aver-
age b-value difference).
Consistent with the distribution of never-smokers,

EGFR mutations were often found in ES5 tumors in
the discovery and TCGA cohorts (58% and 30% of all
mutations, respectively), but rarely in ES1 cases (4%–
8%; Fig. 3C). Another notable difference between the
epitypes was a similar enrichment of KRAS-mutated cases
in the ES4 promoter hypermethylated epitype in both the
discovery and TCGA cohorts (50%–54% of all KRAS
mutations; Fig. 3C).

Adenocarcinoma epitypes are associated with
adenocarcinoma gene expression phenotypes
In both the discovery and TCGA cohorts, the epitypes

were associated with the reported bronchioid (ES5), mag-
noid (ES1, ES2), and squamoid (ES4) adenocarcinoma
gene expression phenotypes (9) (Fig. 3D). The association
of the epitypeswith gene expression phenotypeswas further
supported by an extensive overlap between epitypes and
gene expression subgroups derived from individual unsu-
pervised consensus clustering of the discovery and TCGA
cohorts (Fig. 3E). Together, these results provide a strong
link between genome-wide DNAmethylation and the tran-
scriptional landscapes in lung adenocarcinoma.

Gene expression signatures associated with
adenocarcinoma epitypes
The epitypes were associated with consistent differences

in various gene expression metagenes in both the discovery
and TCGA cohorts. For instance, ES1 had the highest
expression of proliferation-associated genes (the CIN70;
ref. 26, metagene), while ES5 the lowest (P ¼ 0.00005 in
the discovery cohort and P ¼ 9e�17 in TCGA, Kruskal–
Wallis test). The opposite pattern was found for expression
of a terminal respiratory unit (TRU; ref. 27) gene signature
(P ¼ 0.0002 and P ¼ 6e�18, respectively, Kruskal–Wallis
test). The epitypes also differed in expression of an immune
response–associated metagene and a stroma/extracellular
matrix–associated metagene. Notably, the expression of
these two gene modules likely relates to infiltration of
immune or stromal cells in the analyzed macrodissected
tissue. ES1 consistently showed the lowest and ES5 the
highest expression of both metagenes (Fig. 3F, data not
shown for the TCGA cohort). These results suggest that ES5
is an epitypewith considerable infiltration of nonmalignant
cells consistent with the observed methylation pattern
being most similar to normal lung tissue. In contrast, ES1
would represent tumors with high tumor cell content. ES2
showed a different pattern for these two metagenes com-

pared with the other epitypes (Fig. 3F). Expression of the
stromal metagene was similar in ES2, ES4, and ES5,
whereas expression of the immune metagene was lower
in ES2 compared with ES4 and ES5, but higher compared
with ES1. Supporting these observations, we found sim-
ilar patterns of stromal and immune expression scores
between the epitypes using the Estimation of Stromal and
Immune Cells in Malignant Tumors (ESTIMATE) method
(28) in both cohorts (data not shown). Together, this
suggests that differences in the cellular type and amount
of infiltrating nonmalignant cells may exist between the
epitypes.

To further investigate biologic processes differing
between the epitypes, we identified differentially expressed
genes between adenocarcinomas stratified by epitype in the
discovery (n ¼ 1,824 expression probes) and TCGA (n ¼
5,726 genes) cohorts (Supplementary Materials and Meth-
ods). Functional analysis revealed enrichment of biologic
processes involved in immune response, cell proliferation,
and cell adhesion (Supplementary Table S3), consistent
with results from the metagene analyses (Fig. 3).

The mutational spectrum of adenocarcinoma epitypes
To further characterize the mutational spectrum in the

epitypes, we analyzed whole-exome sequencing data for
TCGA adenocarcinomas. Overall, ES1 cases harbored the
highest number of mutations and ES5 the least (Fig. 4A),
independent of patient smoking status. Moreover, the epi-
types showed differences in the type of mutation transver-
sionswhen stratifiedby smoking status (Supplementary Fig.
S4). The largest differences were observed in the distribu-
tions of C>T and C>A transversions (recognized as a smok-
ing-related signature; ref. 29), between the ES1 (more C>A,
less C>T) and ES5 epitypes (less C>A, more C>T). Consis-
tently, overlapping ES1 cases were more often classified as
transversion-high (89%) in the recent TCGA study com-
pared with the other epitypes (55%–70%, Fisher exact P ¼
0.03; ref. 3).

To search for individual mutations associated with the
epitypes, we performed a permutation-based screen of 174
genes identified by MutSigCV (30) analysis of 402 TCGA
adenocarcinomas as described in ref. (31). This analysis
identified seven genes with false discovery rate �10%,
including four well-known tumor suppressor genes
(KEAP1, TP53, STK11, and SMARCA4) and three genes
appearing as either false positives (COL11A1, and LRRIQ3),
or with <10%mutation frequency in any epitype (SNRPN).
For TP53, STK11, KEAP1, and SMARCA4, we observed
notable differences in the mutation frequencies between
the epitypes (Fig. 4B), but no differences in mutation type
(missense, truncating, or in-frame indel; c2 P > 0.05). The
latter result may partly be related to the overall low number
of specificmutations, for example, 86%of SMARCA4muta-
tions in ES4 were missense mutations compared with 30%
to 50% in ES1, ES2, or ES5. In these analyses, KRAS muta-
tions were borderline nonsignificantly associated with the
epitypes, whereas the association of EGFR mutations with
the epitypes was less strong (see Fig. 3C).
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Figure 3. Clinicopathologic and gene expression characteristics of adenocarcinoma epitypes. A, distribution of adenocarcinomas in epitypes in the discovery,
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Adenocarcinoma epitypes are associated with patient
outcome
The four epitypes were associated with patient outcome

(overall survival or relapse-free survival) in the discovery
and Sandoval cohorts for NSCLC in general, and adeno-
carcinoma specifically (Fig. 5). Convincingly, in both
cohorts, the ES2 and ES5 epitypes were associated with the
best outcome in adenocarcinomas, whereas ES1 and ES4
were associated with the worst outcome. For stage I adeno-
carcinomas, the epitypes were associated with overall sur-
vival in the discovery cohort (relapse-free survival, log-rank
P¼ 0.005), while borderline nonsignificant in the Sandoval
cohort (relapse-free survival, log-rank P ¼ 0.06). However,
for NSCLC stage I tumors from Sandoval, the epitypes were
associated with relapse-free survival (log-rank P ¼ 0.04).
In univariate analysis of epitype association, patient age,

smoking history, sex, EGFR, and KRAS mutation status in
stage I adenocarcinomas from the discovery cohort, the
epitypes were the only significant factor for overall survival
(P < 0.05). In multivariate analysis including all these
factors, the ES2 and ES5 epitypes remained significant
(P < 0.05). In multivariate analysis of stage I adenocarci-
nomas from the Sandoval cohort, none of the factors (age,
smoking history, gender, and epitype) reached significance.

Discussion
In the current study, we have explored the landscape of

genome-wideDNAmethylation across themajor histologic
subgroups of lung cancer, identifying five epitypes of
tumors linked to different gene expression phenotypes. We
demonstrate that aberrant DNAmethylation in lung cancer
is consistent with the classical view of hypermethylation in
CpG islands, and hypomethylation in heterochromatin

regions, including repetitive elements (32). Hypermethy-
lated genes were enriched for developmental and differen-
tiation-associated processes and polycomb targets pre-
marked by histone H3K27 trimethylation in embryonic
cells (24, 25). These results are consistent with a hypothesis
that DNA methylation in lung cancer preferentially targets
genes involved in morphogenetic processes and late stage
differentiation of the lung epithelium, potentially contrib-
uting to establishment of an early undifferentiated cancer
phenotype (24).

Through a multicohort approach, we demonstrate that
LCNEC and SCLC tumors with neuroendocrine features
represent a distinct lung cancer epitype compared with
NSCLC, consistent with a similar association based on copy
number and transcriptional alterations (33). Supporting
ES3 as a distinct neuroendocrine epitype, centroid classifi-
cation of 69 NSCLC cell lines (7) classified only the known
LCNEC cell line, NCI-H1155, as ES3. Remaining cell lines
were predominantly classified as ES1 (58%) or ES4 (36%).
In both the discovery cohort and the Sandoval NSCLC
validation cohort, DNA methylation epitypes identified by
unsupervised bootstrap analysis comprised of a mix of
adenocarcinomas and SqCCs. On the transcriptional and
CNA level, adenocarcinomas and SqCCs display large dif-
ferences (16, 27, 33). Here, additional studies (larger
cohorts) are needed to pinpoint DNA methylation altera-
tions that could explain such histology or cell type–specific
expression patterns.

In the discovery cohort, we divided adenocarcinomas
(91% stage I tumors) into four epitypes (ES1, ES2, ES4,
and ES5), with marked differences in molecular and clin-
icopathologic characteristics, including patient outcome.
Although resected stage I NSCLC patients have the most
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favorable prognosis, the 5-year survival rate is 52% to 89%
(34). Thus, improved molecular subclassification of early-
stage NSCLC is highly relevant. To date, only a few studies
have reported DNA methylation epitypes in NSCLC or
adenocarcinoma specifically (3–7). However, thorough
validation of the reported epitypes has not been performed
in anyof these studies. In contrast, we validatedour epitypes
in 695 adenocarcinomas from two independent cohorts
showing that they (i) provide powerful explanations of the
total variation in DNA methylation compared with other
clinicopathologic and molecular factors; (ii) are robust
across a wide range of CpGs; (iii) have consistent clinico-
pathologic and molecular features in different cohorts; and
(iv) could be recovered in validation cohorts by indepen-
dent unsupervised analysis.

On the basis of extensive promoter hypermethylation,
overrepresentation of KRAS-mutated adenocarcinomas,
and poor patient outcome, the ES4 epitype shares features
with the Shinjo and colleagues (4) adenocarcinoma CIMP-
high phenotype. Supporting this association, 89% of all
matching CIMP-high cases in the recent TCGA study were
classified as ES4, whereas the remaining 11%were classified
as ES1 (3). However, in contrast with the Shinjo and

colleagues (4) CIMP-high phenotype, the ES4 epitype
included never-smokers, EGFR mutations, and was not
associated with gender (similar to the CIMP-high group in
ref. 3; Fig. 3). These discrepancies may be because the CIMP
definition in lung cancer is not standardized, illustrated by
the differences in CIMP-high frequency between the TCGA
and Shinjo and colleagues’ studies (20.4% and 7.8%,
respectively; refs. 3, 4). Notably, the enrichment of KRAS-
mutated adenocarcinomas in a promoter hypermethylated
cluster is consistent with previous reports (4, 6). This
enrichment is intriguing given that KRAS-mutated adeno-
carcinomas have been reported to display less distinctive
mRNA and CNA patterns compared with, for example,
EGFR-mutated adenocarcinomas (17, 35). However, KRAS
mutations have not been found to be the driver of such a
promoter hypermethylated epitype in either lung adeno-
carcinoma or colorectal cancer, suggesting a more complex
underlying mechanism (6, 36).

The ES1 epitype was characterized by global hypo-
methylation distant from CpG islands, hypomethylation
of CpGs in repetitive elements, high expression of prolif-
eration-associated genes, a non-TRU–like expression pat-
tern, association with the magnoid subtype, a high
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Figure 5. Association of
adenocarcinoma epitypes with
patient outcome. A, overall survival
for patients with NSCLC (left) and
patients with adenocarcinoma
(right) stratified by epitype in the
discovery cohort. B, relapse-free
survival (RFS) for patients with
NSCLC (left) and patients with
adenocarcinoma (right) stratified
by epitype in the Sandoval cohort.
In this cohort, nopatient included in
survival analyses received
adjuvant chemotherapy. P values
were calculated using the log-rank
test.
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mutational burden including TP53, KEAP1, and STK11
mutations, strong association with smoking, and poor
patient outcome in both discovery and validation cohorts
(Figs. 2–5). Hypomethylation in cancer have been asso-
ciated with different repetitive elements that could con-
tribute toward genomic instability (refs. 37, 38; and refer-
ences therein). Accordingly, we found that ES1 tumors
displayed not only more CNAs, but also that these altera-
tions appeared more complex compared with the other
epitypes based on the complex arm-wise aberration index
(CAAI; ref. 18; Supplementary Fig. S5A–S5C). We also
found that copy number breakpoints occurring in repet-
itive elements for copy number gain or loss regions were
hypomethylated to a greater extent in ES1 tumors (Sup-
plementary Fig. S5D and S5E). Together, these clinico-
pathologic and molecular characteristics suggest that
tumor progression in ES1 may be primarily driven by
genomic instability and less by classical oncogene activa-
tion (exemplified by a lower EGFR and KRAS mutation
frequency). The latter is supported by the fact that ES1
cases were less often denoted oncogene-positive compared
with tumors from other epitypes based on data from the
recent TCGA study (P ¼ 0.02, Fisher exact test; ref. 3).
Moreover, from the same study, ES1 cases showed higher
tumor purity and tumor ploidy compared with the other
epitypes (Kruskal–Wallis P < 0.0001). Thus, ES1 appears
to represent a poorly differentiated, aneuploid, and aggres-
sive subset of adenocarcinomas with high tumor cellular-
ity, less driven by oncogene activation. A smaller fraction
of ES1 cases showed concomitant global hypomethylation
and promoter methylation (more evident in the larger
validation cohorts, Supplementary Figs. S2E and S3G).
This subset of cases may better resemble the Shinjo and
colleagues (4) CIMP-high group, as they were all smokers
and did not harbor any EGFRmutations (data not shown).
Irrespectively, our results support that a CIMP phenotype
can occur in adenocarcinomas with markedly different
epigenetic, transcriptional, and genetic make-up.
DNA methylation patterns may act as a fingerprint for

different cell types (39). Compared with the DNA methyl-
ation pattern of ES1, the ES2 epitype appears more infil-
trated by nonmalignant cells. Consistently, we observed
differences in gene expression of metagenes associated with
immune response and stroma/extracellular matrix between
ES1 and ES2. Intriguingly, despite indicators of poor prog-
nosis, including frequent CNAs, higher expression of pro-
liferation-related genes, association with the magnoid
expression subtype, and a high mutational burden (includ-
ing TP53, STK11, and KEAP1 mutations), ES2 adenocarci-
noma cases (together with ES5 cases) showed the best
outcome. While the generally better prognosis of ES5 cases
may be attributable to their lower proliferation rate, the
better prognosis of ES2 patients compared with ES1 could,
hypothetically, be related to an altered and/or reduced
immune cell infiltration in ES1, which have been shown
to confer a poorer prognosis in multiple cancer types
(19, 40–42). Whether the ES2 epitype represents an inter-
mediate/transition state to ES1 for adenocarcinomas

remains to be investigated. Although somatic alterations
in specific epigenetic regulators were recently found in a
notable proportion of adenocarcinomas, there were no
associations with global DNA methylation patterns (3).
Here, the association of SMARCA4 (a nucleosome remo-
deler)mutations with ES2 is intriguing andwarrants further
investigation.

In contrast with the other epitypes, ES5 showed a DNA
methylation pattern with similarities to blood leukocytes
and normal lung tissue. Together, with its more TRU-like
expression pattern, lower expression of proliferation-relat-
ed genes, higher expression of immune and stroma-related
metagenes, high frequency of bronchioid classified tumors,
enrichment of never-smokers, and better patient outcome,
ES5 matches a proposed TRU type of adenocarcinoma (43)
but also shares characteristics with the CIMP-negative epi-
type reported by Shinjo and colleagues (4). Importantly,
ES5 cannot be dismissed as an epitype merely due to
sampling issues, as the analyzed tumor DNA carried both
CNAs and mutations. For instance, for the 25 cancer hall-
mark genes defined by Imielinski and colleagues (44), 78%
of ES5 cases in the TCGA cohort carried at least one alter-
ation (mutation or CNA). Moreover, the lack of NSCLC cell
lines classified as ES5 or ES2 (see above) does not dismiss
these epitypes in clinical tumor specimens, as for instance
the well established intrinsic molecular subtypes in breast
cancer are not reproduced exactly in breast cancer cell
lines (45).

DNA methylation of smaller sets of CpGs/genes (e.g.
CDKN2A, FHIT, APC, and RASSF1A) have been associated
with smoking in both genome-wide and gene-focused stud-
ies of lung cancer (6, 38, 46) (and references therein).
However, on a genome-wide level our results suggest an
overall less dominant effect of clinical smoking history on
the DNA methylation landscape in primary adenocarcino-
mas, despite the enrichment of never-smokers in specific
epitypes. This conclusion may be exemplified by results
from the principal component analyses, the presence of
never-smokers in all epitypes with exception of ES1, the low
number of smoking associated CpGs in both the current
and previous studies (6, 46), and that the patterns of global
and promoter hypermethylation between epitypes were
similar irrespective of smoking status (Figs. 2A, S1B, S2A,
S3A and S6A and B). Combined with similar findings of
intrinsically heterogeneous gene expression and CNA pat-
terns in smoking-defined adenocarcinoma subgroups
(20, 31), our results question whether never-smokers can
be identified as a molecular subgroup of its own with
transcriptional, DNAmethylation, and CNA patterns clear-
ly different from tumors arising in smokers. Instead, our
study further supports that a majority of adenocarcinomas
arising in never-smokers together with a specific subset of
tumors from smokers represent amore distinct and relevant
molecular/biologic entity of less aggressive and potentially
more smoking-unrelated disease (20, 31). The clinical
smoking definitions are intrinsically problematic due to
their self-reported nature, but also because they do not
capture the intensity and duration of cigarette exposure,
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and the exposure to environmental tobacco smoke and
other pollutants for never-smokers. Interestingly, the few
TCGA never-smokers classified as ES1 display smoking
characteristic C>A transversion frequencies similar to cur-
rent-smokers, clearly different from, for example, ES2-clas-
sified never-smokers (Supplementary Fig. S4A). Thus,
whether these never-smokers are "true" never-smokers
remains unclear. This suggests that ES1 is in fact strongly
related to patients with a smoking history and, importantly,
presumably also distinct underlying tumor biology and/or
tumorigenic events.

The question of whether the observed DNA methylation
epitypes/alterations are driver or passenger events, and their
position and role in the evolutionary tree of a tumor
remains to be determined. Promoter hypermethylation of
individual genes, notably tumor suppressors like CDKN2A,
have been recognized as early events in lung tumorigenesis,
while there is a lack of consensus over whether global
hypomethylation is an early or late event in lung cancer
(see refs. 37, 38). The impact of smoking on epigenetic
modificationsmay further complicate the picture, as certain
alterations havebeen associatedwithdurationor amount of
tobacco smoking andmay thus be later events in the cancer
development and progression (38). Whole-genome bisul-
fite sequencing combined with other profiling/sequencing
techniques may be one potential way of reconstructing the
evolution of a tumor in relation to driver mutations, CNAs,
andDNAmethylation, as recently described forDNAaltera-
tions in breast cancer (47).

Besides describing DNA methylation patterns in lung
adenocarcinoma, our study strongly supports a link
between adenocarcinoma gene expression phenotypes and
genome-wide DNA methylation patterns (9). Importantly,
this link brings further insights and explanation to the
observed clinicopathologic characteristics, gene expression
patterns, mutational signatures, and biologic pathways/
processes associated with the epitypes (3, 9, 27, 43). How-
ever, the current study also extends the knowledge about
genome-wide DNA methylation patterns in the adenocar-
cinoma gene expression phenotypes, for example, showing
that the current definition of these phenotypes comprises of
a mix of DNA methylation patterns (Fig. 3D). In contrast
with Wilkerson and colleagues (9), we found that the
magnoid subtype was strongly associated with a global
DNA hypomethylation pattern in both the discovery and
TCGA cohorts (Supplementary Fig. S6C and S6D). Further-
more, DNA methylation patterns in and between the epi-
types were consistent irrespective of bronchioid, magnoid,
or squamoid classification (Supplementary Fig. S6E and
S6F). Together, our results suggest that further refinement of
both the proposed gene expression phenotypes and the
CIMP phenotype in lung adenocarcinoma should be pos-
sible through integrated analysis of transcriptional, copy
number, and DNA methylation data.

Epigenetic alterations, including DNA methylation, are
potentially reversible which offers an interesting therapeu-
tic opportunity. For instance, DNA methyltransferase

(DNMT) inhibitors can induce DNA hypomethylation at
specific gene loci that can result in sustained gene reac-
tivation (48). Currently, DNMT inhibitors and multiple
histone deacetylase (HDAC) inhibitors are in clinical use
and/or clinical testing in different malignancies, and a
recent phase I/II trial reported an objective response to a
combinatorial treatment with DNMT and HDAC inhibi-
tors in recurrent metastatic NSCLC (49). Interestingly, in
a recent NSCLC cell line experiment, cell lines with a
CIMP-positive phenotype responded with growth inhibi-
tion to 5-Aza-dC (a DNMT inhibitor) treatment, while
CIMP-negative cell lines did not (4). Whether the pro-
posed epitypes in the current study define patient sub-
groups likely to benefit or not from such treatments
remains to be investigated.

In summary, based on a multicohort approach, we have
conducted a comprehensive survey of the genome-wide
DNA methylation pattern in lung cancer involving the
major histologic subgroups. Together, the current study
adds further layers of information about the epigenetic
characteristics andmolecular diversity in lung cancer.More-
over, it highlights the possibility to further refine disease
classification that may ultimately lead to improvements
in detection, patient stratification, prognostication, and
therapy.
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